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Mitigating global infectious disease requires diagnostic tools that are sensitive, specific,
and rapidly field deployable. In this study, we demonstrate that the Cas13-based SHERLOCK
(specific high-sensitivity enzymatic reporter unlocking) platform can detect Zika virus
(ZIKV) and dengue virus (DENV) in patient samples at concentrations as low as 1 copy per
microliter.We developed HUDSON (heating unextracted diagnostic samples to obliterate
nucleases), a protocol that pairs with SHERLOCK for viral detection directly from bodily fluids,
enabling instrument-free DENVdetection directly from patient samples in <2 hours.We
further demonstrate that SHERLOCK can distinguish the four DENV serotypes, as well as
region-specific strains of ZIKV from the 2015–2016 pandemic. Finally, we report the rapid
(<1 week) design and testing of instrument-free assays to detect clinically relevant viral
single-nucleotide polymorphisms.

R
ecent viral outbreaks have highlighted the
challenges of diagnosing viral infections,
particularly in areas far from clinical lab-
oratories. Viral diagnosis was especially
difficult during the 2015–2016 Zika virus

(ZIKV) pandemic; low viral titers and transient
infection (1, 2), combined with limitations of ex-
isting diagnostic technologies, contributed to
ZIKV circulating formonths before the first cases
of infection were confirmed clinically (3–5). An
additional challenge for viral diagnostics is dif-
ferentiating between related viruses that cause
infections with similar symptoms, like ZIKV and
dengue virus (DENV) (1). Existing nucleic acid
detection methods are very sensitive and rapidly
adaptable, but most require extensive sample
manipulation and expensive machinery (1, 6–8).
In contrast, antigen-based rapid diagnostic tests
require minimal equipment but have lower sen-
sitivity and specificity, and assay development can
take months (9–11). An ideal diagnostic would
combine the sensitivity, specificity, and flexibility
of nucleic acid diagnostics with the speed and
ease of use of antigen-based tests. Such a diag-
nostic could be rapidly developed and deployed
in the face of emerging viral outbreaks and would

be suitable for disease surveillance or routine
clinical use in any context.
The Cas13-based nucleic acid detection plat-

form SHERLOCK (specific high-sensitivity enzy-
matic reporter unlocking) has the potential to
address the key challenges associated with viral
diagnostics. SHERLOCK combines isothermal
amplification via recombinase polymerase am-
plification (RPA) (12) with highly specific Cas13-
baseddetection (Fig. 1A) (13). Cas13, anRNA-guided
ribonuclease, provides specificity throughCRISPR
RNA (crRNA)–target pairing and additional sen-
sitivity due to signal amplification by Cas13’s col-
lateral cleavage activity (14, 15).
For SHERLOCK to excel at viral detection in

any context, it should be paired with methods
enabling direct detection from patient samples
with a visual readout. In this study, we tested
the performance of SHERLOCK for ZIKV and
DENV detection in patient samples and devel-
oped HUDSON (heating unextracted diagnostic
samples to obliterate nucleases), a method to en-
able rapid, sensitive detection of ZIKV and DENV
directly from bodily fluids with a colorimetric
readout, demonstrated as part of SHERLOCKv2
(16). Additionally, we designed SHERLOCKassays

to distinguish multiple viral species and strains
and identify clinically relevant mutations.
Detection of ZIKV and DENV in patient sam-

ples provides a stringent test of the sensitivity
of SHERLOCK and its tolerance of viral diversity.
Our ZIKV SHERLOCK assay had single-copy
[1 copy (cp)/ml] sensitivity when tested on seed
stock cDNA (fig. S1).We evaluated its performance
on 40 cDNAs derived from samples collected
during the 2015–2016 ZIKV pandemic, 37 from
samples obtained from patients with suspected
ZIKV infections and 3 frommosquito pools (Fig.
1B, fig. S2, and table S1). For 16 samples from
these patients, we benchmarked SHERLOCK by
comparing its sensitivity and specificity to those
of other nucleic acid amplification tests, includ-
ing the commercially available Altona Realstar
ZIKV reverse transcription polymerase chain re-
action (RT-PCR) assay (Fig. 1C, figs. S3 to S5, table
S2, and supplementary text). Of the 10 samples
that tested positive by theAltona assay, all 10were
detected by SHERLOCK (100% sensitivity); the
other 6 samples were negative by both assays
(100% specificity, 100% concordance). Our ZIKV
assay had no false positives when tested on
healthy urine and water (Fig. 1B). We then vali-
dated the ability of SHERLOCK to detect DENV,
a related but more diverse flavivirus that causes
symptoms similar to those of ZIKV infection. All
24 RT-PCR–positive DENV RNA samples were
confirmed to be positive for DENV after 1 hour of
detection (Fig. 1D, figs. S6 and S7, and table S3).
SHERLOCK sensitively and specifically detects
viral nucleic acids extracted fromZIKVandDENV
patient samples.
Although SHERLOCK excels at detecting ex-

tracted nucleic acids, a field-deployable, rapid
diagnostic test should not require an extraction
step to detect viral nucleic acid in bodily fluids.
Many viruses, including ZIKV and DENV, are
shed in urine or saliva, and sampling is not in-
vasive (2, 7). To detect viral nucleic acid directly
from bodily fluids via SHERLOCK, we developed
HUDSON, a method to lyse viral particles and
inactivate the high levels of ribonucleases found
in bodily fluids with the use of heat and chemical
reduction (Fig. 2A and fig. S8) (17). HUDSON-
treated urine or saliva could be directly added
to RPA reaction mixtures with no dilution or
purification step [blood products were diluted
1:3 in phosphate-buffered saline (PBS) to avoid
solidification during HUDSON] without inhib-
iting subsequent amplification or detection.
HUDSON and SHERLOCK enabled sensitive de-
tection of free ZIKV nucleic acid spiked into
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urine, whole blood, plasma, serum, or saliva (figs.
S9 and S12). To mimic clinical infection, where
viral nucleic acid is encapsulated in infectious
particles, we spiked infectious ZIKV particles
into bodily fluids. HUDSON combined with
SHERLOCK (figs. S13 and S14) permitted sen-
sitive detection of ZIKV RNA from infectious

particles at 90 aM (45 cp/ml) in whole blood (fig.
S15) or serum (Fig. 2B), 0.9 aM (~1 cp/ml) in saliva
(Fig. 2C), and 20 aM (10 cp/ml) in urine. The total
turnaround time was <2 hours with fluorescent
and colorimetric readouts (Fig. 2D and fig. S16).
The sensitivity of HUDSON and SHERLOCK is
comparable to ZIKVRNA concentrations observ-

ed in patient samples, which range from 1 to
1,000 cp/ml (1, 2). HUDSON, paired with the
pan-DENV SHERLOCK assay, detected DENV in
whole blood, serum, and saliva (figs. S17 and S18).
DENV was detected directly from eight of eight
patient serum samples (Fig. 2E) and three of
three patient saliva samples (Fig. 2F) tested, with
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Fig. 1. ZIKVand DENVdetection
from patient samples and clinical
isolates. (A) Schematic of SHERLOCK.
Nucleic acid is extracted from clinical
samples, and the target is amplified by
RPAwith either RNA or DNA as the input
(RT-RPA or RPA, respectively). RPA
products are detected in a reaction
mixture containing T7 RNA polymerase,
Cas13, a target-specific crRNA, and an
RNA reporter that fluoresces when
cleaved.We tested SHERLOCK on
(B) cDNAs derived from 37 patient
samples collected during the 2015–2016
ZIKVpandemic and (C) cDNAs from
16 patient samples for which results were
compared head-to-head to those from
the Altona RealStar ZIKV RT-PCR assay.
+, ZIKVseed stock cDNA (3 × 102 cp/ml);
✕, no input; a.u., arbitrary units.
(D) SHERLOCK testing of RNA extracted
from 24 DENV-positive patient samples
and clinical isolates. Dashed blue line:
threshold for detecting the presence or
absence of ZIKVor DENV (see methods
in the supplementary materials).
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Fig. 2. Direct detection of ZIKV
and DENV in bodily fluids with
HUDSON and SHERLOCK.
(A) Schematic of direct viral
detection by HUDSON and
SHERLOCK. (B and C) Detection
of ZIKV RNA in particles diluted in
healthy human serum (B) or healthy
human saliva (C). The same PBS
control was used for (B) and
(C) as experiments were performed
together. (D) Detection of ZIKV
RNA in particles diluted in healthy
human urine. Error bars indicate
1 SD for three technical replicates.
(E and F) Detection of DENV RNA
directly from patient serum (E)
and saliva (F) samples. (G) Lateral-
flow detection of DENV from the
samples represented in (E) and
(F). All samples were treated with
tris(2-carboxyethyl)phosphine
hydrochloride (TCEP)–EDTA before
being heated.
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a total turnaround time of <1 hour for saliva
despite lower viral titers than those in serum (7).
We directly detected DENV with a colorimetric
readout using lateral-flow strips (Fig. 2G), show-
casing a HUDSON-to-SHERLOCK pipeline that
can detect ZIKV or DENV directly from bodily
fluids with minimal equipment.
Because many genetically and antigenically

similar flaviviruses cocirculate and cause similar
symptoms, we developed diagnostic panels to
distinguish related viral species and serotypes.
We identified conserved regions within ZIKV,
DENV, West Nile virus (WNV), and yellow fever
virus (YFV) genomes and designed a flavivirus
panel with universal flavivirus RPA primers that
can amplify any of the four viruses and species-
specific crRNAs (Fig. 3A). This panel detected
synthetic ZIKV, DENV, WNV, and YFV DNA tar-
gets with <0.22% off-target fluorescence (Fig. 3B,

figs. S19 and S20, and methods in the supple-
mentary materials) and identified the presence
of all pairwise combinations of these four viruses,
demonstrating the ability to detect mock co-
infections (Fig. 3C and figs. S21 and S22). We also
designed a DENV panel with DENV-specific RPA
primers and serotype-specific crRNAs (Fig. 3D)
that could distinguish between DENV serotypes
1 through 4 with <3.2% off-target fluorescence
(Fig. 3E and figs. S23 and S24). This low level
of off-target fluorescence allows for 100%
specificity in differentiating among serotypes,
providing an alternative to current serotype
identification approaches (8). The DENV panel
confirmed the serotypes of 12 RT-PCR–serotyped
patient samples or clinical isolates (Fig. 3F and
fig. S25) and identified two clinical isolates with
mixed infection, a commonly observed phenom-
enon (18). SHERLOCK can therefore be extended

to differentiate between related viruses or sero-
types with a single amplification reaction.
SHERLOCK is poised for field-deployable var-

iant identification, which would allow real-time
tracking ofmicrobial threats. Genotyping of single-
nucleotide polymorphisms (SNPs) typically involves
PCRand either fluorescence- ormass spectrometry–
baseddetection, requiring extensive sample process-
ing and expensive equipment and limiting field
deployability (19). SHERLOCK can identify SNPs
by placing a synthetic mismatch in the crRNA
near the SNPand testing each targetwith ancestral
target-specific and derived target-specific crRNAs
(Fig. 4A) (13). We designed diagnostics for three
region-specific SNPs from the 2015–2016 ZIKV
pandemic (Fig. 4B) and identified these SNPs in
synthetic targets, a viral seed stock, and cDNA
samples fromHonduras, the Dominican Republic,
and theUnited States (Fig. 4, C to E). These results
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Fig. 3. Multivirus panels can be used
to differentiate viral species and
serotypes. (A to C) Panel of four
related flaviviruses (A) used to detect
individual viral targets (B) or paired
viral targets (C) with species-specific
crRNAs after 3 hours. Z, ZIKV; D, DENV;
W,WNV; Y, YFV. (D and E) Identification of
DENV serotypes 1 through 4 with the use
of serotype-specific crRNAs (D), tested
with the use of synthetic targets after
3 hours (E). (F) Identification of DENV
serotypes in RNA extracted from patient
samples. Each row represents a sample,
each column represents a crRNA, and
target-specific fluorescence values are
normalized by row. Purple: DENV
serotype identified. Synthetic targets
were used at 104 cp/ml. Error bars indicate 1
SD for three technical replicates. We
expect off-target crRNAs to have close
to zero target-specific fluorescence
(see methods in the supplementary
materials). Primer, crRNA, and target
sequences are in tables S5 to S7.
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demonstrate that SHERLOCK can identify SNPs
in samples from the ZIKV pandemic and highlight
the single-nucleotide specificity of SHERLOCK.
Rapid identification of emerging drug resist-

ance and other clinically relevant mutations for
viruses such as ZIKV and HIV would have great
utility. A ZIKV point mutation in the PrM protein

region [Ser139→Asn (S139N)] recently reported to
be associated with fetal microcephaly (20) was
used as a test case for the rapid development of
assays for variant identification. Within a week
of the report’s publication (Fig. 4F and fig. S26),
we developed multiple SHERLOCK assays for
the S139N mutation (Fig. 4G and fig. S27) and

could identify the mutation in patient samples
from the 2015–2016 ZIKV pandemicwith a visual
readout (Fig. 4H). To further illustrate the ease
of developing SHERLOCK diagnostics for many
clinically relevant mutations, we designed and
tested assays for the six most commonly observed
drugresistancemutations inHIVreverse transcriptase
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(21) in 1week (fig. S28). These examples underscore
the potential for SHERLOCK to be used for
monitoring clinically relevant variants in near
real time.
Combining HUDSON and SHERLOCK, we

have created a field-deployable viral diagnostic
platform with high performance and minimal
equipment or sample processing requirements.
This platform is as sensitive and specific as
amplification-based nucleic acid diagnostics
(12, 22–26), with speed and equipment require-
ments similar to those of rapid antigen tests
(9–11). Furthermore, this approach can be easily
adapted to detect virtually any virus present in
bodily fluids and scaled to enable multiplexed
detection (16), and the reagents can be lyophi-
lized for cold-chain independence (13). Cas13-
based detection is a promising next-generation
diagnostic strategy with the potential to be
implemented almost anywhere in the world
to enable effective, rapid diagnosis of viral
infections.
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