

 Page 1 of 10

Synopsis

Visibility Corporation is conceivably the first ERP
application developer to release an enterprise
class application designed from the ground up on
the Microsoft

©
.NET architecture. The objective

from the onset for the VISIBILITY.net ERP solution
was to develop a robust integrated business
enterprise system that would take full advantage
of what the latest technology could deliver such
as: increased efficiencies, optimized business
procedures, improved access to high volumes of
enterprise data, easy integration of multiple
business entities and languages and a platform
easier for in-house technical support. While
effectively replicating and significantly extending
the functionality of its predecessor product,
VISIBILITY.net contains no legacy code. This “no
previous baggage approach”, enabled Visibility to
take full advantage of the .NET framework,
providing a system that can be accessed using a
web-browser with a user interface equal in
functionality to a client-server application.

All of this is achieved with a so called „Zero-Client‟
interface. In other words, VISIBILITY.net does not
download any software onto the client PCs
(workstations) in order to operate. Any client PC
with Internet Explorer 5.5 or later is capable of
operating VISIBILITY.net without compromising on
the quality of the user experience. VISIBILITY.net
is deployed as a true internet application –
allowing system administration without concern
regarding the client side (workstation) hardware
and no installation on the client device. In doing
so, ubiquitous access is provided for users inside
the four walls of your organization as well as for
users at remote offices and mobile locations.

Most importantly it provides huge benefits in terms
of total cost of ownership. No IT support is
required to install VISIBILITY.net on a user PC, no
client or workstation installation is necessary and
client-side application upgrades are never a
concern. In fact the more PCs an organization
has, the greater the financial benefit which their
business will realize when implementing
VISIBILITY.net.

This white paper reviews the major factors
considered by the Visibility Technology Team
along the road to deciding the proper technology
for an entire new product generation. Additionally,
this long term decision path provides insight to the
team‟s ultimate choice of technology in the context
of today‟s market and to provide an informed
comparison with the technology of other ERP
products.

Background/Need for Change

The VISIBILITY ERP application was originally
developed in 1989. It was one of the first ERP
packages designed specifically to satisfy the
needs of To-Order manufacturers. At that time,
Fourth Generation Languages (4GL) were the
technology of the day. VISIBILITY was originally
developed on the Cognos PowerHouse 4GL
framework, on Hewlett Packard (“HP”) hardware
using an HP proprietary file system. Over the next
15 years the Cognos framework continued to
support the development of the VISIBILITY
product, providing a platform that allowed the
product to evolve into a business system capable
of supporting small, mid-size and large multi-site
manufacturing organizations. Visibility Corporation

Selecting a Best-In-Class Technology: When Enterprise Solutions need
Collaboration, Adaptability, Robustness and Supportability

By: Visibility Corporation

Selecting a Best-In-Class Technology

 Page 2 of 10

(Visibility) subsequently created versions of the
VISIBILITY application that would operate on
several different hardware platforms, support
UNIX operating systems, utilize the Oracle
relational database, support n-tier implementation
and provide a client-server interface. In doing so
created a scaleable, robust platform that could
cost-effectively support from 10 to more than 1000
concurrent users 24 hours a day, 7 days per week.
Today, VISIBILITY ERP continues to operate
successfully in hundreds of To-order businesses
worldwide in Release version 6.4 or earlier based
on the PowerHouse framework.

Technology Objectives

Visibility‟s long term goals for its product were
defined to reflect the desired business and
technical needs of its mid-size To-Order
manufacturing target market. They are:

 Low Total Cost of Ownership

 User-friendliness and easy access to business
data

 High reliability and scalability

 Easily installed and maintained

 The capability to integrate easily with other
business critical systems

 The ability to be modified to customers‟
existing processes without the need for
custom coding

 Development based on leading technologies
which can best assure application stability and
long term evolutionary potential

 Integration with the office desktop and mail
systems for document processing, and
workflow notification to support internal
business processes

 Incorporation of all existing functionality found
in VISIBILITY 6 and provision of a number of
new functions designed to add additional
power and efficiencies.

In 2001, with these objectives in mind Visibility
Corporation made the business decision to
upgrade or re-write the entire VISIBILITY system
in a new technology framework. This would be
accomplished either by a complete re-write or by
upgrading the existing code. The resulting
application must be able to deliver the
requirements listed, and provide clients with a
strong ROI through enhanced, value-added
functionality and collaborative capabilities which
would enable an efficient, adaptable and
supportable business solution. Rather than evolve
a solution, by adding application functionality to
VISIBILITY 6 using new technologies, Visibility
made the decision to completely re-write the

technology. With the objectives that Visibility
wanted to achieve, a hybrid solution of new
technology and old was very limiting and carried
additional mixed bag support implications
associated with new and legacy technology.

Business functionality of the existing (at the time)
ERP product was highly successful, well liked by
its users and provided excellent To-Order
capabilities. So VISIBILITY 6 (release at that time)
provided a good functional baseline for the future
product blueprint. However, there were a number
of major decisions to be made regarding the
technological framework for the next generation
application. What technology platform should the
company use for its new product? Should the new
application be a client-server solution, a web
application, or even a hybrid? Which technologies
should be selected for use in application
development: Java, Visual Basic, C#, Oracle
Developer or some combination of Active Server
Page / HTML web form coding?

Technology Review

To answer these questions Visibility formed a
team (Team) consisting of technology architects
and senior developers. Over the next year this
team reviewed all of the major contemporary
technologies and sought the opinion of industry
watchers and technology research firms in order to
be sure that they would reach the right decision in
support of the long term.

Selecting a Platform for the Future

Pre Dot Net (“.net”) – ActiveX

The first concept that the Team considered was
hybrid technology which involved using client-
server computing concepts within a web-browser
user interface.

Up until 2001, one of the most common hybrid
technologies was to incorporate the use of
Microsoft ActiveX components into application
web forms. ActiveX provided a Windows style of
user interface which could be run from within a
web browser. This enabled the creation of highly
functional and interactive user interfaces, but each
ActiveX control had to be downloaded to the client
browser. The ActiveX approach was one option
that Visibility reviewed in some depth. At that time
Microsoft was promoting the use of ActiveX as an
element of its DNA architecture which also
included Microsoft Transaction Server (MTS), the
Common Object Model (COM), for client to server

Selecting a Best-In-Class Technology

 Page 3 of 10

communication, and Active Server Pages (ASP)
for web-based applications development.

Given that Visibility‟s objective was to become the
platform of choice for Mid-Size To-Order
companies and that it already had a substantial
user base, ease of supportability was an important
consideration. Common to businesses in the mid-
size market Visibility serves, is having a limited
technical staff and a small budget for IT. This
places an emphasis on system supportability and
lower total cost of ownership (TCO). The team
was concerned that the ActiveX architecture would
cause continuing implementation and support
headaches.

When an ActiveX application is used in a browser,
the application is first downloaded to the PC. In
essence ActiveX controls are an applet with the
benefit, that they can be written using a variety of
Windows programming tools. Visibility‟s technical
architects were concerned that there were some
practical issues that needed to be addressed
before contemplating an ActiveX architecture.

The first of these was the communication between
the browser application and the server. At that
time, Microsoft was using Remote Data Services
which had been provided to execute both
read/write database record queries and remote
procedure calls which were used to run application
code deployed to an application server. The
Team‟s benchmarking experiments determined
that the performance achievable using this
approach was less then acceptable for an
enterprise class ERP application such as
VISIBILITY ERP.

The Team‟s biggest concern was with respect to
maintainability. They concluded that running an
ActiveX application was effectively the same as
installing Dynamic Link Libraries (DLL) on each
client device. It required the installation of at least
a part of the application on every client PC. As
with Windows applications which relied on the use
of application DLLs, this approach frequently
caused problems. There were frequent
incompatibility problems with the different client
operating systems. Each installation of a new DLL
or ActiveX download added the challenge of
affecting version management. Constant checking
was required to assure that the installation or
download was not overwriting a newer DLL or
ActiveX control. From a maintenance stand point
requiring the download of ActiveX components
was the equivalent of installing a client-server
application on a desktop. It had all the same

support headaches that were present with client-
server, the only advantage being that to install the
application would not require the users to insert a
disc; the browser would download the software for
them.

The Emergence of “.NET”

In 2001, before the team had completed their
evaluation of ActiveX and its related technologies,
Microsoft announced the new “Dot Net
Framework”, which became known simply as
“.NET”. This new technology platform had the
potential to have a huge impact on software
companies that were already part way through
major development projects using the Microsoft
DNA architecture.

At that time the Visibility Team had not yet
selected the next generation technology platform
and was therefore well positioned and educated to
consider the adoption of the new .NET
Framework. The major alternative was the Java
EJB framework. There were a number of
similarities between the .NET and Java EJB
frameworks as they were both run-time, server-
based environments.

Technology Selection - User Interface

The emergence of Microsoft

©
.NET Framework

caused the Visibility team to re-start its technology
evaluation to a major degree. There were several
decisions to be made, including the choice of
application server technology, which databases to
support and the reporting tool technology. The first
decision, one that would have a significant impact
on maintainability and the user overall experience,
was which user interface technology to use.

Was it going to be web-based, or client-server? If
it was going to be web-based, then which web
technology should be utilized? Was it going to be
HTML or was it going to be a Java applet running
in the browser, a technology direction which at that
time had already been used by Oracle
Applications? With enterprise applications built
around Java each form which is required by the
client requires the download of a Java applet
which runs on the client PC and communicates
with the server. This is in effect a variant of a
client-server implementation. The Java applet is
downloaded through the browser and is installed
on the client PC or workstation. For Windows
client PCs the installation of a Java Virtual
Machine (“VM”) or a Java plug-in is also required
because Microsoft no longer implicitly supports

Selecting a Best-In-Class Technology

 Page 4 of 10

Java within its browser. For Visibility‟s clients this
would have meant that a system manager would
need to ensure that their entire user base of client
PCs was up to date with the required Java VM or
plug-in installed. Java offered several potentially
attractive features worthy of consideration. It
offered a rich set of components which could be
used to define a highly functional user interface. It
could be defined to run on any platform for which a
VM had been deployed. Oracle and others were
designing and were generally successful in the
delivery of business applications which utilized the
Java platform.

Rather than rushing into a decision that would
affect the future of its customers and its business
for many years to come, Visibility sought the
advice of industry analysts and technology
partners.

One company Visibility sought the opinion of was
The Hurwitz Group a highly respected ERP and
technology research group which had significant
experience working with all the major ERP
applications including Oracle, SAP, Baan, and
Microsoft Great Plains. Additionally, Hurwitz had
consultative experience with many of these firms
as it related to current technology and application
directions shared by those throughout the ERP
industry. The Visibility team posed one particularly
important question. For new enterprise class
applications is the most appropriate current and
longer technology choice: client-server, web-
based, Java or Java applet, HTML or hybrid?

Their unequivocal answer was that it had to be
Internet technology and it had to be HTML based.
In their opinion there was no other choice. They
were very firm in their opinion that if Visibility was
serious about being competitive in the future and
wanted to play in the enterprise market, then its
next generation applications had to be HTML
based.

That consultative direction left Visibility with
several concerns and potential problems to be
sorted out. HTML can typically only run one form
(screen) at a time, but an ERP application is a
complex software product that cannot be easily
done on a single page or a single browser frame.
To provide a high level of functionality and
usability an ERP application needs to be a
delivered as an application with multi-document
interface (“MDI”). To present the system through a
user interface that could open only one form at
time would be extremely limiting for an ERP
application or any large-scale enterprise

application. ERP users typically need to be able to
interact with multiple forms and have those forms
interact with each other and run reports or execute
inquiries at the same time. The Team knew they
needed to be able to provide an application with
an MDI in order to provide this level of flexibility.

In Visibility‟s peer group, a number of companies
had attempted the implementation of a web-based
MDI interface. To the Visibility team these choices
provided a high quality user interface, but had the
potential to provide major support problems.

 Microsoft

©
.NET vs. Java EJB

Given that the .NET Framework was designed as
Microsoft‟s platform for web-based computing,
Visibility‟s technical team turned their attention to
reviewing the Microsoft platform.

Conceptually the Microsoft

©
.NET Framework had

many similarities to the Java EJB framework, it
was implemented within a runtime environment
and came with a number of supporting classes
and frameworks within which applications could be
written. Both frameworks provided a server-side
application and a client-side application. Oracle
Applications demonstrated this with Java EJB
applications on the server and a Java applet
running in the client browser that communicated
with the server.

An alternative approach was to have an
application that was all Java on the server and
HTML on the client browser. .NET offered a similar
type of a framework. .NET applications could also
run on the client in the form of WinForms that
communicated with an application which was
deployed on a server, and could also run in the
form of HTML, or standard browser forms. In that
respect the ability to implement an application
using “n-tier” architecture was virtually identical to
the client-server concept and could help to assure
scalability.

Java Applets and WinForms

Beginning before 2001, there had been much
media hype about Java and Sun and several other
companies that had become very Java centric.
Prior to 2001, Java was frequently considered to
be the easiest choice of platform because it
provided a fully scalable framework with offerings
from Web Logic, IBM Web Sphere and HP with
each development environment provider supplying
an EJB engine. Each of these engines provided a

Selecting a Best-In-Class Technology

 Page 5 of 10

platform that could be used to build enterprise
level applications.

One of the most important objectives of Visibility‟s
technology strategy had been to provide a system
which was supportable by the market Visibility
served (mid-market) which meant an objective to
driving the Total Cost of Ownership (TCO) as low
as possible and to insure the system was easily
supported by the limited IT resources the mid-
market Companies typically have. To that end,
Visibility wanted to avoid, as much as possible,
any maintenance tasks on client PCs which
required substantial internal IT support of end user
devices, as well as avoiding the need to require a
powerful client PC to support the application.
Assuring that this objective could be achieved
meant that Visibility clients would be able to avoid
significant desktop capital and maintenance
expenditures for each user. Utilizing Java applets
required both a VM on the client PC and the
download of applets onto every client PC that
accesses the Java application. This made the
Visibility team cautious of adopting Java applets,
mostly because running a Java applet on the front
end is memory intensive on the client and requires
a download each time a new PC is used or a new
release is provide. Visibility‟s team was also
cognizant that Microsoft was proposing to stop
supporting Java applets in their browser in the
foreseeable future.

WinForms are essentially client-server
applications that have to be installed on the client
PC, or can be run as a .NET control that gets
downloaded and runs within the client browser in
much the same way that ActiveX controls
required. In both cases, the software is ultimately
loaded onto the client PC itself and runs in client-
server mode. The concept of WinForms was
nothing new; Microsoft had already done the same
with ActiveX, but now with WinForms the form and
the associated application ran in the new .NET
Framework.

To Visibility‟s team of system architects,
WinForms had a development-cost benefit over
Java applets. In the team‟s view the cost to
develop a Java application, with the resources,
associated overhead and projected limitations,
was prohibitive. Additionally, it did not make good
long term business sense, to ramp up the whole
company to the Java skill level needed when most
of Visibility‟s developers already knew VB, C++ or
one of the other languages which were supported
for use in association with the .NET Framework.
This assessment was made on the basis of

projects that had involved Visibility directly with
many companies that had developed similar
applications. The assessment kept coming back to
a factor of 4 as it related to Java development vs.
.NET. Visibility assessed that to develop a Java-
based application when compared to the effort and
costs projected to undertake the same project as
either a VB application or a .NET application
selecting the use of Java would:

 Be 4 times more expensive;

 Take 4 times longer; and

 Need 4 times as many resources.

For a company like Visibility that has a history of
providing an agile response to market demands, a
Java decision did not make sense from a
business, economic or customer supportability
perspective for the Company‟s target market.
Ultimately, with these factors considered the use
of Java was ruled out.

This left the Team with two options remaining.
Select either WinForms or use HTML forms.

Supporting Complex Transactions using HTML
Forms

Although HTML provides a big advantage by not
requiring anything to be downloaded, from a
programming point of view it is more limited in
terms of the functionality of the user interface.
Many simple screen handling capabilities that a
programmer would use to write a GUI application
are not by default available for use when creating
HTML forms.

This did not mean that an enterprise class
application could not be done using HTML forms
and programming. Within the HTML client there
are a number of implementation options which do
not require additional downloads or component
installs on each client PC. These options include
DHTML (Dynamic Hypertext Markup Language)
and client-side Java Script (a light-weight scripting
language that can be encapsulated in HTML).
Both of these technologies provide the capability
to develop a more dynamic user interface.

However, to provide the type of user interface
(“UI”) functionality required within a business
system means developing some very complex
coding, which would have presented a problem in
terms of the skill set required to develop the
application code. Although the .NET Framework
supports a wide range of programming languages,
to develop an enterprise business application
requires the coordination of a large team of

Selecting a Best-In-Class Technology

 Page 6 of 10

programmers. This typically requires that a
standard development language must be adopted.
To the technology team, requiring programmers to
develop UI functionality using DHTML or Java
script and server-based business logic in a .NET
language would have required a unique hybrid skill
set. They would have needed to understand
HTML, Java Script and also be capable of
understanding the object module in the browser
that the HTML framework uses as well as
understanding how each implementation element
integrates and interacts with the application
business logic. They would need to be
experienced in three different languages just to
write one application.

With the new .NET Framework, Microsoft had
bridged this gap somewhat between writing a
client-server application, a regular Windows
application and a HTML application. The .NET
Framework offered a set of run time classes and
GUI classes in a common architecture within
which the whole system ran, and a development
environment in the form of Visual Studio .NET
which could be used to develop applications for
.NET. Visual Studio .NET allowed the
development of HTML based applications within
an environment which was already familiar to
developers. The Visibility research team came to
the conclusion that the .NET Framework could be
capable of providing a platform that would facilitate
the development of a product with an HTML
interface, but without the need for convoluted
coding.

There remained one problem. HTML provided an
environment where virtually nothing needed to be
pushed to the clients, thereby eliminating the need
for client PC maintenance. HTML forms and
applications could be developed using the new
.NET development tools. The problem was that in
its native form HTML applications had a limitation
of operating within one form at a time. The Team
still needed to determine how to affect the use of
an MDI within the HTML browser interface.

Technological Innovation

The exacting requirements set by the company‟s
executive team were proving hard for the technical
team to deliver. From The Hurwitz Group and
other industry analysts they knew that the
application needed to run in a browser, the team
had concluded, for supportability and to eliminate
client PC maintenance costs that they would need
to develop a product that did not require the
download of application controls. They also had to

bear in mind the primary corporate objectives;
Visibility wanted VISIBILITY.net to provide a highly
functional user interface and excellent user
friendliness in the form of an MDI. The Team was
presented with a technical hurdle which had to be
overcome. The team‟s decision hinged upon
whether it is possible to overcome the limitations
of using a pure HTML browser interface in a highly
scalable multi-user application.

From talking to industry watchers, they knew that
none of their competitors had been able to solve
the conundrum that Visibility had set for itself.
Other ERP companies had apparently opted for
Java or WinForms solutions, with their associated
high development costs and client maintainability
issues, or had been forced to develop using dual
paths which required a combination of client-
server applications and some basic HTML forms.
The Visibility team did not want to do that, they
wanted one code base and one supportable
framework which would be both familiar and
accessible by all members of the development
team. The team also determined that the
implementation must be supportable using
industry standards for the long term benefit and
protection of Visibility clients.

Major Decision & Major Solution

The research team accepted the challenge to find
a solution. Investing in research and development
they looked at great depth into the extended
functionality that the combined use of DHTML,
HTML and client-side Java Script could achieve.
They determined that they could achieve an MDI
environment running in a web browser using only
HTML, DHTML and client-side Java Script. This
provided a user interface that can run in virtually
any standards compliant commercial web browser
such as the latest generations of Internet Explorer,
Netscape Communicator and Opera, all without
requiring the download of application controls,
applets or browser plug-ins.

With this determination the team had been able to
prove that it was possible to use an HTML user
interface to develop an application that was
technologically more advanced than any
competitive offering yet would be standards based
and simpler to implement, use and administer.
There was more work to be done to finalize the
technical environment before work could be
started on developing application code.

Selecting a Best-In-Class Technology

 Page 7 of 10

Server-Side Choice

The decisions still to be resolved were the choice
of development language for the server-based
business logic and the framework that the server
code would run in. Having already eliminated Java
EJB, they chose .NET as the server-side
architecture using ASP.NET as the runtime
environment and Visual Studio .NET as the
integrated design environment and VB.NET as the
principle application development language.

The team decided that Visual Studio .NET without
enhancement remained too complex to develop
the application, as developers still needed to
understand Java script and DHTML in order to
achieve the browser-based MDI and provide a
functionally rich user interface. In order to simplify
the task of developing potentially complex ERP
application code, the technical architecture team
wrote a comprehensive set of forms and controls
which were implemented on top of the standard
.NET Framework. Ultimately, the Visibility team
added more than 70 controls and architectural
framework components to the base Microsoft
Visual Studio .NET development environment.

A Development Environment for Enterprise
Apps

By adding original Visibility controls to the
environment, the team created a development
environment that removed the need for the
programmers to know HTML, Java Script and
DHTML. As a result, for the programmers
experienced in developing these applications it
was just like writing a WinForms application.
Developers would be able to work as if they were
writing code using the VB.NET highly interactive
application development form. The Visibility
technical team had bridged the gap between
WinForms development and HTML development
by successfully implementing and adding back
each of the standard „Windows like‟ events that
were missing from standard HTML encoded forms.

Dynamic Form Updates

In addition to enhancing the development
environment to provide Windows functionality, the
technical team also worked out a way to make the
screen behavior more dynamic than had
previously been possible using a „standard‟
browser application. In a standard browser
application, if the user changes some of the data
whereby the application needs to communicate

with the server, the whole page must be submitted
and pushed down to the server. The web server
must then respond back and the client browser
must redraw the whole page to display the
resulting changes. This frequently results in a
visible page refresh.

Visibility‟s architects achieved a means of
providing the same functionality without requiring
the submission of the whole web page to the
server after each event. The forms running in the
browser session are enabled such that they only
communicate changes and update events to the
server, so the network traffic is a fraction of what it
would be using via a standard web form. The
VISIBILITY.net application forms are maintained
as objects in memory on the server so that there is
no requirement to marshal and un-marshal the
state engines on the application web server. The
effect of this is that the events and the interaction
with the form are effectively instantaneous, and
the user does not notice the inherent delays
associated with standard web forms. Leveraging
this original technology the new VISIBILITY forms
behave like a powerful client-server application,
but run in a web browser without requiring any
downloads to the client PC.

For maintainability, all of the custom web controls
that the Visibility team developed adhere to
DHTML and Java-script 2.0 standards (3.0 HTML
or 4.0 HTML), which all the major browser
companies support today.

Maintaining the Visibility originated custom
controls has proven to be straight-forward. With
each new release of the Microsoft

©
.NET

Framework, the controls are simply re-compiled
and are immediately ready for use by the
enterprise development team.

Selecting ASP.NET and the .NET Framework has
allowed the Visibility technical architects to satisfy
another key objective, that of providing a scaleable
application. The .NET Framework supports the
concept of load balancing and this facilitates the
use of server “farms” where an ever increasing
number of application users can be supported by
simply adding additional application servers.

XML Web Services

The Visibility team found significant additional
advantages in its use of the Microsoft

©
.NET

platform. .NET made it very easy to create XML
web services – component code objects that can
run anywhere and be called from anywhere using

Selecting a Best-In-Class Technology

 Page 8 of 10

standardized XML to communicate. That allowed
Visibility to make XML the language for
communication of data throughout the system, and
because firewalls can be configured to allow for
the controlled passage of XML, the VISIBILITY
application supports virtually any network
hardware configuration imaginable. Visibility‟s
widespread adoption of web services has also had
big benefits in terms of re-use and supportability.
Many of the core ERP business transactions in
VISIBILITY have been developed as Web
Services that are called by many different forms.
For example, inventory processing, which is at the
heart of many business transactions such as sales
order shipping, receiving goods and material
issues, has been encapsulated in a single web
service that can be called whenever an inventory
transaction is performed. This means that if
Visibility defines an enhancement for
implementation within inventory transactions, or if
a “bug” is found in transacting inventory, the
enhancement or the bug “fix” only needs to be
implemented in one place. It also provides the
opportunity to deploy appropriate forms and
transactions from within the VISIBILITY application
onto any of the client devices that are supported
under the .NET Framework, including devices
such as tablet PCs and hand held devices.

The Advantage of Adhering to Standards

Part of Visibility‟s objective with the new
architecture for VISIBILITY.net has been to adopt
a standards-based approach that supports the
concept of choice when a user chooses to
implement the VISIBILITY.net application. The
adoption of HTML is a standard; browser choice is
not limited to a single browser client. The
VISIBILITY.net application supports virtually any
standards compliant web browser. For VISIBILITY
users this means that clients can use the
VISIBILITY.net application on Linux and
Macintosh PCs when equipped with a standards
compliant browser.

On the server side, the VISIBILITY.net application
can be installed on any application web server
which includes support for the Microsoft

©
.NET

Framework. Currently, the recommended
application server platform is any version of
Microsoft Windows 2003 because those operating
systems incorporate the .NET Framework by
default.

Database Independent Support

The technical team made the decision to adopt a
database independent approach, in part because
the VISIBILITY 6 application is designed to run on
the Oracle RDBMS as a standard, and Visibility
did not want to force its existing customers to
abandon their existing investment in Oracle.
Adopting a database independent approach also
served to provide a choice for companies that
have implemented alternative corporate database
policies.

The Visibility design team elected to use a layer
which would separate the application from the
database. This was not a new concept, but
Visibility‟s technical architects created an object
based approach that is unique. As implemented,
the multi-layered architecture efficiently stores all
of the SQL that is used to communicate with the
database in XML-based resource files outside of
the application programs. This means that there is
no SQL embedded in any of the VISIBILITY.net
application code, and because of this there is no
need for recompilation if the user switches
databases. The VISIBILITY.net data layer has
built-in intelligence whereby it knows what
database language the SQL was developed for
and knows how to translate it to the language of
the destination database thereby giving it the
ability to translate that SQL before it is executed
against the destination database. The benefit of
this approach is a VISIBILITY system data store
can be exported from one database and imported
into a completely different type of database
without having to change any part of the
application software. On completion of the import
to the new database the VISIBILITY.net
application will be able to connect to it and run.
The enterprise application developers only need to
write a single set of SQL, and it will run against
any commercial database. VISIBILITY.net
provides support for both Oracle and Microsoft
SQL Server from a single code base.

Enterprise Application Components

Having developed a user interface layer, a
development framework and a data layer,
Visibility‟s technical architects set about
developing a layer of components designed
specifically to address common ERP development
issues. The objective was to provide a series of
reusable components that would be capable of
performing many of the common functions of an
enterprise business system thereby allowing the
application developers to concentrate the majority

Selecting a Best-In-Class Technology

 Page 9 of 10

of their efforts on developing high performance,
efficient business transaction logic.

This collection of components is referred to as the
VISIBILITY.net Component Tool Kit. A good
example of this kind of component is the
VISIBILITY.net Tree component. Many business
data structures consist of parent-child
relationships. Obvious examples include: bills-of-
material, corporate organization structures, or a
chart of accounts. For each of these structures a
program may need to read down the structure
adding up values from each level. Many
developers will be familiar with the problem of
reporting a parent-child structure; typically they
would have had to write a complex stored
procedure or looping code. For many reporting
tools, producing an indented bill-of-materials is
virtually impossible. Visibility‟s team built a data
layer component which allows developers to
create and execute record sets against
parent/child relationship tables. This allows
programmers to write very simple SQL and the
tree-reader will do the rest very quickly and
efficiently against any brand of database which
can accessed using standard SQL.

Other examples of VISIBILITY.net components
affected at the enterprise layer include objects to
provide data filters, complex screen grids, objects
for attaching files to data records and multi-
language capabilities. In addition, the base
development environment that the technical team
has created is metadata driven so many of the
screen handling components have built in
intelligence that recognizes the data structures
being used. This means the application
programmers can write forms and applications
almost without writing code. With proper metadata
definitions recorded to the database, it is possible
in certain cases to write large parts of an
application module group and affect the
associated user experience with security and
transaction level validation in relation to form
interaction without actually writing any code.

All of these capabilities are designed to allow
Visibility to standardize the look and feel of the
application and provide an environment for
development of robust business transactions. The
benefit is huge; to create a new form, the
developer has the ability to work within the drag
and drop development environment of Visual
Studio .NET extended by the VISIBILITY.net
components. The developer creates the form the
way they want it to look and how they want the
behavior to be and the environment does the rest.

The programmers do not have to think about all of
the validations on form fields in terms of whether
text, dates or number values are to be allowed.
The VISIBILITY.net component enterprise
architecture takes care of that for them.

Having metadata driven functionality also provides
additional benefits for VISIBILITY.net clients
because data definitions and validations are not
hard coded in the software. This provides Visibility
clients with the ability to add additional validations
tailored to their business use of the VISIBILITY
application forms. This is achieved by simply
altering or adding new metadata without requiring
a new version of the form or application code.

ERP functionality, Desktop productivity

To enhance all of these elements, the Visibility
technical team also created a portal interface
designed for maximum ease of use and user
productivity. The VISIBILITY.net Portal consists of
any number of panels or portlets. The content of
each portlet can be defined and controlled by the
individual user. For maximum productivity, Portal
components can provide instant access to a
client‟s most frequently used transactions,
workflow tasks requiring attention, key
performance indicators giving online information
and favorite web pages.

As a business tool VISIBILITY.net integrates
comprehensive To-Order ERP functionality with
office productivity tools. For example, users are
able to attach an unlimited number of documents
to any data record in the system. Whether a client
wants to attach a CAD drawing to a part-code, a
scanned image to an invoice, or a photograph to
an employee record, VISIBILITY provides a simple
means of attaching these documents and storing
them subject to secured access in the application
database.

VISIBILITY.net also makes use of the latest
concepts for storing internally-used text
information. Users can enter notes against any
data record as either labeled comments or in the
form of threaded comments. Using threaded
comments, notes can be stored in a topical or
conversational thread for multi-user collaboration.
This is particularly useful for maintaining notes
against items that need approvals or for
expediters‟ notes on projects or orders.

Inquiry and Reporting

The final element of the application environment
that the Visibility technical architects designed is

Selecting a Best-In-Class Technology

 Page 10 of 10

the reporting and inquiry aspect. Like the entire
VISIBILITY.net environment, the reporting (and
inquiry) aspect of the VISIBILITY application is
100% web-based.

Once again the team faced a choice: go with a 3rd
party reporting product or develop their own?
Client-server based reporting engines from
companies such as Crystal or Cognos were ruled
out immediately. The team reasoned that the
whole benefit of zero client footprint
implementation and lowest cost on-going
maintenance would be lost if a client-server report
writer had to be installed on each client PC. Few
true web-based reporting solutions were available.
The Visibility team also decided that the
functionality of the entire application would be
enhanced if the reporting and inquiry tool was
capable of integrating and interacting with the
application forms. That basically left only one
choice. Visibility would develop the report writer
themselves.

The result is a product that integrates seamlessly
with the VISIBILITY.net application environment
and one that can operate as a stand-alone product
capable of reporting against 3rd party application
databases which can be accessed using SQL.
Visibility IQPlus is one of the first web-based
reporting tools developed on the Microsoft

©
.NET

Framework and was certified as a Microsoft Dot
Net Connected product in March 2004. IQPlus
allows reports to be utilized in a browser where
they can be designed, prototyped and tested as
well.

The integration of the reporting tool with the
VISIBILITY framework has provided some very
pleasing results. The reports are capable of
interacting with the enterprise application directly.
For example, VISIBILITY has financial reports that
can be displayed on the screen, printed, or e-
mailed in PDF format; the user can click on an
item of information on the screen and drill-through
into a more detailed inquiry or even jump to the
appropriate maintenance form to edit the
information. As each IQPlus report represents an
HTML form, the reports are able to contain
dynamically generated links to constructed URLs
used to access other web forms, or to other
reports which may be written to extract data from
either the VISIBILITY database or any other
database which is available for access from the
IQPlus application web server.

Summary

The Visibility technical team finished its research
project at the end of 2001. The Visibility
application developers immediately began working
hard to roll out the business logic for the
VISIBILITY.net application. The VISIBILITY.net
application was formally released in January of
2006 after having had three βeta test sites
complete their testing of the application.

Many ERP vendors have written extensively about
industry standards such as HTTP, XML, .NET and
web services. Much of this talk is misleading,
referring in fact to „bolt-on‟ technology modules
and integration modules. Visibility has truly
embraced these standards. Embracing native use
of the .NET architecture and object-oriented
technology means that VISIBILITY.net can easily
use and integrate with other applications by
communicating via XML web services. The core of
the VISIBILITY application makes use of this
technology today without the need for additional
middleware or integration applications (no
wrappers). VISIBILITY.net ERP provides a
common user interface, a single integrated
platform and a single software technology based
on established industry standards. Truly a
technology platform for the long term that supports
the objectives established in support of the mid
market served.

Contact Us

Corporate Headquarters
Visibility Corporation
10 New England Business Center Dr.
Suite 203
Andover, MA 01810
Phone: (978) 269-6500
Fax: (978) 269-6501
sales@visibility.com
www.visibility.com

European Headquarters
Visibility Europe Limited
11th Floor, Regent House
Stockport
Cheshire SK4 1BS
Phone: +44(0)161 475-0633 or
+44(0)161 475-0632
Esales@visibility-europe.com

mailto:sales@visibility.com
http://www.visibility.com/
mailto:Esales@visibility-europe.com

