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independent, autonomous teams



multi-repos over mono-repo



infrastructure



Frontend Infrastructure 
@ HubSpot

Enabling product teams to be  
the most productive they can be
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• HubSpot Canvas design system
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• Tooling
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How do multi-repos help us?
• Full ownership of applications + shared libraries


• Increase velocity for developers + product


• Freedom to experiment + be innovative



Autonomy has costs 
at scale
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Costs for developers

• More code spread across many repos


• Differences increase complexity


• Increases likelihood of orphaned code
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Costs for end users

• Reduces ease of use with inconsistent products


• Weakens reliability of applications


• Decreases velocity of new features
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How do you shrink  
a multi-repo world?
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1. Provide infrastructure

• Enable product teams to be their most productive


• Provide common tooling


• Balance autonomy + support


• Don’t police product teams
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2. Track what exists

• Catalogued repos


• Discoverable code


• Tooling to collect data
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3. Track who owns it

• Team > Individual


• Close to the code + easy to find


• Don’t abandon code, archive it
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4. Recommend patterns

• Discoverable documentation


• Avoid duplicating decisions


• Generators: the right foundation
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Maintenance is hard

• What work needs to be done?


• When do I need to do this?


• Who should do it?
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Migrations are painful

• Cause fragmentation


• Reliability issues


• Extraordinary time + effort
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Mothership
Our internal mass migration ecosystem

1000 pull requests as easy as 1
and anyone can do it
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What does Mothership do?
Leverage codemods and other CLI tools



What does Mothership do?
Outputs well-formatted pull requests



A quick workflow



• detect() 

• run() 

• generateCommit() / generatePullRequest()

1. Write a task



2. Select targets



3. Review changes



4. Make pull requests



5. Track the results
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What have we done with it?

• Consistent styles for internal files


• Generic dependency upgrades


• Seamless Jasmine migration



Other teams are 
doing even more
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Conclusion

• Autonomy is the right choice for HubSpot


• Having small, autonomous teams can scale


• Investments in infrastructure + tooling are essential



Questions?


