
Scaling Autonomous
Frontend Teams

Jacob Hilker
Sr. SWE - Frontend Infrastructure - HubSpot

independent, autonomous teams

multi-repos over mono-repo

infrastructure

Frontend Infrastructure
@ HubSpot

Enabling product teams to be
the most productive they can be

• Build system

• Build system

• HubSpot Canvas design system

• Build system

• HubSpot Canvas design system

• Support

• Build system

• HubSpot Canvas design system

• Support

• Tooling

Autonomy via multi-repos: pros + cons

Autonomy via multi-repos: pros + cons

Shrinking a multi-repo world

Autonomy via multi-repos: pros + cons

Shrinking a multi-repo world

Maintenance + migrations at scale

Autonomy via multi-repos: pros + cons

Shrinking a multi-repo world

Maintenance + migrations at scale

How do multi-repos help us?

How do multi-repos help us?
• Full ownership of applications + shared libraries

How do multi-repos help us?
• Full ownership of applications + shared libraries

• Increase velocity for developers + product

How do multi-repos help us?
• Full ownership of applications + shared libraries

• Increase velocity for developers + product

• Freedom to experiment + be innovative

Autonomy has costs
at scale

Costs for developers

Costs for developers

• More code spread across many repos

Costs for developers

• More code spread across many repos

• Differences increase complexity

Costs for developers

• More code spread across many repos

• Differences increase complexity

• Increases likelihood of orphaned code

Costs for end users

Costs for end users

• Reduces ease of use with inconsistent products

Costs for end users

• Reduces ease of use with inconsistent products

• Weakens reliability of applications

Costs for end users

• Reduces ease of use with inconsistent products

• Weakens reliability of applications

• Decreases velocity of new features

Autonomy via multi-repos: pros + cons

Shrinking a multi-repo world

Maintenance + migrations at scale

How do you shrink
a multi-repo world?

1. Provide infrastructure

1. Provide infrastructure

• Enable product teams to be their most productive

1. Provide infrastructure

• Enable product teams to be their most productive

• Provide common tooling

1. Provide infrastructure

• Enable product teams to be their most productive

• Provide common tooling

• Balance autonomy + support

1. Provide infrastructure

• Enable product teams to be their most productive

• Provide common tooling

• Balance autonomy + support

• Don’t police product teams

2. Track what exists

2. Track what exists

• Catalogued repos

2. Track what exists

• Catalogued repos

• Discoverable code

2. Track what exists

• Catalogued repos

• Discoverable code

• Tooling to collect data

3. Track who owns it

3. Track who owns it

• Team > Individual

3. Track who owns it

• Team > Individual

• Close to the code + easy to find

3. Track who owns it

• Team > Individual

• Close to the code + easy to find

• Don’t abandon code, archive it

4. Recommend patterns

4. Recommend patterns

• Discoverable documentation

4. Recommend patterns

• Discoverable documentation

• Avoid duplicating decisions

4. Recommend patterns

• Discoverable documentation

• Avoid duplicating decisions

• Generators: the right foundation

Autonomy via multi-repos: pros + cons

Shrinking a multi-repo world

Maintenance + migrations at scale

Maintenance is hard

Maintenance is hard

• What work needs to be done?

Maintenance is hard

• What work needs to be done?

• When do I need to do this?

Maintenance is hard

• What work needs to be done?

• When do I need to do this?

• Who should do it?

Migrations are painful

Migrations are painful

• Cause fragmentation

Migrations are painful

• Cause fragmentation

• Reliability issues

Migrations are painful

• Cause fragmentation

• Reliability issues

• Extraordinary time + effort

Mothership
Our internal mass migration ecosystem

Mothership
Our internal mass migration ecosystem

1000 pull requests as easy as 1

Mothership
Our internal mass migration ecosystem

1000 pull requests as easy as 1
and anyone can do it

What does Mothership do?

What does Mothership do?
Targets repos based on known data

What does Mothership do?
Leverage codemods and other CLI tools

What does Mothership do?
Outputs well-formatted pull requests

A quick workflow

• detect()

• run()

• generateCommit() / generatePullRequest()

1. Write a task

2. Select targets

3. Review changes

4. Make pull requests

5. Track the results

What have we done with it?

What have we done with it?

• Consistent styles for internal files

What have we done with it?

• Consistent styles for internal files

• Generic dependency upgrades

What have we done with it?

• Consistent styles for internal files

• Generic dependency upgrades

• Seamless Jasmine migration

Other teams are
doing even more

Conclusion

Conclusion

• Autonomy is the right choice for HubSpot

Conclusion

• Autonomy is the right choice for HubSpot

• Having small, autonomous teams can scale

Conclusion

• Autonomy is the right choice for HubSpot

• Having small, autonomous teams can scale

• Investments in infrastructure + tooling are essential

Questions?

