
WHITEPAPER

CONSIDERATIONS FOR
BUILDING A CONTROL
PLANE FOR ENVOY PROXY
Manage Envoy Proxy at the edge, as
a gateway or in a service mesh

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 2

Envoy Proxy is an open source edge
and service proxy designed for cloud-
native applications. Created by Lyft,
Envoy is hosted by the Cloud Native
Computing Foundation (CNCF).

www.envoyproxy.io

Context
The rise of cloud native architectures have given rise to new networking
components like Envoy Proxy as the universal data plane for distributed
applications, favored for its speed and extensibility. Originally created internally
at Lyft and then open sourced in September 2016, Envoy Proxy is considered
the universal data plane API and being rapidly adopted by the community and
ecosystem. However, the L7 application networking layer requires a control
plane to manage and configure the behavior on the data plane. The options
for control planes for organizations looking to adopt Envoy Proxy range from
building their own or choosing from available open source or commercial
software options.

This paper will cover key areas for consideration when building
or evaluating a control plane for Envoy Proxy, including:

03 Consideration 1: Dynamic Configuration Updates

04 Consideration 2: Control Plane Components

05 Consideration 3: Use Case Configurations

06 Consideration 4: Extensibility and Pluggability

06 Consideration 5: Deployment Options

07 Getting Started: Build vs. Buy

07 Gloo as Control Plane

www.envoyproxy.io

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 3

Consideration 1: Dynamic Configuration Updates
When operating a highly dynamic and ephemeral application environment like
Kubernetes or Docker, the configurations for managing the data plane of these
applications need to be served dynamically as well. How this translates into the
level of dynamism that is most appropriate for your organization is a balance
between the existing constraints and workflows of your environment and the
desired state for the new applications.

The Envoy Proxy data plane xDS API allows the control plane to dynamically
configure and update most of the runtime settings including; routing, discovery,
and more, that organizations can select to be statically or dynamically updated.

The following runtime settings are available for dynamic configuration through xDS:

Using the xDS API, the control plane makes the updates available to the data
plane and each proxy is able to apply these updates independently. Proxies
do not share information with each other and there is no expectation of
atomic updates. Said another way, these configuration updates are eventually
consistent. Workflows and processes can then be designed to both statically
configure certain settings while xDS can dynamically discover and update the
other settings at runtime. Since the configurations in these APIs are updated
independent from one another, there is a possibility for race conditions (eg,
RDS updates a route that references a cluster before CDS has updated the
list of clusters) so a good option could be to use the “Aggregated Discovery
Service” (ADS) API which orders the updates across all xDS APIs.

• Listeners Discovery Service API: LDS to publish ports on which to listen for
traffic

• Endpoints Discovery Service API: EDS for service discovery

• Routes Discovery Service API: RDS for traffic routing decisions

• Clusters Discovery Service: CDS for backend services to which we can
route traffic

• Secrets Discovery Service: SDS for distributing secrets (certificates and keys)

https://www.envoyproxy.io/docs/envoy/v1.9.0/configuration/listeners/lds#config-listeners-lds
https://www.envoyproxy.io/docs/envoy/v1.9.0/api-v2/api/v2/eds.proto#envoy-api-file-envoy-api-v2-eds-proto
https://www.envoyproxy.io/docs/envoy/v1.9.0/configuration/http_conn_man/rds#config-http-conn-man-rds
https://www.envoyproxy.io/docs/envoy/v1.9.0/configuration/cluster_manager/cds#config-cluster-manager-cds
https://www.envoyproxy.io/docs/envoy/v1.9.0/configuration/secret

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 4

Consideration 2: Control Plane Components
Every organization has a different operating environment including
infrastructur, systems, processes, applications and the control plane
components needed will also vary to match their environment.

Depending on the implementation, different components are needed while
some operational components apply across all implementations.
Architecturally, the control plane should be built as a set of loosely
collaborating microservices to provide more flexibility in adding or removing
functionality and to ease maintenance and upgrade cycles.

Depending on your environment, you may choose a static Envoy Proxy, fully
dynamic xDS configuration, or some hybrid of the two. Control plane
components to consider across this spectrum include:

Static Envoy Proxy File Dynamic xDS
Operational
Components for
All Environments

• Template engine

• Data store or VCS
for values in the
templates

• Service or
application specific
configurations

• Orchestrator to put
the pieces together

• Delivery vehicle to
Envoy Proxy

• Triggers to reload
or hot-restart
configuration files

• Service interface
and implementation
of xDS

• Handler to register
and deregister
services into the
service registry

• A service registry

• An abstract object
model to describe
the Envoy
configuration

• Configuration data
store

• Certificate or CA
store

• Statistics collection
engine

• Distributed tracing
backend or engine

• External
authentication

• Rate limiting services

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 5

Consideration 3: Use Case Configurations
Consider creating a domain-specific configuration based on your use cases.
Envoy Proxy configuration can be complicated and it is best to simplify it for
your users with a custom configuration API. Defining who your end users are
and how they will interact with the control plane will influence the configuration
objects used to configure Envoy Proxy. Consider the use cases for north/south
and east/west traffic through these examples:

Possible Roles
for Envoy Proxy

Example of Istio
Service Mesh

Example of VMware
Heptio Contour

• API Gateway
• Kubernetes Edge

Load Balancer
• Kubernetes

Reverse Proxy
• Kubernetes

Ingress Control
• Shared Services

Proxy
• Per Service

Sidecar

• Gateway: Define a
shared proxy
component to
specify protocol,
TLS, port, and host
authority to load
balance and route
traffic

• Virtual Service: How
to interact with a
specific service for
route matching
behavior, timeouts,
retries, etc.

• Destination Rule:
How to interact with
a service for circuit
breaking, load
balancing, mTLS
policy, subsets
definitions of a
service, etc.

• Service Entry: Adds
a service to Istio
registry

• Ingress Route: A
Kubernetes CRD that
provides a single
location to specify
configuration for the
Contour proxy

• Ingress Resource
Support: Allows you
to specify
annotations on your
Kubernetes Ingress
resource

Establishing domain-specific configuration objects and API customizes the
control plane for the end users and use cases and improves the workflow for
operating Envoy Proxy in your organization.

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 6

Consideration 4: Extensibility and Pluggability
Depending on the environment, there are different ways in which the
Envoy Proxy and control plane architecture can be extended to have additional
functionality added.

The control plane can be designed to be as simple or as complicated as you
need. Focus on a simple core to the control plane and extend through plugins
and microservices controllers to quickly add or remove features or support
additional environments as needed. The control plane engine can be built to be
pluggable to add new Envoy Proxy features or extend end user facing domain
specific configuration objects to take advantage of these new capabilities.
Following the principles of loosely coupled microservices, augment existing
controllers to do this or add new ones.

Consideration 5: Deployment Options
How the control plane and its supporting components are deployed is just as
important as how it is designed in consideration of the security, scalability and
usability needs of your specific environment. Although the control plane and
data plane components can be co-deployed, completely separated or partially
co-located, the recommendation is to keep them separate for these reasons:

• Security: Reduce the risk to the control plane if the data plane is compromised
by keeping the deployment environments separate. Additionally, it is a best
practice to keep a control plane that deals with the distribution of keys,
certificates, or other secrets be separate from the data plane.

• Scaling: The data plane and control plane will likely scale differentl
and keeping them separate eliminates any potential choke points and
dependencies.

• Grouping: The data plane consists of different roles and responsibilities
so keeping the control plane separate makes it easier to keep data and
configuration separate.

• Resource Usage: Separation of data and control plane allows for the ability to
assign or throttle resource usage of the components with fine-grained
resource pool options and avoids potentially hard to diagnose latencies.

• Deployment and Lifecycle: Allow for independent patch and upgrade cycles
of the control plane and data plane.

• Storage: Ability to configure storage independent of the data plane or control
plane components.

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 7

Getting Started: Build vs. Buy
Building and maintaining a custom-built control plane is possible with
Envoy Proxy but does require a thorough understanding of what is needed, the
workflows, and deployment. Early on the only choice available was to deploy a
custom homegrown solution, but with the rising popularity of Envoy Proxy,
many viable control plane options have emerged in both the open source and
commercial ecosystem. Organizations can direct their effort to evaluating the
technical capabilities and software support options available to address the
needs of their application environment.

Gloo as Control Plane
Gloo, by Solo.io, is a next generation API gateway, Kubernetes Ingress
Controller and control plane for Envoy Proxy. Gloo connects, secures and
controls application traffic through APIs for legacy monoliths, microservices
and serverless functions on any infrastructure.

1. Dynamic Configuration Updates in Gloo
Gloo implements the xDS APIs to serve the dynamic configuration of Envoy
Proxy. The control plane API leverages gRPC streaming calls and stubs out
the API to fill it with an impletmentation.

Using gRPC streaming API for the dynamic configurations is ideal because:

• Event-driven configuration updates pushes to Envoy Proxy
when it becomes available

• Eliminate the need to poll for changes

• Eliminate the need to hot-reload Envoy Proxy

• Eliminate disruption to traffic

Control Plane Considerations with Gloo

 BUILDING A CONTROL PLANE FOR ENVOY PROXY | 8

2. Gloo Control Plane Components
Gloo implements powerful discovery capabilities and a semantic
understanding of a function to serve the Envoy Proxy configuration as a set
of loosely coordinated components. When deployed with Kubernetes, Gloo
configurations are represented by Custom Resource Definitions
(CRDs). All user facing configurations and core configurations and drive the
xDS endpoints are CRDs. When not using Kubernetes, Gloo uses
HashiCorp Consul and Vault to store configurations and secrets.
Gloo has the following components for the control plane:

• Gloo is an event driven component responsible for generating
configuration for and serving the core xDS services and configuration
of custom Envoy filters

• Discovery works with service discovery services (Consul, Kubernetes,
etc) to discover and advertise upstream clusters, endpoints and also
discovers REST endpoints (using swagger), gRPC functions (based on
gRPC reflection), and cloud functions (AWS Lambda, Azure, Google
Cloud).

• Gateway allows users to use a more comfortable object model to
configure an Envoy Proxy based on its role (edge gateway, shared
proxy, Knative cluster ingress, etc) and generates the configuration that
the Gloo component uses to generate Envoy Proxy configuration
through xDS.

3. Use Case Configurations
The Gloo configuration objects are split into two levels of configuration to
allow for extending the control plane capabilities while keeping the
abstraction simple. The two levels include user facing configuration for best
ergonomics of use cases that leave options for extensibility and lower level
configuration that abstracts Envoy Proxy but is not expressly intended for
direct user manipulation.

Gloo is designed for teams owning their routing configurations since the
semantics of the routing are heavily influenced by the developers of APIs
and microservices. The user facing API objects in Gloo drive the lower level
objects used to derive the Envoy Proxy xDS configurations.

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 9

Additionally, the following Envoy Proxy filters are part of the Gloo;

• Authentication (integrated and as plugin)

• Rate Limiting

• Squash debugger

• Caching

• Request/Response Transformation

• NATS streaming

• AWS Lambda

• Google Cloud Functions

• Azure functions

• Web Application Firewall (a custom filter for Envoy Proxy)

• WebAssembly for building custom extensions

User Facing API Objects Lower Level Core API Objects

Gateway specify routes and API
endpoints available at a specific
listener port and what security
accompanies each API

VirtualService groups API routes
into a set of “virtual APIs” that
route to backed functions (gRPC,
http/1, http/2, lambda, etc) and
gives developers control over
how a route proceeds with
different transformations to
decouple the front end API from
the backend

Upstream captures the details about
backend clusters, exposed and
can understand the actual service
functions available at a specific
endpoint

Proxy abstracts all of the
configurations applied to Envoy
Proxy-including listeners, virtual
hosts, routes, and upstreams

4. Gloo Extensibility and Pluggability
Gloo takes advantage of the versatility and innovation rate of Envoy Proxy to
make an extensible control plane. The focus is on a simple control plane
core and then extend it through plugins and microservices controllers
through composability.

Gloo implements this on the following levels:
• Opinionated domain-specific configuration objects on top of a core Gl

configuration object

• Control plane plugins to augment the existing behavior of control plane

• Tools that expedite the previous two points

https://github.com/solo-io/squash

BUILDING A CONTROL PLANE FOR ENVOY PROXY | 9

The extensibility of Gloo does not begin and end with the API gateway
use case. Microservices has given rise to new application networking
architectures, namely service mesh, to better handle the service to service
communications for dynamic distributed applications. Service meshes use
the same proxy as sidecars to every service in the application. Gloo
provides seamless integration from the edge proxy as gateway to the
sidecar in service mesh for enhanced traffic control, security and
application observability.

Gloo Open Source and Enterprise

Gloo is available in Open Source and Enterprise editions to connect, secure
and control incoming application traffic for all applications on any infrastructure
and provides a stepping stone to service mesh. Gloo Enterprise provides
expanded security and management features out-of-the-box, and enterprise
support for mission critical application environments.

5. Deployment Options

For Kubernetes environments, the Gloo control plane is deployed as
Custom Resource Definitions (CRDs) and requires no additional database
or storage prerequisites. Gloo also supports non-Kubernetes
environments using HashiCorp Consul as the configuration store. Gloo can
be deployed onto any infrastructure including on-premises or in the cloud
via self hosted or managed Kubernetes / HashiCorp services.

Gloo deploys its control plane separately from the data plane to allow for
independent considerations for scaling, security, an allocation. Because of
this separation, Gloo can scale to very large and dense clusters as well as
can be updated independently from the Envoy Proxies in the data plane.

Learn more about Gloo:

• Visit the Gloo website solo.io/gloo

• Try the Gloo tutorial
katacoda.com/solo-io

• Download Gloo open source
docs.solo.io/gloo/latest/

• Start a free 30 day Enterprise trial
solo.io/gloo-trial

solo.io/gloo-trial
docs.solo.io/gloo/latest/
katacoda.com/solo-io
solo.io/gloo
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

About Solo.io
Solo.io connects the world’s applications with APIs and service mesh across
any infrastructure. Our mission is to deliver innovative products to simplify the journey to a
cloud native future with the flexibility and control to digitally transform at the pace of your
business without disruption.

About Solo.io

Solo.io connects the world’s applications with APIs and service mesh across any
infrastructure. Our mission is to deliver innovative products to simplify the journey
to a cloud native future with the flexibility and control to digitally transform at the
pace of your business without disruption.

solo.io
@soloio_inc
slack.solo.io
contact@solo.io

https://www.solo.io/
https://twitter.com/soloio_inc?lang=en
http://slack.solo.io/

