
Redefining
Observability
A 3-Step Approach for Gaining Control in
Fast-Moving IT Landscapes

A Guide for IT Service Managers, Infrastructure Leaders,
and Operations Leaders

Table of Contents

1

1 - 2

3

3 - 6

6

Introduction

Observability

Still Too Siloed

Redefining Observability

Summary

Introduction

Market Challenges Current Market Definition

Observability

For many organizations, the ever-increasing complexity of
IT landscapes has diminished productivity. As companies
move towards more dynamic architectures—like hybrid
clouds, containers, and microservices—IT monitoring
requirements change drastically. The onslaught of data
these new infrastructures create, combined with a real
shortage of skilled people and time, makes it increasingly
difficult to maintain the pace. In response, many teams use
‘observability’ to gain some control. This whitepaper
defines the conventional view of observability and explains
why it’s essential, but not enough. It also outlines a simple
3-step approach to dramatically improve observability to
prevent outages, crush mean-time-to-repair (MTTR), and
maximize productivity.

Current market definitions differ to some extent, but most
IT experts concur: observability is about bringing different
types of data together on a single pane. But which types of
data? Most experts state that observability should correlate
three: logs, metrics, and traces.

•	 (Event)	logs: An event log is an immutable,
time-stamped record of discrete events that happened
over time. Event logs, in general, come in three forms
but are fundamentally the same: a time-stamp and a
payload in some context.

•	 Metrics: Metrics are a numeric representation of data
measured over time. Metrics can harness the power of
mathematical modeling and prediction to derive
knowledge of the system’s behavior over intervals in
the present and future.

•	 Traces: A trace is a representation of a series of
causally related distributed events that encode the
end-to-end request flow through a distributed system.
Traces are a representation of logs and the data
structure looks similar. A single trace can provide
visibility into both the path and structure of a request.

© 2020 StackState 1

Many observability solutions available in today’s market monitor logs, metrics, and traces. They ingest these three types of data to
provide an overall picture of an IT landscape’s health and performance. When an incident strikes, it automatically alerts a team to the
problem by sending a notification. Here’s an example of the business value of this kind of observability in action:

Observability of logs, metrics, and traces was in place at the bank to assess the
performance and health of the IT environment. However, since the cause and the impact needed to be
correlated manually with different team members, precious time and resources were wasted.

This outage resulted in:

2 hours of downtime
$85k sales loss
and -0.3% net promoter loss

Example Case

© 2020 StackState 2

The infrastructure
team rolls out a new
deployment with Ku-
bernetes. The update
was successful but
wasn’t announced
across teams.

The order management
team begins reporting
problems. They detect a
higher than average error
rate. Thanks to
Prometheus, they see the
error is related to the
payment service team.

The payment service team
begins an investigation.
Using its monitoring tool
CloudWatch, it sees the
time-out but doesn’t know
why it happened.

A crisis team is formed
with people from
different teams.

The crisis team relates
the problem to the
update from last night.

Infrastructure team rolls
back the deployment.
Everything works fine

again.

Thursday

10:00 pm 08:00 am 08:15 am 09:15 am 09:30 am 10:00 am

Friday

An IT service manager at a major financial institution experiences an outage

Still Too Siloed

In the past, different data types were kept in separate
siloes, which caused extremely long MTTRs when incidents
occurred. Removing the silos and bringing metrics, logs,
and traces together was the birth, and very definition of,
observability. Now, monitoring these three types of data
allows you to reduce the damage of a significant outage.
However, it’s not enough to cope with the increasingly
faster and continuously changing IT landscapes of today.

Migrating workloads to the cloud and implementing
continuous delivery to speed up software development
is one solution, but it can strain IT teams. The fast, short
release cycles and dynamic cloud and container environ-
ments make it difficult to keep track of the application and
infrastructure landscape. A small change deep down in the
infrastructure may seem innocuous but can have a
significant impact over time. IT teams must understand how
their infrastructure and applications are interrelated and
how changes can affect the business.

That’s why observability is still too siloed. Traditional
observability tools do not integrate existing metrics, logs,
and traces stored in other tools. And the landscape is too
complex to bring everything into one place, especially for
medium and large enterprises.

Redefining Observability

Step 1: Adding Real-Time Topology

Three essential ingredients need to be added to
observability to understand how applications relate to
infrastructure: real-time dependencies, changes and
artificial intelligence (AI).

For the metrics, logs, and traces data to be more
comprehensible and actionable, a context must be placed
around all the data ingested—cloud, automation, service
registries, CMDB, virtualization, networking, and
deployment tooling. A topological overview that
automatically merges the variety of existing data sources
in real-time provides the perfect context and improves the
quality and accuracy of the data collected.

Redefining Observability

Time Traveling Topology®

Real-Time Data Ingest

Metrics TracesLogs

© 2020 StackState 3

Step 2: Tracking All Real-Time Changes Step 3: Adding Autonomous AI
Placing the siloed data into context via real-time topology
provides an understanding of real-time dependencies. Now
it is essential to observe every change that occurs in the
fast-moving IT landscape.

•	 Health	changes: monitored IT components that change

to a new health state, e.g., from healthy to critical.

•	 Version	changes: deployed upgrades of service

versions, e.g., upgrading the payment service

from 3.0 to 4.0.

•	 Topological	changes: New components that appear and

disappear in the IT landscape and affect dependencies

between existing running components.

•	 Component	property	changes: changing labels and

tags of components, for example.

A natural evolution of IT operations analytics (ITOA) is the
application of AI and machine learning (ML) techniques.
Continuous machine learning allows you to detect
anomalous behavior across your environments proactively.
Data that is automatically put in context is the best fuel for
AI and ML techniques, as the model does not need
computation power to cut down the noise; it just knows.
Early warning signals get your operations teams out in front
of upcoming issues, enabling them to prevent the problems
from impacting your business. At the very least, the time
gained cuts down remediation time.

Redefining Observability

Time Traveling Topology®

Real-Time Changes

Metrics TracesLogs

Real-Time Data Ingest

Redefining Observability

Time Traveling Topology®

Real-Time Changes

Autonomous AI

Real-Time Data Ingest

Metrics TracesLogs

© 2020 StackState 4

An IT Service Manager at a major financial institution experiencing an outage uses the 3-step approach

© 2020 StackState 5

The infra-team rolls out a new
deployment, no problems occur.

The morning after, the anomaly
detection is triggered, and the
Finance DevOps team detects a
higher than the average number
of error rates.

The Finance DevOps team
instantly relates the deployment
change to the issue via topology.

The infra-team rolls back the
deployment, everything is back
to normal.

Thursday

10:00 pm 08:00 am 08:10 am 08:15 am

Friday

Example Case

Compared to the first example
this outage resulted in:

15 minutes of downtime
$10k sales loss
-0.08% net promoter loss

In stead of...

2 hours of downtime
$85k sales loss
-0.3% net promoter loss

Let’s go back to the same example case as mentioned before of the IT service manager at a major financial institution experiencing an
outage. But now the 3-steps of real-time topology, real-time changes and autonomous AI are added to the IT environment:

Because the cause and the impact of the outage don’t have to
be correlated manually with different team members anymore,
precious time and resources are saved.

Summary

The adoption of fast-moving IT landscapes has created new
challenges for the market, and observability is the current re-
sponse. However, limited to logs, metrics, and traces, traditional
observability falls short. For one, it’s too siloed. DevOps teams
across the organization must understand how their infrastructure
and applications interrelate and how changes affect the business.

A 3-step approach to improve observability adds real-time
topology, real-time tracking over time, and artificial intelligence:

1. Real-time topology places your logs, metrics, and traces from
different teams in context.

2. Real-time tracking over time shows how deployments and other
changes affect the IT environment’s structure and health.

3. AI detects anomalous behavior and can leverage the
contextualized metrics, logs, traces, and changes over time.

Redefined Observability: Driving Actionable Insights

There is great value in knowing what, when, and why something
happened, and its impact on other IT environments. The addition
of topology and real-time changes to traditional observability
provides instant visibility of the cause and effect of any change or
failure across the silos. This knowledge allows you to accelerate
your mean-time-to-repair (MTTR), quickly solve costly incidents,
and avoid expensive meetings. The 3-step approach outlined in
this paper enables:

Real-Time Observability:
Detect and alert incidents across your dynamic environ-
ment with automatic checks and self-driving anomaly
detection.

Automatic Root Cause Analysis:
Speed up troubleshooting with automated discovery
and dependency mapping to pinpoint the root cause
across multiple teams.

Business Impact Analysis:
Instantly see the impact of new deployments on
dynamic IT landscapes and business and
automatically act.

Unified Insights:
Utilize current monitoring and IT investments by
streaming your data into one scalable open
observability platform.

© 2020 StackState

“StackState makes enterprise-scale
observability possible without relying

only on a single tool.”

	 Lodewijk	Bogaards,	CTO	StackState

6

About StackState

StackState provides real-time observability across all IT components and
environments, enabling customers to autonomously detect anomalies, pinpoint the
root cause, and assess business implications of new DevOps programs. A
recognized “Cool Vendor” by Gartner, StackState has a successful pedigree of
providing innovative solutions that reduce MTTR, maximize customer experience,
and deliver cost-saving automation. StackState’s platform integrates with all data
sources and monitoring tools to unify metrics, traces, logs, and events into a
topological dashboard where AI-powered alerts enable operations teams to
precisely and efficiently collaborate to resolve incidents.

© 2020 StackState

StackState HQ
1 Baltimore Place NW, Suite G100 Atlanta,
GA 30308
+31(0) 356 729 068

Unified Observability
for Hybrid IT

StackState The Netherlands
Stationsplein 32,
3511 ED, Utrecht, NL
+31(0) 356 729 068

Learn more

http://stackstate.com

