

High-Efficiency Ammonia Production from Water and Nitrogen Hui Xu (PI) Giner Inc., Newton, MA

Collaborators: Gang Wu (SUNY), Yushan Yan (Univ. of Delaware), and Mary Biddy (NREL)

A B C D

Initial NRR Activity

-1.0 -0.8 -0.6 -0.4 -0.2

Overview

Project Vision

The project aims to design and implement advanced components (e.g. catalyst and membrane) to transform the efficiency of electrochemical synthesis of ammonia (ESA) using air, water and renewable energy.

Project Impact

The proposed project is anticipated to significantly increase the efficiency of ESA at an appreciable current density; it may ultimately lead to the reduction of ammonia production cost by 30% compared to conventional Haber-Bosch process

Innovation

- High-performance selective catalysts to boost ammonia synthesis while inhibiting hydrogen evolution
- Durable high-temperature alkaline membranes (>100 °C) the to promote ammonia production reaction
- State-of-the-art electrolyzer cell design to maximize the ammonia production efficiency

nstitut Ə	Tasks	Timeline			
SUNY	N ₂ Reduction Catalyst	Q1-Q6			
JD	Alkaline Membranes	Q1-Q6			
NREL	Cost Analysis	Q1-Q8			
GINER	MEA Design and Test	Q3-Q12			

Metric	State of the Art	Proposed
Ammonia production rate (mol/h-cm²)	10 ⁻⁵	10-4
Faradaic efficiency	30%	50%
Current Density (mA/cm²)	25	150

Tech-to-Market strategy

- Long-term focus: automotive sector as liquid hydrogen carrier
- 1st market: Wind power; 2nd market: Liquid fertilizers
- · Licensing / partnership with renewable farms and distributed fertilizer plants

Wind Solar (P)

Motivation

Converting renewable energy to fuels or using air, water or wastes

renewable electricity during off-peak hours causes grid interruption

Approach

NH₃ detection: Ion Chromatography

Catalysts.

DFT

Membranes

PAP-IN

LIOH/NaOH/KOI

T (°C

Porous Alumina or Zi

poly(aryl piperidinium) (PAP)-AEM

- Cr doped VN(111) U = - 0.39 V - Ti doped VN(111)

DEFG

5-hour Stability

2 3 4 Hours

n = 1, 2,...11

Accomplishments

Synthesis of nanoporous and highly disordered carbon from ZIF-8

Effect of applied potentials during the NRR

ZIF-8-1100-1h has the best activity and the highest FE at -0.3 V vs. RHE;

• Current density in Ar is higher than N₂ at more negative potentials; HER activity may be different in N₂ and Ar.

Electrolyte Effect

Fe doping Effect

- □ KOH is more favorable over NaOH for the NRR during the NH₃ synthesis
- □ Introduction of Fe doping compromises the NRR activity, leading to reduced production rates

Molten Hydroxides in Porous Ceramics

University at Buffalo

The State University of New York

Summary

		V 1			V 2				
		Year I			Year 2				
ID	Task Name	Q1	Q2	Q3	Q4	Q5	Q6	Q 7	Q8
1	1 Task 1: Design and Screening of NRR Catalysts								\rightarrow
2	2 1.1 Metal nitride catalyst synthesis								\rightarrow
3	3 1.2 Identify effective alkaline earth and lanthanide promoters								Ť
5	5 Task 2: Preparation of Anion Exchange Membranes								ļ
6	2.1 Preparation of piperidone monomers and BTMDMIM								
7	7 2.2 Preparation of PAP-IM polymers and membranes								ţ
8	2.3 Preparation of High Temperature Alkaline Electorlyte						t		
9	9 Task 3: Assembly and testing of electrolyzer cells								ļ
10	3.1 Electrochemical cell assembly and test station							Ţ	ŀ
11	3.2 Optimize operating conditions								ļ
12	i ask 4: 1 echno-economic Analysis								
13	4.1 Review baseline model and identify intermediate project metrics						Î		
14	4.2 Updated Model with integrated renewable energy demonstration								Ť

- □ ARPA-E financial support under award# # DE AR000814
- □ ARPA-E management team
- Dr. Grigorii Soloveichik
- Dr. Madhav Acharya
- Dr. Aron Newman
- □ Collaborators (SUNY, UD And NREL)
- Giner Personnel
- Shuai Zhao, Kailash Patel, Andrew Sweet, Andrew Weber, Corky Mittelsteadt, Edward Hogan

