

Communication Protocols User Manual

© 2009-2017 Exor International S.p.A.

Subject to change without notice

The information contained in this document is provided for informational purposes only. While efforts were made to verify the accuracy of the information contained in this documentation, it is provided 'as is' without warranty of any kind.

Third-party brands and names are the property of their respective owners.

Microsoft[®], Win32, Windows[®], Windows XP, Windows Vista, Windows 7, Windows 8, Visual Studio are either registered trademarks or trademarks of the Microsoft Corporation in the United States and other countries. Other products and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logo, people, places, and events depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place or event is intended or should be inferred.

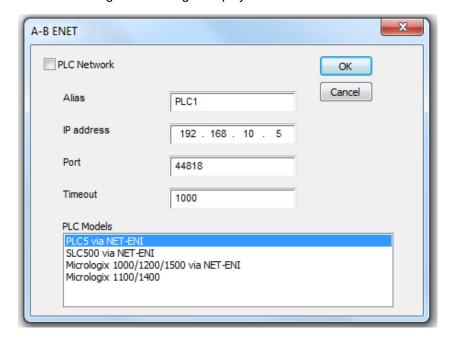
Contents

A-B ENET	2	Modbus T
A-B DF1	14	Mitsubish
A-B DH-485	27	Mitsubish
BACnet	41	Mitsubish
Baldor NextMove	68	NMEA 01
Beckhoff ADS	77	Omron FII
CANopen HMI	92	Omron FII
CODESYS V2 ETH	99	OPC UA
CODESYS V2 SER	113	Panasoni
CODESYS V3 ETH	122	Ping
CT Modbus CMP ETH	134	ProConO
EIA Modbus TCP	142	Profibus [
Ethernet/IP CIP	146	Profibus [
Fatek FACON ETH	172	Rexroth I
Fatek FACON SER	179	ROC Plus
GE Intelligent Platforms SNP	185	SAIA S-B
GE Intelligent Platforms SRTP	197	SAIA S-B
GE SRTP	208	Simatic S
Hitachi SER	219	Simatic S
Hitachi ETH	224	Simatic S
J1939	228	System V
Jetter Ext ETH	238	Uni-Telwa
Keyence KV	246	Variables
Koyo DL	252	
Koyo DL ETH	258	
KNX TP/IP	264	
Lenze CANopen	283	
Modbus RTU	288	
Modbus RTU Server	304	
Modbus TCP	319	

Modbus TCP Server	336
Mitsubishi FX ETH	. 348
Mitsubishi FX SER	. 363
Mitsubishi iQ/Q/L ETH	. 372
NMEA 0183	. 382
Omron FINS ETH	406
Omron FINS SER	. 417
OPC UA Client	427
Panasonic FP	.435
Ping	.442
ProConOS ETH	447
Profibus DP	. 456
Profibus DP S7	. 460
Rexroth IndraControl	. 504
ROC Plus	. 510
SAIA S-BUS	.516
SAIA S-BUS ETH	. 528
Simatic S7 PPI	538
Simatic S7 ETH	545
Simatic S7 MPI	. 585
System Variables	620
Uni-Telway	.622
Variables	. 630

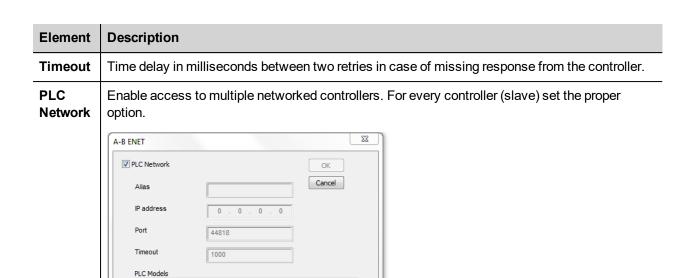
A-B ENET

The A-B ENET communication protocol is normally used on the Allen-Bradley controllers via Ethernet communication.


Protocol Editor Settings

Adding a protocol

To configure the protocol:


- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP Address	Ethernet IP address of the controller.
Port	Port number used by the Ethernet interface.

Add Delete Modify

Alias

PLC Models

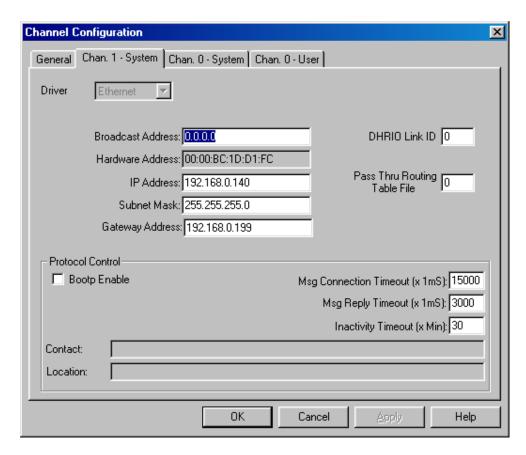
X

OK Cancel

A-B ENET

Controller configuration

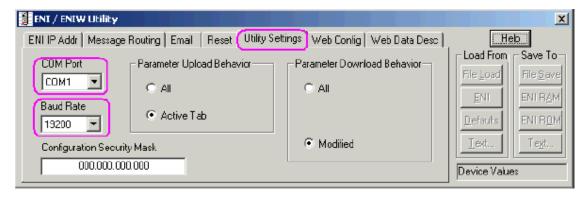
SLC500 via NET-ENI Micrologix 1000/1200/1500 via NET-ENI Micrologix 1100/1400


The PLC has to be correctly configured to match the IP address configured in the Protocol Editor. Normally the PLC configuration can be left as default.

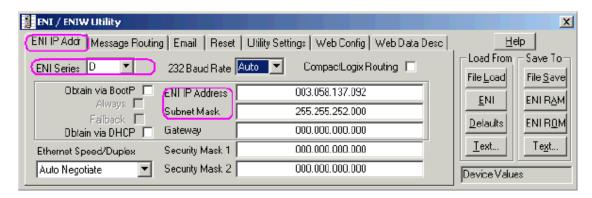
SLC500 via NET-ENI SLC500 via NET-ENI Micrologix 1000/1200/1500 via NET-ENI Micrologix 1100/1400

PLC1

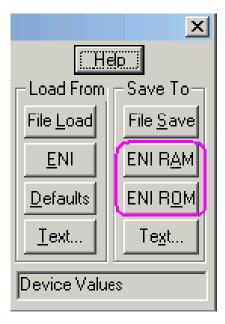
44818 1000


192 . 168 . 10

Configuring 1761-NET-ENI

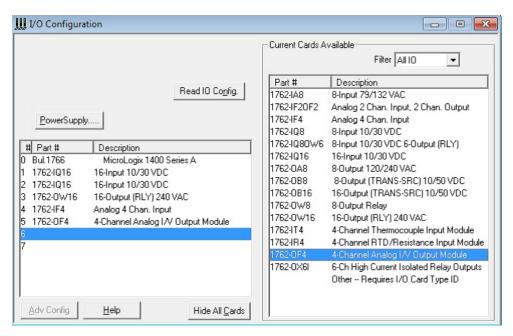

Here is the procedure to configure the 1761-NET-ENI module using the Allen Bradley's ENI/ENIW Utility. The procedure requires a 1761-CBL-PM02 communication cable.

- 1. Connect the 8 pin din to the port 2 on the NET-ENI device and the 9 pin female D-shell to the computer COM port.
- 2. Connect the SLC 5/0x controller and go online.
- 3. In the Utility Settings tab, set COM Port and Baud Rate.



4. In the ENI IP Addr tab, select the correct ENI Series from the list and set ENI IP Address, Subnet Mask and Baud Rate, if needed.

5. Save the configuration to the NET-ENI device.

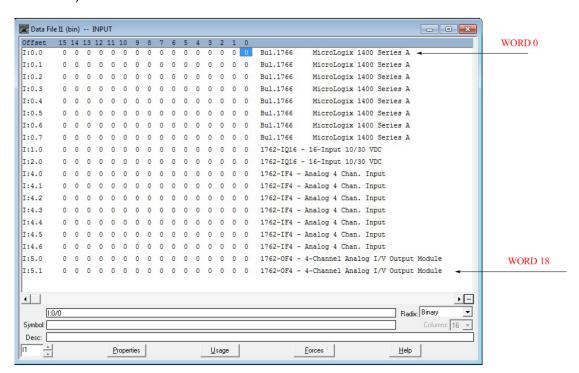

Two separate memory areas are reserved for saving the configuration : **ENI/RAM** (for temporary configurations) and **ENI/ROM** (for permanent configurations).

Logical I/O addressing

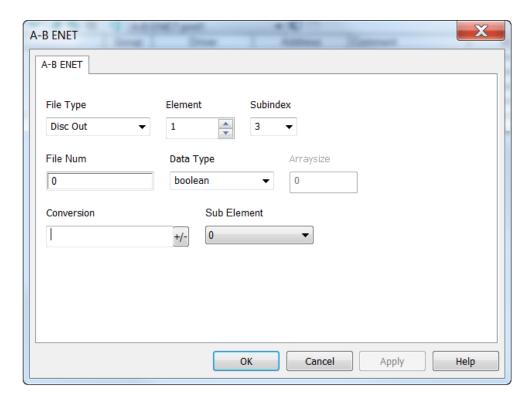
When addressing Allen Bradley I/O data, the panel uses logical addressing rather than physical addressing. While physical addressing refers to the element number as the slot number, logical addressing refers to the first element for the first I/O card of a specific file type.

Communication Protocols addressing depends on the mapping of the PLC CPU memory and not on the slot number, therefore you should be careful when changing the configuration in order to avoid remapping.

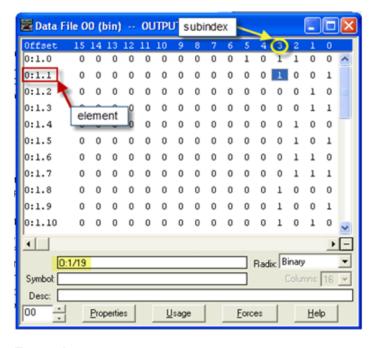
Use the RSLogix 500 I/O Configuration tool layout of the PLC I/O to configure I/O as in the example.



Note: When using a module with a configurable I/O size (for example, Devicenet Scanner) make sure you configure it to the largest possible size or you will have to remap it if you need to allocate more space.


Use the Data File Browser to see how the PLC allocates memory.

This example shows how to configure the Communication Protocols Tag for pointing to PLC resource 0:1/19 (O1:1.1/3 in word terms).



The following figure shows the Communication Protocols Tag configuration.

The Communication Protocols Tag configured in the example above points on the element shown in the following figure.

Examples

I:0/19 (I1:0.1/3 in word terms) – 20th Input on CPU

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 0.1 is Word 1:

Element	1
Sub Index	3

I:1/15 (I1:1.0/15 in word terms) - Last Input on Slot 1 Input Card

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 1.0 is Word 8:

Element	8
Sub Index	15

I:4.0 (I1:4.0 in word terms) - First Analog Input

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Short

In the Data File Browser, word 4.0 is Word 10:

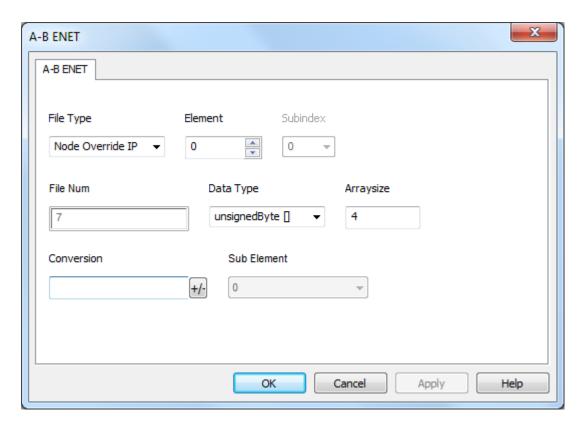
Element	10
Sub Index	-

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

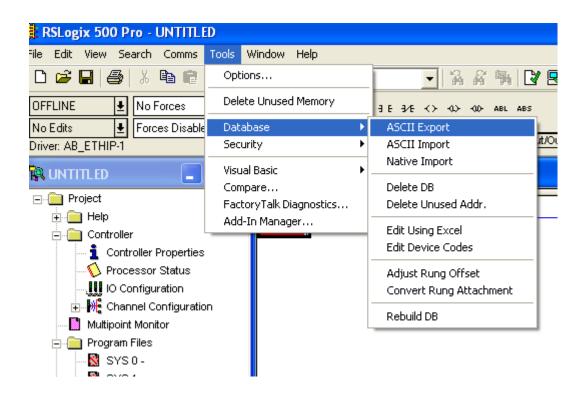
The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.



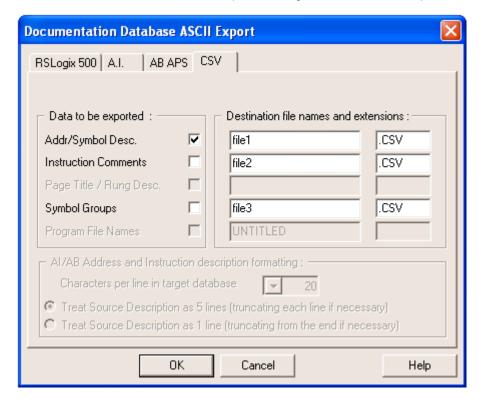
Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

Note: Node Override IP values assigned at runtime are retained through power cycles.



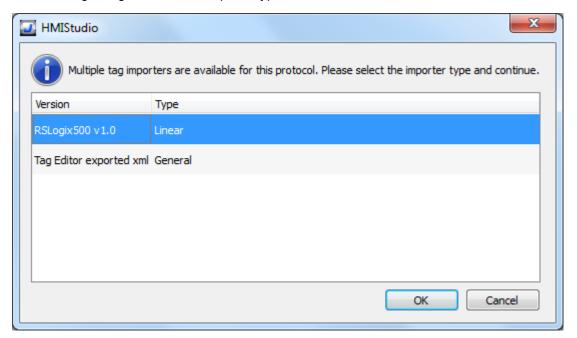
Tag Import


Exporting Tags from PLC

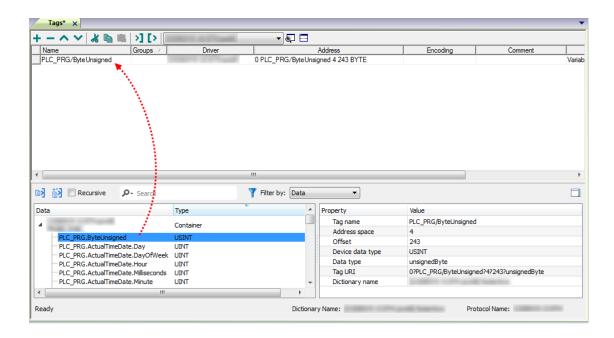
The A-B Ethernet tag import filter accepts symbol files with extension ".csv" created by the Rockwell RSLogix 500.

To create the file select Tool > Database > ASCII Export

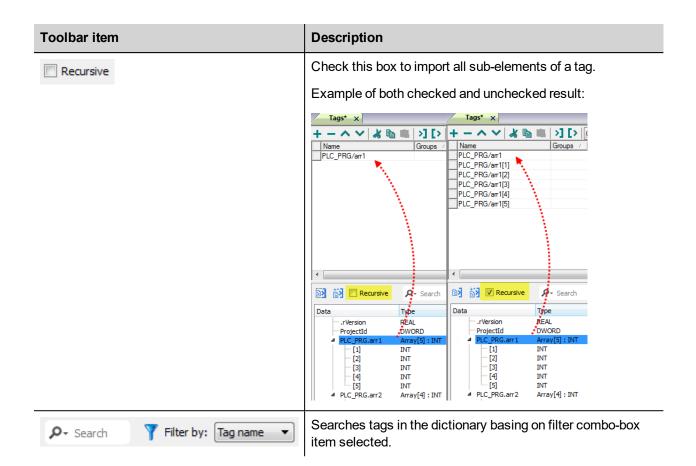
From CSV tab select the data to be exported and give a name to the output csv file.


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.


The following dialog shows which importer type can be selected.

Importer	Description	
RSLogix500 v1.0	Requires an .csv file.	
Linear	All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1 Tags* × + - ^ V & 1 > [>	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
K	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ۊ	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication status

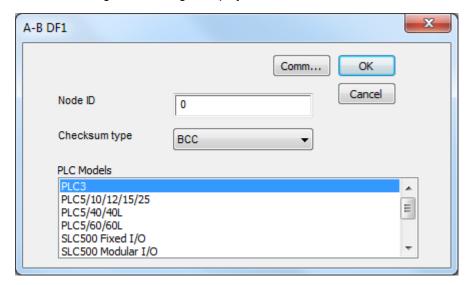
Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Check if the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

A-B DF1

The A-B DF1 communication driver has been designed to connect HMI devices to a Allen-Bradley controllers through serial communication.

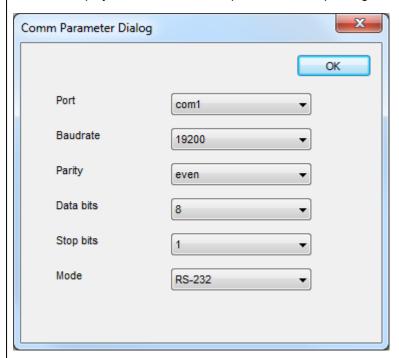

Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

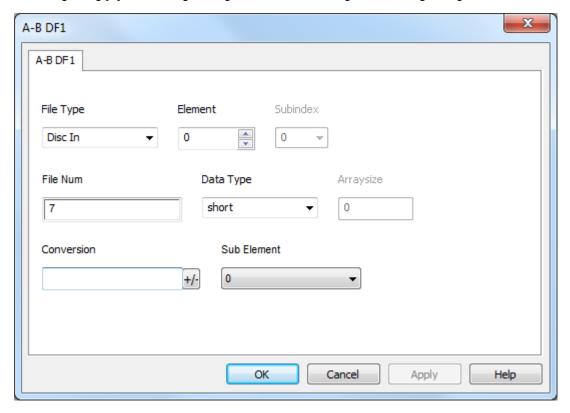
The driver configuration dialog is displayed.


Element	Description	
Node ID	Serial node associated to the PLC.	
Checksum type	It can be BCC or CRC , depending on PLC settings.	
PLC Models	PLC models available: PLC3 PLC5/10/12/15/25 PLC5/40/40L PLC5/60/60L SLC500 Fixed I/O	

Element	Description
	SLC500 Modular I/O
	Micrologix 1000
	Micrologix 1500
	• Ultra5000

Comm...

If clicked displays the communication parameters setup dialog.

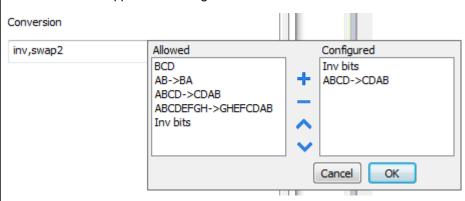


Element	Parameter	
Port	Serial port selection.	
	 COM1: device PLC port. COM2: computer/printer port on panels with 2 serial ports or optional Plug-In module plugged on Slot 1/2 for panels with 1 serial port on-board. 	
_	COM3: optional Plug-In module plugged on Slot 3/4 for panels with 1 serial port on-board.	
Baudrate, Parity, Data Bits, Stop bits	Serial line parameters.	
Mode	Serial port mode. Available modes:	
	• RS-232.	
	• RS-485 (2 wires).	
	• RS-422 (4 wires).	

Tag Editor Settings

In Tag Editor select the protocol A-B DF1.

Add a tag using [+] button. Tag setting can be defined using the following dialog:



Element	Description	
Memory Type	Memory Type	Description
туре	Disc Out	Discrete output value. O resource on PLC.
	Disc In	Discrete input value. I resource on PLC.
	Status	Status value. S resource on PLC.
	Bit	Bit value. B resource on PLC.
	Timer	Timer value. T resource on PLC.
	Counter	Counter value. C resource on PLC.
	Control	Control value. R resource on PLC.
	Integer	Integer value. N resource on PLC.
	Float	Float value. F resource on PLC.
Element	Represents the line of the resource while monitoring PLC values.	
Subind ex	Represents the column of the resource while monitoring PLC values.	
File Num	Instance of resource of the PLC.	
Data Type	Available data types:	
Arraysi ze	In case of array Tag, this	s property represents the number of array elements.

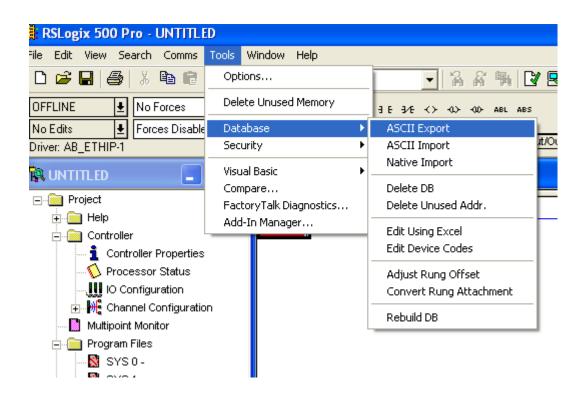
Element Description • In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Sub Allows to point to specific part of a resource: **Element** • 0 (entire resource) PRE ACC LEN POS

Conver sion

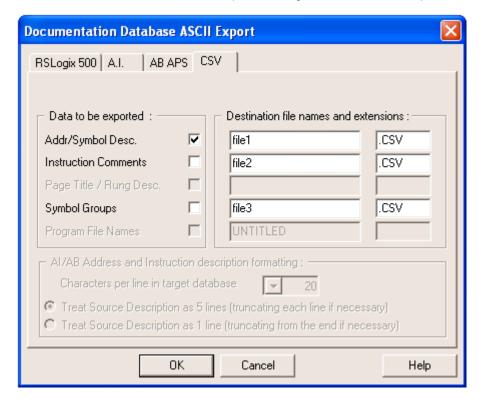
Conversion to be applied to the Tag.

Depending on data type selected, the Allowed list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 \rightarrow 0110 (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)


Element	Description		
	Value	Description	
	ABCD -> CDAB	Swap bytes of a word.	
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
	ABCDEFGH ->	Swap bytes of a double word.	
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP ->	Swap bytes of a long word.	
	OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110	
		0001110010111011011001000101101000011100101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversion and click on plus button. The selected item will be added on Configured list.		
	If more conversions ar Configured list).	e configured, they will be applied in order (from top to bottom of	
	Use the arrow buttons	to order the configured conversions.	

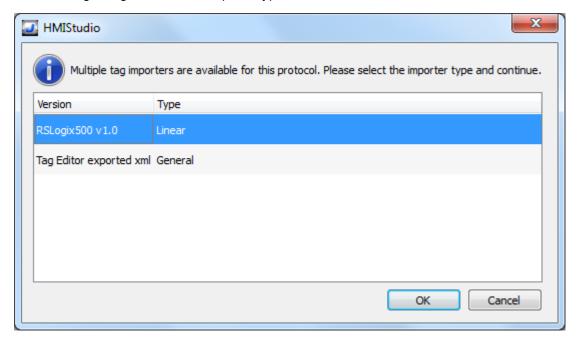
Tag Import


Exporting Tags from PLC

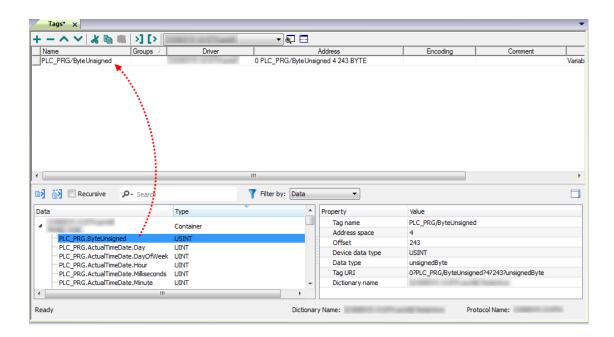
The A-B DF1 tag import filter accepts symbol files with extension ".csv" created by the Rockwell RSLogix 500.

To create the file select Tool > Database > ASCII Export

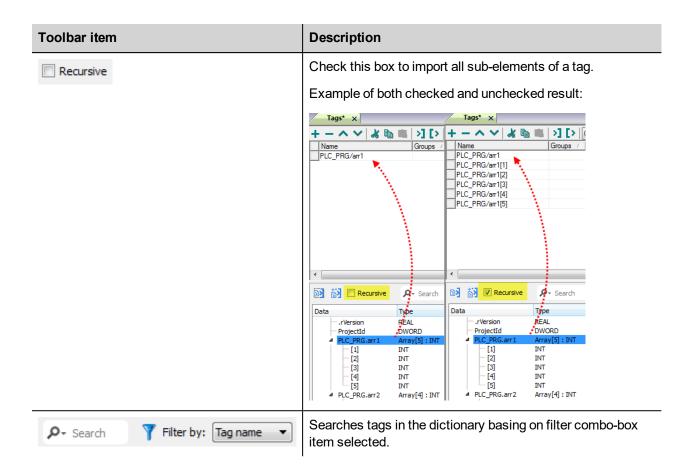
From CSV tab select the data to be exported and give a name to the output csv file.


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

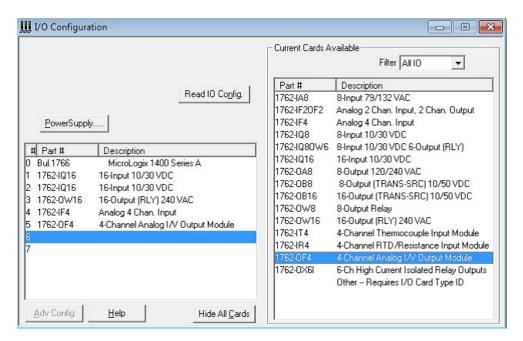

The following dialog shows which importer type can be selected.

Importer	Description
RSLogix500 v1.0	Requires an .csv file.
Linear	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1 Tags* × + - ^ V & 1 > [>


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
≥	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K.	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

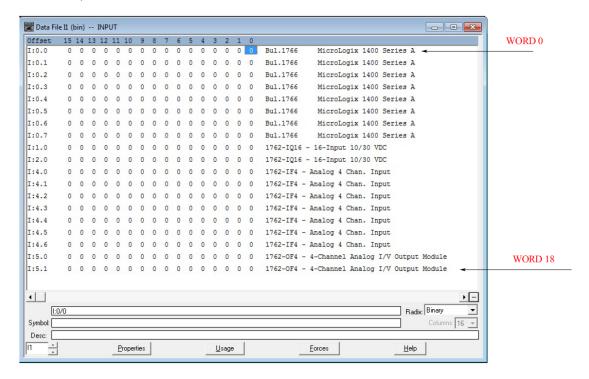


Logical I/O addressing

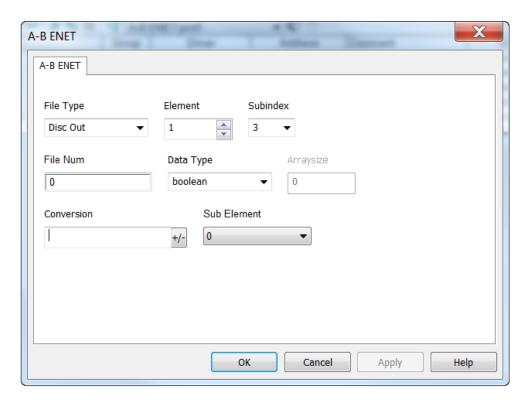
When addressing Allen Bradley I/O data, the panel uses logical addressing rather than physical addressing. While physical addressing refers to the element number as the slot number, logical addressing refers to the first element for the first I/O card of a specific file type.

Communication Protocols addressing depends on the mapping of the PLC CPU memory and not on the slot number, therefore you should be careful when changing the configuration in order to avoid remapping.

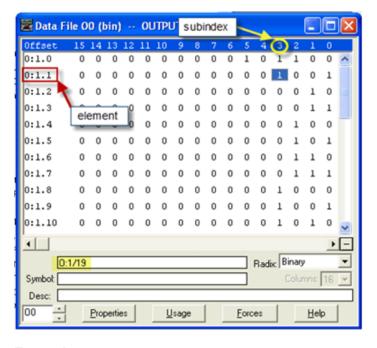
Use the RSLogix 500 I/O Configuration tool layout of the PLC I/O to configure I/O as in the example.



Note: When using a module with a configurable I/O size (for example, Devicenet Scanner) make sure you configure it to the largest possible size or you will have to remap it if you need to allocate more space.


Use the Data File Browser to see how the PLC allocates memory.

This example shows how to configure the Communication Protocols Tag for pointing to PLC resource 0:1/19 (O1:1.1/3 in word terms).



The following figure shows the Communication Protocols Tag configuration.

The Communication Protocols Tag configured in the example above points on the element shown in the following figure.

Examples

I:0/19 (I1:0.1/3 in word terms) – 20th Input on CPU

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 0.1 is Word 1:

Element	1
Sub Index	3

I:1/15 (I1:1.0/15 in word terms) - Last Input on Slot 1 Input Card

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 1.0 is Word 8:

Element	8
Sub Index	15

I:4.0 (I1:4.0 in word terms) - First Analog Input

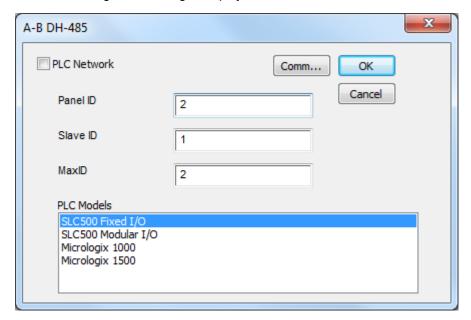
Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Short

In the Data File Browser, word 4.0 is Word 10:

Element	10
Sub Index	-

A-B DH-485

The A-B DH-485 communication driver has been designed to connect HMI devices to a Allen-Bradley controllers through serial communication.

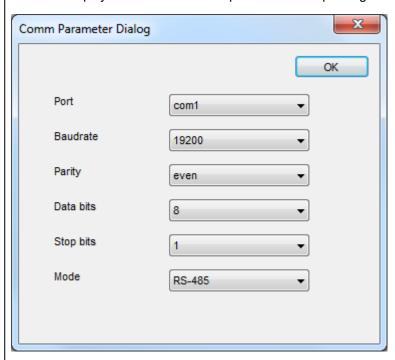

Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

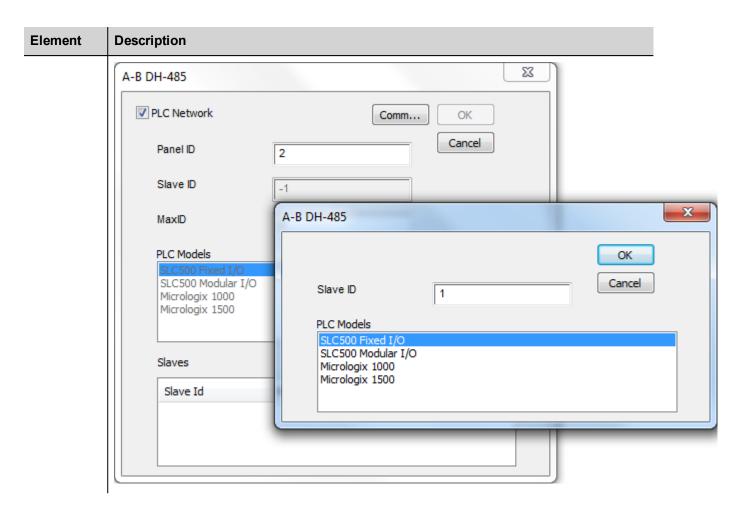


Element	Description	
Panel ID	Serial node associated to the HMI.	
Slave ID	Serial node associated to the PLC.	
MaxID	Represent the maximum ID available in the serial network.	
PLC Models	PLC models available: SLC500 Fixed I/O SLC500 Modular I/O	

Element	Description
	Micrologix 1000
	Micrologix 1500

Comm...

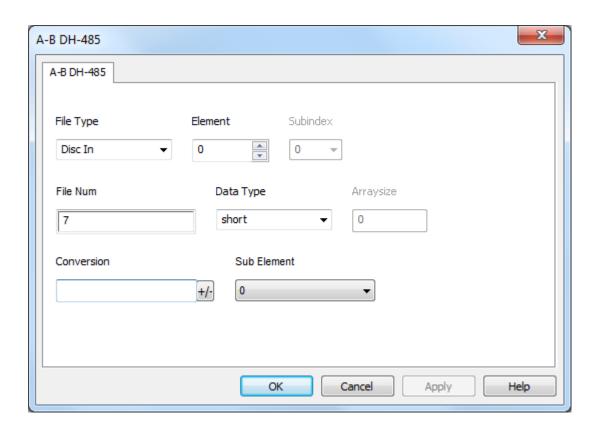
If clicked displays the communication parameters setup dialog.



Element	Parameter	
Port	Serial port selection.	
	COM1: device PLC port. COM2: computer/printer part on papels with 2 carried parts on	
	COM2: computer/printer port on panels with 2 serial ports or optional Plug-In module plugged on Slot 1/2 for panels with 1 serial port on-board.	
	COM3: optional Plug-In module plugged on Slot 3/4 for panels with 1 serial port on-board.	
Baudrate, Parity, Data Bits, Stop bits	Serial line parameters.	
Mode	Serial port mode. Available modes:	
	• RS-232.	
	• RS-485 (2 wires).	
	• RS-422 (4 wires).	

PLC Netwo rk

IP address for all controllers in multiple connections. **PLC Network** must be selected to enable multiple connections.

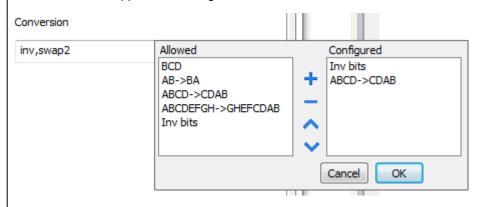


Tag Editor Settings

In Tag Editor select the protocol **A-B DH-485**.

Add a tag using [+] button. Tag setting can be defined using the following dialog:

Element	Description	
Memory Type	Memory Type	Description
31	Disc Out	Discrete output value. O resource on PLC.
	Disc In	Discrete input value. I resource on PLC.
	Status	Status value. S resource on PLC.
	Bit	Bit value. B resource on PLC.
	Timer	Timer value. T resource on PLC.
	Counter	Counter value. C resource on PLC.
	Control	Control value. R resource on PLC.
	Integer	Integer value. N resource on PLC.
	Float	Float value. F resource on PLC.
	String	String value. STR resource on PLC.
Element	Represents the line of the resource while monitoring PLC values.	
Subind ex	Represents the column of the resource while monitoring PLC values.	



Element	Description
File Num	Instance of resource of the PLC.
Data Type	Available data types:
	See "Programming concepts" section in the main manual. Note: To define arrays, select one of Data Type format followed by square brackets (byte[], short[]).
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.

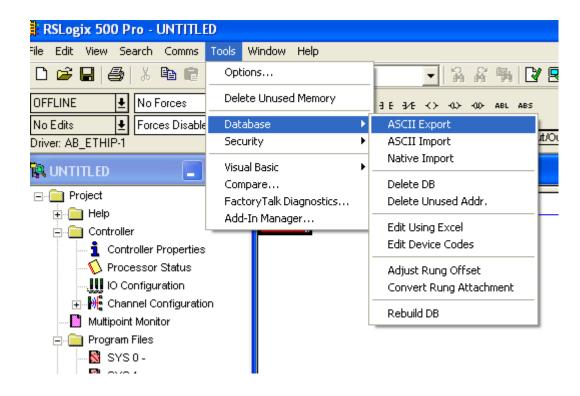
Element Description Sub Element Allows to point to specific part of a resource: • 0 (entire resource) • PRE • ACC • LEN • POS

Conver sion

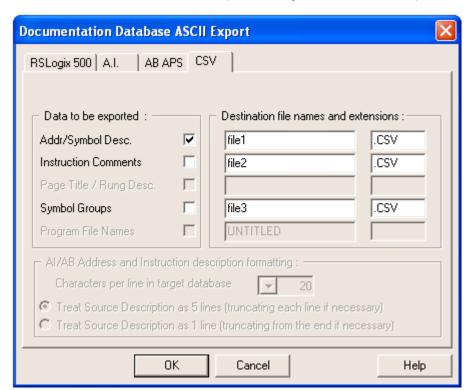
Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 \rightarrow 0110 (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.


Element	Description	
	Value	Description
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011011001001011101000011100101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.	

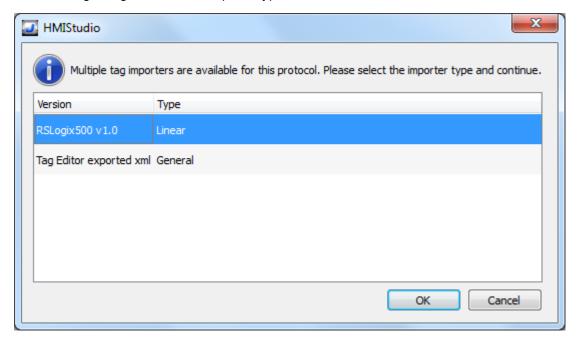
Tag Import


Exporting Tags from PLC

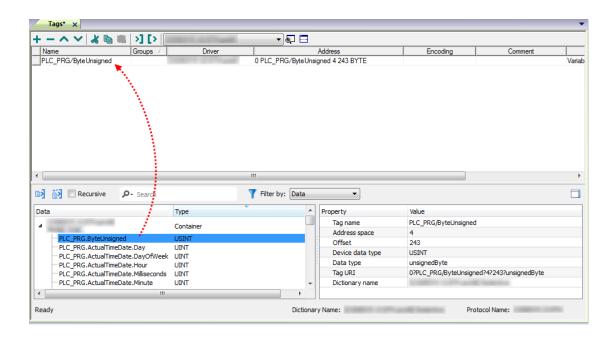
The A-B DF1 tag import filter accepts symbol files with extension ".csv" created by the Rockwell RSLogix 500.

To create the file select Tool > Database > ASCII Export

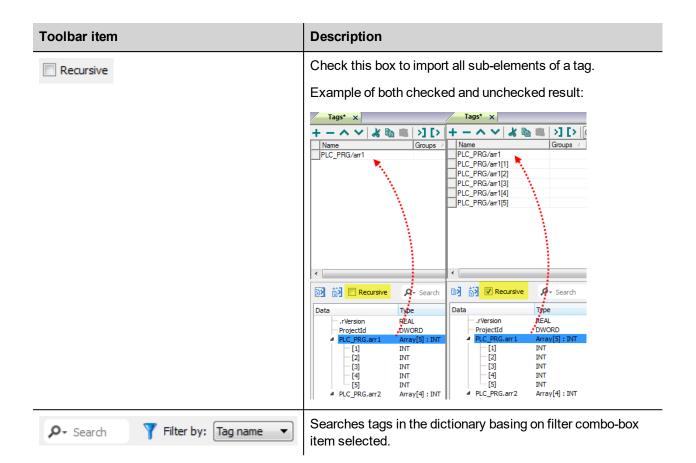
From CSV tab select the data to be exported and give a name to the output csv file.


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

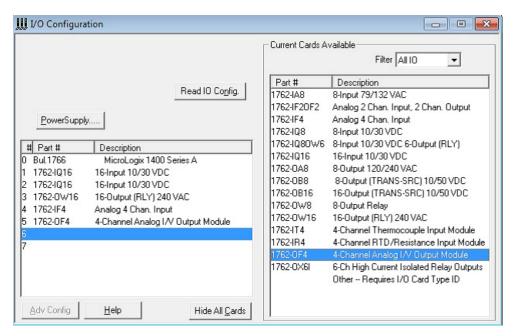

The following dialog shows which importer type can be selected.

Importer	Description	
RSLogix500 v1.0	Requires an .csv file.	
Linear	All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1 Tags* ×	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
K €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

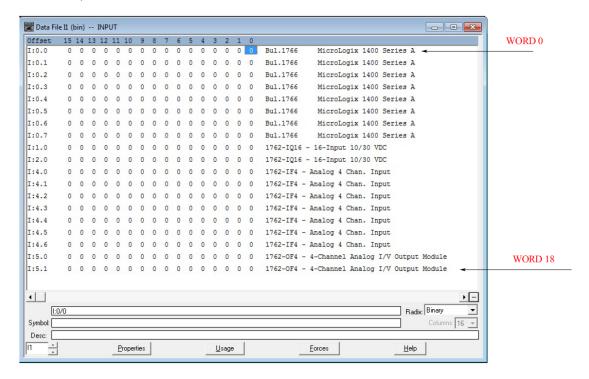


Logical I/O addressing

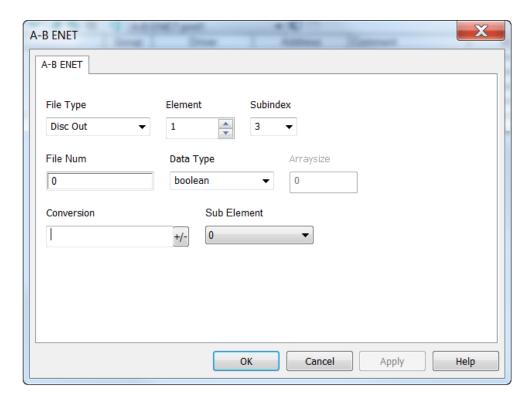
When addressing Allen Bradley I/O data, the panel uses logical addressing rather than physical addressing. While physical addressing refers to the element number as the slot number, logical addressing refers to the first element for the first I/O card of a specific file type.

Communication Protocols addressing depends on the mapping of the PLC CPU memory and not on the slot number, therefore you should be careful when changing the configuration in order to avoid remapping.

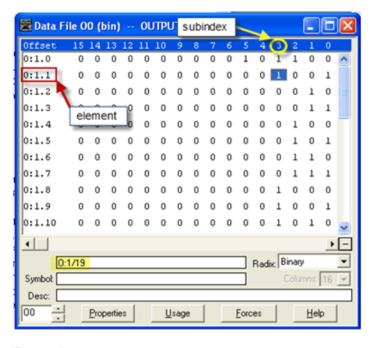
Use the RSLogix 500 I/O Configuration tool layout of the PLC I/O to configure I/O as in the example.



Note: When using a module with a configurable I/O size (for example, Devicenet Scanner) make sure you configure it to the largest possible size or you will have to remap it if you need to allocate more space.


Use the Data File Browser to see how the PLC allocates memory.

This example shows how to configure the Communication Protocols Tag for pointing to PLC resource 0:1/19 (O1:1.1/3 in word terms).



The following figure shows the Communication Protocols Tag configuration.

The Communication Protocols Tag configured in the example above points on the element shown in the following figure.

Examples

I:0/19 (I1:0.1/3 in word terms) – 20th Input on CPU

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 0.1 is Word 1:

Element	1
Sub Index	3

I:1/15 (I1:1.0/15 in word terms) - Last Input on Slot 1 Input Card

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Boolean

In the Data File Browser, word 1.0 is Word 8:

Element	8
Sub Index	15

I:4.0 (I1:4.0 in word terms) - First Analog Input

Parameter	Setting
File Type	Disc In
File Num	1
Data Type	Short

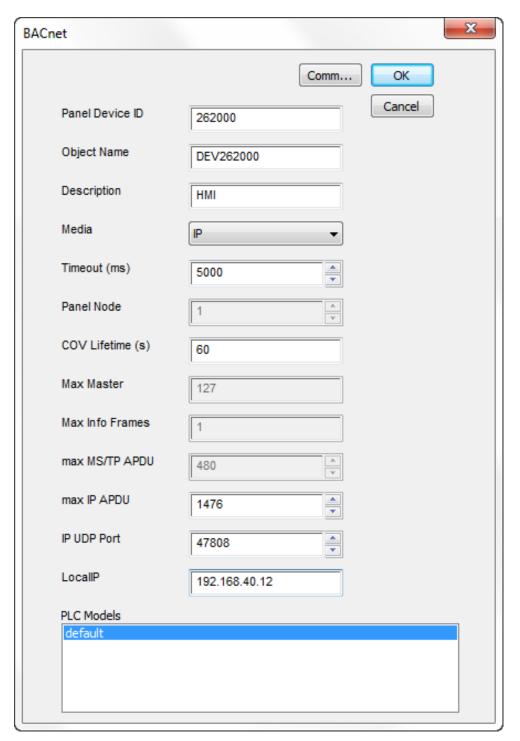
In the Data File Browser, word 4.0 is Word 10:

Element	10
Sub Index	-

BACnet

The BACnet communication driver has been designed to connect HMI devices to BACnet networks and supports IP and MS/TP communication.

The HMI device operates as a BACnet device.

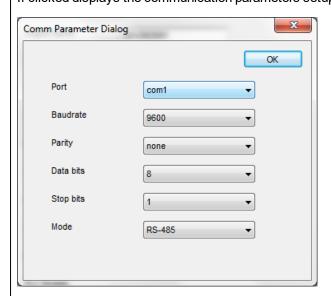

Protocol Editor Settings

Adding a protocol

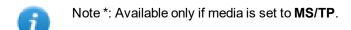
To configure the protocol:

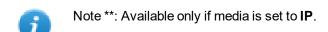
- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the **PLC** list.

The driver configuration dialog is displayed.



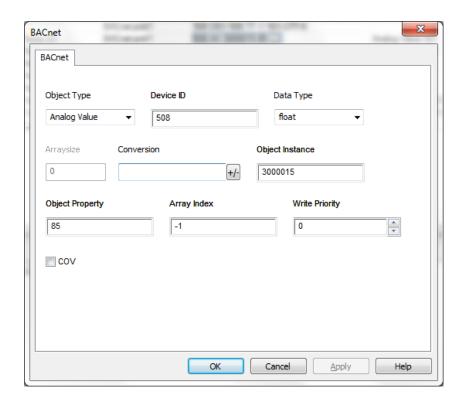
Element	Description	
Panel Device ID	Identifies the HMI device in the network.	
Object Name	BACnet Object Name for the HMI device.	
Description	HMI device description, for documentation purposes.	
Media	Type of communication of the protocol.	




Element	Description	
	MS/TP: Master-Slave/Token-Passing communication (RS-485).	
	IP: based on standard UDP/IP communication.	
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the BACnet device.	
Panel Node *	MS/TP address. Physical device address on the link; it is not passed through routers.	
COV Lifetime (s)	Desired lifetime of the subscription in seconds before the it shall be automatically cancelled A value of zero indicates an indefinite lifetime, without automatic cancellation.	
Max Master *	Highest allowable address for master nodes. Must be less than or equal to 127.	
Max Info Frames *	Maximum number of information frames the node may send before it must pass the token. Max Info Frames may have different values on different nodes and may be used to allocate more or less of the available link bandwidth to particular nodes.	
Max MS/TP APDU *	Maximum length of APDU (Application Layer Protocol Data Unit), which means the actual packet length on BACnet network. This value cannot exceed 480 (default value).	
Max IP APDU **	Maximum length of APDU (Application Layer Protocol Data Unit), which means the actual packet length on BACnet network. This value cannot exceed 1476 (default value).	
IP UDP Port **	Port number for IP communication.	
Local IP **	IP Address of the network adapter to use for protocol. Not required if the device has only one Ethernet adapter.	

Element	Description
PLC Models	Reserved for future use.
Comm *	If clicked displays the communication parameters setup dialog

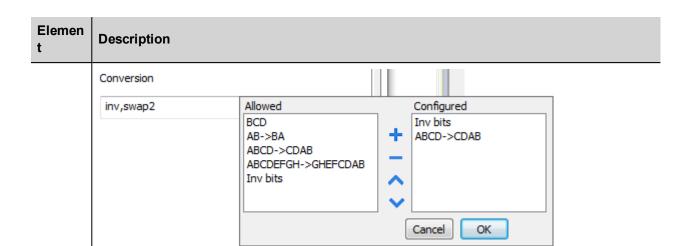
Element	Description
Port	Communication port.
Baudrate, Parity, Data bits, Stop bits	Communication parameters.
Mode	Communication mode. Available modes:
	• RS-232
	• RS-485
	• RS-422



Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select **BACnet** from the **Driver** list: the tag definition dialog is displayed.



Elemen t	Description
Object Type	Type of BACnet object to be referenced. Available object types: Device Analog Input Analog Output Analog Value Binary Input Binary Output Binary Value Multi-state Input Multi-state Output Multi-state Value Integer Value Positive Integer Value Large Analog Value
Device ID	ID of the device containing the object.
Data Type	Data type for display presentation. Available data types: • boolean

F1									
Elemen t	Description								
	intunsignedIntfloat								
	doublestringbinary								
	• boolean[]								
	These data types are data t The equivalence with BAC								
	The equivalence with BACI		s shown in the table.						
	BACnet data type	Software data type	Notes						
	BOOLEAN	Boolean	-						
	INTEGER	Int	-						
	UNSIGNED_INTEGER	unsignedInt	-						
	REAL Float -								
	BIT_STRING	boolean-x	x = size						
	CHARACTER_ STRING	string-x	x = size						
	OCTET_STRING	binary-x	x = size						
	DATE	int or unsignedInt	-						
	TIME	int or unsignedInt	-						
	BACnetObjectIdentifier	int or unsignedInt	Use conversions instance and objType for proper display						
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 								
	Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.								
Conver	Conversion to be applied to the Tag.								

sion

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 1000000110

Elemen t	Description										
	Value		Descriptio	n							
	0001110010111011011001001011101000011100101										
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)										
	Select the cor	nversion	and click on p	olus but	ton. The selec	ted iten	n will be added o	n Configured			
	If more conve list).	rsions a	re configured,	e configured, they will be applied in order (from top to bottom of Configured							
	Use the arrow	buttons	s to order the o	o order the configured conversions.							
Object Instanc e	BACnet ID of	Cnet ID of the object to be referenced.									
Object Propert y	Numeric value of the property to be referenced (example: the value 85 means <i>present-value</i> for most standard objects). The table below specifies all the BACnet Object Properties.										
	Property	Val ue	Property	Val ue	Property	Val ue	Property	Val ue			
	accepted- modes	175	effective- period	32	max-info- frames	63	reason-for- halt	100			
	acked- transitions	0	elapsed- active- time	33	max- master	64	recipient-list	102			
	ack- required	1	error-limit	34	max-pres- value	65	records- since- notification	140			
	action	2	event- enable	35	max- segment	167	record-count	141			

Elemen t Description

Property	Val ue	Property	Val ue	Property	Val ue	Property	Val ue
				s- accepted			
action-text	3	event- state	36	member- of	159	reliability	103
active-text	4	event- time- stamps	130	minimum- off-time	66	relinquish- default	104
active-vt- sessions	5	event-type	37	minimum- on-time	67	required	105
active-cov- subscriptio ns	152	event- parameter s	83	minimum- output	68	resolution	106
adjust- value	176	exception- schedule	38	minimum- value	136	scale	187
alarm-value	6	fault- values	39	minimum- value- timestam p	150	scale-factor	188
alarm- values	7	feedback- value	40	min-pres- value	69	schedule- default	174
all	8	file- access- method	41	mode	160	segmentatio n-supported	107
all-writes- successful	9	file-size	42	model- name	70	setpoint	108
apdu- segment- timeout	10	file-type	43	modificati on-date	71	setpoint- reference	109
apdu- timeout	11	firmware- revision	44	notificatio n-class	17	slave- address- binding	171
application- software- version	12	high-limit	45	notificatio n- threshold	137	setting	162

Elemen Description

Val Val Val Val **Property Property Property Property** ue ue ue ue 13 46 72 silenced 163 archive inactivenotifytext type attempted-124 in-process 47 number-73 start-time 142 samples of-APDUretries 169 74 110 auto-slaveinput-181 numberstate-text reference discovery of-states 48 75 average-125 instanceobjectstatus-flags 111 identifier value of backup-153 integral-49 object-list 76 stop-time 143 constant failuretimeout 14 50 object-77 bias integralstop-when-144 constantname full units 173 78 buffer-size 126 last-notifyobjectsystem-112 status record propertyreference 15 157 79 113 change-oflastobjecttime-delay state-count restoretype time 114 change-of-16 life-safety-166 operation-161 time-ofstate-time alarmexpected active-timevalues reset 127 limit-52 80 time-of-115 client-covoptional increment enable state-countreset configurati 154 limit-182 out-of-81 time-116 on-files monitorin service synchronizat g-interval ionrecipients 145 controlled-19 list-of-53 output-82 total-recordgroupvariableunits count reference members

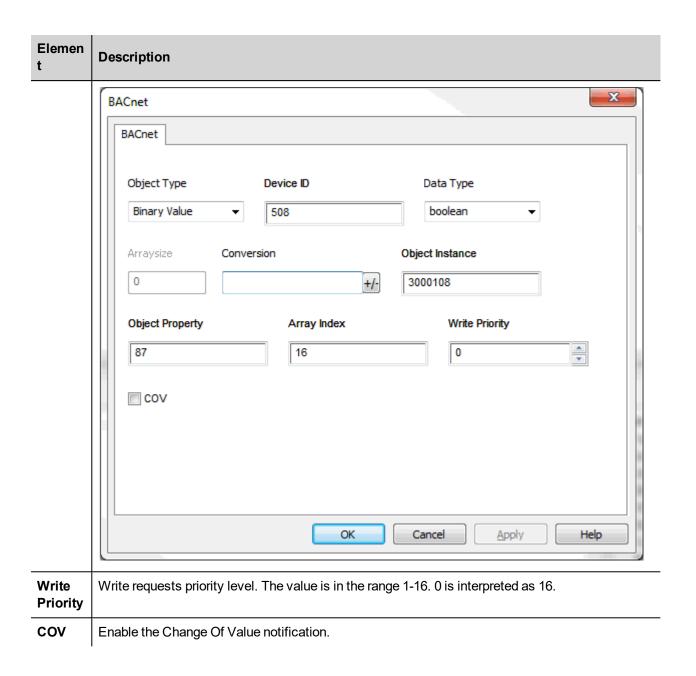
Elemen t	Description								
	Property	Val ue	Property	Val ue	Property	Val ue	Property	Val ue	
	controlled- variable- units	20	list-of- object- property- references	54	polarity	84	tracking- value	164	
	controlled- variable- value	21	list-of- session- keys	55	prescale	185	units	117	
	count	177	local-date	56	present- value	85	update- interval	118	
	count- before- change	178	local-time	57	priority	86	update-time	189	
	count- change- time	179	location	58	pulse-rate	186	utc-offset	119	
	cov- increment	22	log-buffer	131	priority- array	87	valid- samples	146	
	cov-period	180	log- device- object- property	132	priority- for-writing	88	value-before- change	190	
	cov- resubscript ion-interval	128	log-enable	133	process- identifier	89	value-set	191	
	database- revision	155	log- interval	134	profile- name	168	value- change-time	192	
	date-list	23	logging- object	183	program- change	90	variance- value	151	
	daylight- savings- status	24	logging- record	184	program- location	91	vendor- identifier	120	
	deadband	25	low-limit	59	program- state	92	vendor-name	121	
	derivative- constant	26	maintenan ce-	158	proportion al-	93	vt-classes- supported	122	

Elemen	Description
t	Description

Property	Val ue	Property	Val ue	Property	Val ue	Property	Val ue
		required		constant			
derivative- constant- units	27	manipulat ed- variable- reference	60	proportion al- constant- units	94	weekly- schedule	123
description	28	manual- slave- address- binding	170	protocol- object- types- supported	96	window- interval	147
description- of-halt	29	maximum- output	61	protocol- revision	139	window- samples	148
device- address- binding	30	maximum- value	135	protocol- services- supported	97	zone- members	165
device-type	31	maximum- value- timestamp	149	protocol- version	98		
direct- reading	156	max-apdu- length- accepted	62	read-only	99		

Array Index

Index for subscribing elements in BACnet arrays.


- -1 means read all elements
- 0 to n means read the specified element

Priority Array example

To read a priority array object it is necessary to set **Object Property = 87** and **Array Index** has to refer to the priority item to be read.

The following figure shows how to read the 16th item of a priority array.

Clear/Set Priority

The system offers actions for a more flexible handling of Write Priority.

Action	Description				
BACnetClearPriority	Clears the priority array at the position associated to the BACnet tag passed as parameter.				
	This action has immediate effect on the BACnet device.				
BACnetClearAllPriorities	AllPriorities Clears all positions in the priority array.				
	This action has immediate effect on the BACnet device.				
BACnetSetPriority	Overrides the Write Priority value configured in the BACnet tag definition.				
	This action has two parameters:				
	TagName: name of the BACnet tag.				
	 TagPriority: new value of Write Priority for the BACnet tag passed as parameter. 				
	This action only overrides the value of Write Priority in the BACnet tag definition and does not perform any communication with the BACnet device. Any write command that will be performed to the Present Value property of the BACnet device identified by the tag, will be performed using the new Write Priority value.				
	The priority value will be valid until:				
	 A new call to the BACnetSetPriority action changes it. The HMI device is restarted. The value of WritePriority defined in the project is valid in this case. 				

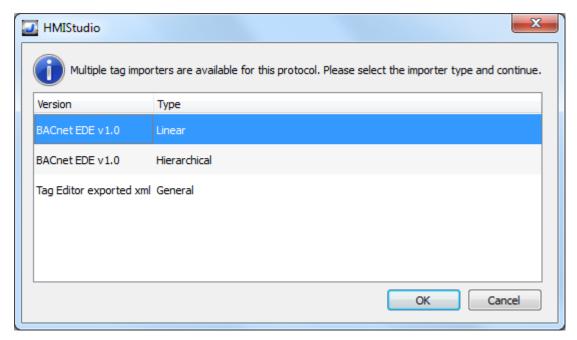
Tag Import

BACnet object information can be imported from BACnet EDE (Engineering Data Exchange) files. The EDE file must have the .csv extension.

The importer uses the characters "," and ";" as delimiters. They are considered as reserved characters and you cannot use them in file name.

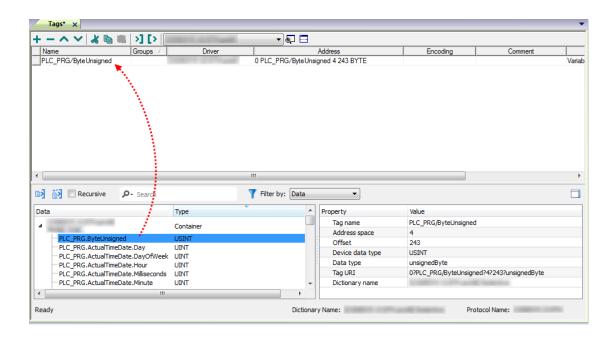
Use the hierarchical importer to have a ordered list of BACnet objects and properties.

Tags will be created using the string specified in the column object-name of the EDE file. The importer will add the device ID as a prefix to avoid duplication of tag names.

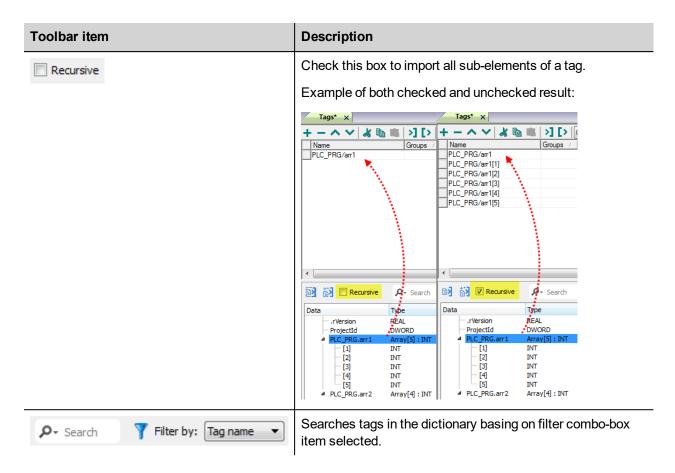

Note: The importer will ask to locate the State-Texts, Unit-Texts and Object-Types files. Click Cancel to ignore.

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer Description					
BACnet EDE v1.0	Requires a .csv file.				
Linear	All variables will be displayed at the same level.				
BACnet EDE v1.0	Requires a .csv file.				
Hierarchical	All variables will be displayed according to BACnet EDE Hierarchical view.				
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.				
	1:Page1				


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
K €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

For tags referring to BACnet objects of type Calendar or Schedule the tag refresh rate is set to "Manual".

The following BACnet object properties are required for operation of the widgets.

Object	Tags to import			
Calendar	Date_List			
Schedule Weekly_Schedule				
	Exception_Schedule			
	Default_Value			
	Effective_Period			

DEVICE Object Properties

A BACnet network scanner can detect properties when exploring the network and obtaining data from HMI device.

This are the supported DEVICE object properties:

Property	Description
Object_Identifier	BACnetObjectIdentifier
Object_Name	CharacterString

Property	Description
Object_Type	BACnetObjectType
System_Status	BACnetDeviceStatus
Vendor_Name	CharacterString
Vendor_Identifier	Unsigned16
Model_Name	CharacterString
Firmware_Revision	CharacterString
Application_Software_Version	CharacterString
Protocol_Version	Unsigned
Protocol_Revision	Unsigned
Protocol_Services_Supported	BACnetServicesSupported
Protocol_Object_Types_Supported	BACnetObjectTypesSupported
Object_List	BACnetARRAY[N]of BACnetObjectIdentifier
Max_APDU_Length_Accepted	Unsigned
Segmentation_Supported	BACnetSegmentation
APDU_Timeout	Unsigned
Number_Of_APDU_Retries	Unsigned
Device_Address_Binding	List of BACnetAddressBinding
Database_Revision	Unsigned

BACnet Calendar Widget

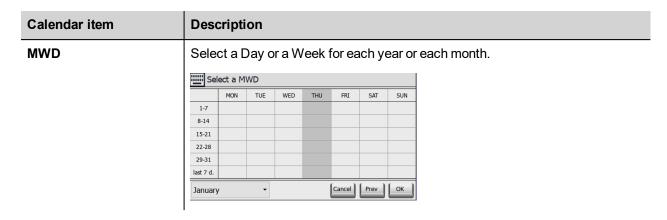
Use Calendar widget to display content of a BACnet Calendar object.

Property	Description	
Date_List	Connect to the "Date_List" tag of a BACnet calendar object in ReadOnly or Read/Write.	
	Note: it can be connected to an alias which indexes a list of BACnet calendar Date_List(s), in order to use one calendar widget for more than one calendar object.	

Operation of Calendar Widget

The widget shows data for one month.

	MON	TUE	WED	THU	FRI	SAT	SUN
52	26	27	28	29	30	31	1
1	2	3	4	5	6	7	8
2	9	10	11	12	13	14	15
3	16	17	18	19	20	21	22
4	23	24	25	26	27	28	29
5	30	31	1	2	3	4	5
<	01/2	2017	>	. N∈	ew Cle	ear All	Refresh


Use the < and > buttons to select the month to be displayed. The date of first day of the month is shown.

Swing gesture can be used on the widget to select the date.

New

Press the button "New" to enter a new calendar item. The button is active only if the tag associated to the calendar has been configured as Read/Write.

Calendar item	Description
Single	Click on a day to select a single day into the calendar
Range	Click on the first day and on the last day to select a range of days into the calendar. • Single click on a day to change previous selected last day of the range. • Double click on a day to change previous selected first selected day of the range. Select a date range Select a date range Select a date range Select a date range 1 2 3 4 5 6 7 8 8 2 9 10 11 12 13 14 15 3 16 17 18 19 20 21 22 3 4 23 24 25 26 27 28 29 4 5 30 31 1 2 3 3 4 5 5 6 7 8 8 5 2 9 10 11 12 13 14 15 15 3 16 17 18 19 20 21 22 3 4 23 24 25 26 27 28 29 29 5 30 31 1 2 2 3 3 4 5 5 6 7 8 8 2 9 10 11 12 13 14 15 15 3 16 17 18 19 20 21 22 3 4 25 26 27 28 29 29 5 30 31 1 2 2 3 3 4 5 5 6 7 8 8 2 9 10 11 12 13 14 15 15 3 16 17 18 19 20 21 22 3 4 25 26 27 28 29 29 5 30 31 1 1 2 2 3 3 4 5 5 6 7 8 8 2 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15

Clear All

Press the button "Clear All" to clear the content of the calendar object. The button is active only if the tag associated to the calendar has been configured as Read/Write. The button is configured to react to an onMouseHold event, to reduce risk of data loss.

Refresh

Press the "Refresh" button to start a manual refresh of the data of the widget. Always press the Refresh button after entering data in the calendar.

BACnet Schedule Widget

Use Schedule widget to display content of BACnet Schedule object.

Property	Description		
Туре	Select the type of BACnet object controlled by the schedule.		
	Options are:		
	Binary		
	• Real		
	Multistate		
Weekly_Schedule	Attach to the Weekly_Schedule tag of the schedule object. The tag can be Read Only or Read/Write.		
Exception_Schedule	Optionally attach to the Exception_Schedule tag of the schedule object. The tag can be Read Only or Read/Write. Only attach this property if exceptions are used.		
Default_Value	Optionally attach to the Default_Value tag of the schedule object. The tag can be Read Only or Read/Write. Only attach this property if default values are used.		
Cal. 0 (Date_List)	Optionally attach to the Date_List tag of the schedule widget in Read Only mode. Use this options to show the "calendar reference" exceptions.		
	Note: An exception can be a single date, a date range, a mwd or a calendar reference. In this last case, exception_list does not contain the date information, but only time-value-priority and a reference to the		

Property	Description			
	stored into datalink. I this prope Note: If it	o the relative BACN f there is no need to rty can be left void. is not attached to a	NCalendar, and this o show calendar ex o calendar, it is not	
	calendar e	exception. See BA0	CNSchedKeypad f	or details.
Cal. 0 (Object_Name)	1	NSchedKeypad us d, the calendar is ic	ed to insert calend lentified with its ins	
Cal. 1 (Date_List)	Option for a second	Option for a second calendar.		
Cal. 1 (Object_Name)	Option for a second calendar.			
Value-color-text Map	Defines the association value – Color/Text shown in the schedule. Use this option to define all possible values available in the BACNSched keypad.			
	Value-Color Dialog ? X			
	+ -			
	Tag value	Mapped color	Text	
	1 1	#00aaff	Saving	
	2 2	#ffaa7f	Confort	
	3 3	#55ff7f	Normal	
		0	k Cancel	

Operation of Schedule Widget

The widget shows data for one week.

Default Value: Normal		N	ew CI	ear All	Refresh		
	MON	TUE	WED	THU	FRI	SAT	SUN
00:00							
04:00		E, 04:00 Normal					
08:00						E, 08:00 Confort	
12:00		E, 12:00 Confort					
16:00							
20:00		E, 20:00 Saving				E, 20:00 Saving	
<	16/01	/2017	- 22/01	/2017	>		

Use the < and > buttons to select the week to be displayed. The date of first day and last day of the week is shown.

Swing gesture can be used on the widget to select the date.

New

Press the button "New" to enter a new schedule item. The button is active only if the tag associated to Weekly Schedule or Exception Schedule has been configured as Read/Write.

Schedule item	Description
Weekly	Select the day and click Weekly button, the following dialog box appears. Then select the desired value and the time when it should be set. Press OK to confirm the new item.
	Event Type: Weekly By Confort Cancel Prev OK
Exception Single	Click on a day to select a single day into the calendar. On the next dialog select the time window, the desired value and its priority.
Exception Range	Click on the first day and on the last day to select a range of days into the calendar.

Schedule item	Description		
	 Single click on a day to change previous selected last day of the range. Double click on a day to change previous selected first selected day of the range. 		
	On the next dialog select the time window, the desired value and its priority. Select a date range NON TUE WED THU FRE SAT SUN 1 2 3 4 5 6 7 8 2 9 10 11 12 13 14 15 3 16 17 18 19 20 21 22 22 24 25 26 27 28 29 5 30 31 1 2 3 4 15 14 15 15 16 17 18 19 20 21 22 22 22 23 24 25 26 27 28 29 29 5 30 31 1 2 3 4 10 10 10 10 10 10 10		
Exception MWD	Select a Day or a Week for each year or each month. On the next dialog select the time window, the desired value and its priority. Select a MWD To: 1.7 8.14 15-21 22-28 29-31 last 7 d. January Cancel Prev Next Select a MWD From: 20:00 To: 23:00 To: 43:00 Priority: 1 Amuary Cancel Prev Next		
Exception Cal Ref	This option is available only if scheduler is linked to a calendar (configured as Read/Write) Select the time window, the desired value and its priority. Value will set on all days defined from the calendar. If there are more calendars associated with Scheduler widget, select the calendar to use.		

Clear All

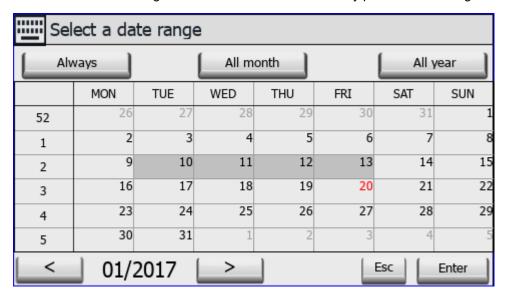
Press the button "Clear All" to clear the content of the schedule object. The button is active only if the tag associated to the calendar has been configured as Read/Write. The button is configured to react to onMouseClick and onMouseHold events. The onMouseHold event will clear all data in the schedule. The onMouseClick event will recall a dialog box for selection of data to clear. It is needed to choice to clear weekly data or exception data.

Refresh

Press the "Refresh" button to start a manual refresh of the data of the widget. Always press the Refresh button after entering data in the schedule.

BACnet Effective Period Widget

Use the Effective Period widget to feed information to the Effective_Period tag of a Schedule object, if this is requested.


Property	Description
BACnet Effective_ Period	Attach to the Effective_Period tag of the Schedule object

01/10/2017 - 01/13/2017 Refresh

Operation of Effective Period Widget

The widget shows starting date and end date for the period.

Click on the area showing the dates to activate the data entry procedure showing the keypad BACNDateRange.

The keypad shows data for one month.

Use the < and > buttons to select the month to be displayed. The date of first day of the month is shown.

You may use the swing gesture on the widget to select the date.

Select the period clicking of first day and last day of the period. The Effective Period is show with a different color.

The keypad offers three predefined options:

Option	Description
Always	The schedule will be always active.
	//**** - **/**/**** Refresh
All Month	The selected period will be extended to all months.
	**/03/2017 - **/12/2017 [Refresh]
All Year	The selected period will be extended to all years.
	01/03/**** - 01/12/**** Refresh

Refresh

Press the "Refresh" button to start a manual refresh of the data of the widget. Always press the Refresh button after entering data in the widget.

BACnet Keypads

BACnet widgets require dedicated keypads for data entry.

Keypad	Description	
BACNCal	Keypad for BACnet Calendar.	
BACNDateRange	Keypad for BACnet Effective_Period.	
BACNDefVal	Keypad for default value (embedded in the BACnet Schedule).	
BACNSched	ACNSched Keypad for BACnet Schedule.	
	This keypad is context sensitive. It will show different options depending on the type of schedule.	

The system is configured to recall the appropriate keypad for each BACnet widget.

Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

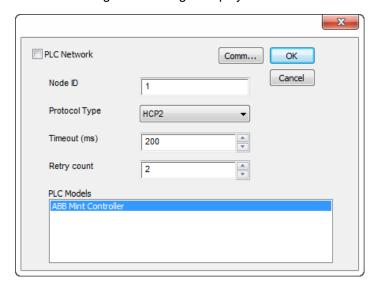
Codes supported by this communication driver:

Error	Cause	
Cannot bind to the device_id	Cannot establish communication with the Device ID provided for this tag.	
Cannot read the property data type	The type of the property to write cannot be determined.	
write conversion error	A conversion associated to this tag has failed.	
Cannot write ICOM type BACnet type	A datatype selected for this tag is not compatible with the BACnet property to set.	
Timeout on COV subscription	A request for COV subscription for this tag has timed out.	
Timeout on waiting COV update	A COV notification has not been received for this tag whithin timeout.	
Can't get COV for this property	The selected property for COV notification is unsupported.	
datagramItem conversion error	A conversion associated to a tag that is part of a datagram has failed.	
Timeout waiting on response	No response for a request of read or write property within timeout.	
datagram element, no data available	No data available for a tag that is part of datagram.	
datagram element, Unsupported BACnet data type	Read datagram element is of unsupported BACnet type.	
datagram element, can't convert BACnet type to		
No data in response	No data available for a tag.	
Datagram element 'element_ URI' error: 'error_class': error_code		
datagram object does not match	The object of the received datagram item does not match the asked object.	
datagram property does not match	The property of the received datagram item does not match the asked property.	
BACnet abort: reason_of abort	BACnet abort message was received. The reason of abort is given.	
BACnet reject: reason_of_ rejection	BACnet reject message was received. The reason of rejection is given.	

Error	Cause
BACnet error: error_class: error_code	BACnet error message was received. The error description is given as combination of error_class and error_code .
parameter 'parameter_name' out of range	The protocol parameter parameter_name value is out of range.

Baldor NextMove

This communication protocol allows the HMI devices to connect to the Baldor motion and servo drive devices using the HCP and HCP2 communication protocols.

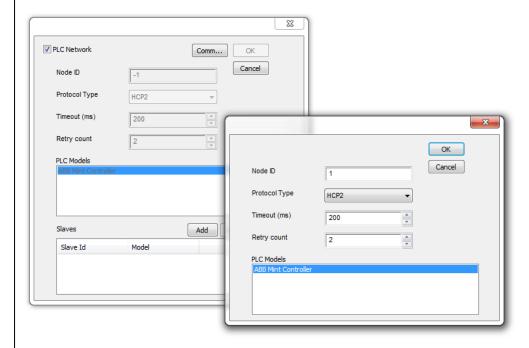

Protocol Editor Settings

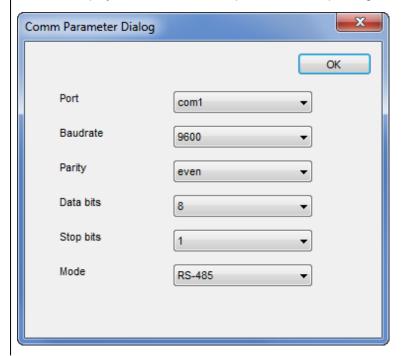
Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.


Element	Description	
Node ID	Node ID assigned to the controller device.	
Protocol Type	Two protocols are available: • HCP • HCP2	
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the server device.	
Retry count	Number of times a certain message will be sent to the controller before reporting the communication error status.	
PLC Models	PLC model you are going to connect to.	

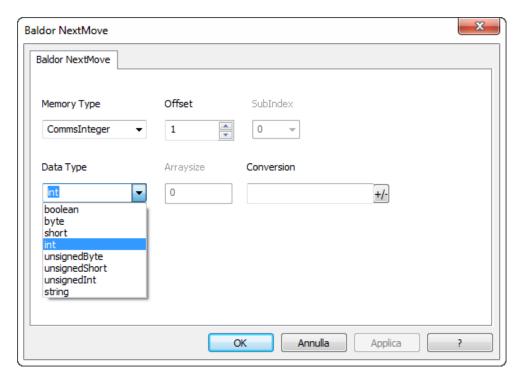

Element Description

PLC Network

The protocol allows the connection of multiple controllers to one HMI device. To set-up multiple connections, check "PLC network" checkbox and enter the node ID per each slave you need to access.

Comm... If clicked displays the communication parameters setup dialog.

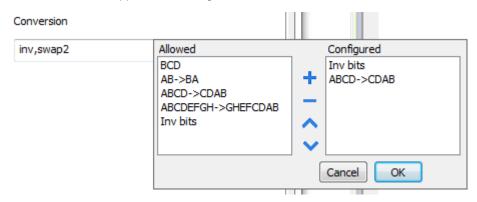
Element	Description		
	Element	Description	
	Port	Serial port selection.	
		COM1= device PLC port.	
		COM2= computer/printer port.	
	Baudrate, Parity, Data Bits, Stop bits	Serial line parameters.	
	Mode	Serial port mode. Available modes:	
		• RS-232.	
		• RS-485 (2 wires).	
		• RS-422 (4 wires).	


Data types

The Baldor NextMove driver provides the support for two Memory Types which are referring to the same physical memory area in the Mint controller:

- **Comms**: should only be used with floating point values. The Mint program on the Baldor controller should use COMMS to access this data.
- CommsInteger: allows a variety of integer-based data types to be selected.

If the Baldorcontroller program uses	then
COMMS keyword for a tag setup to use the Commsinteger memory type	only the bottom 23 bits will be accurate (due to floating point precision of the COMMS keyword).
COMMSINTEGER keyword for a tag setup to use the Commsinteger memory type	the value is precise for the full 32 bits.



See "Programming concepts" section in the main manual.

Tag Conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description				
Inv bits	Invert all the bits of the tag.				
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)				
Negate Set the opposite of the tag value.					
	Example:				

Value	Description				
	25.36 → -25.36				
AB -> BA	Swap nibbles of a byte.				
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)				
ABCD -> CDAB	Swap bytes of a word.				
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)				
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.				
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)				
ABCNOP -> OPMDAB	Swap bytes of a long word.				
	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0\ 10000000110\ 000111001011101101100100101101000011100100101$				
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)				
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)				

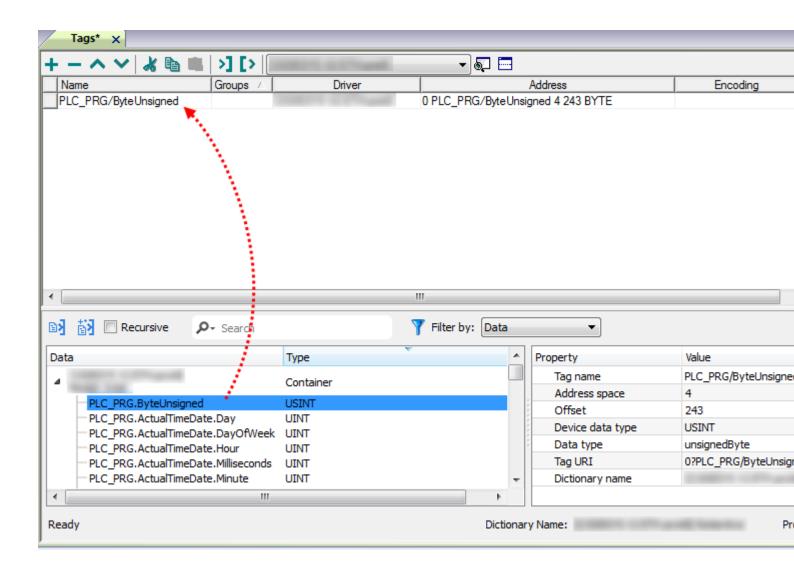
Select the conversion and click on plus button. The selected item will be added on **Configured** list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

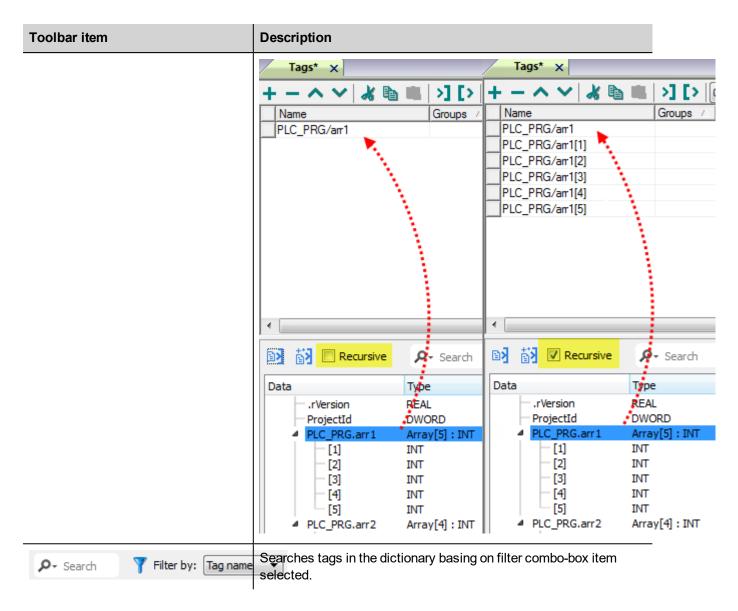
Use the arrow buttons to order the configured conversions.

Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.



Locate the .xml file exported from Tag Editor and click Open.



Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description		
E ≰	Import Tag(s).		
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project		
K ₫	Update Tag(s).		
	Click on this icon to update the tags in the project, due a new dictionary import.		
Recursive	Check this box to import all sub-elements of a tag.		
	Example of both checked and unchecked result:		

Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported by this communication driver:

Error	Cause	Action	
NAK	The controller replies with a not acknowledge.	-	
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.	
Line Error	An error on the communication parameter setup is detected (parity, baud rate, data bits, stop bits).	Check if the communication parameter settings of the controller is compatible with the device communication setup.	

Error	Cause	Action
Invalid response	The device did received a response with invalid format or contents from the controller.	Ensure the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

Beckhoff ADS

Beckhoff ADS protocol driver is used for communication with Beckhoff controllers through Ethernet connection. This implementation of Beckhoff ADS protocol driver is based on the information published by Beckhoff.

Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol "Beckhoff ADS" from the list of available protocols.

Element	Description				
Alias	Name to be used to identify nodes in the plc network configuration. The name will be added as a prefix to each tag name imported for each network node.				
Panel AMS Net ID	Specifies the AMS net ID of the panel; the first 4 bytes must match the panel IP address assigned to the HMI device. If panel has IP address 192.168.10.100 then AMS Net ID could be 192.168.10.100.1.1				
Panel	Specifies the panel AMS port number to be used on panel.				

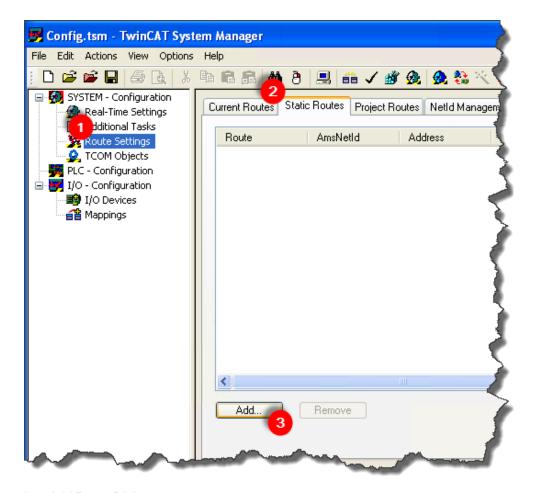
Element	Description							
AMS	Using TwinCAT2, default Panel AMS Port is 32976.							
Port	Using TwinCAT3, default Panel AMS Port is 32844.							
Target IP Address	Specifies the IP address of the target controller.							
Target AMS Net ID	Specifies the Target AMS net ID of the target controller.							
Target	Specifies the port number dedicated to the communication on target device.							
AMS Port	Using TwinCAT2, default Target AMS Port is 801.							
	Using TwinCAT3, default Target AMS Port is 851.							
Timeout	The number of milliseconds between retries when communication fails.							
PLC models	Select the model which corresponds to the device to be connected. Model selection is very important to be set properly.							
Network	multiple connections, check "PLC network" checkbox and enter the Target Controller settings for Beckhoff ADS PLC Network							
	every node.							

TwinCAT2 Route Settings

Beckhoff controllers require some specific settings to allow connection from HMI devices.

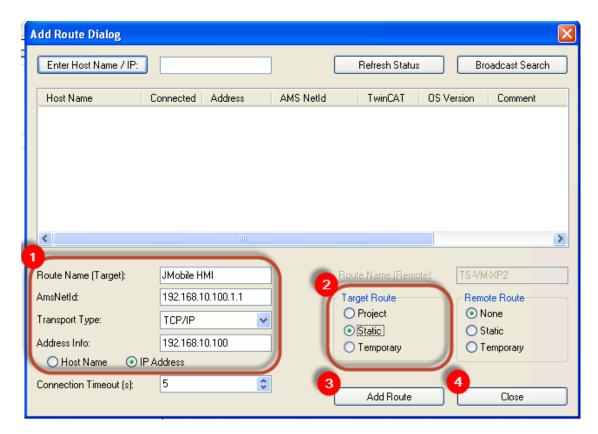
In TwinCAT2 System Manager you need to configure Static Route.

First of all the system must be reset in Configuration Mode using the toolbar button as showed in the following figure.



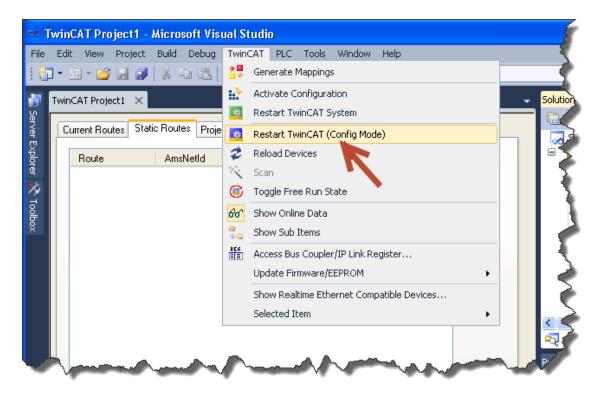
Then confirm to Restart TwinCAT2 System in Config Mode as in the figure below.

Once restarted, as in the next figure, follow these steps to add a new Route:


- 1. Open Route Settings.
- 2. Select Static Routes tab.
- 3. Click on [Add] button.

Into Add Route Dialog user must set:

- Route Name: a name useful to indentify the Route i.e. "HMI", AmsNetId: The Panel AMS Net ID as configured into Beckhoff ADS protocol, Transport Type: TCP/IP.
 Address Info: Type in the Panel IP Address with "IP Address" option selected.
- 2. Target Route: Static.
- 3. Click on [Add Route] button. Note: no warning or message will be shown.
- 4. Click on [Close] button.

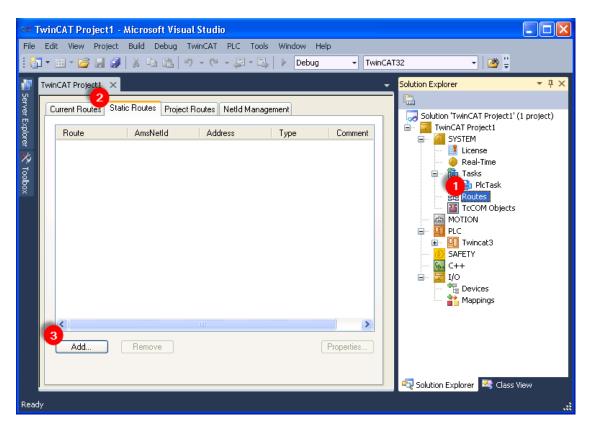


Then the route will appear under Static Routes list.

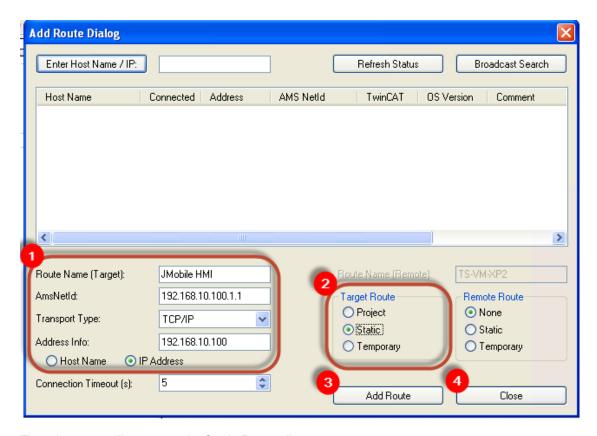
TwinCAT3 Route Settings

Beckhoff controllers require some specific settings to allow connection from HMI devices. In TwinCAT3 XAE you need to configure a Static Route.

First of all TwinCAT3 system must be reset in Configuration Mode using the toolbar button as showed in the following figure.


Then confirm to Restart TwinCAT3 System in Config Mode.

Once restarted, as in the next figure, follow these steps to add a new Route:


- 1. Open Routes.
- 2. Select Static Routes tab.
- 3. Click on [Add] button.

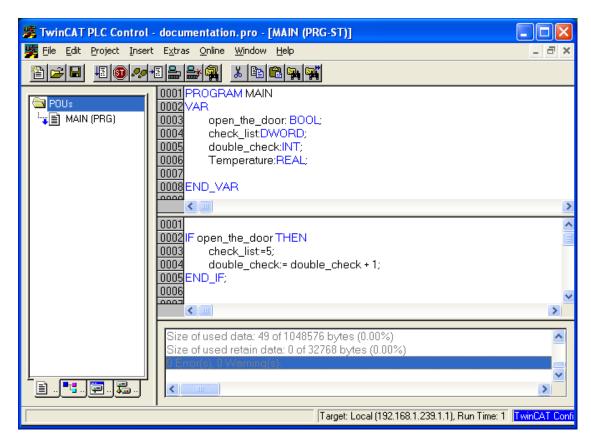
Into Add Route Dialog user must set:

- Route Name: a name useful to indentify the Route i.e. "HMI", AmsNetId: The Panel AMS Net ID as configured into Beckhoff ADS protocol, Transport Type: TCP/IP. Address Info: Type in the Panel IP Address with "IP Address" option selected.
- 2. Target Route: Static.
- 3. Click on [Add Route] button. Note: no warning or message will be shown.
- 4. Click on [Close] button.

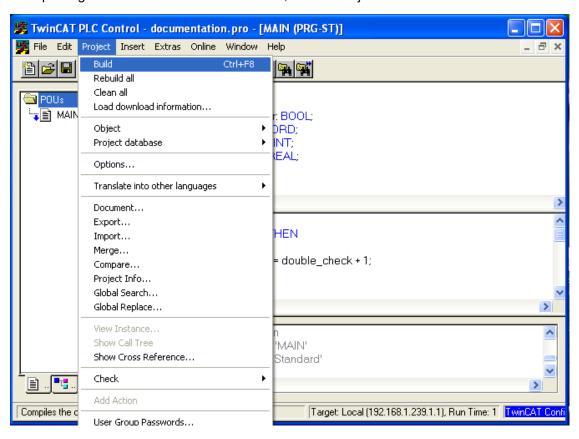
Then the route will appear under Static Routes list.

Tag Import

Exporting Tags from PLC

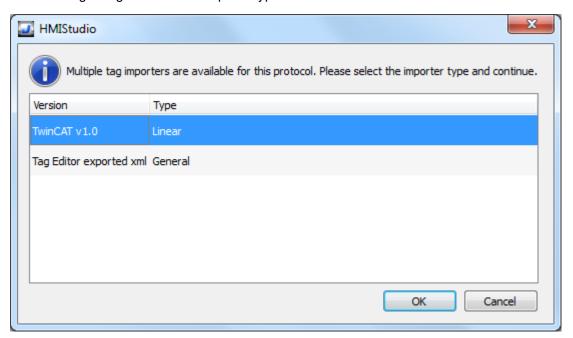

The data in the Beckhoff system is based on tags.

The organization of the internal memory of the controller is not fixed but it is configured by the user at development time. Each data item can be identified by a string called "tag".


The TwinCAT development environment generates the list of tags created for each controller in the configuration of the application.

The project in the panel must refer to the tag names assigned in the TwinCAT PLC Control programming software at development time. The Designer Tag Editor supports direct import of the tag file generated by the Beckhoff software.

To export tags defined for the selected controller, click on Project > Build as shown.

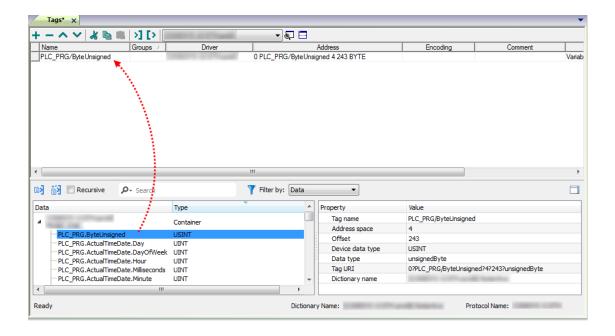

The TwinCAT PLC Control software will create a file with extension TPY.

Importing Tags in Tag Editor

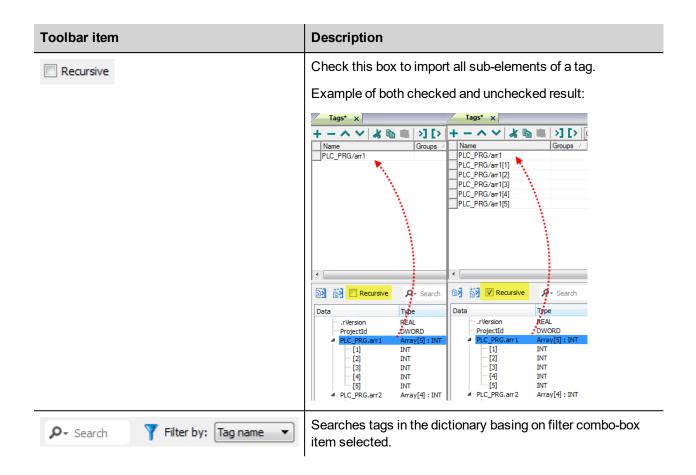
Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.

Importer	Description
TwinCAT v1.0	Requires a .tpy file.
Linear	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1

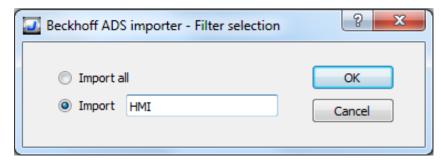


Note: the Beckhoff driver supports direct access to the PLC tags using the handles; this means that if no tags are added to the PLC and the PLC program is just re-compiled, you do not need to re-import tags as the access to them does not depend from the offset, but only from name.


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Kara Karana	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.


Using TwinCAT v1.0 Import Filter

When importing tags, the user can decide to import all the tags from the **.tpy** file or apply a filter importing only a subset of them.

The figure below shows how to specify the filter. The filter consist in a string (no wildcards are supported). The import filter will import only the tags having the specified string in the description.

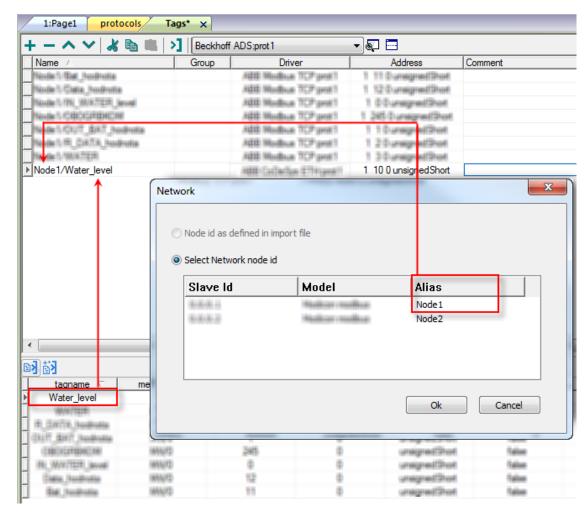
If the description is applied to an "instance declaration" of a Function Block, all the tags within the block will be imported.

If the string is contained only as comment of some variables inside the Function Block, only that variables will be imported.

As an example for the use of the import filter, please see the following case.

FUNCTION_BLOCK FB_Motor


```
VAR INPUT
     bStartMotor: BOOL;
     bReset: BOOL;
END VAR
VAR OUTPUT
     bMotorOn: BOOL;
     bAlarm: BOOL; (* HMI Thermal alarm *)
END VAR
VAR
     sData: STRING;
     bResetStatistics: BOOL; (* HMI Reset statistics *)
END VAR
VAR PERSISTENT
     stStat: ST MotorStats; (* HMI Motor statistics *)
END VAR
Function block instances declaration:
VAR
     fbMotor1: FB Motor;
     fbMotor2: FB Motor; (* HMI only show Motor 2!! *)
END VAR
```


The following tags will be imported:

- MAIN/fbMotor2/bAlarm
- MAIN/fbMotor2/bResetStatistics
- MAIN/fbMotor2/ST MotorStats

Aliasing Tag Names in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: Aliasing tag names is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Returned in case the controller replies with a not acknowledge
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access

Error	Notes
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources
General Error	Error cannot be identified; should never be reported; contact technical support

CANopen HMI

The CANopen HMI communication driver has been designed to connect HMI products to a CANopen network. A new device communication profile has been developed for the HMI. This profile takes advantage from the advanced user interface features of the products, while retaining the simple networking concept supported by the CANopen network.

The basic idea is create a client/server communication structure where the HMI is the client and the CANopen controller is the server.

Connection to CANopen network requires the optional CANopen communication module. Verify the suitable version for your HMI model.

Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Please ensure that the latest driver is used in the application.

CANopen HMI Profile

In this communication model the HMI initiates the communication sessions, acting as a source of messages.

The basic messages are PDO messages with the standard size of 8 bytes.

The COB-ID of the messages is defined in a way that makes clear, from the well-known CANopen rules, what is the target of the PDO message.

The format of the PDO message has been defined according to a custom application layer protocol. This application layer protocol defines a device-independent communication profile optimized for HMI applications.

When the CANopen master controller receives the PDO message, it will interpret its contents and produce a PDO message with the response addressed to the HMI device.

The definition of this client/server relationship is independent of the CANopen Master in the sense that it can easily be supported in any particular CANopen master system. The resulting solution is easily portable to any CANopen master.

The software IDE offers a user interface that adapts itself to show the typical addressing model of CANopen master controller where the panel is going to be connected.

Adapting to different masters is possible using a profile customization file that may contain data definitions for different controller types.

Profile Details

This chapter provides the specification of the HMI profile and describes the subset of the request/response formats used by this implementation of the protocol.

The communication driver in the HMI generates PDO messages initiating communication request sessions as soon as the HMI runtime requires data from the protocol.

The panel is using the first transmit PDO identified by the COB-ID 0x180 combined with the Node Number assigned to the panel.

The communication profile uses only one transmit PDO and one receive PDO; the limited number of bytes available in standard PDO message maybe limiting, in some cases, the driver capabilities especially in terms of performance.

Request Format: HMI to Controller (Transmit PDO)

The PDO message transmitted by the HMI is formatted according to the following table.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Offset	Offset	Data	Data	Data	Data	Data Length and Job	Operation Type and Controller ID
Low	High	0	1	2	3	Number	

The request frame includes the following elements:

Offset Low	Low byte of the offset (16 bits address) for the requested block of data				
Offset High	High byte of the offset (16 bits address) for the requested block of data				
Data 0 Data 3	Data for Write Operations; not used in Read Operations				
Data Length and Job Number	Contains: • number of requested bytes • job Number indicator;				
Operation Type and Controller ID	type of operation requested the Controller ID that identifies the target of the message;				

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Data	Data	Job	Job	Job	Job	Job	Job
Length [1]	Length [0]	Number [5]	Number [4]	Number [3]	Number [2]	Number [1]	Number [0]

The "Data Length" parameter is coded in 2 bits and takes values between 1 and 4 according to the following rules:

00	1 bytes
01	2 bytes
10	3 bytes
11	4 bytes

Note that the elementary size of each data item depends on the Controller memory organization.

The "Job Number" occupies 6 bits and can have values between 0 and 63; the "Job number" parameter is placed as last element in the PDO to ensure data consistency; the PLC program running the controller should constantly monitor the value of the "Job Number" parameter and consider the received message as valid only when detecting a change in the value of the "Job Number" field. "Job Number" is automatically increased at each new communication session (new request frame).

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Operation	Controller	Controller	Controller	Controller	Controller	Controller ID [1]	Controller
Type	ID [6]	ID [5]	ID [4]	ID [3]	ID [2]		ID [0]

The "Operation Type" uses one bit with the following definition:

0	Read	data is transferred from controller
1	Write	data is transferred to controller

The "Controller ID" uses 6 bits; it represents the Node Number in the CANopen network of the master controller addressed by the current request.

This parameter is required in case the CAN network has more than one master controller; the CANopen standard defines in fact the COB-ID of the messages in a way that all the partners of the bus known the originator. In case more than one master device is present in the same network, the "Controller ID" field will specify the target of each individual request message. Only the master controller that recognizes in this field its own Node ID will consider the message and process the PDO contents.

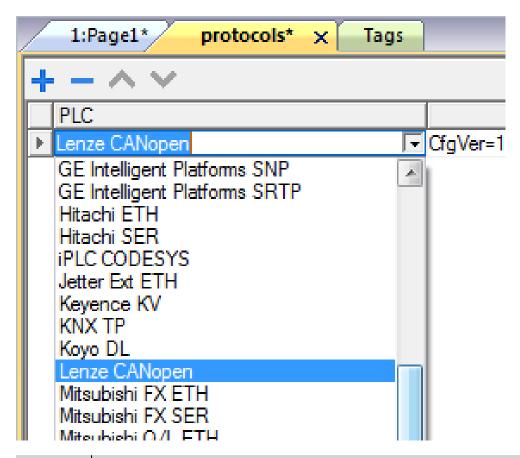
Response Format: Controller to Panel (Receive PDO)

The PDO message returned by the controller must be formatted as defined in the following table.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Status Flag /	Dummy –	Data	Data	Data	Data	Data Length and	Operation Type and Controller ID
Error Code	Always 0	0	1	2	3	Job Number	

The request frame consists of the following elements:

Status Flag / Error Code	Contains the information related to the execution of the operation type of the request; the next table shows the coding information
Data 0 Data 3	Contain the data information returned to the panel in response to a Read request
Data Length and Job Number	It is the copy of the corresponding field of the request frame
Operation Type and Controller ID	It is the copy of the corresponding field of the request frame


	Status Flag / Error	Code
Operation Type in the Request Frame	No Errors	Error
Read	0x01	0x81
Write	0x02	0x82

Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "CANopen HMI" from the list of available protocols.

The driver configuration dialog is shown in figure.

Element	Description
Panel ID	CANopen node ID assigned to the HMI
Controller ID	CANopen Node ID assigned to the CAN controller device
Baud Rate (kbps)	Speed of the CANopen network
Timeout (s)	Maximum allowed time the driver will wait for a response from the PLC before reporting a communication error
Enable Update Rate	Use this option to enable a wait time between two communication requests
Update Rate (ms)	Minimum interval time between two requests; it can be useful when the bus load needs to be properly controller and limited

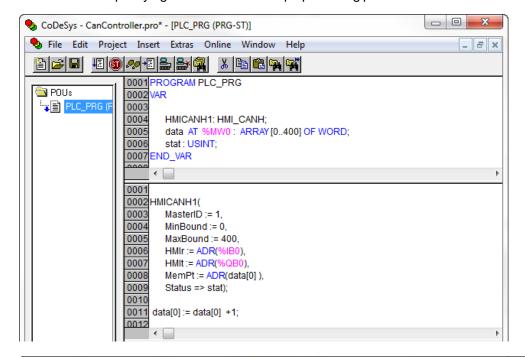
Element	Description
PLC Models	The list allows selecting the controller model you are going to connect to. The selection will influence the data range offset per each data type according to the specific controller memory resources
PLC Network	The protocol allows the connection of multiple controllers to one operator panel. To set-up multiple connections, check "PLC network" checkbox and enter the node ID per each slave you need to access. CANopen HMI PLC Network Panel D Baud Rate (https) Controller D PLC Models CodeSys CANopen HMI Timeout (s) PLC Models CodeSys CodeSys Add Delete Modify Slaves Slave Id Model Model

Connecting the HMI to CODESYS V2 Controllers

This chapter describes all the steps you have to follow in order to establish a successful connection between the HMI and CODESYS CANopen master controller.

The PLC support program has been developed with CODESYS programming software version 2.

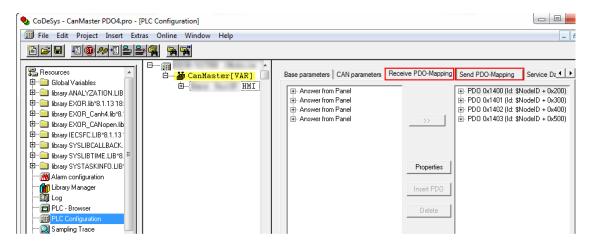
PLC Library Call


The server function running in the PLC program has been designed in the form of Library called "HMI_Canh", written using the "ST" programming language. Proper working example is available on demand.

The Function Block parameters are the following:

MasterID	CANopen Master Node number;
MinBound	Lower limit of the PLC memory addressable (visible) by the HMI
MaxBound	Upper limit of the PLC memory addressable (visible) by the HMI
HHIr	Offset in the PLC memory where the PDO message received from the panel is mapped
HMIt	Offset in the PLC memory where the PDO message to be sent to the panel is mapped
MemPt	Offset in the PLC memory where the data is received
Status	Status

The PLC Function block support the use of more than one panel simply repeating the call of the same function for all the additional units specifying before each call the proper calling parameters.



CODESYS V2 4PDO

In some cases it is useful to choose the model "CODESYS 4 PDO" where 4 PDO objects are used for transmission and 4 for reception. This solution may provide higher communication speed between the two devices.

To operate with 4 PDO the correct model should be set in HMI project and the PDOs for receive and transmit slots.

Note: CANopen Master PLC Configuration must be configured properly. In case of "CODESYS 4 PDO".

Communication Status

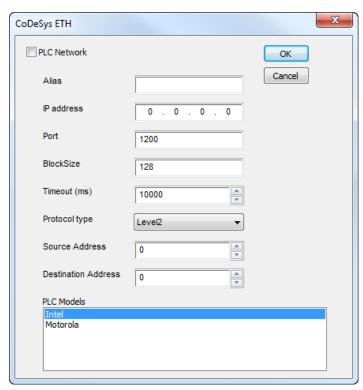
The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Line Error	Returned when an error on the communication parameter setup is detected (baud rate); ensure the communication parameter settings of the controller is compatible with panel communication setup
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
CAN port not found	Make sure option module is correctly plugged
CAN port in use	Make sure option module is not already in use
General error	Error cannot be identified; should never be reported; contact technical support

CODESYS V2 ETH

CODESYS V2 ETH communication driver for supports communication through Ethernet connection with controllers based on the CODESYS V2.3 version.

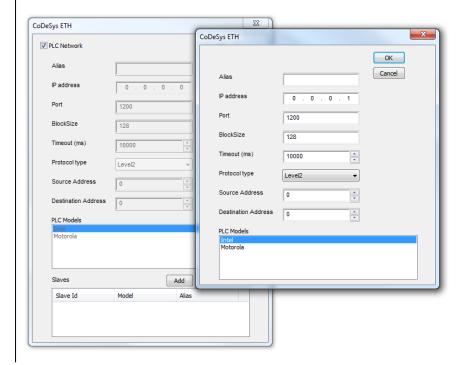

Protocol Editor settings

Adding a protocol

To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.



Element	Description	
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.	
IP address	Ethernet IP address of the controller.	
Port	Port number used by the CODESYS V2 Ethernet driver. The default value is set to 1200 , which is also the default setting of CODESYS-based controllers.	
Block Size	Maximum block size supported by your controller (limit is 1024 KB).	

Element	Description
Timeout (ms)	Time delay in milliseconds between two retries of the same message when communication fails.
Protocol type	Protocol variant to be used. Please make sure you check which protocol variant is supported by the CODESYS run-time you want to connect.
Source Address, Destination Address	Available only when TCP/IP Level 2 Route is selected in Protocol Type . The Destination is the node of the PLC and allows the protocol to read variables in a sub-network. The address is used to read variables when multiple PLCs are connected in a sub-network (serial network) but only one have the Ethernet interface.
PLC Models	Two PLC models are available. • Intel • Motorola
PLC	IP address for all controllers in multiple connections. PLC network check box must be

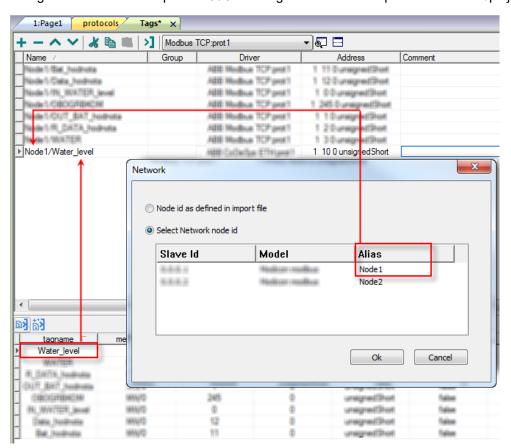
PLC Network

IP address for all controllers in multiple connections. **PLC network** check box must be selected to enable multiple connections.

CODESYS V2 Ethernet driver supports connection to multiple controllers starting from version V1.60.

Note: CODESYS V2 Ethernet driver is recommended when creating projects for the internal controller iPLC CODESYS. To use the CODESYS V2 Ethernet driver with iPLC, configure the IP address of the PLC as localhost (127.0.0.1).

iPLC CODESYS supports communication with CODESYS V2 Ethernet driver with symbol based support starting from V1.55 and above.

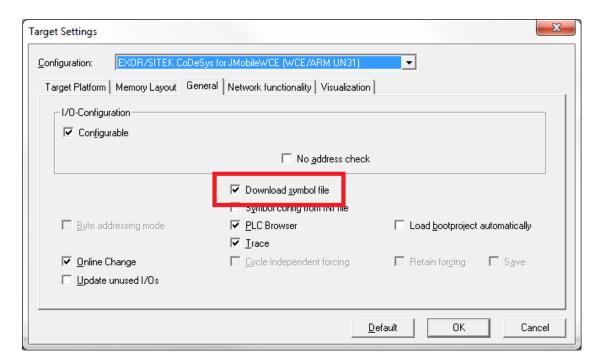


Adding an alias name to a protocol

Tag names must be unique at project level, however, the same tag names might need to be used for different controller nodes (for example when the HMI device is connected to two devices running the same application).

When creating a protocol you can add an alias name that will be added to tag names imported for this protocol.

In the example, the connection to a certain controller is assigned the name **Node1**. When tags are imported for this node, all tag names will have the prefix **Node1** making each of them unique at the network/project level.



Note: Aliasing tag names is only available for imported tags. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached on the import. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are re-imported, all tags will be re-imported with the new prefix string.

CODESYS software settings

When creating the project in CODESYS, select Download symbol file.

Note: CODESYS V2 Ethernet communication driver supports the automatic symbol file (SDB) upload from the PLC; any change in the tag offset due to new compilation of the PLC program does not require a symbol file reimport. Tag file has to be re-imported only in case of tag rename or definition of new tags.

When the option **Download symbol file** is not available or cleared, the protocol can work only if the **ProjectId** tag is imported. If the tag offset changes because of a new compilation of the PLC program, the symbol file must be re-imported.

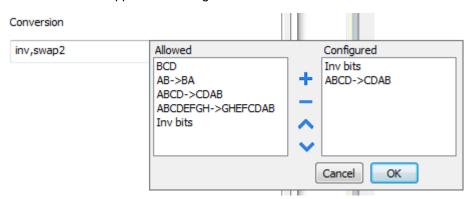
Data types

The import module supports variables of standard data types and user defined data types.

Supported data types

- BOOL
- WORD
- DWORD
- INT
- UINT
- UDINT
- DINT
- STRING*
- REAL
- TIME
- DATE & TIME

and 1-dimensional ARRAY of the types above. See "Programming concepts" section in the main manual.


Note *: String length for a STRING variable in PLC should be max 80 characters. Declare a STRING variable either with a specified size (str: STRING(35) or default size (str: STRING) which is 80 characters.

Unsupported data types

- LWORD
- LINT
- LREAL

Tag conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB	Swap bytes of a long word.
	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010110110110010010
	(in binary format)
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

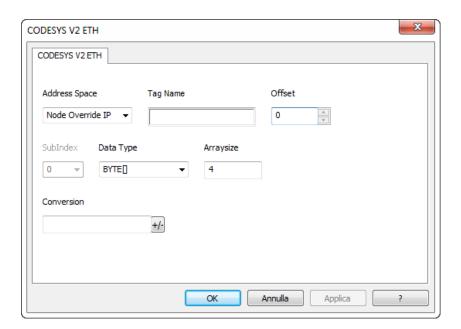
If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

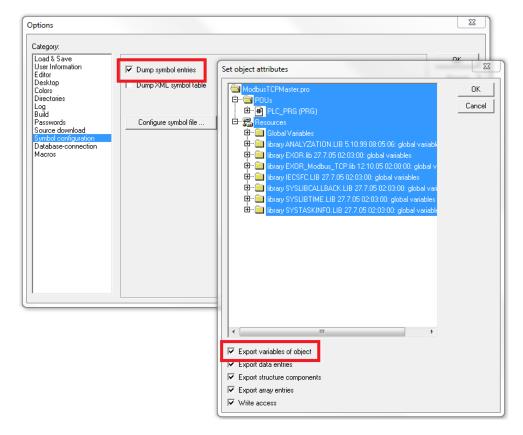

The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

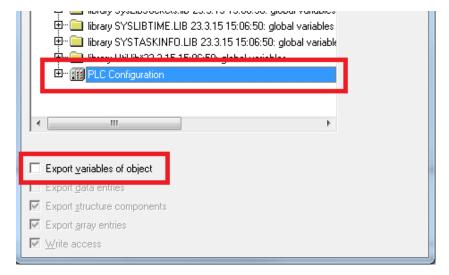
If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

Note: Node Override IP values assigned at runtime are retained through power cycles.

Tag Import

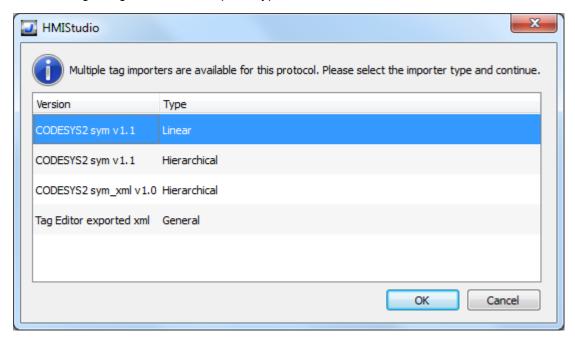

Exporting Tags from PLC

When configuring PLC using the manufacturer's configuration software, enable Symbol file (.sym extension) creation under the CODESYS programming software:

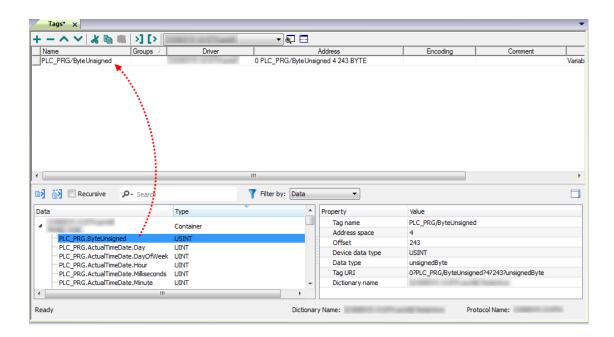

- 1. In the **Project** menu, click **Options**.
- 2. Click Symbol configuration.
- 3. Select Dump symbol entries.
- 4. Click OK.

Note: Click then **Configure symbol file...** and select **Export variables of object**. We recommend to clear the check box and re-select to be sure about the proper settings.

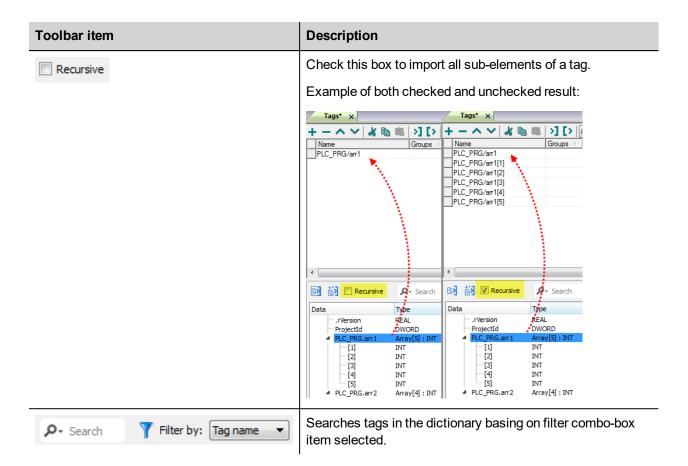
In some cases, duplication of symbols for variables associated to integrated I/O modules in the ".sym" file may be experienced. To remove the duplication selected the "PLC Configuration" voice from the objects list and uncheck the option "Export variables of object".


Importing Tags in Tag Editor

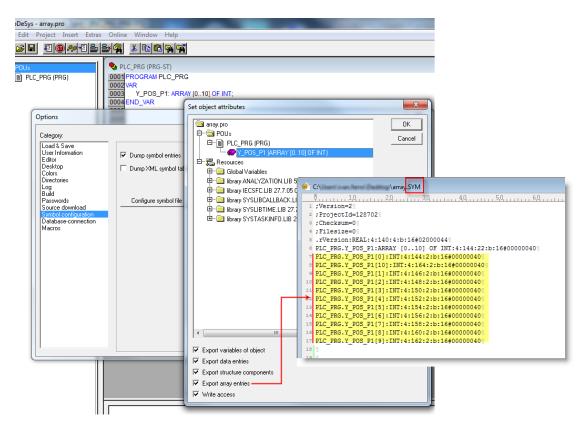
Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.


The following dialog shows which importer type can be selected.

Importer	Description	
CODESYS2 sym v1.1	Requires a .sym file.	
Linear	All variables will be displayed at the same level.	
CODESYS2 sym v1.1	Requires a .sym file.	
Hierarchical	All variables will be displayed according to CODESYS V2 Hierarchical view.	
CODESYS2 sym_xml	Requires a .sym_xml file.	
v1.0 Hierarchical	All variables will be displayed according to CODESYS V2 Hierarchical view.	
Tag Editor exported xml Select this importer to read a generic XML file exported from Tag E appropriate button.		
	1:Page1	

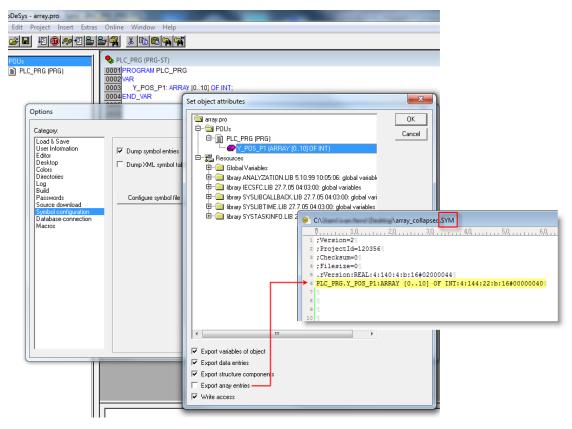

Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

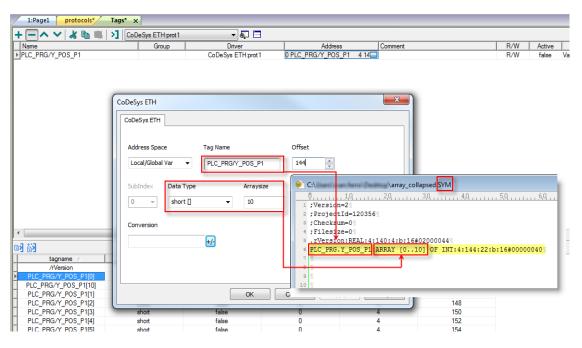

Toolbar item	Description
≥	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K.	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Exporting tag arrays

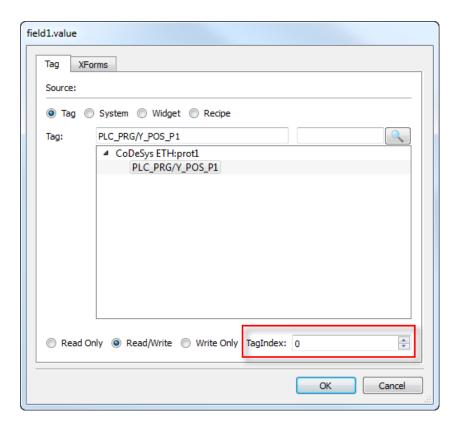
In CODESYS V2 program tag arrays are split into individual elements and one tag for each element is created. In the following example one array with 10 elements.



0


Note: If **Export array entries** is selected, a tag for each element will be created and exported into the .sym file. The entire tag list will be automatically imported into the Tag editor.

By clearing **Export array entries** only one tag for each one array can be created.



Note: When **Export array entries** has been cleared, only one tag is created and exported into the .sym file. The array is not automatically imported in the Tag editor and tags need to be manually configured in Tag editor.

All tag elements can be referenced in the editor using TagIndex in the Attach to Tag dialog.

Communication status

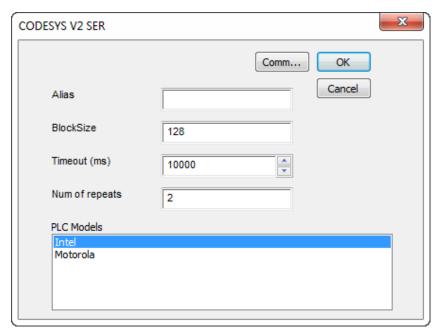
Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported by this communication driver:

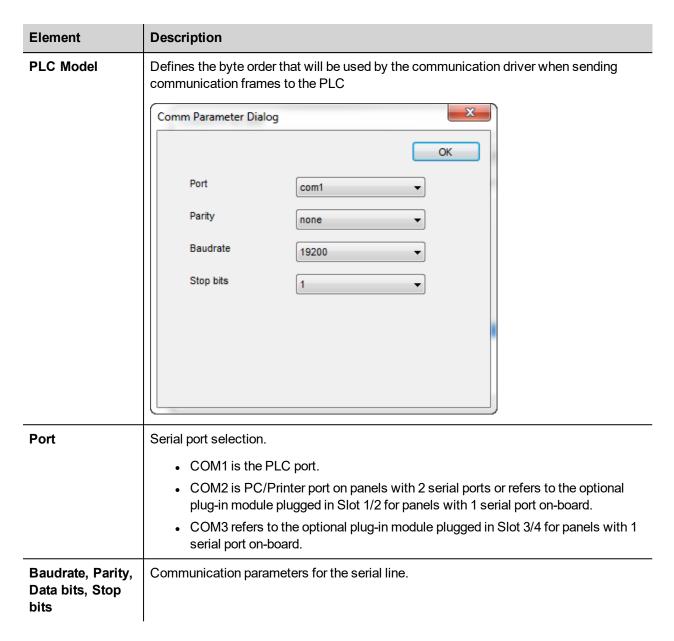
Error	Cause and action
Symbols file not present	Check Symbol file and download again the PLC program.
"tag" not present in Symbols files	Check if the Tag is present into the PLC project.
Time out on Acknoledge	Controller didn't send acknowledge.
Time out on last Acknoledge	Controller didn't sent last ack.
Time out on data reciving	Controller does not reply with data.
Connection timeout	Device not connected.

CODESYS V2 SER

The CODESYS V2 SER communication driver has been designed for serial communication with controllers based on CODESYS V2.3.

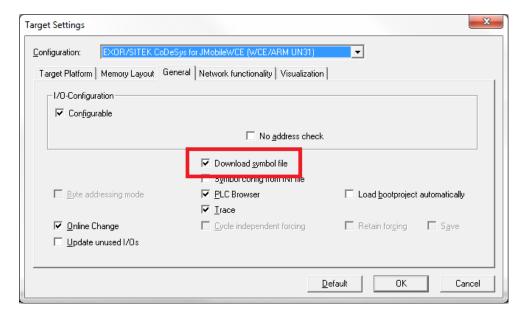

Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Accordingly, always ensure that the latest driver is used in the application.

Limitations


Max block size is 1024 byte.

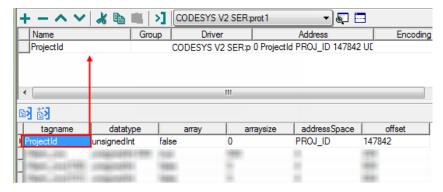
Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "CODESYS Serial" from the list of available protocols.


Element	Description	
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node	
Block Size	Enter the max block size supported by your controller (limit is 1024)	
Timeout	The number of milliseconds between retries when communication fails	
Num of repeats This parameter defines the number of times a certain message will be sent to the controller before reporting the communication error status.		
	A value of 1 for the parameter "No of repeats" means that the panel will eventually report the communication error status if the response to the first request packet is not correct.	

CODESYS Software Settings

When creating the project in CODESYS, the option Download Symbol File (in Target Settings/General) must be checked.



Note: CODESYS Serial communication driver supports the automatic symbol file (SDB) upload from the PLC; any change in the tag offset due to new compilation of the PLC program does not require a symbol file re-import. Tag file has to be re-imported only in case of tag rename or definition of new tags.

When the option Download symbol file is not available or not checked, the protocol can work only if the ProjectId tag is imported. Any change in the tag offset due to new compilation of the PLC program requires that symbol file is imported again.

Standard Data Types

The following data types in the CODESYS programming tool are considered standard data types by the import module:

BOOL

WORD

DWORD

INT

UINT

UDINT

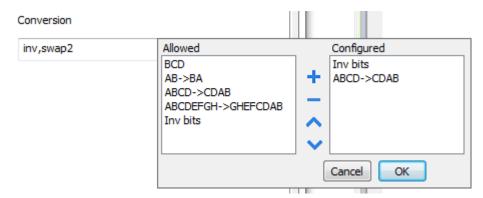
DINT

STRING

REAL

TIME

DATE & TIME


and 1-dimensional ARRAY of the types above.

The 64-bit data types LWORD, LINT and LREAL are not supported.

String length for a STRING variable in PLC should be max 80 characters. Declare a STRING variable either with a specified size (str: STRING(35)) or default size (str: STRING) which is 80 characters.

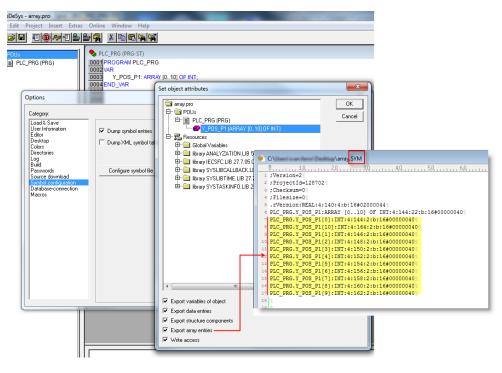
Tag Conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description	
Inv bits	Invert all the bits of the tag.	
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)	
Negate	Set the opposite of the tag value.	
	<i>Example:</i> 25.36 → -25.36	
AB -> BA	Swap nibbles of a byte.	
	Example:	
	15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)	
ABCD -> CDAB Swap bytes of a word.		
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.	

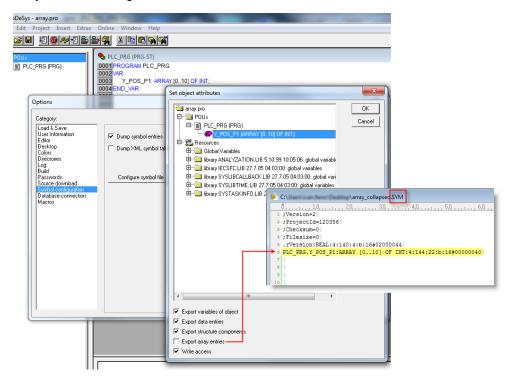
Value	Description	
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
ABCNOP -> OPMDAB	Swap bytes of a long word.	
	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0\ 10000000110\ 000111001011101101100100101101000011100101$	
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

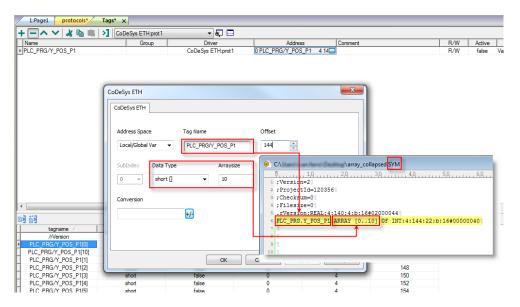

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

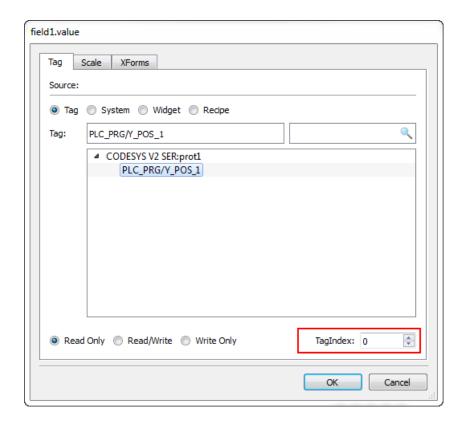
Use the arrow buttons to order the configured conversions.

Tag Array


Tag Arrays are split into individual elements and one Tag for each element is created. The figure below shows an example of one Array with 10 elements


Note: When "Export array entries" is set, a tag for each element is created and exported into the SYM file. The entire tag list is automatically imported into Tag Editor.

The amount of tags can be reduced and only one Tag for each one array can be created by removing the checkbox "Export array entries", see figure below.


•

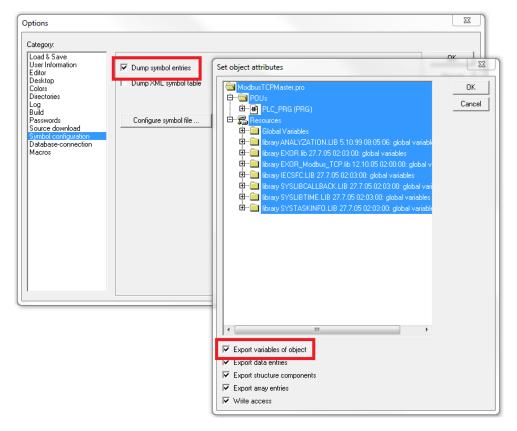
Note: When "Export array entries" is not set, only one tag is created and exported into the SYM file. The Array will not be automatically imported in Tag Editor and Tags need to be manually configured in Tag Editor

All Tag elements can be referenced in the editor using "TagIndex" in the "Attach to Tag" dialog

Aliasing Tag Names in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

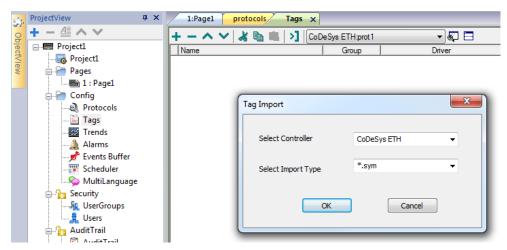
The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias".



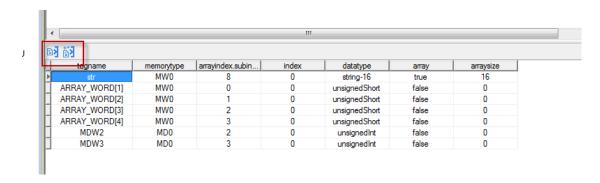
Note: An Aliasing tag name is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Tag Import


When configuring PLC using the manufacturer's configuration software, make sure to enable Symbol file creation (file with .SYM extension). It can be done under the CODESYS programming software, by selecting "Project\Option\Symbol configuration" and mark the check box "Dump symbol entries" as shown in the picture below.

Note: Click then on the "Configure symbol file..." button and make sure the "Export variables of object" check box is marked as shown in the following picture. We recommend to un-check the check box and mark it again to be sure about the proper settings.


Select the driver in the Studio tag editor and click on the "Import tag" button to start the importer.

Locate the ".sym" file and confirm.

The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the add tags button as shown in the following figure.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

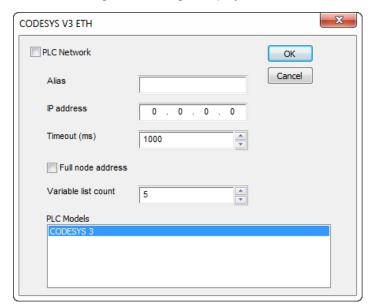
Error	Notes
Symbol file not present	Check Symbol file and download again the PLC program
"tag" not present in Symbol file	Check if the Tag is present in the PLC project
Time out on Acknowledge	Controller didn't send acknowledge
Time out on last Acknoledge	Controller didn't send last acknowledge
Time out on data receiving	Controlled does not reply with data
Connection timeout	Device not connected

CODESYS V3 ETH

The CODESYS V3 ETH communication driver supports communication thought Ethernet connection with controllers based on the CODESYS V3 PLC software by the company 3S.

Note: To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Make sure the latest driver is used in the application.

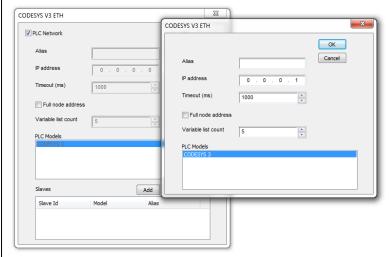
Note: Changes in the controller protocol or hardware may have occurred since this documentation was created. This may interfere with the functionality of this driver. Therefore, always test and verify the functionality of the application.


Protocol Editor Settings

Adding a protocol

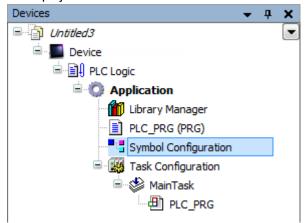
To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.


The driver configuration dialog is displayed.

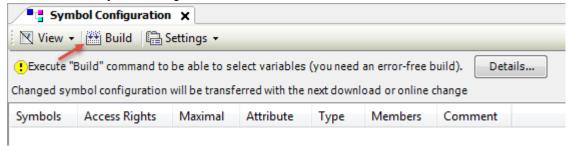
Element	Description
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP address	Ethernet IP address of the controller
Full	Since some implementations of CODESYS V3 at runtime require all four values of the IP address

Element	Description
node address	to be specified in the protocol frames, this flag forces the protocol to create IP addresses using all four address fields of the IP.
Variable list count	Variable List is the best method to achieve higher performance in the CODESYS V3 communication protocol, as it allows requesting multiple data items in a single protocol session. Since some implementations of CODESYS V3 at runtime have a limited number of Variable Lists that can be allocated, this parameter allows you to set the maximum number of Variable Lists the communication driver tries to create in the PLC.
PLC Model	Byte order that will be used by the communication driver when sending communication frames to the PLC.
Timeout	Number of milliseconds between retries when communication fails.
PLC Network	Enable access to multiple networked controllers. For every controller (slave) set the proper option.

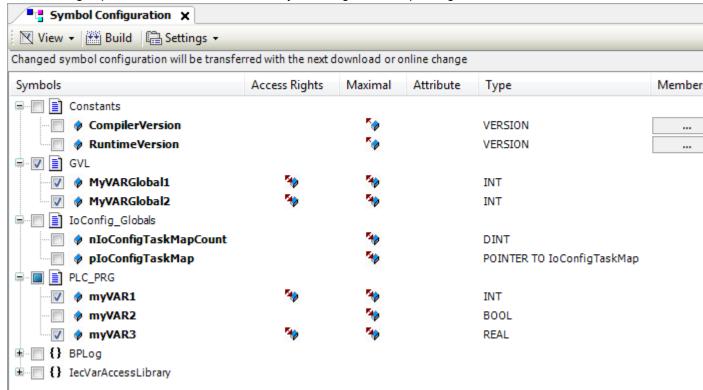

Note: Refer to the controller documentation to verify required values for the parameters **Full node address** or **Variable list count**.

Tag Import

Exporting Tags from PLC


When creating the project using CODESYS V3, properly configure the symbol file to contain the required variables.

1. To add the Symbol configuration in CODESYS V3 project, right click on the Application item from the project tree, then into the context menu select Add Object > Symbol configuration. The symbol configuration item will be added to the project tree.



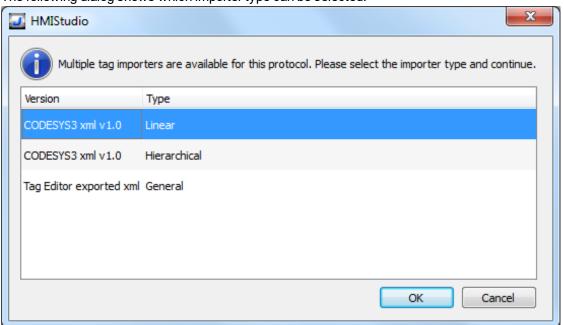
2. Double click on Symbol configuration item, then click on "Build" button.



3. Symbol configuration item contains a list of all the variables available into the CODESYS V3 project, single variables or groups of variables can be selected by checking the corresponding item in the list.

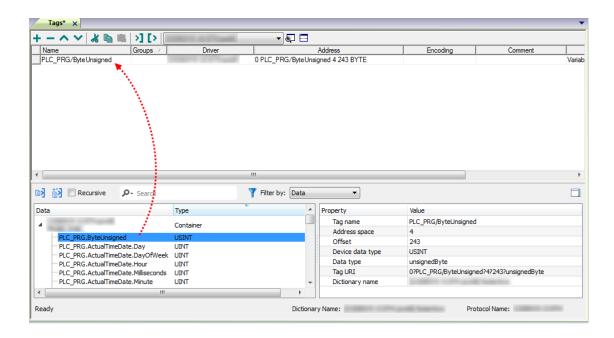
- 4. After the symbols have been configured, download the project or use the **Generate code** function (Build > Generate code) to create an .xml file containing all the variables read to be imported in the Tag Editor.
- Note: GVL global variables are listed in Symbols Configuration only if they are used in PLC program.

 To always list global variables right click on GVL and select "Properties". From "Build" tab check "Link Always" option.

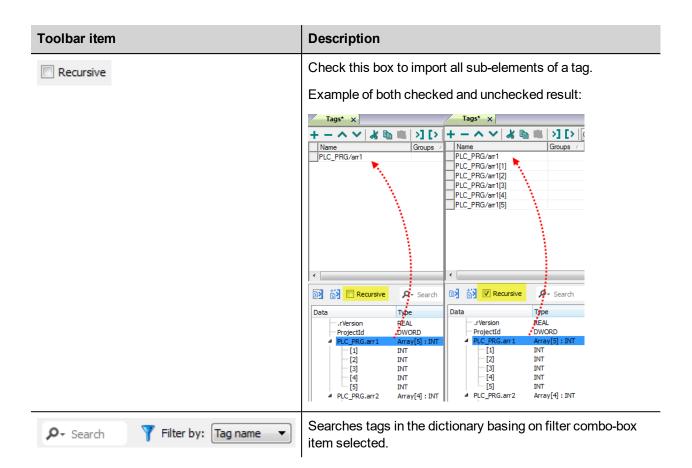


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

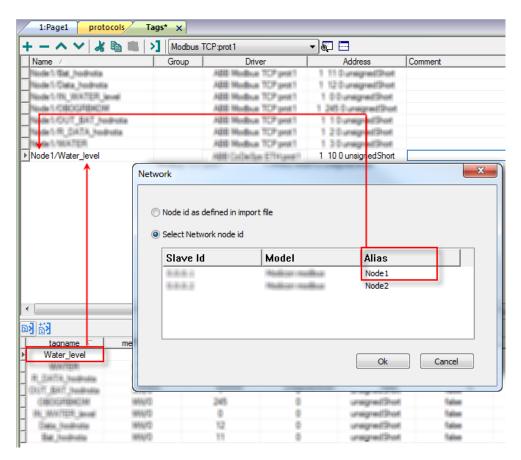

The following dialog shows which importer type can be selected.

Importer	Description	
CODESYS3 xml v1.0	Requires an .xml file.	
Linear	All variables will be displayed at the same level.	
CODESYS3 xml v1.0	Requires an .xml file.	
Hierarchical	All variables will be displayed according to CODESYS V3 Hierarchical view.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E al	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ĕ ä	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.



Adding an alias name to a protocol

Tag names must be unique at project level, however, the same tag names might need to be used for different controller nodes (for example when the HMI device is connected to two devices running the same application).

When creating a protocol you can add an alias name that will be added to tag names imported for this protocol.

In the example, the connection to a certain controller is assigned the name **Node1**. When tags are imported for this node, all tag names will have the prefix **Node1** making each of them unique at the network/project level.

Note: Aliasing tag names is only available for imported tags. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached on the import. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are re-imported, all tags will be re-imported with the new prefix string.

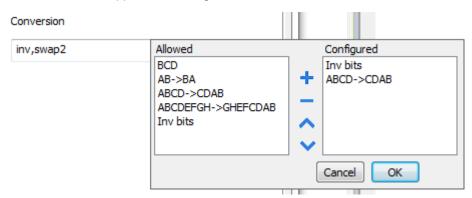
Data Types

The import module supports variables of standard data types and user defined data types.

Supported data types

- BOOL
- INT
- SINT
- UINT
- UDINT
- DINT
- STRING*
- REAL
- LREAL
- BYTE
- ULINT
- LINT

and 1-dimensional ARRAY of the types above. See "Programming concepts" section in the main manual.


Note *: String length for a STRING variable in PLC should be max 80 characters. Declare a STRING variable either with a specified size (str: STRING(35) or default size (str: STRING) which is 80 characters.

Unsupported data types

- LWORD
- LINT

Tag conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description	
Inv bits	Invert all the bits of the tag.	
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)	
Negate	Set the opposite of the tag value.	
	<i>Example:</i> 25.36 → -25.36	
AB -> BA	Swap nibbles of a byte.	
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)	
ABCD -> CDAB	Swap bytes of a word.	
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.	
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
ABCNOP -> OPMDAB	Swap bytes of a long word.	
	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 000111001011101100100101101	
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
-	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

Select the conversion and click on plus button. The selected item will be added on ${f Configured}$ list.

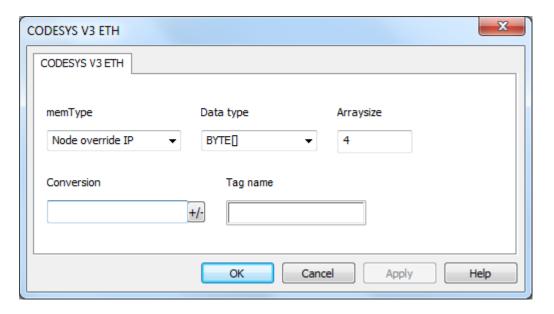
If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.


The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

Note: Node Override IP values assigned at runtime are retained through power cycles.

Communication Status

Current communication status can be displayed using System Variables. See "System Variables" section in the main manual.

CT Modbus CMP ETH

The CT Modbus CMP ETH communication protocol is known also as "Modbus over CTNet"

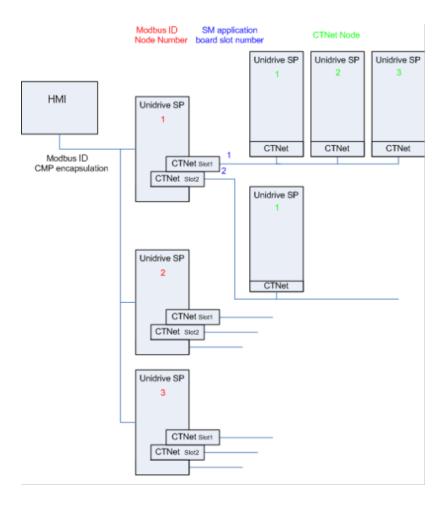
CMP stands for CTNet Message Protocol; it is a messaging system designed to implement distributed control applications. The protocol permits exchange of parameters between Control Techniques drives and HMI devices, SCADA systems or other computer applications.

CMP is normally encapsulated in an existing network protocol. CMP has been successfully encapsulated also into the Modbus network. The communication protocol support implements the Modbus encapsulation of CMP.

Unidrive SP drives support the CTNet network using optional communication units called "SM Applications" modules.

Please note that changes in the communication protocol specifications or PLC hardware may have occurred since this documentation was created. Some changes may eventually affect the functionality of this communication driver. Always test and verify the functionality of your application. To fully support changes in PLC hardware and communication protocols, communication drivers are continuously updated. Always ensure that the latest version of communication driver is used in your application.

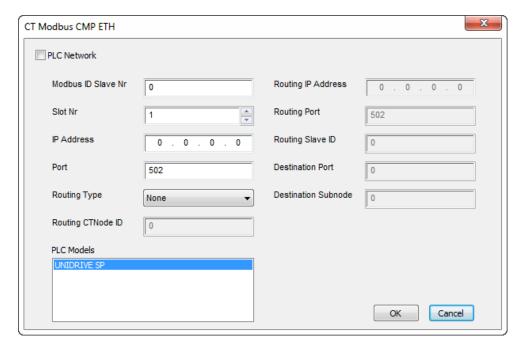
Concept of Operation


The network topology supported by the HMI communication protocol is shown in the figure below.

The HMI panel will communicate with a set of drives over the network; drives are addressed using their Modbus ID node number.

Each drive can host up to three SM application boards; they may be used for CTNet communication.

The addressing model is based on a three level space; from the HMI point of view, each drive is identified with a unique ID composed of a maximum of three numbers; the ID can be calculated looking to the network topology.

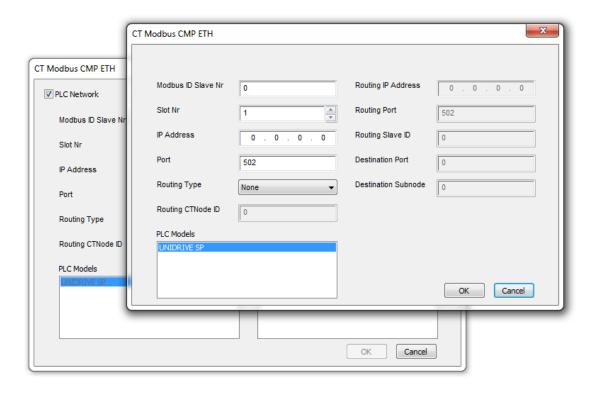

Protocol Editor Settings

Add (+) a driver in the Protocol Editor and select the protocol called "CT Modbus CMP ETH" from the list of available protocols.

The CT Modbus CMP ETH driver supports three different protocol types:

- none
- CTNet
- Ethernet

The protocol type can be selected from the "Routing Type" combo box in the dialog.


Some of the parameters of the dialog are common to all the protocol types, some others are specific.

The parameters common to all protocol types are the following:

Element	Description			
Modbus ID Slave Nr	Valid slave node addresses are 1 through 247. In the request from the protocol master this value indicates the target slave node.			
Slot Nr	This value gives the option slot to which the message is directed. The port/slot mapping is as follows:			
	Port	Message addressed to		
	1	Option in slot 1		
	2	Option in slot 2		
	3	Option in slot 3		
IP address	Ethernet IP address of the controller			
Port	Allows to change the default port number used by the Modbus TCP driver; it could be useful whenever the communication goes through Routers or Internet gateways where the default port number is already in use. Default value for this parameter is 502.			
Routing type	The FC64 encapsulated protocol includes extra destination fields to be used for message routing between nodes on different networks. The combination of CMP destination port and CMP destination subnode address or subnode addressing scheme fields, allows a Modbus TCP server to decide whether to process a received message or retransmit the message through another port onto a different communications network.			
	User can select on	e of the following routing methods:		

Element	Description	
	 None: means that the communication will be established directly to the drive. The message is directed to a drive or to an option in the drive, and there is no routing onto a subnetwork to be performed. CTNet: users can enter CTNet node number which represents the drive in the subnetwork. Ethernet: SM-Ethernet modules will provide the capability to reroute messages on Ethernet. 	
Routing CTNode ID Routing IP	When Ethernet routing method has been selected, you have to enter Routing IP Address, Routing port, Routing Slave ID, Destination Port and Destination Subnode of the drive you want to connect. For more information on routing, please check the drive user's manual or CT Modbus specification.	
Address		
Routing Port		
Routing Slave ID		
Destination Port		
Destination Subnode		
PLC Network	The protocol allows the connection of multiple drives to one operator panel. To set-up multiple connections, check "PLC Network" checkbox and enter parameters for each drive you want to connect.	
PLC Model	Selection of device models that may affect operation of the protocol.	
	Currently only one model is available	

Configuring the Drives

This protocol only supports Ethernet connection.

The Unidrive SP does not have a built-in Ethernet interface. So SM-Ethernet modules are required. The Modbus ID must be set in each drive (parameter 00.37 or 11.23)

The "Reduce SP serial interface priority" parameter in the SM-Ethernet module should be set to "True" (parameter 15.37, 16.37 or 17.37 depending on which slot the SM-Ethernet module is found).

Addressing the Drives

The HMI will address the drives in different ways, depending on their position in the network.

In case the drive to be addressed is attached to the Modbus network and is the master of a CTNet network, it is sufficient to specify its Modbus address.

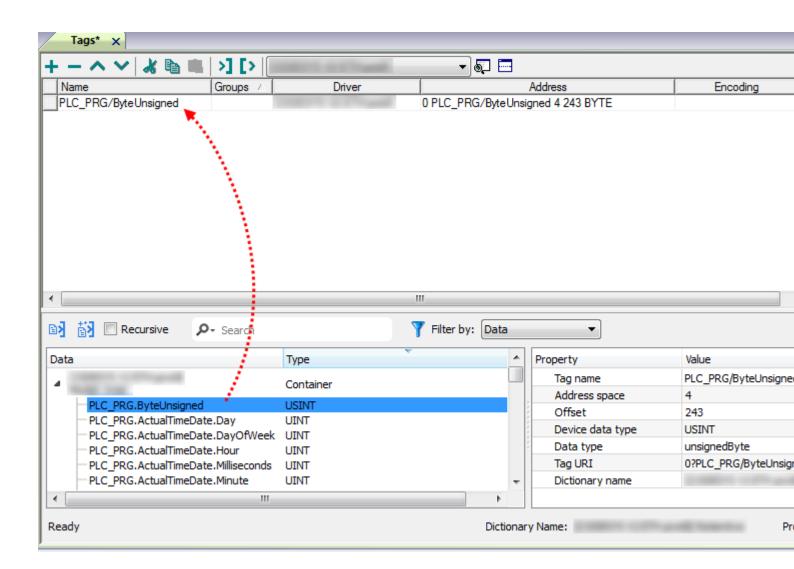
In case the drive is a CTNet slave, it will require an address depending on its logical position in the network. The 3-digit identifier is composed of the following elements:

- the first number is the Modbus Node ID of the drive master of the CTNet network
- the second number is the slot where the SM application card is plugged-in
- the third number is the CTNet node number of the drive.

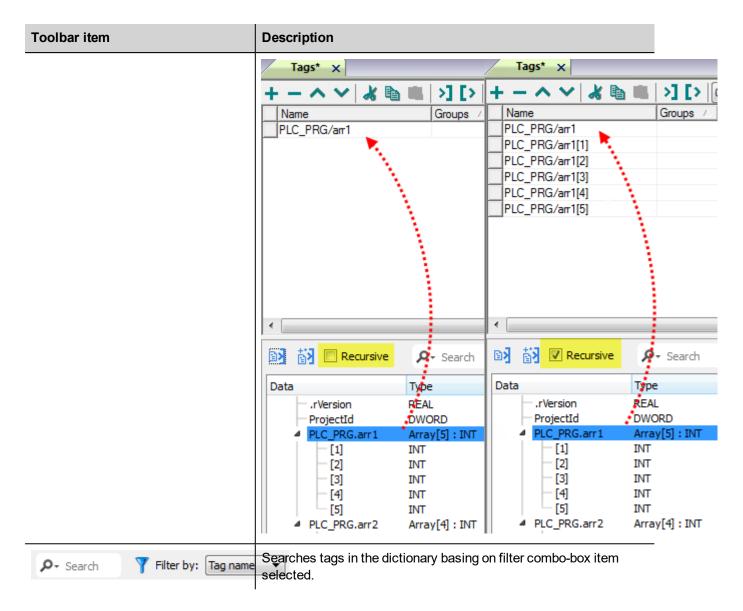
When the drive master of the CTNet network has only one SM application unit, the slot information specified into the HMI project is not relevant. In fact, the communication protocol supports an automatic recognition of the slot number; this makes possible to move the SM application board to another slot, maintaining the same configuration at HMI project level.

Tag Import

Select the driver in Tag Editor and click on the Import Tags button to start the importer.



Locate the .xml file exported from Tag Editor and click Open.



Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ۊ	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the chapter "system variables" about available types and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
General Error	Error cannot be identified; should never be reported; contact technical support

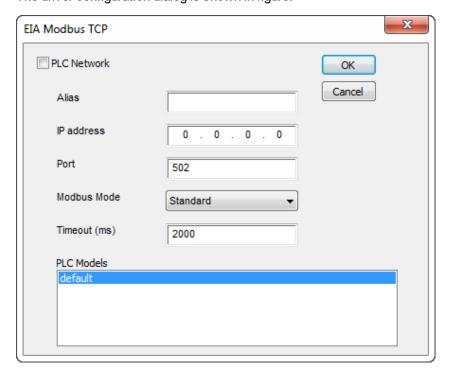
EIA Modbus TCP

Emerson Industrial Automation (formerly Control Techniques) Unidrive M Series are using Modbus TCP protocol where the device id should be always set to 255. This communication protocol is known as EIA Modbus TCP. The HMI protocol identifies EIA Modbus TCP devices using their IP addresses

You should take note of these addresses as you assign them because you will need them later in the set-up phase of the user interface application. The HMI protocol can be set to access to a different menu range

Different physical media, gateways, routers and hubs can be used in the communication network. Also, other devices can independently make simultaneous use of the network. However, it is important to ensure that the traffic generated by these devices does not degrade the communication speed (round-trip time) to an unacceptable level.

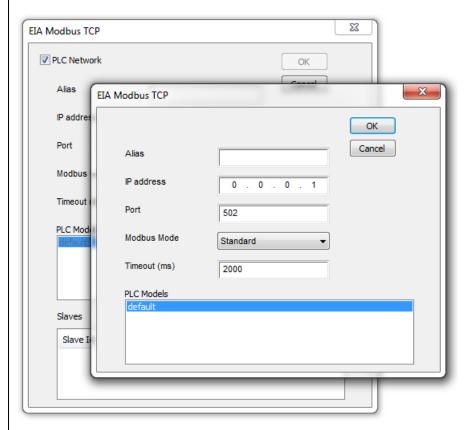
The implementation of the protocol operates as a Modbus TCP client only.


The HMI EIA Modbus TCP protocol uses the standard port number 502 as the destination port.

The HMI EIA Modbus TCP protocol supports the standard commonly referred as "Ethernet II".

Protocol Editor Settings

Add (+) a new driver in the Protocol editor and select the protocol called "EIA Modbus TCP" from the list of available protocols.


The driver configuration dialog is shown in figure.

Element	Description		
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node		
IP address	Ethernet IP address of the controller		
Port	Port number used by the Modbus TCP driver; the default value can be changed when the communication goes through routers or Internet gateways where the default port number is already in use		
Modbus Mode	This parameter define the communication protocol used and needs to be set in according with the setting made on the drive (parameter 00.35{11.024}). Standard mode is compatible with Unidrive SP. Modified mode* is provided to allow register numbers up to 255 to be addressed. If any menus with numbers above 63 should contain more than 99 parameters, then these parameters cannot be accessed via Modbus standard.		
	Protocol Register address		
	Standard	(menu number * 100) + parameter number - 1	
		where menu number ≤ 162 and parameter number ≤ 99	
	Modified	(menu number * 256) + parameter number – 1	
		where menu number ≤ 63 and parameter number ≤ 255	
	*only applicable to Unidrive M701		
Timeout (ms)	Defines the time inserted by the protocol between two retries of the same message in case of missing response from the server device. Value is expressed in milliseconds.		

Element	Description
PLC	Selection of device models that may affect operation of the protocol.
Models	Currently only one model is available
PLC Network	The protocol allows the connection of multiple controllers to one operator panel. To set-up multiple connections, check "PLC network" checkbox and enter IP Address for all controllers.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The error codes supported by this communication driver are:

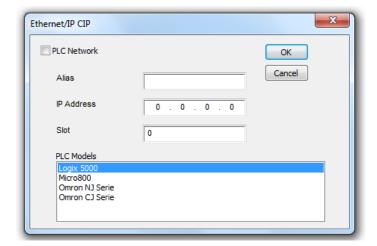
Error	Notes
No response	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Incorrect node address in response	The panel did receive from the controller a response with invalid node address

Error	Notes
The received message too short	The panel did receive from the controller a response with invalid format
Incorrect writing data acknowledge	Controller did not accept write request; ensure the data programmed in the project are consistent with the controller resources

Ethernet/IP CIP

The protocol has been implemented according to the published Ethernet/IP specifications (available from www.odva.org).

The Ethernet/IP CIP driver has been designed to provide the best performance with the least amount of impact on the system's overall performance. Although the Ethernet/IP CIP driver is fast, we suggest to use short Tag names. Tags are read from and written to the device by specifying their symbolic name in the communications request, therefore the longer the tag name is, the larger the request will be.


Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Field	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP Address	Ethernet IP address of the controller.
Slot	CPU slot number for Logix 5000 models (typically 0). Refer to the controller documentation for further details.

Field	Description
PLC Models	PLC model used to import tags file.
PLC Network	Enable access to multiple networked controllers. For every controller (slave) set the proper option. Ethernet/IP CIP P.C. Network Alas P. Address P. Address P. Address P. Address P. C. Models P. C. Model

Controller Model Logix 5000

The Ethernet/IP CIP driver allows to connect Allen-Bradley ControlLogix and CompactLogix Ethernet controllers.

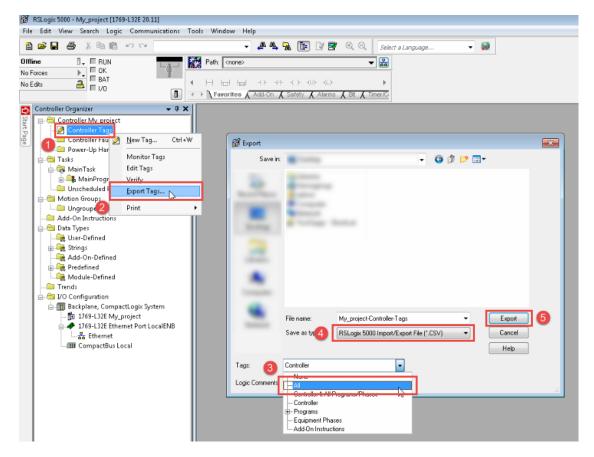
Communication with ControlLogix® 5500 controllers can be accomplished through an Ethernet/IP communication module for Ethernet such as the 1756-EN2T or 1756-ENET.

Ethernet communication with CompactLogix™ 5300 controllers requires a processor with a built-in Ethernet/IP port such as the 1769-L32E.

All trademarks are the property of their respective owners.

The internal memory organization of the Logix CPUs is not fixed but configured by the user at development time. Each data item can be identified by a string called "Tag". The RSLogix 5000 software can then export to the application the list of Tags created for each controller.

The project loaded on the HMI device must refer to Tag names assigned in RSLogix 5000 software at development time. The Tag Editor supports direct import of the Tag file generated by RSLogix 5000 software in .CSV format.

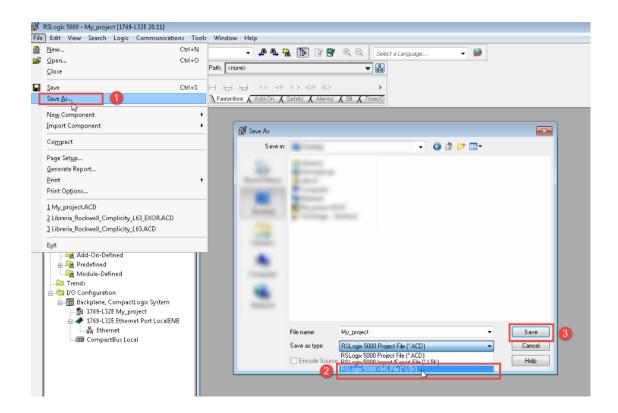

The implementation of the Ethernet/IP driver also supports access to structured data types which can be imported from .L5X files.

The driver supports access to both Controller and Program Tags.

Export CSV and L5X files using RSLogix5000

To export the .CSV Tag file:

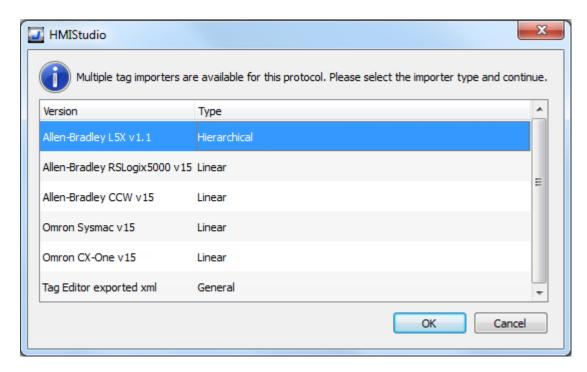
- 1. From the Controller Organizer pane, right-click on Controller Tags.
- 2. Select **Export Tags**: the **Export** dialog is displayed.



- 3. Choose All from the Tags list to export all Tags.
- Select the Save as type option to .CSV.
- 5. Click **Export**: all the Tags are exported to an **.CSV** file.

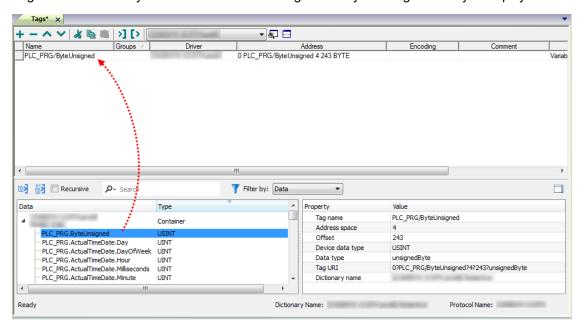
To export the .L5X data type file:

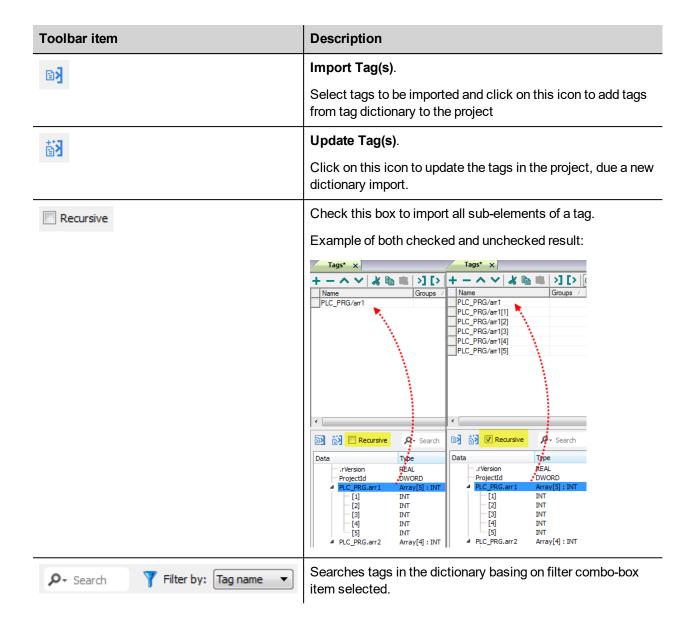
- 1. Choose File > Save As.
- 2. Select the Save as type option to .L5X.
- 3. Click **Save**: all the Tags are exported to an **.L5X** file.



Import Files in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.


The following dialog shows which importer type can be selected.

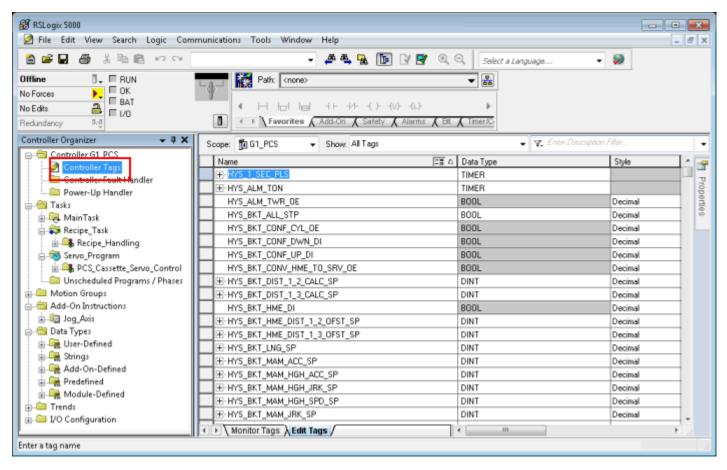

Select Allen-Bradley RSLogix5000 v15 option.

Once the importer has been selected, locate the symbol file and click Open.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

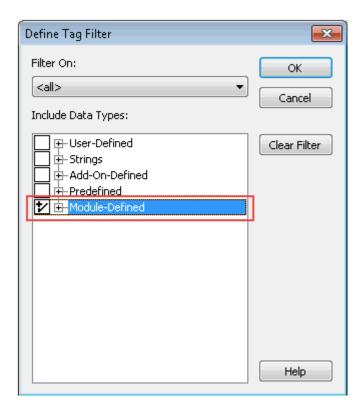
Note: When importing the array data types, the importer is expanding them creating individual Tags per each array element; this is valid for all the data types, except for arrays of boolean. In this case they are imported as "boolean-32" and the single array element can be addressed using "Tag Index" parameter from "Attach to..." dialog.

Module-Defined and User-Defined data types

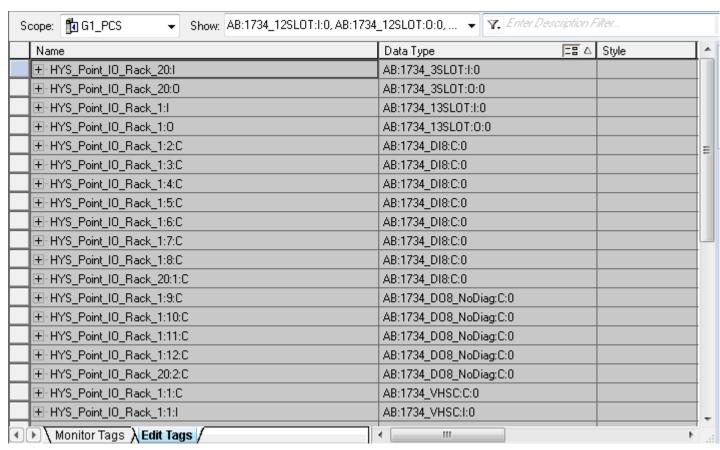

RSLogix 5000 allows you to define Tags with several data types.

Data type group	Description
Predefined	Standard data types such as BOOL, DINT, SINT, INT and other less common data types such as PID, COUNTER, TIMER.
Module-Defined	Data type associated with I/O optional modules usually referenced by aliases.
User-Defined	Custom data type defined by user

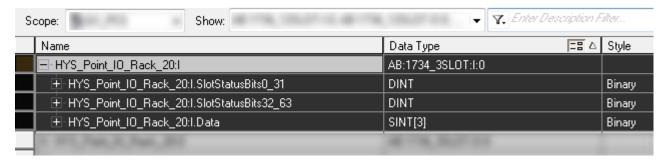
In order to import Predefined (with the exception of standard data types which are always imported) and Module-Defined data type you need to edit the ETIPSpecialDataTypes.xml file located under *languages\shared\studio\tagimport* or *studio\tagimport* depending on installed version.


In RSLogix5000 software:

1. From the Controller Organizer pane, select Controller Tags.



2. Filter tags to display only Module-Defined Tags.



Only tags (alias) with data type belonging to optional I/O Modules will be displayed.

In this example alias HYS_Point_IO_Rack_20:I refers to data type AB:1734_3SLOT:I:0. Expand this tag to see how this data type is structured:

To make sure that HYS_Point_IO_Rack_20:I, and all his sub-tags, will be imported into the project, open the ETIPSpecialDataTypes.xml file in any text editor and check if the AB:1734_3SLOT:I:0 data type is included. If so you can proceed with the following data type. If not, you need to add it manually.

The structure is as in this example:

```
CDataType Name="aaa">

<Members>
<Member Name="bbb" DataType="ccc" Dimension="ddd" Radix="eee"/>
</Members>
</DataType>
```

where:

- aaa = Alias/Tag data type
- bbb = Sub-tag Name (it's sub-tag name part after dot)
- ccc = Sub-tag data type
- ddd = Array dimension (0 if it is not an array)
- eee = Style

In the example above:

```
ETIPSpecialDataTypes.xml 
■
238
      <DataType Name="AB:1734 3SLOT:I:0">
239
      240
        <Member Name="SlotStatusBit0 31" DataType="DINT" Dimension="0" Radix="Binary"/>
241
242
        <Member Name="SlotStatusBit32 63" DataType="DINT" Dimension="0" Radix="Binary"/>
243
        <Member Name="Data" DataType="SINT" Dimension="3" Radix="Binary"/>
244
        </Members>
245
        </DataType>
```

- Repeat step 2 for all Module-Defined data types.
- 4. Repeat the procedure from step 2, filtering Tags to display only **Predefined** Tags.

Controller Model Omron Sysmac

Data in NJ and CJ controllers can be accessed via CIP protocol.

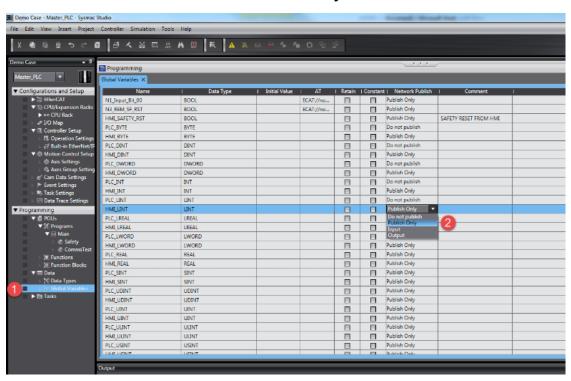
Each data item can be identified by a string called "Tag". Use appropriate programming tools for controller to export the list of Tags.

NJ series controller are programmed using Sysmac Studio:

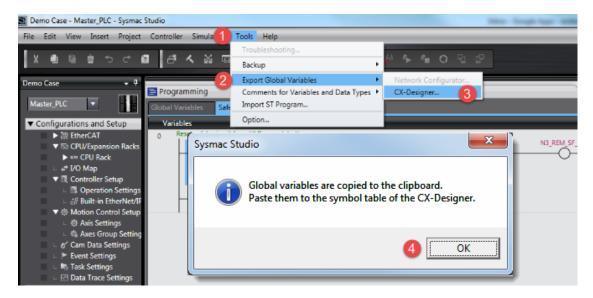
- NJ301-xxxx
- NJ501-xxxx

CJ series controller are programmed using CX-One:

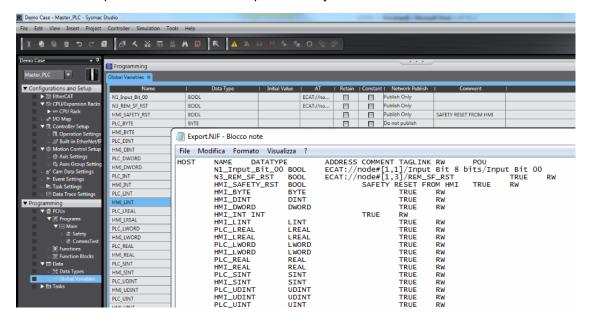
- CJ2M CPU-3x
- CJ2H CPU 6x-EIP
- Any CPU with a CJ1W-EIP21 attached.


The project loaded on the HMI device must refer to the Tag names assigned in the programming software at development time. The Tag Editor supports direct import of the Tag file generated by Sysmac Studio software in .NJF format or generated by CX-One in the .CJF format.

All Tags to be accessed by the HMI device must be declared as Global Variables.


Export NJF files using Sysmac Studio

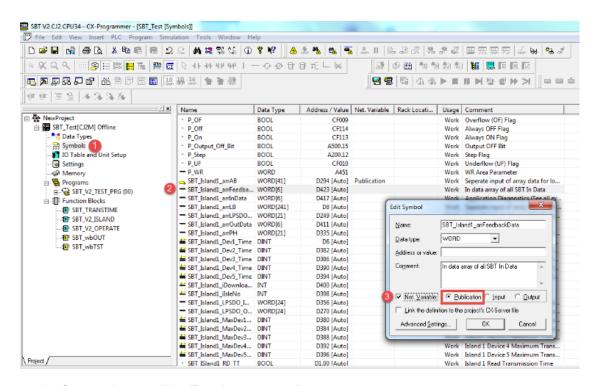
To export the **.NJF** Tag file:


- 1. In Sysmac Studio declare Tags as Global Variables.
- 2. Set the Network Publish attribute to Publish Only.

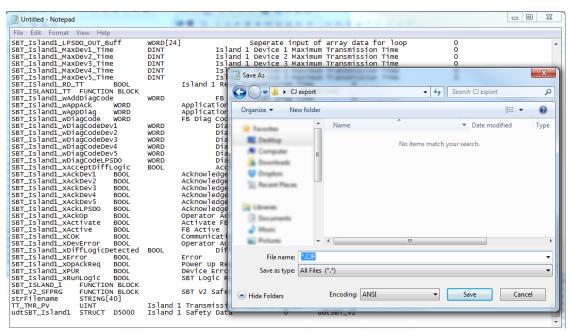
2. From the **Tools** menu, choose **Export Global Variables > CX-Designer**.

- 3. Click **OK** to confirm.
- 4. Cut and paste the content of the clipboard in any text editor.

4. Save the file as .NJF.


Note: Using Notepad as text editor, make sure to save the text file with **.NJF** extension by selecting "Save as type" as "All Files" although the file will be named *.njf.txt and it will not be visible from importer.

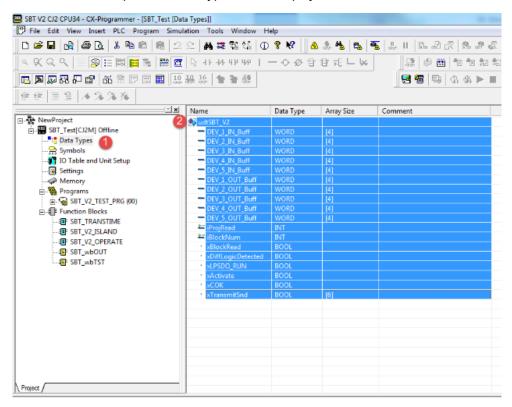
Export CJF file using CX-One


To export the .CJF Tag file:

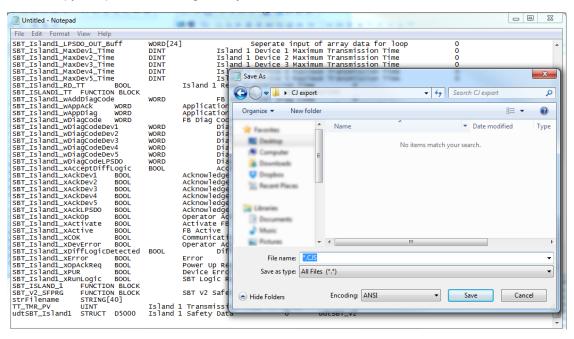
- 1. In CX-One open the Symbols file in the project.
- 2. In the Edit Symbol dialog set the Net. Variables attribute to Publication.

3. Copy and paste all the Tags in any text editor.

4. Save the file as .CJF.



Note: Using Notepad as text editor, make sure to save the text file with .CJF extension by selecting "Save as type" as "All Files" although the file will be named *.cjf.txt and it will not be visible from importer.


Export User Defined structures

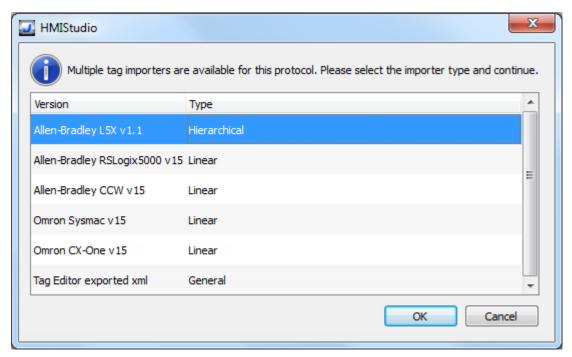
To export the .CJS Tag file:

1. In CX-One open the Data Types file in the project.

2. Copy and paste all the Tags in any text editor.

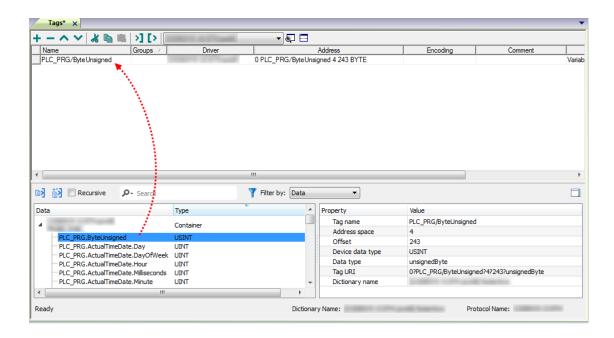
3. Save the file as .CJS.

Note: Using Notepad as text editor, make sure to save the text file with **.CJS** extension by selecting "Save as type" as "All Files" although the file will be named *.cjs.txt and it will not be visible from importer.

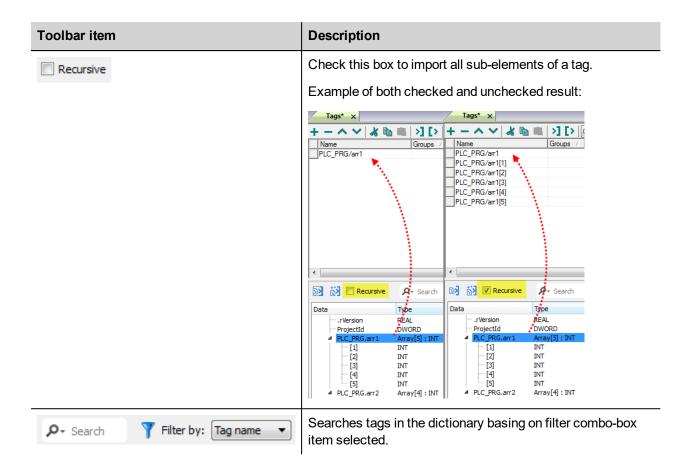


Import Files in Tag Editor

Select the driver in Tag Editor and click on the Import Tags button to start the importer.


The following dialog shows which importer type can be selected.

Select Omron Sysmac to import a .NJF Tags file or Omron CX-One to import a .CJF Tags file.


Once the importer has been selected, locate the Tags file and click **Open**. The system will ask for User Defined structures .**CJS** file. If not required, skip the dialog by clicking on Cancel button.

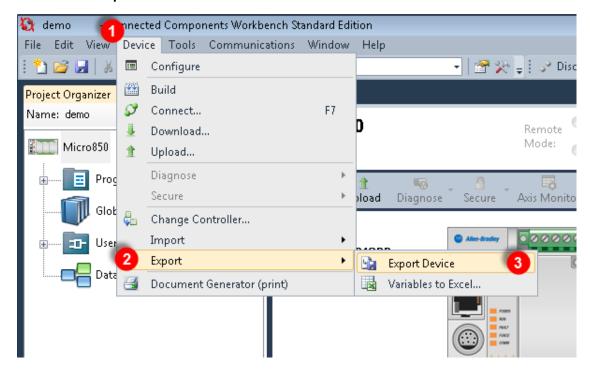
Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
K €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Note: When importing the array data types, the importer is expanding them creating individual Tags per each array element; this is valid for all the data types, except for arrays of boolean. In this case they are imported as "boolean-32" and the single array element can be addressed using "Tag Index" parameter from "Attach to..." dialog.

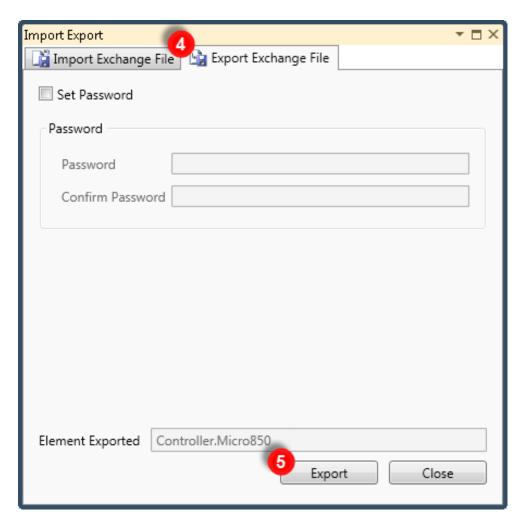
Controller Model Micro800

The Ethernet/IP CIP driver provides an easy and reliable way to connect to Allen-Bradley Micro800 controllers.

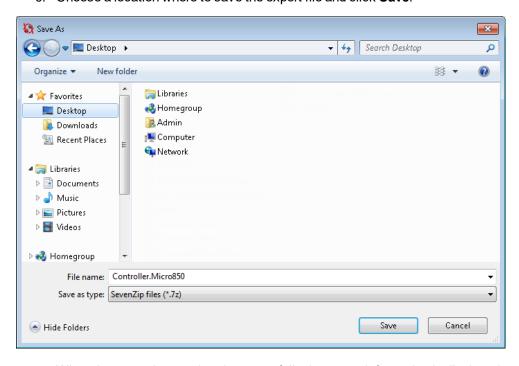

The scope of variables into a Micro800 controller can be local to a program or global:

Scope	Description
Local Variables	Program-scoped Tags. Tags are assigned to a specific program in the project and available only to that program.
	These Tags are not supported within this driver.
Global Variables	Controller-scoped Tags. Tags belong to the controller in the project and are available to any program in the project.
	These Tags are supported within this driver.

Export ISAXML file using Connected Component Workbench


To export .ISAXML global variables including I/O tags:

- 1. Select **Device** tab.
- 2. Expand Export item.
- 3. Select Export Device.

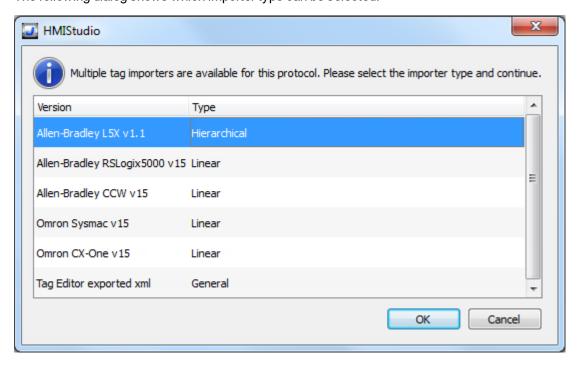


- 4. Click on Export Exchange File tab.
- 5. Click Export button.



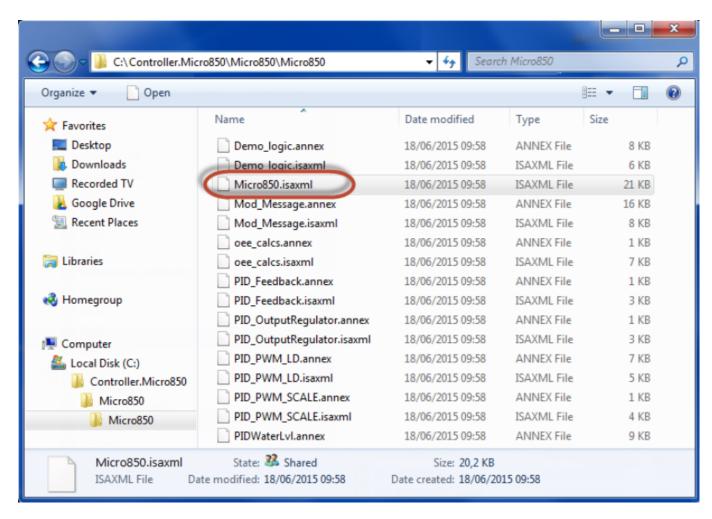
6. Choose a location where to save the export file and click Save.

7. When the export is completed successfully the output information is displayed:

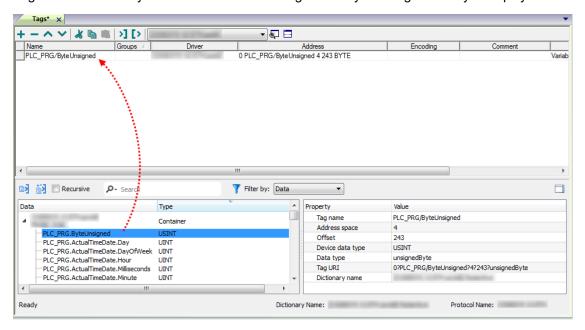

Note: CCW export file is a 7-zip compressed archive. Use a suitable zip utility to extract archive content into a local folder.

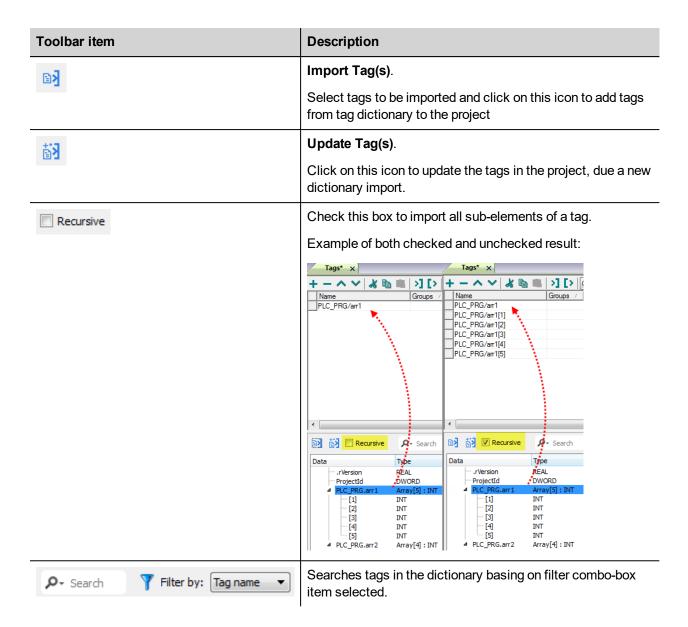
Import Files in Tag Editor

Select the driver in Tag Editor and click on the Import Tags button to start the importer.


The following dialog shows which importer type can be selected.

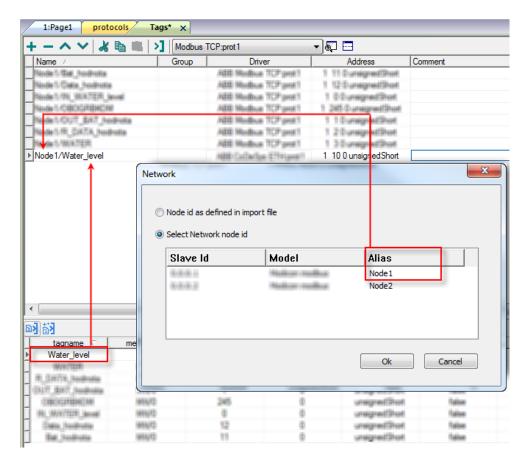
Select Allen-Bradely CCW v15 option.


Directory structure extracted from 7z file is something like: "..\<folder_name>\Micro8xx\Micro8xx\" Inside this last folder, select the Micro8xx.isaxml file as shown below:



Once the importer has been selected, locate the symbol file and click Open.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.


Adding an alias name to a protocol

Tag names must be unique at project level, however, the same tag names might need to be used for different controller nodes (for example when the HMI device is connected to two devices running the same application).

When creating a protocol you can add an alias name that will be added to tag names imported for this protocol.

In the example, the connection to a certain controller is assigned the name **Node1**. When tags are imported for this node, all tag names will have the prefix **Node1** making each of them unique at the network/project level.

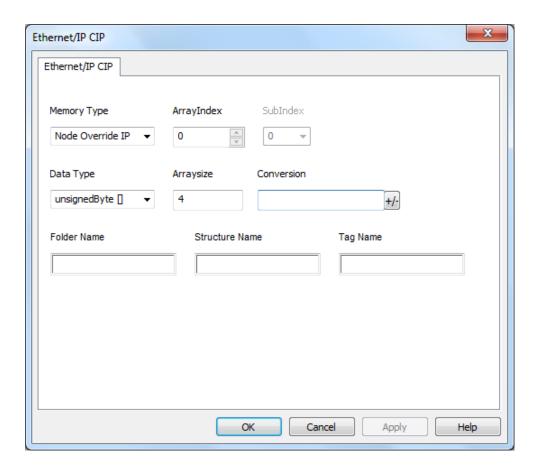
Note: Aliasing tag names is only available for imported tags. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached on the import. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are re-imported, all tags will be re-imported with the new prefix string.

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

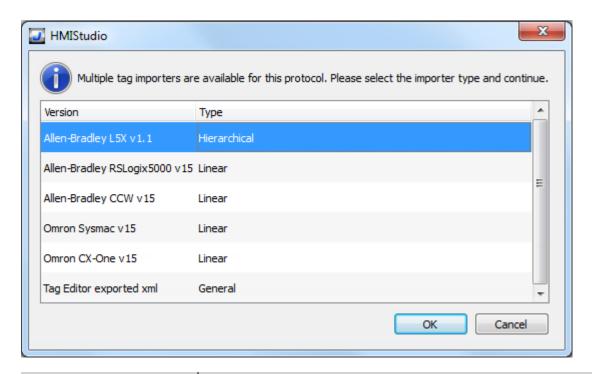
This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.


The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

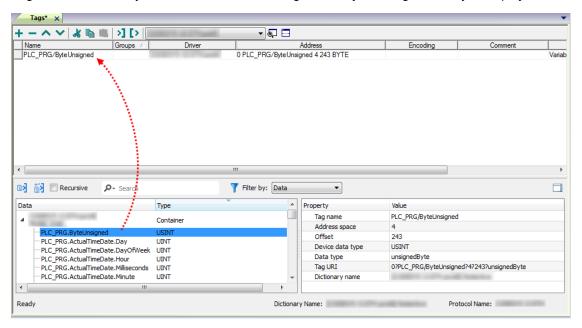
If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

Note: Node Override IP values assigned at runtime are retained through power cycles.


Tag Import

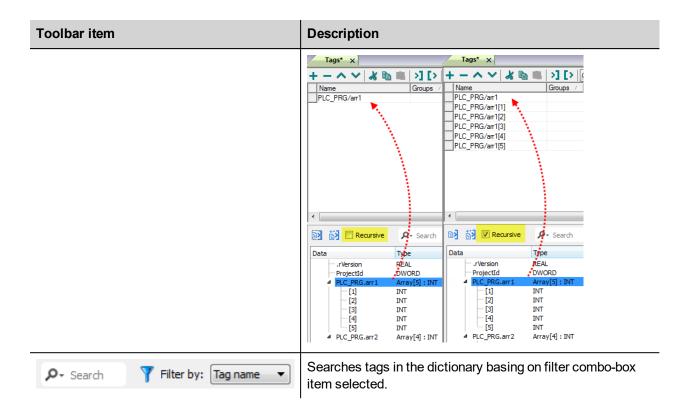
Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description
Allen-Bradley L5X v1.1	Requires a .L5X file.
Hierarchical	Check Controller Model Logix 5000 for more details.
	All variables will be displayed according to RSLogix5000 Hierarchical view.
Allen-Bradley	Requires a .CSVand .L5X (optional) files.
RSLogix5000 v15 Linear	Check Controller Model Logix 5000 for more details.
	All variables will be displayed at the same level.
Allen-Bradley CCW v15	Requires a .ISAXML file.
Linear	Check Controller Model Micro800 for more details.
	All variables will be displayed at the same level.
Omron Sysmac v15	Requires a .NJF file.
Linear	Check Controller Model Omron Sysmac for more details.
	All variables will be displayed at the same level.

Importer	Description
Omron CX-One v15	Requires a .CJFand .CJS (optional) files.
Linear	Check Controller Model Omron Sysmac for more details.
	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1

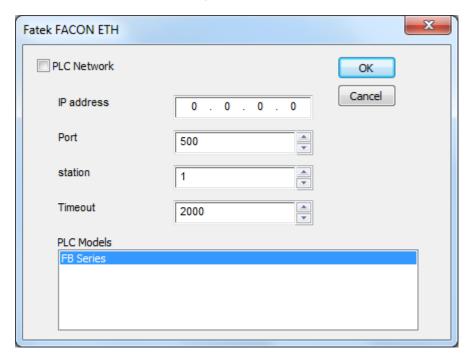

Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
Ke	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

Communication status

Current communication status can be displayed using System Variables. See "System Variables" section in the main manual.


Codes supported for this communication driver:

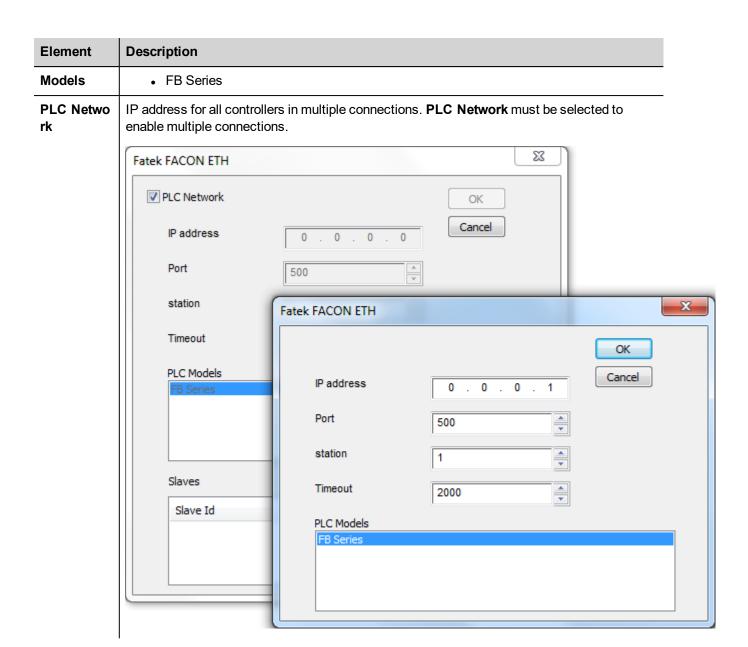
Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Ensure the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

Fatek FACON ETH

The Fatek FACON ETH communication driver has been designed to connect HMI devices to a Fatek FACON PLC through Ethernet connection.

Protocol Editor Settings

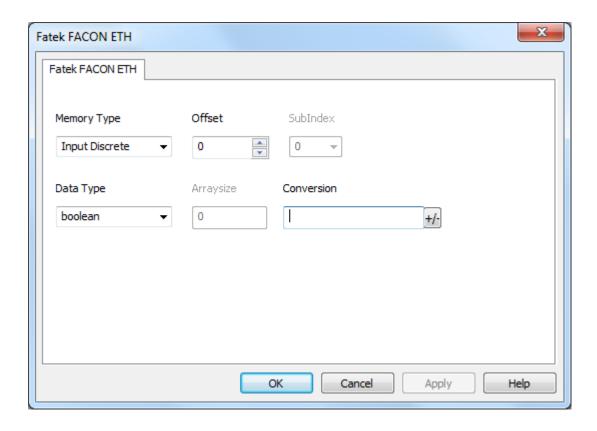
Adding a protocol


To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

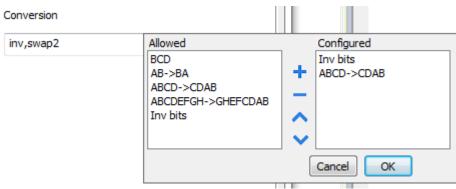
Element	Description
IP Address	Ethernet IP address of the PLC.
Port	Port number used to communicate with PLC.
station	station number according to PLC configuration.
Timeout	Time delay in milliseconds between two retries in case of missing response from the PLC.
PLC	PLC model available:



Tag Editor Settings

In Tag Editor select the protocol Fatek FACON ETH.

Add a tag using [+] button. Tag setting can be defined using the following dialog:


Element	Description	
Memory Type	Memory Type	Description
Type	Input Discrete	X resources. Corresponding to External Digital Input Point.
	Output Relay	Y resources. Corresponding to External Digital Output Point.
	Internal Relay	M resources. Corresponding to PLC internal memory.
	Step Relay	S resources.
	Timer Discrete	T resources.
	Counter Discrete	C resources.
	Timer Register	Current Time Value Register.
	Counter Register	Current Counter Value Register.
	Data Register - HR	R resources.
	Data Register - DR D resources.	
	Run	Boolean value. Corresponding to PLC status.
	Node Override IP	See Special Data Types for specifications.
Offset	Starting address for the Tag. The possible range depend on PLC model selected.	

Element	Description
SubInd ex	This allows resource offset selection depending on the selected data type.
Data Type	Available data types:

Element Description • In case of array Tag, this property represents the number of array elements. Arraysi ze • In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Conver Conversion to be applied to the Tag.

sion

Depending on data type selected, the Allowed list shows one or more conversions, listed below.

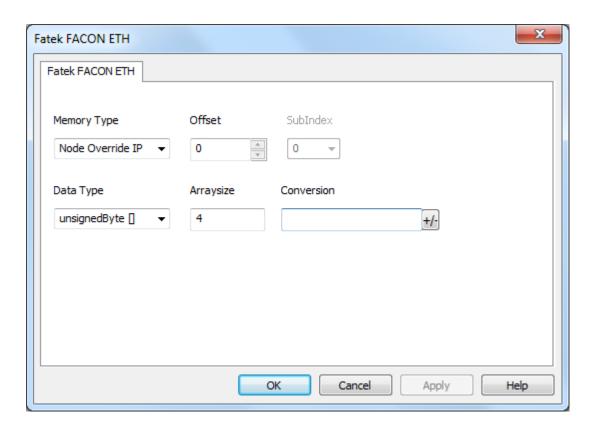
Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 \rightarrow 0110 (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.

Element	Description	
	Value	Description
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	list.	and click on plus button. The selected item will be added on Configured
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).	
	Use the arrow buttons	to order the configured conversions.

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the PLC at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.


The Node Override IP is initialized with the value of the PLC IP specified in the project at programming time.

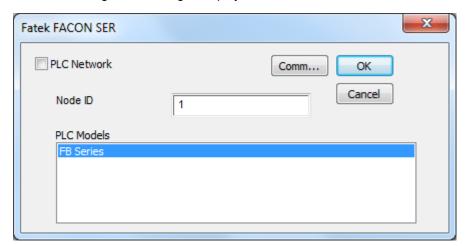
Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

If the HMI device is connected to a network with more than one PLC node, each node has its own Node Override IP variable.

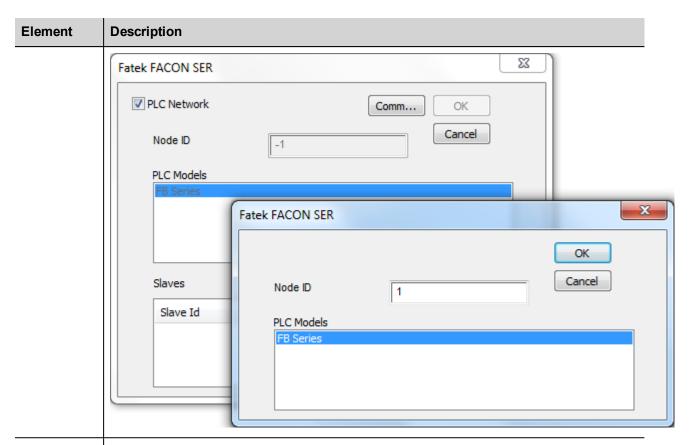
Note: Node Override IP values assigned at runtime are retained through power cycles.

Fatek FACON SER

The Fatek FACON SER communication driver has been designed to connect HMI devices to a Fatek FACON PLC through Serial connection.

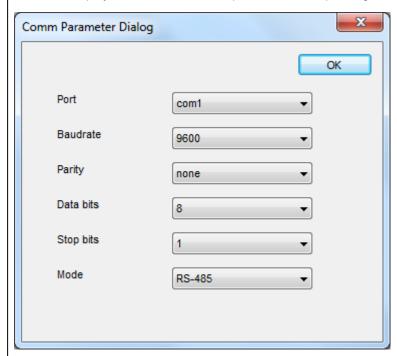

Protocol Editor Settings

Adding a protocol


To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

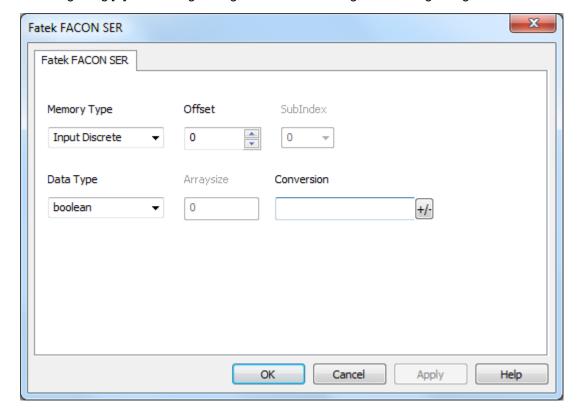
The driver configuration dialog is displayed.



Element	Description	
Node ID	Serial node associated to the PLC.	
PLC Models	PLC model available:	
	FB Series	
PLC Networ	IP address for all controllers in multiple connections. PLC Network must be selected to enable multiple connections.	

Comm...

If clicked displays the communication parameters setup dialog.



Element	Description	
	Element	Parameter
	Port	Serial port selection.
		COM1: device PLC port.
		COM2: computer/printer port on panels with 2 serial ports or optional Plug-In module plugged on Slot 1/2 for panels with 1 serial port on-board.
		COM3: optional Plug-In module plugged on Slot 3/4 for panels with 1 serial port on-board.
	Baudrate, Parity, Data Bits, Stop bits	Serial line parameters.
	Mode	Serial port mode. Available modes:
		• RS-232.
		• RS-485 (2 wires).
		• RS-422 (4 wires).

Tag Editor Settings

In Tag Editor select the protocol Fatek FACON SER.

Add a tag using [+] button. Tag setting can be defined using the following dialog:

Element	Description	
Memory Type	Memory Type	Description
. , , ,	Input Discrete	X resources. Corresponding to External Digital Input Point.
	Output Relay	Y resources. Corresponding to External Digital Output Point.
	Internal Relay	M resources. Corresponding to PLC internal memory.
	Step Relay	S resources.
	Timer Discrete	T resources.
	Counter Discrete	C resources.
	Timer Register	Current Time Value Register.
	Counter Register	Current Counter Value Register.
	Data Register - HR	R resources.
	Data Register - DR	D resources.
	Run	Boolean value. Corresponding to PLC status.
Offset	Starting address for the Tag. Th	ne possible range depend on PLC model selected.
SubInd ex	This allows resource offset selection depending on the selected data type.	
Data Type	Available data types:	ection in the main manual.
Arraysi	In case of array Tag, this	s property represents the number of array elements.

Element	Description		
ze	In case of string Tag.	Γag, this property represe	ents the maximum number of bytes available in
	or Latin1 in Tag Editor.	•	string chars if Encoding property is set to UTF-8 E, UTF-16BE or UTF-16LE one char requires 2
Conver	Conversion to be applied to the Tag.		
sion	Conversion		
	inv,swap2	Allowed BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	Configured Inv bits ABCD->CDAB Cancel OK

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word. Example:

Element	Description		
	Value	Description	
		32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905$ (in decimal format) 0.10000000110 $0.0001110010110110110010111011000011100101$	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

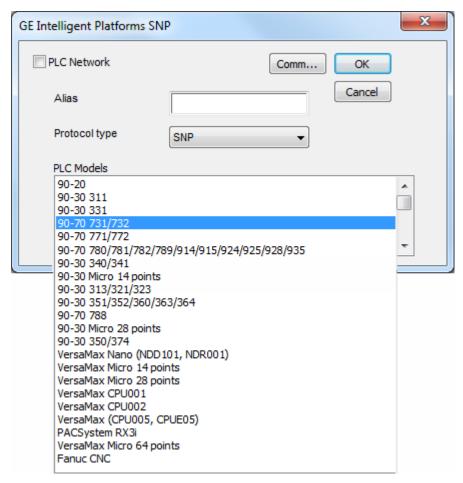
Select the conversion and click on plus button. The selected item will be added on **Configured** list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

GE Intelligent Platforms SNP

The GE Intelligent Platforms SNP driver can be used to connect the HMI device to the GE controllers through serial connection using the native and proprietary SNP communication protocol.

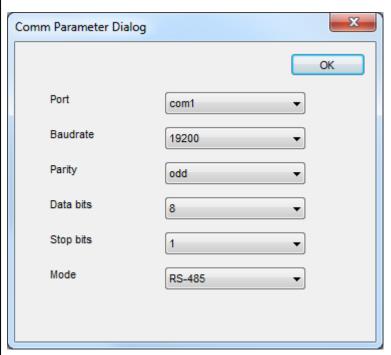

Protocol Editor Settings

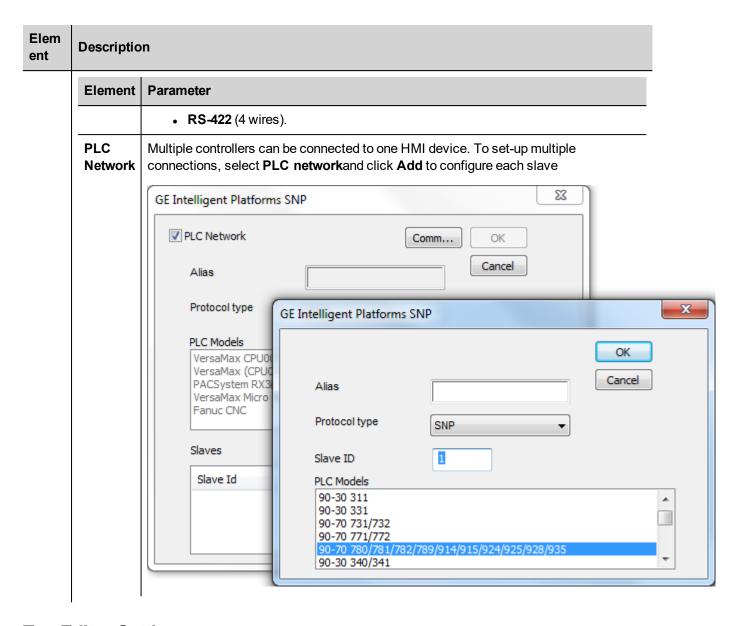
Adding a protocol

To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

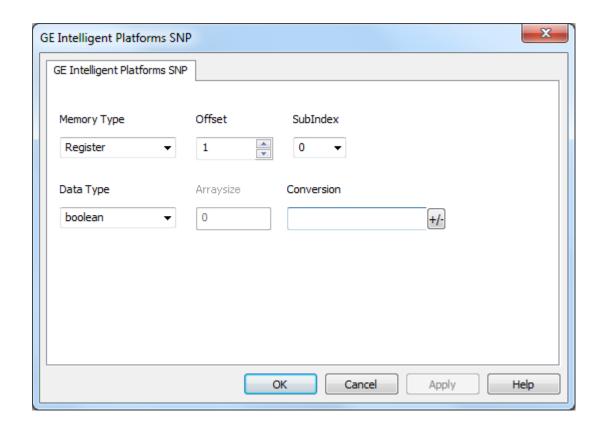

Elem ent	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
PLC Mode Is	PLC models available.


Elem ent	Description
Proto col type	Allows to select between SNP and SNP-X protocol.
Com	If clicked displays the communication parameters setup dialog

m...

If clicked displays the communication parameters setup dialog.

Element	Parameter	
Port	Serial port selection.	
	COM1: On-board port	
	COM2: Optional Plug-in module plugged on slot#1 or slot#2	
	COM3: Optional Plug-in module plugged on slot#3 or slot#4	
Baudrat e, Parity, Data Bits, Stop bits	Serial line parameters.	
Mode	Serial port mode. Available modes: • RS-232. • RS-485 (2 wires).	



Tag Editor Settings

In Tag Editor select the protocol GE Intelligent Platforms SNP.

Add a tag using [+] button. Tag setting can be defined using the following dialog:

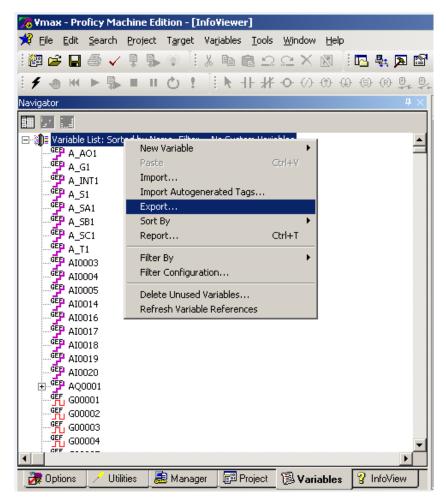
Element	Description	
Memory	Memory Type	Description
Туре	Register	R resource on PLC.
	Discrete Input	I resource on PLC.
	Discrete Output	Q resource on PLC.
	Discrete Global	G resource on PLC.
	Internal Coil	M resource on PLC.
	Temporary Coil	T resource on PLC.
	System Status	S resource on PLC.
	Analog Input	Al resource on PLC.
	Analog Output	AQ resource on PLC.
	Clear I/O Fault	IOF resource on PLC.
	Clear PLC Fault	PLF resource on PLC.
Offset	Offset address where tag is local PLC model selected.	ated. Offset range depends on specific memory type and

Element Description Data Available data types: **Type** boolean byte short int unsignedByte unsignedShort unsignedInt float double string binary See "Programming concepts" section in the main manual. Note: To define arrays, select one of Data Type format followed by square brackets (byte[], short[]...). • In case of array Tag, this property represents the number of array elements. **Arraysi** ze In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Conver Conversion to be applied to the Tag. sion Conversion Allowed Configured inv,swap2 BCD Inv bits AB->BA ABCD->CDAB ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits Cancel OK Depending on data type selected, the Allowed list shows one or more conversions, listed below.

Element	Description	
	Value	Description
	Inv bits	Invert all the bits of the tag.
		Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
	Negate	Set the opposite of the tag value.
		<i>Example:</i> 25.36 → -25.36
	AB -> BA	Swap nibbles of a byte.
		Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
	ABCD -> CDAB	Swap bytes of a word.
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
	ABCDEFGH ->	Swap bytes of a double word.
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP ->	Swap bytes of a long word.
	OPMDAB	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

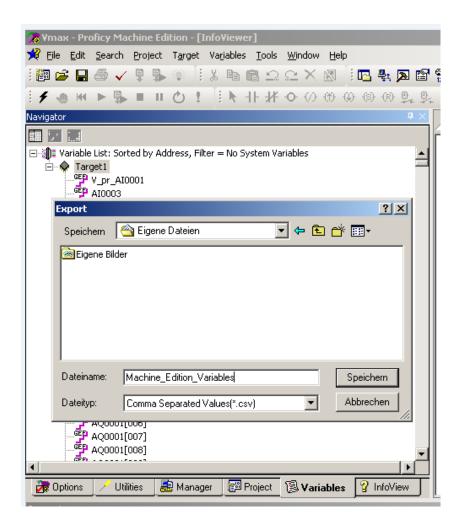
Select the conversion and click on plus button. The selected item will be added on ${f Configured}$ list.

Element	Description
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to order the configured conversions.


Tag Import

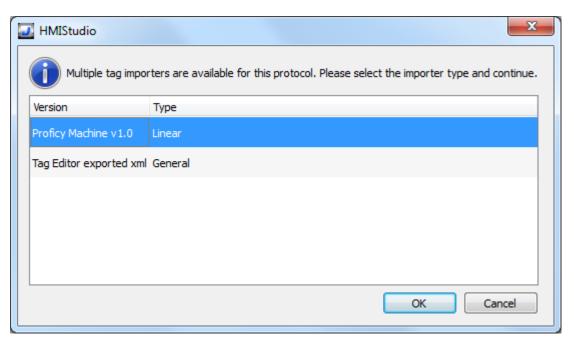
Exporting Tags from PLC

The GE Intelligent Platforms SRTP Ethernet driver support the Tag Import facility.


Variables can be exported by the controller programming software Proficy Machine Edition,

selecting "Variables" tab, then right mouse click and from context menu select the Export option as shown in following figure.

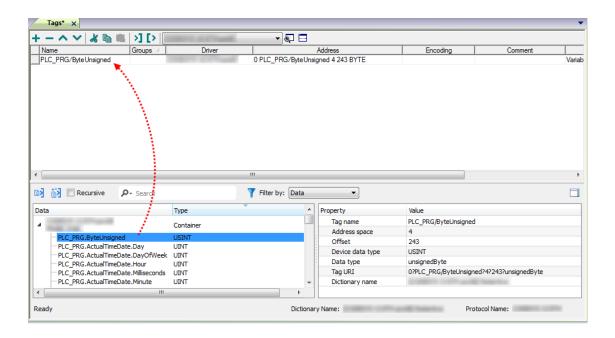
In the following dialog select then the file name and the file location on the computer.



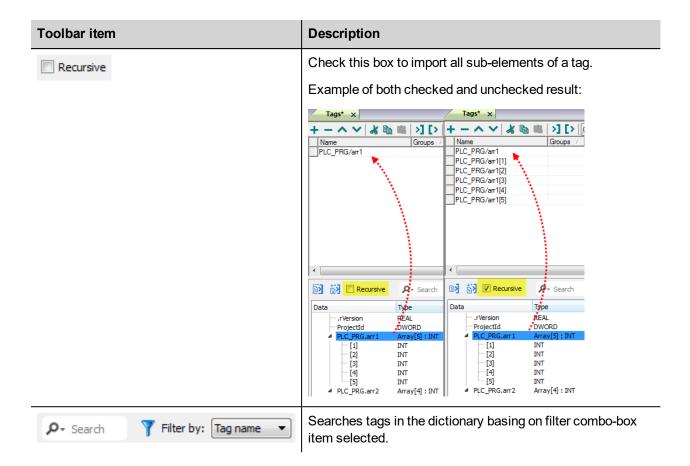
Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the Import Tags button to start the importer.

The following dialog shows which importer type can be selected.

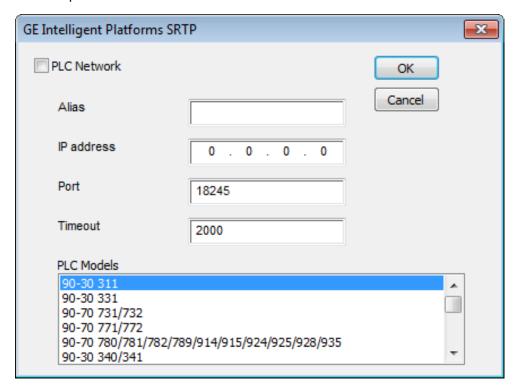


Importer	Description
Proficy Machine v1.0	Requires an .csv file.
Linear	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
≥	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Ki Ki	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.



GE Intelligent Platforms SRTP

The GE Intelligent Platforms SRTP driver can be used to connect the HMI device to the GE controllers through Ethernet connection using the native and proprietary SRTP communication protocol.

Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "GE Intelligent Platforms SRTP" from the list of available protocols.

Element	Description
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node
IP Address	The IP address of the Ethernet interface of the controller
Port	Communication Port number for the Ethernet interface
Timeout	The time the protocol waits the answer from the controller before issuing a new retry.

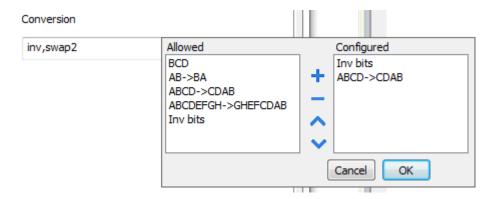
Element	Description
PLC Models	List of compatible controller models. Make sure to select the right model in this list when configuring the protocol.
PLC	The protocol supports connection to multiple controllers.
Network	To enable this, check the "PLC Network" check box and provide the configuration per each node.

X GE Intelligent Platforms SRTP GE Intelligent Platforms SRTP OK Cancel IP address 0 18245 Port 2000 2000 90-30 331 90-70 731/732 90-70 771/772 90-70 780/781/782/789/914/915/924/925/928/935 90-30 331 90-70 731/732 90-70 771/772 90-70 780/781/782/789/914/915/924/925/928/935 90-30 340/341 90-30 340/341 Add Slave Id Model

Data Types

The import module supports variables of standard data types as per the following list.

- BOOL
- BYTE (8-bits unsigned integers)
- DINT (32-bits signed integers)
- DWORD (32-bit bit strings, displayed as unsigned integers)
- INT (16-bit signed integers)
- REAL (32-bit floating point data)
- · STRING (character string)
- UINT (16-bit unsigned integers)
- WORD (16-bit bit strings, displayed as unsigned integers)



Note: User defined structure and predefined structures are not supported. 64-bit data are also not supported

Tag Conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)

Value	Description
ABCNOP -> OPMDAB	Swap bytes of a long word.
	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0\ 10000000110\ 000111001011101101100100101101000011100101$
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on Configured list.

If more conversions are configured, they will be applied in order (from top to bottom of Configured list).

Use the arrow buttons to order the configured conversions.

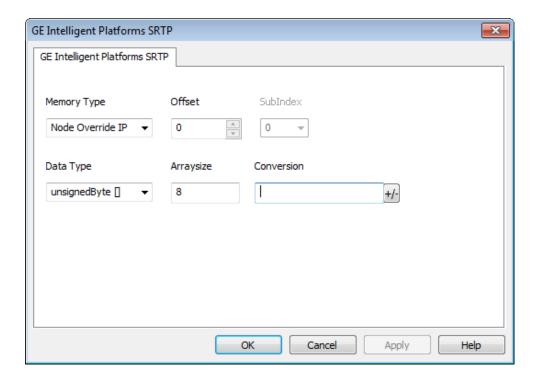
Special Data Types

The GE Intelligent Platforms SRTP driver provides one special data type called "Node Override IP".

The Node Override IP allows changing at run time the IP address of the target controller you want to connect. This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

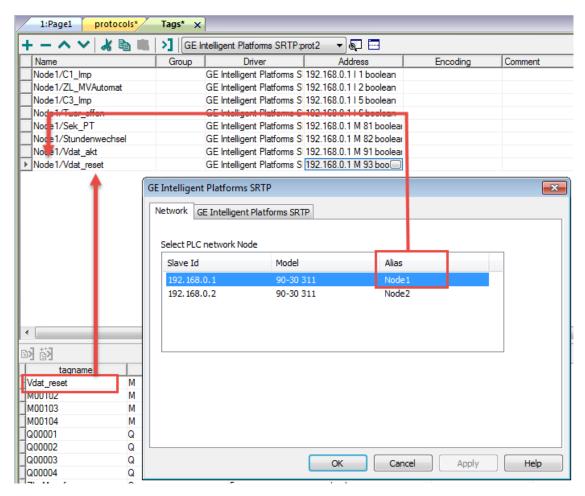
The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

If the IP Override is set to 0.0.0.0, all the communication with the node is stopped, no request frames are generated anymore.


If the IP Override has a value different from 0.0.0.0, it is interpreted as node IP override and the target IP address is replaced at run-time with the new value.

In case the panel has been configured to access to a network of controllers, each node has its own Override variable.

Note: the IP Override values assigned at run-time are retained through power cycles.



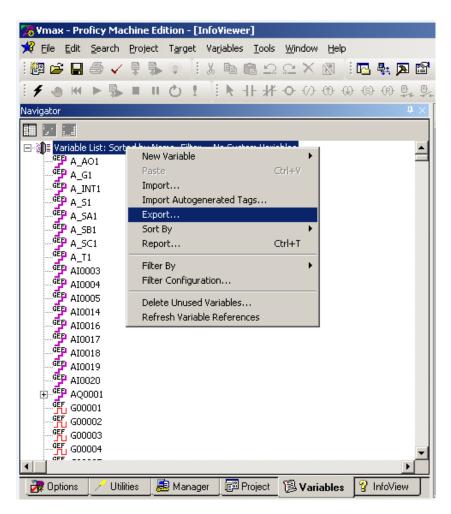
Aliasing Tag Names in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

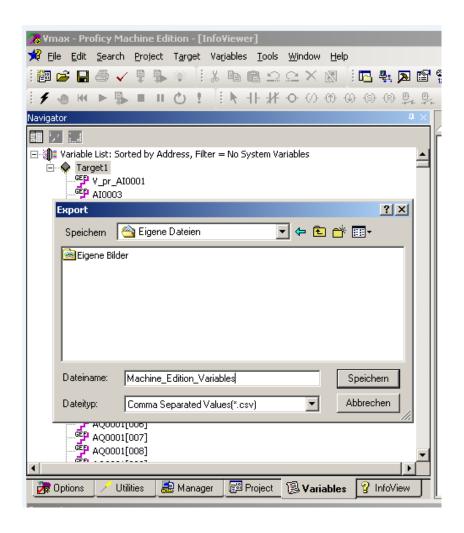
The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: Aliasing tag names is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name. The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Tag Import

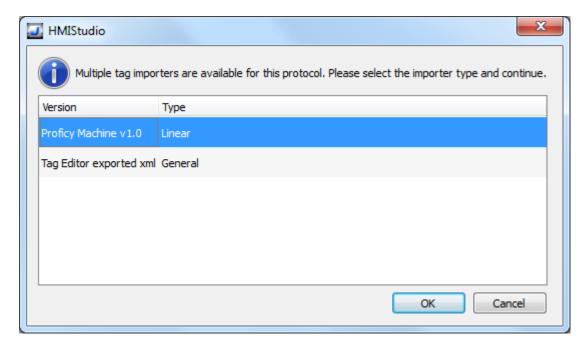

Exporting Tags from PLC

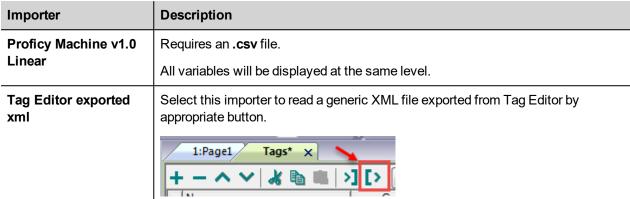
The GE Intelligent Platforms SRTP Ethernet driver support the Tag Import facility.


Variables can be exported by the controller programming software Proficy Machine Edition,

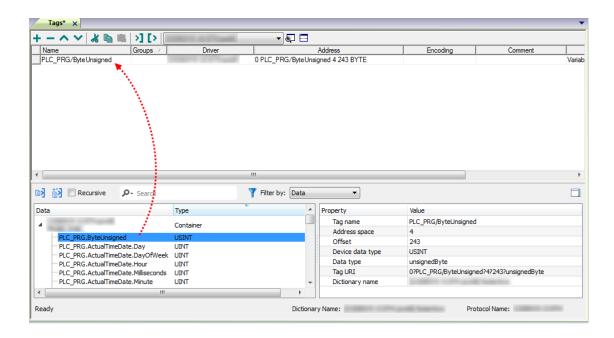
selecting "Variables" tab, then right mouse click and from context menu select the Export option as shown in following figure.

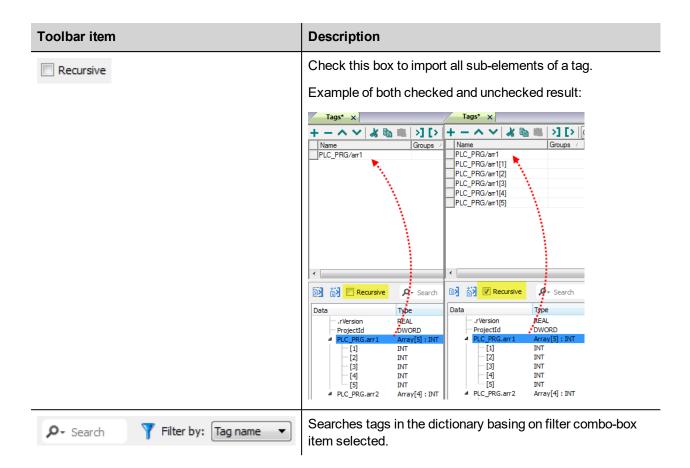
In the following dialog select then the file name and the file location on the computer.


Importing Tags in Tag Editor


Select the driver in Tag Editor and click on the Import Tags button to start the importer.

The following dialog shows which importer type can be selected.




Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ĕ ä	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication Status

The communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

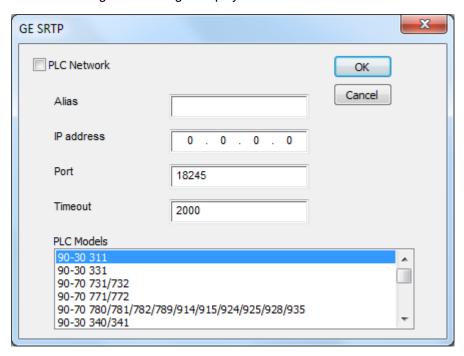
The status codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
General Error	Error cannot be identified; should never be reported; contact technical support

GE SRTP

The GE SRTP communication driver has been designed to connect HMI devices to GE PLCs.

The driver allows symbolic communication with GE PLC model PacSystemRx3i.


Protocol Editor Settings

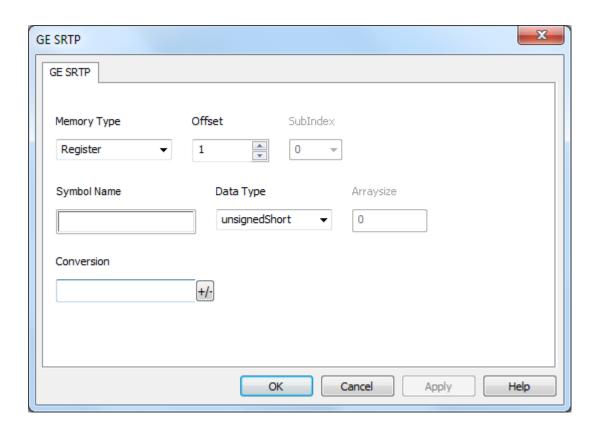
Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP address	Ethernet IP address of the controller.
Port	Port number used by the driver. The default value is 18245 .
Timeout	Time delay in milliseconds between two retries in case of missing response from the server device.
PLC Models	SAIA PLC models available:



Element	Description
	• 90-30 311
	• 90-30 331
	• 90-70 731/732
	• 90-70 771/772
	• 90-70 780/781/782/789/914/915/924/925/928/935
	• 90-30 340/341
	• 90-30 313
	• 90-30 351/352/360/363/364
	• 90-70 788
	• 90-30 350/374
	VersaMax CPU001
	VersaMax CPU002
	VersaMax (CPU005, CPUE05)
	PACSystem RX3i
PLC Network	Multiple controllers can be connected to one HMI device. To set-up multiple connections, select PLC network and click Add to configure each node

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select **GE SRTP** from the **Driver** list: tag definition dialog is displayed.

Element	Description	
Memory Type	Memory Type	Description
Турс	Register	unsigned 16 bit data register (default)
	Discrete Input	1 bit data input (default)
	Discrete Output	1 bit data output (default)
	Discrete Global	1 bit data global (default)
	Internal Coil	1 bit data coil (default)
	Temporary Coil	1 bit data coil (default)
	System Status	1 bit data status
	System Status A	1 bit data status
	System Status B	1 bit data status
	System Status C	1 bit data status
	Analog Input	unsigned 16 bit data input (default)
	Analog Output	unsigned 16 bit data output (default)
	SYMBOL	1 bit data symbol (default)
	Node Override IP	unsigned 8 bit array (see Special Data Types for mode details)
Offset	This parameter is the add	dress on the physical memory of the controller. The range for any memory type
SubInde x	This allows resource offset selection within the register.	
Data Type	Available data types:	

Element	Description	
Arraysiz e	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. 	
Conversi on	Conversion to be ap	Allowed Configured BCD Inv bits AB->BA + ABCD->CDAB

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Cancel

OK

ABCD->CDAB

Inv bits

ABCDEFGH->GHEFCDAB

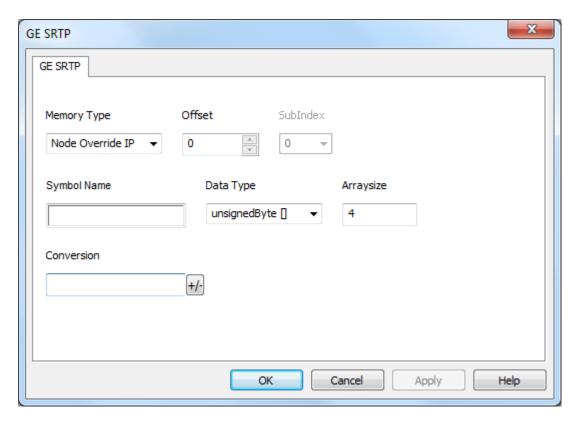
Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.

Element	Description	
	Value	Description
		Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	Select the conversion and	click on plus button. The selected item will be added on Configured list.
	If more conversions are cor	nfigured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to or	der the configured conversions.

Node Override IP

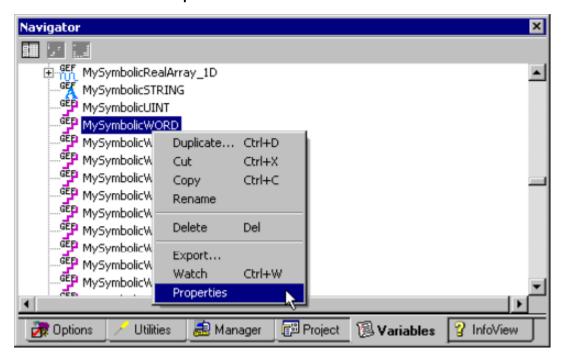
The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

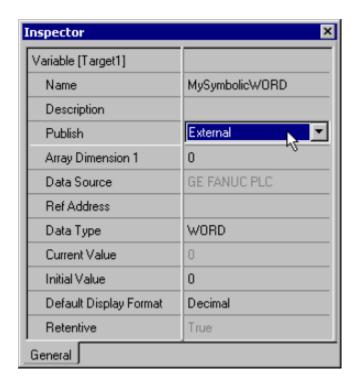

The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

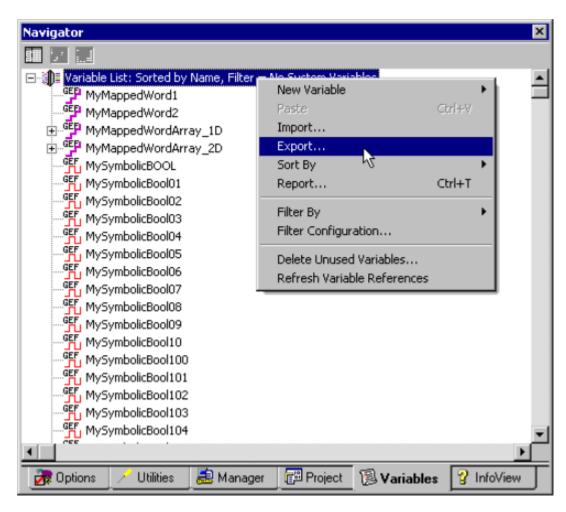
If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

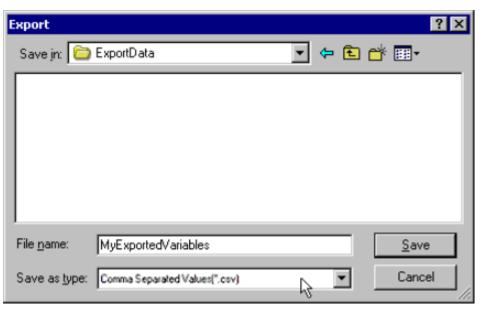

Note: Node Override IP values assigned at runtime are retained through power cycles.

Tag Import


For GE PLC model PacSystemRx3i it is possible to create symbolic variables.

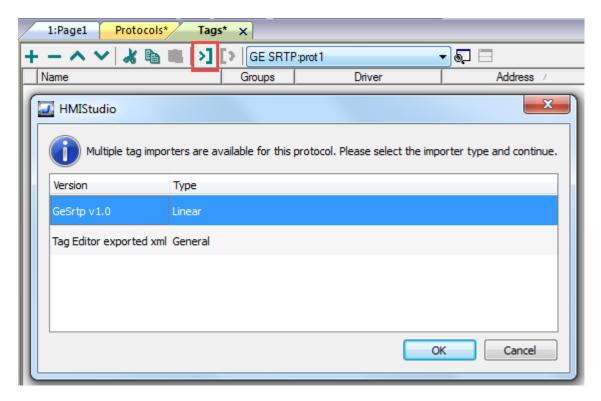
To create a new variable, right-click on the **Variables View** and select **New Variable**. To edit an existing variable, right-click on it and then select **Properties**.


In both cases, the variable's **Properties Inspector** dialog will appear as shown below.

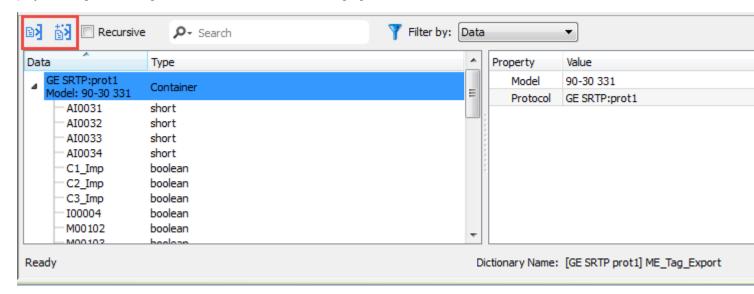


Important: In order for a symbolic variable to be visible to this driver, **Publish** must be set to **External**. The access must be set to **Read/Write**.

To export these variables from **PACSystem** programming software, right click on **Variable list** (or on selected variables) and click **Export**.



In the **Save as Type** drop-down list, select **Comma Separated Variable (*.csv)** as the export file type. The dialogs should appear as shown below.


Select the driver in the Studio tag editor and click on the "Import tag" button to start the importer.

Select Linear and locate the .csv file, then confirm.

The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the add tags button as shown in the following figure.

In case of **Online Changes** performed on PLC side, the tag database must be updated manually to correctly **Read** from PLC.

Write operations do not need a database update.

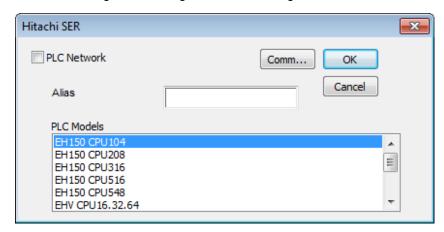
Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

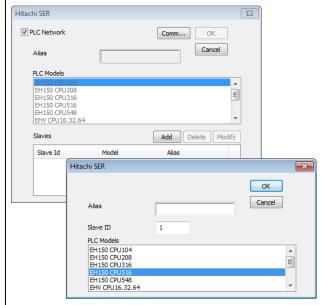
Error	Cause	Action	
NAK	The controller replies with a not acknowledge.	-	
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.	
Invalid response	The device did received a response with invalid format or contents from the controller.	Check if the data programmed in the project are consistent with the controller resources.	
General Unidentifiable error. Should never be reported. Error		Contact technical support.	

Hitachi SER


HMI devices can be connected to a Hitachi EH/EHV PLC as the network master using this communication driver.

This driver has been designed for serial connection to the programming port of the PLC.

Protocol Editor Settings


Add (+) a driver in the Protocol editor and select the protocol called "Hitachi SER" from the list of available protocols.

The driver configuration dialog box is shown in figure.



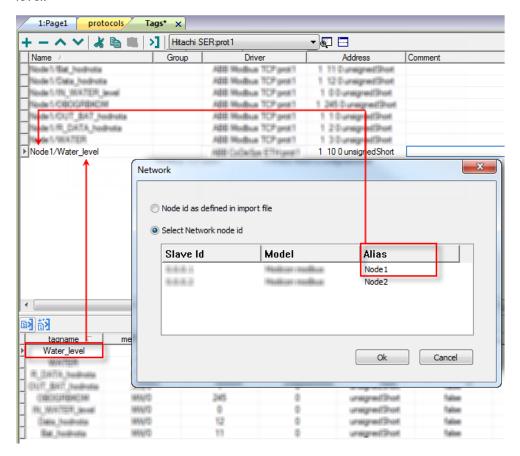
Element	Description	
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node	
PLC Models	Select from the list the PLC model you are going to connect to. The selection will influence the data range offset per each data type according to the specific PLC memory resources.	
PLC Network	The protocol allows the connection of multiple controllers to one HMI. To set- up multiple connections, check "PLC network" checkbox and create the list of controllers pressing the "Add" button. You must specify the node ID for each device you want to connect.	

Element Description

Comms. Opens the serial port configuration parameters as shown in figure.

Port Serial port selection

Series 400		Series 400	Series 500
	com1	PLC Port	Serial Port
com2 PC/Printer Port		PC/Printer Port	Option Module

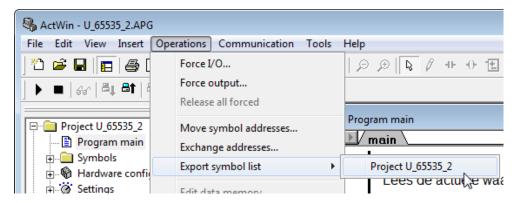


Description
Communication parameters for serial communication
Serial port mode; available options:
• RS-232,
RS-485 (2 wires)RS-422 (4 wires)

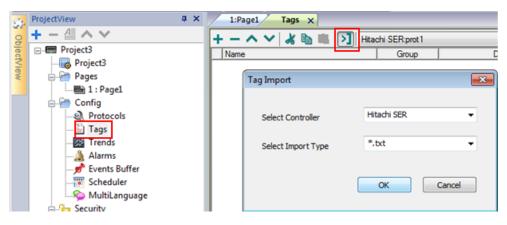
Tag Name Aliasing in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

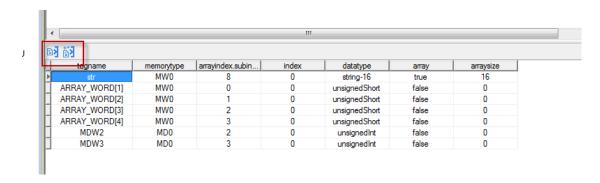

Note: Tag name aliasing is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.


Tag Import

The Hitachi SER communication driver supports importing tags from the PLC programming software. The tag import filter accepts symbol files with extension ".txt" created by the Actwin-H programming tool.

In the Actwin-H Software, click on the menu "Operations" then "Export symbol list" and then select the project which should be exported as shown in figure.


In the Tag Editor select the driver and click on the "Import tag" button to start the importer

Locate the ".TXT" file and confirm.

The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the add tags button as shown in figure.

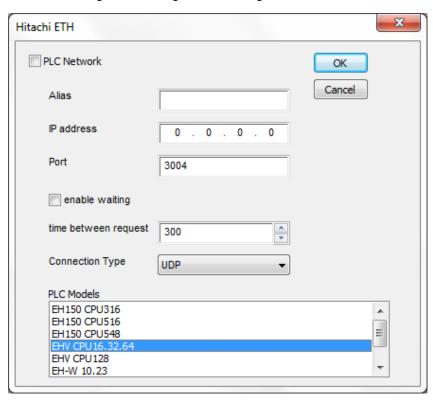
Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes	
NAK	Returned in case the controller replies with a not acknowledge	
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured for communication	
Line Error	Returned when an error on the communication parameter setup is detected (parity, baud rate, data bits, stop bits); ensure the communication parameter settings of the controller is compatib with panel communication setup	
Invalid response		

Hitachi ETH


This communication driver has been designed to support communication to Hitachi controllers with Ethernet connection. Hitachi controllers must either have an on-board Ethernet port (EHV CPU) or be equipped with an appropriate Ethernet interface (EH-ETH, ET-ETH2 or OB- ETH).

The communication driver supports both TCP/IP and UDP/IP communication protocols.

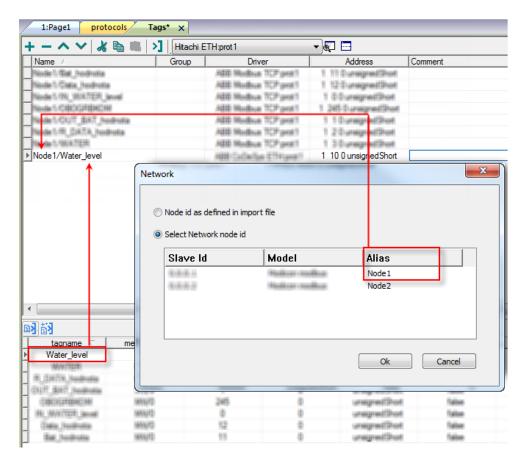
Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "Hitachi ETH" from the list of available protocols.

The driver configuration dialog is shown in figure.

Element	Description	
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node	
IP address	Ethernet IP address of the controller	
Port	Port number used for the communication. Default value 3004 and it corresponds to the default setting of Hitachi controllers.	
Enable waiting	Introduces a wait time between two communication requests	
Time	Wait time between two requests if enable waiting option has been activated	

Element	Description
between request	
Connection type	UDP: use communication based on UDP/IP protocol TCP: use communication based on TCP/IP protocol
PLC Models	Select from the list the PLC model you are going to connect to. The selection will influence the data range offset per each data type according to the specific PLC memory resources.
PLC Network	To set-up multiple connections, check "PLC network" checkbox and create the list of controllers pressing the "Add" button. The IP address for each device you want to connect must be specified. Hitachi ETH

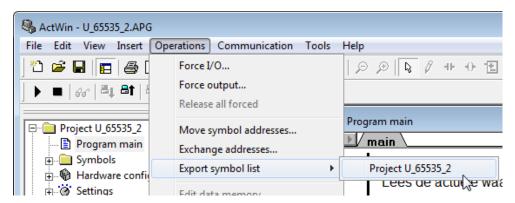

Controller Configuration

The PLC must to be properly configured to support either UPD/IP or TCP/IP communication using port numbers 3004, 3005, 3006 or 3007.

Tag Name Aliasing in Network Configurations

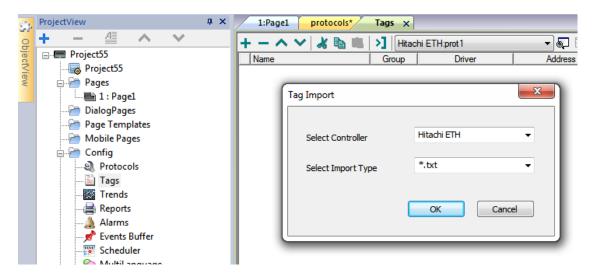
Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

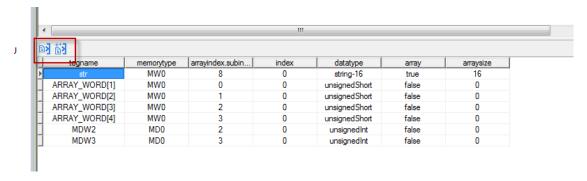

Note: Tag name aliasing is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Tag Import


The Hitachi ETH communication driver supports importing tags from the PLC programming software. The tag import filter accepts symbol files with extension ".txt" created by the Actwin-H programming tool.

In the Actwin-H Software, click on the menu "Operations" then "Export symbol list" and then select the project which should be exported as shown in figure.


In the tag editor select the driver and click on the "Import tag" button to start the importer

Locate the ".TXT" file and confirm.

The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the add tags button as shown in figure.

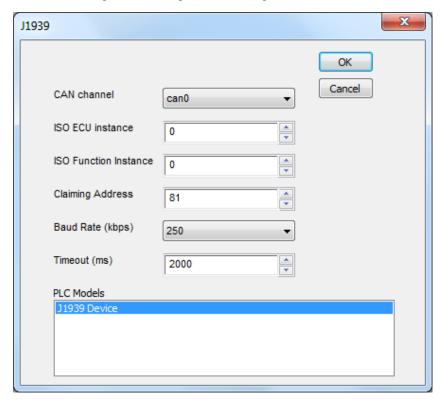
Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes	
NAK	Returned in case the controller replies with a not acknowledge	
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured for communication	
Invalid response		
General Error	Error cannot be identified; should never be reported; contact technical support	

J1939

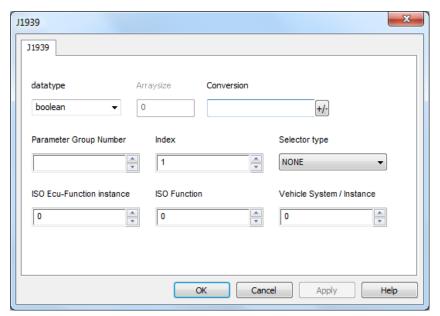

Use this communication driver to connect HMI devices to CAN networks including devices communicating with SAE J1939.

Please note that changes in the communication protocol specifications or J1939 hardware may have occurred since this documentation was created. Some changes may eventually affect the functionality of this communication driver. Always test and verify the functionality of your application. To fully support changes in J1939 hardware and communication protocols, communication drivers are continuously updated. Always ensure that the latest version of communication driver is used in your application.

Protocol Editor Settings

Select Add [+] in Protocol Editor and select J1939.

The driver configuration dialog is shown in figure.


Element	Description
CAN	Configure the CAN Channel.
Channel	CAN interface is available only with a proper option module.
	UN31 platforms allow only one module, select Can0.
	UN30 platforms allow up to two modules, select Can0 or Can1.
ISO ECU	Identifier of the equipment in the J1939 network (in case several HMI are coexisting in the

Element	Description	
Instance	network)	
ISO Function Instance	Identifier of the function in the network (in case more than one device is providing the same functionality)	
Claiming Address	Default value of the address of the equipment used as starting value for the Address Claim algorithm	
Baud Rate (kbps)	Baud rate of the CAN bus (typical is 250)	
Timeout (ms)		

Tag Editor Settings

In Tag Editor select the protocol "J1939" from the list of defined protocols and add a tag using [+] button. Tag settings can be defined using the following dialog:

Element	Description		
Data Type	Data Type	Memory Space	Limits
	boolean	1 bit data	01
	byte	8-bit data	-128 127
	short	16-bit data	-32768 32767
	int	32-bit data	-2.1e9 2.1e9
	unsignedByte	8-bit data	0 255
	unsignedShort	16-bit data	0 65535
	unsignedInt	32-bit data	0 4.2e9
	float	IEEE single-precision	1.17e-38 3.40e38
		32-bit floating point type	
	string	Array of elements containing cha	aracter code defined by selected
Arraysize	 Note: to define arrays, select one of Data Type format followed by square brackets like "byte[]", "short[]" In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. 		
If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16 2 bytes.		, UTF-16BE or UTF-16LE one char requires	
Conversio	Conversion to be	e applied to the Tag.	
n	Conversion		
	inv,swap2	Allowed BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	Configured Inv bits ABCD->CDAB
	Depending on da	ata type selected, the Allowed list	

Element	Description		
	Value	Description	
	Inv bits	Invert all the bits of the tag.	
		Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)	
	Negate	Set the opposite of the tag value.	
		<i>Example:</i> 25.36 → -25.36	
	AB -> BA	Swap nibbles of a byte.	
		Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)	
	ABCD -> CDAB	Swap bytes of a word.	
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
	ABCDEFGH ->	Swap bytes of a double word.	
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP ->	Swap bytes of a long word.	
	OPMDAB	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversio Configured list.	n and click on plus button. The selected item will be added on	

Element	Description		
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).		
	Use the arrow buttons to order the configured conversions.		
Parameter Group Number	Parameter Group Number value		
Index	Index value		
Selector Type	When adding tags it can be necessary to duplicate them to read data coming from several devices generating same physical quantity. In this case the Address of the tag must be edited. The Tag Editor dialog is shown in figure:		
	1	In case of duplication of the tag, the selection of incoming data can be done using one of following methods:	
	NONE	Selector Type not selected	
	INSTANCE	uses a defined bitfield value in data of PGN to distinguish between the possible sources. The value of received bitfield is compared with parameter "Vehicle System / Instance" for matching	
	DEVICE	uses the source address to find out the device sending the PGN based on Address Claim algorithm. The devices are selected based on parameter "ISO function"	
	ADDRESS	uses directly the source address as it is to select the source. The received source address is compared with parameter "ISO Ecu – Function Instance"	
ISO Ecu- Function Instance	Instance of IS	O Ecu-Function checked with Selector Type "DEVICE"	
ISO Function	ISO Function parameter		
Vehicle System/Ins tance	Vehicle System / Instance parameter used with Selector Type "INSTANCE"		

J1939 PGN Definition File

J1939 can connect hundreds of different devices offering access to thousands of different physical values. The standard defines several hundred PGNs for various applications. However, many devices use manufacturer-specific PGN definitions.

In order to manage this complex application scenario, the J1939 driver loads the PGN definition table at startup from a configuration file. The file with the PGN definition table is "J1939_pgnTable.csv" located in the folder "target\protocols\"; it is loaded automatically from disk when downloading the project.

The file containing the PGN defined by the standard protocol specification is placed in the proper folder when the driver is installed. It can be edited adding or removing PGN definitions. The user must respect the following rules:

- the file contains most of the PGN defined by the standard. Custom PGN and SPN can be added assigning free indexes.
- description of a PGN is composed by a PGN declaration line followed by a list of Field description lines

PGN declaration line

PGN: Name, PGN number, DefaultPriority, DefaultRate, InstanceIndex, Direction [, PGN request rate]

Name Name of the PGN

PGN number Number code of PGN

DefaultPriority Transmission priority (output PGN)

DefaultRate Transmission rate (output PGN)

Instance Index Index of instance (output PGN)

Direction INPUT/OUTPUT

PGN request Optional parameter. Time in milliseconds. If PGN not received in the meanwhile, it is

rate requested

Example of PGN declaration:

PGN: Torque/Speed Control 1, 0, 3, 100, 0, INPUT

// Torque/Speed Control 1 id PGN nr.0, its default priority is 3 and default transmission rate is 100 ms. Instance Index is 0 and direction is INPUT

Field declaration line

FieldIndex, FieldName, FieldPosition, FieldBitSize, SPN Conversion, AccessType, FieldDataType

FieldIndex Index of field in the PGN

FieldName Name of the field

FieldPosition N (1 to 8) byte position

N.M (1.1 to 8.8) bit position

N-M (N from 1 to 7, M from 2 to 8) byte range

FieldBitSize 1-64

number of bits of the field

SPN SPN conversion is indicated by "SPN"index es. SPN79

Conversion SPN0 indicates a raw copy of data

AccessType Defines usage of field in combination with PGN direction.

If PGN direction is declared as OUTPUT, the fields can be only used for write operations.

If PGN direction is declared as INPUT the fields can always be read. In case they are written the behavior is described below.

PGN Direction	Access Type	Behavior	
OUTPUT	WRITE	the PGN is sent immediately with current value of the fields	
	READ_ ONLY	the PGN is sent as soon as all the fields are written with a fresh value	
	REPLY		
INPUT	READ_ ONLY	Error	
	REPLY	the PGN is sent only if it was received almost once, with update value of the written field	
	WRITE	the PGN is sent immediately with current value of the fields	

FieldDataType Boolean

boolean-nn

byte

unsignedByte

short

unsignedShort

int

unsignedInt

float

double

string-nn

Example of Field declaration:

1, Engine Override Control Mode, 1.1, 2, SPN0, READ_ONLY, unsignedByte

SPN declaration line

SPN: index, constK, constL, type [,bigEndian]

index of SPN index

constK SPN conversion parameters

constL the conversion applied when reading is:

var(type) = raw value * constK + constL

the conversion applied when writing is:

raw value = (var(type) - constL) / constK

type bits

char

uchar

short

ushort

int

uint

float

double

longlong

ulonglong

float80

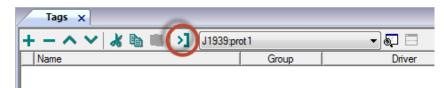
bigEndian Optional parameter. Defines if endianity conversion is needed on raw data before applying the

SPN conversion.

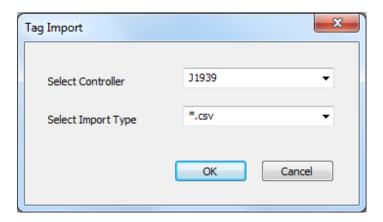
0 default endianity, do not change

1 apply endianity transformation

Example of SPN declaration:


SPN:, 79, 0.03125, -273, short, 1

Tag Import


The J1939 driver can import tag information from any CSV file, following same rules of PGN definition file and maintain several dictionaries for different scenarios.

The user can also import the whole "J1939 pgnTable.csv" and use only one large dictionary.

In the Tag Editor select the driver and click on the "Import tag" button to start the importer

then locate the ".csv" file and confirm.

The tags resulting from the import process may be used as they are if there is only one source for such value in the network. When several sources are supplying the same value the associated tags must be duplicated and named using one of the addressing methods shown in the Tag Editor chapter.

Communication Diagnostic

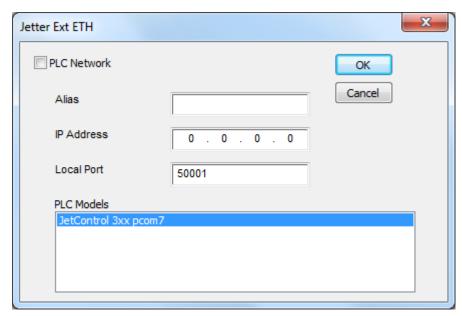
The error types supported for this communication driver are:

Error Class	Error	Notes
Configuration Errors	invalid CAN channel	
	cannot read MACID	
	Unable to access the PGN Table	
	Unable to get the PGN file path	
	SPN conversion not supported	
	Sending PGN with dynamic field length not supported	
	Preparing PGN field for sending failed	
	Writing a read-only tag	
	The output PGN can't be read	
	invalid offset in PGN	
	Not byte boundary on dynamic field	
	Something wrong with the PGN data block size	
	Too many bits to use	
	Not byte boundary on dynamic field	
	SPN conversion not supported	

Error Class	Error	Notes
Runtime Errors	Communication Failure > Can't send the APL PGN message	
	Not Connected > The PGN for the command reply has not been received yet	
	Not Connected > PGN block not registered	
	Not Connected > the value never received	
	Timeout Error > timeout on the value refresh	
Tag Definition Errors	there must be 7 tag specification fields	
	PGN field missing	
	SPN definition not found in the table	
	index field missing	
	ecuFunctionInstance field missing	
	function field missing	
	classOrInstance field missing	
	icomType field missing	
	Can't access protocol common parameters	
	Can't access protocol node parameters	
	Can't access model	
	Can't access memory type	
	strError.c_str()	
	not allowed icom type	
	invalid natural data type for this memory type	
	invalid field 'selector type'	
	PGN definition not found in the table	
	The field not found in this PGN	

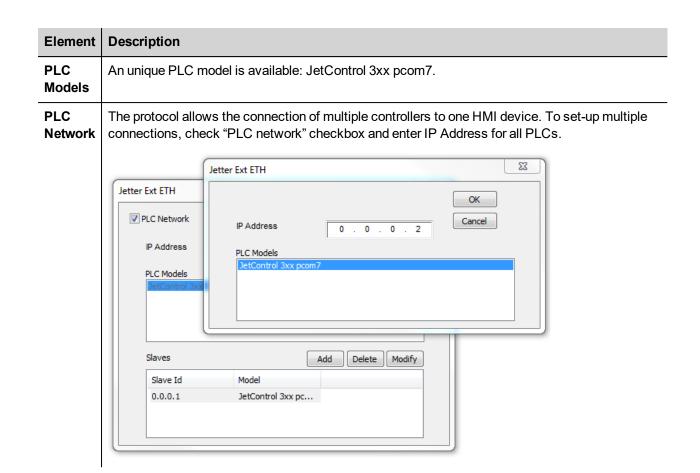
Jetter Ext ETH

The Jetter Ext ETH driver has been developed to communicate with Jetter devices using the PCOM7 protocol.


The HMI protocol identifies Jetter devices using their IP addresses. You should take note of these addresses as you assign them because you will need them later in the set-up phase of the user interface application.

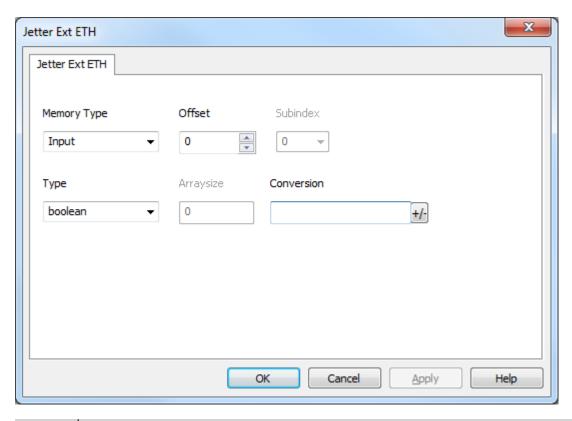
Different physical media, gateways, routers and hubs can be used in the communication network. Also, other devices can independently make simultaneous use of the network. However, it is important to ensure that the traffic generated by these devices does not degrade the communication speed (round-trip time) to an unacceptable level. Too slow communication between the device and the Jetter device may result in low display update rate.

Protocol Editor Settings


Add (+) a new driver in the Protocol editor and select the protocol called "Jetter Ext ETH" from the list of available protocols.

The driver configuration dialog is shown in the following figure.

Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP address	Ethernet IP address of the PLC.
Local Port	Allows to specify the source Port used from the HMI to communicate with PLC.



Tag Editor Settings

Into Tag editor select the protocol "Jetter Ext ETH" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description			
Memory Type	Area of PLC where tag is located.			
Offset	Offset address where	tag is located.		
SubInd ex	This allows resource offset selection within the register.			
Туре	Data Type	Data Type Memory Space Limits		
	boolean	1 bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	float	IEEE single-precision	1.17e-38 3.40e38	
		32-bit floating point type		
	string Refer to "String data type chapter"		,	

Element	Description		
	Note: to de "byte[]", "sh	•	Data Type format followed by square brackets like
Arraysi	In case of array	y Tag, this property repres	ents the number of array elements.
ze	 In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 		
	Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.		
Conver	Conversion to be appl	ied to the tag.	
sion	Conversion		
	inv,swap2	Allowed	Configured
		BCD AB->BA ABCD->CDAB	Inv bits ABCD->CDAB

ABCDEFGH->GHEFCDAB

Inv bits

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Cancel

OK

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 \rightarrow 0110 (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	Example: 25.36 → -25.36
AB -> BA	Swap nibbles of a byte. Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example:

Element	Description	
	Value	Description
		9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
	ABCDEFGH -> GHEFCDAB	Swap bytes of a double word. Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	New Format	Jetter "string" data format

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

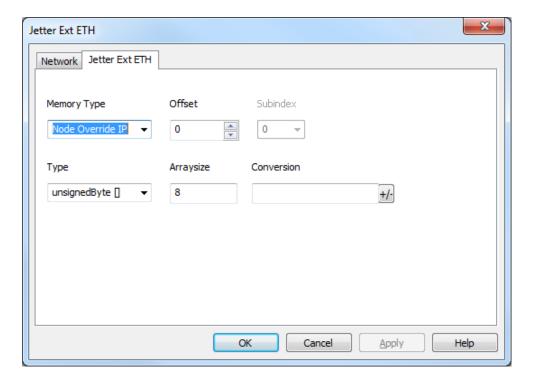
Special data types

The Jetter Ext ETH driver provides one special data type called "Node Override IP".

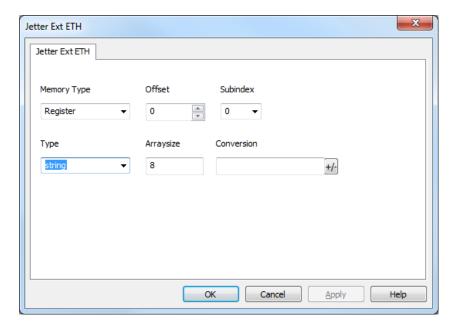
The Node override IP allows changing at run time the IP address of the controller. This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

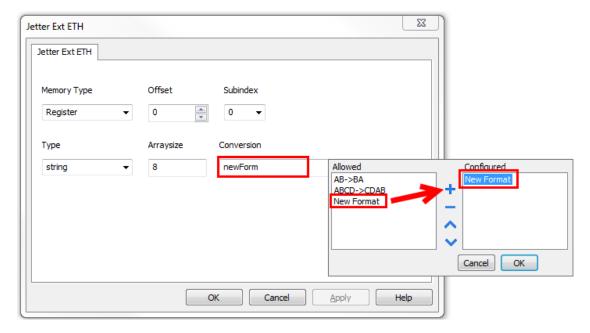
The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

If the Node Override IP is set to 0.0.0.0, all the communication with the slave is stopped, no request frames are generated anymore.


If the Node Override IP has a value different from 0.0.0.0, it is interpreted as node IP override and the controller IP address is replaced run-time with the new value.

In case the device has been configured to access to a network of controllers, each node has its own Node Override IP variable.


Note: the Node Override IP values assigned at run-time are retained through power cycles


String data type

The Jetter devices allow to define within the programming software two different type of string variables: "Regstring" is the old format while "string" is the new format, both these formats are supported by the Jetter Ext ETH driver.

When "Regstring" format is used the corresponding Tag in JMobile must be configured simply selecting string as data type as shown in the following figure, no further steps are required.

When "string" format is used once selected the string data type in the Tag definition dialog it is necessary, as shown in the following figure, to add a New Format conversion.

Communication Status

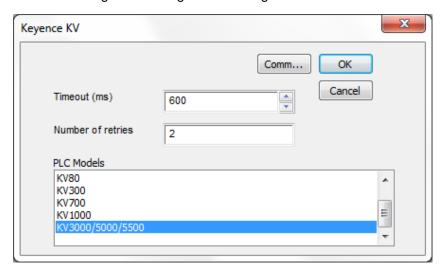
The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
No response	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Incorrect node address in response	The device did receive from the controller a response with invalid node address
The received message too short	The device did receive from the controller a response with invalid format
Incorrect writing data acknowledge	Controller did not accept write request; ensure the data programmed in the project are consistent with the controller resources

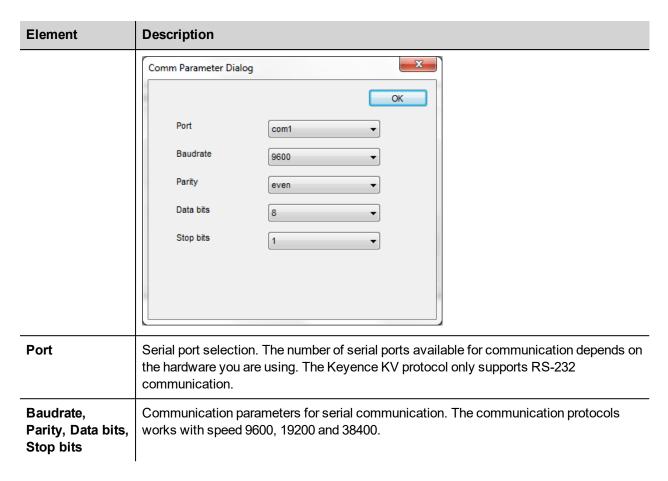
Keyence KV

The HMI devices can be connected to a Keyence KV PLC using this serial communication driver.


This driver has been designed for connection to the programming port of the PLC.

Please note that changes in the communication protocol specifications or PLC hardware may have occurred since this documentation was created. Some changes may eventually affect the functionality of this communication driver. Always test and verify the functionality of your application. To fully support changes in PLC hardware and communication protocols, communication drivers are continuously updated. Always ensure that the latest version of communication driver is used in your application.

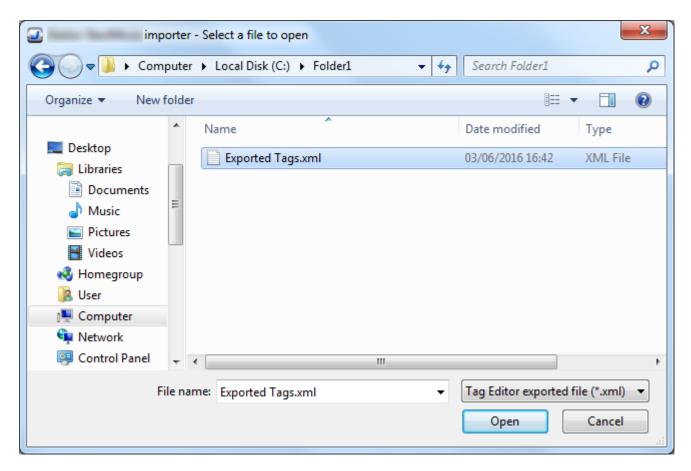
Protocol Editor Settings


Add (+) a driver in the Protocol Editor and select the protocol called "Keyence KV" from the list of available protocols.

The driver configuration dialog is shown in figure.

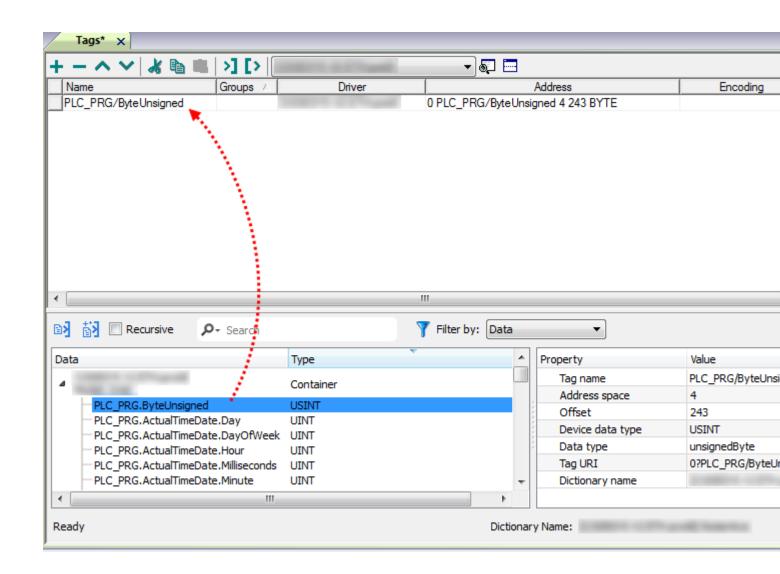
Element	Description
Timeout (ms)	Value of communication timeout used by the protocol when waiting for answer from the PLC.
Number of retries	Number of times a communication session is repeated before declaring reporting communication error.
PLC Models	The list allows selecting the PLC model you are going to connect to. The selection will influence the data range offset per each data type according to the specific PLC memory resources.
Comm	Opens the serial port configuration dialog box.

Setting-up the PLC for Communication

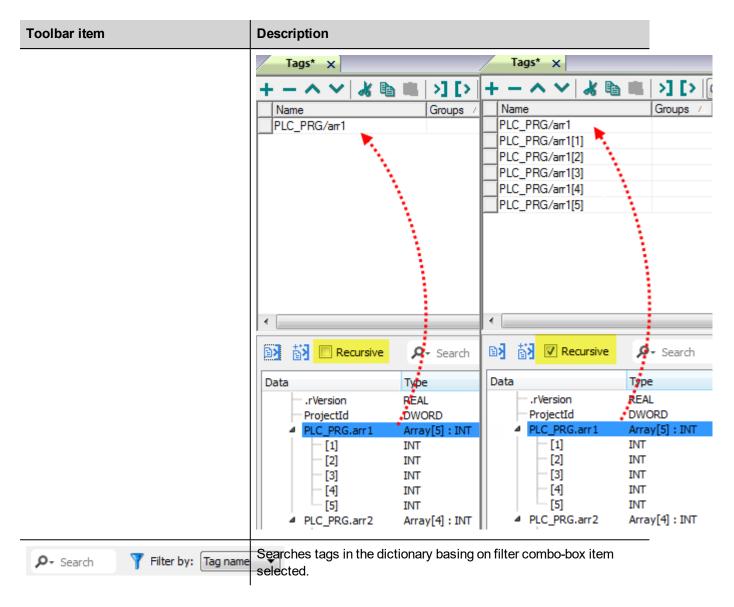

Keyence KV PLC's do not require any particular setup-up for communication at the programming port.

Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.



Locate the .xml file exported from Tag Editor and click Open.



Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E. K≘	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Kå	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

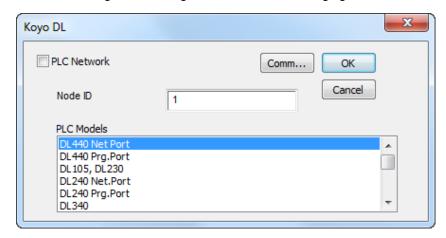
Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Description
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Timeout receiving response characters	Returned when a request is not replied within the specified timeout period between chars in frame, should never be reported; contact technical support
Line Error	Returned when an error on the communication parameter setup is detected (parity, baud

Error	Description	
	rate, data bits, stop bits); ensure the communication parameter settings of the controller is compatible with panel communication setup	
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources	


Koyo DL

The Koyo DL driver has been developed for the communication with Koyo DL series controllers trough serial connection.

Protocol Editor Settings

Add (+) a new driver in the Protocol editor and select the protocol called "Koyo DL" from the list of available protocols.

The driver configuration dialog is shown in the following figure:

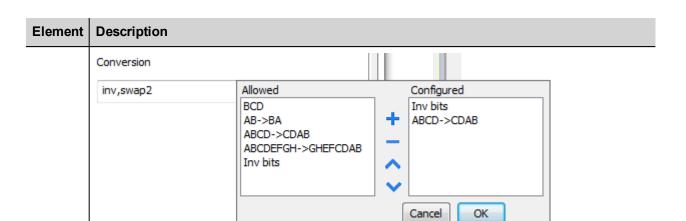
Element	Description
Node ID	Controller Node ID
PLC Models	The driver supports communication with different DL controllers. Please check directly in the programming IDE software for a complete list of supported controllers.
PLC Network	The protocol allows the connection of multiple controllers to one operator panel. To set- up multiple connections, check "PLC network" checkbox and configure all controllers.

Element Description 23 Koyo DL ▼ PLC Network Comm... OK Cancel Node ID -1 PLC Models DL440 Prg.Port DL105, DL230 DL240 Net.Port DL240 Prg.Port DL340 Add Delete Modify Slave Id Koyo DL OK Cancel Node ID PLC Models DL440 Prg.Port DL105, DL230 DL240 Net.Port DL240 Prg.Port Comm... Gives access to the serial port configuration parameters as shown in the figure below. Comm Parameter Dialog OK Port com1 Baudrate 9600 • Parity even Data bits 8 Stop bits Mode RS-485 **Port** Serial port selection for eTOP series operator panels: Series 400 Series 500/600 PLC Port **Onboard Serial Port** com1 PC/Printer Port com2 Optional Module on slot #1 or #2 com3 Not available Optional Module on slot #3 or #4

Element	Description
Baud rate, Parity, Data bits, Stop bits	Communication parameters for serial communication
Mode	Serial port mode; available options:
	• RS-232,
	• RS-485 (2 wires)
	• RS-422 (4 wires)

Tag Editor Settings

Into Tag editor select the protocol "Koyo DL" from the list of defined protocols and add a tag using [+] button.


Tag settings can be defined using the following dialog:

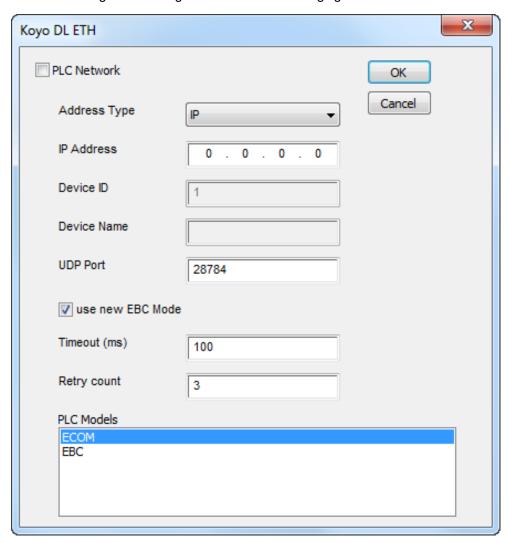
Element	Description
Memory Type	Memory resource where tag is located.
Offset	Offset address where tag is located.
SubInd ex	This allows resource offset selection within the register.

Element	Description		
Data Type	Data Type	Memory Space	Limits
1 3 60	boolean	1 bit data	01
	byte	8-bit data	-128 127
	short	16-bit data	-32768 32767
	int	32-bit data	-2.1e9 2.1e9
	unsignedByte	8-bit data	0 255
	unsignedShort	16-bit data	0 65535
	unsignedInt	32-bit data	0 4.2e9
	float	IEEE single-precision	1.17e-38 3.40e38
		32-bit floating point type	
	double	IEEE double-precision 64-bit floating point type	2.2e-308 1.79e308
	string	Array of elements containing character encoding.	code defined by selected
	binary	Arbitrary binary data	
	- Time	to define arrays, select one of Data Type]", "short[]"…	e format followed by square brackets like
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 		
	or Latin1 in Tag E	•	hars if Encoding property is set to UTF-8 -16BE or UTF-16LE one char requires 2
Conver	Conversion to be	applied to the Tag.	

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 \rightarrow 0110 (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011001000101101000011100101

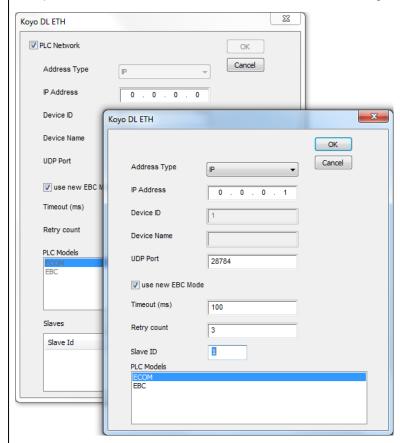
Element	Description		
	Value	Description	
		→ 1 10000011100 1010101000101101101101100101101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversion list.	and click on plus button. The selected item will be added on Configured	
	If more conversions ar Configured list).	e configured, they will be applied in order (from top to bottom of	
	Use the arrow buttons	to order the configured conversions.	


Koyo DL ETH

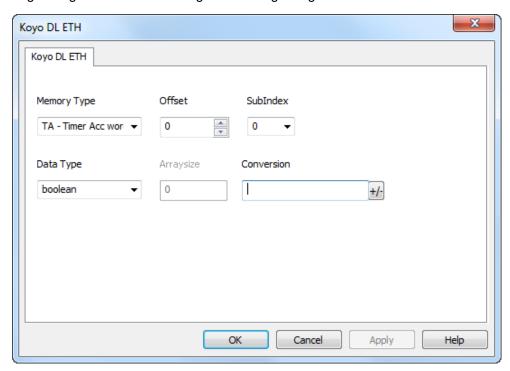
The Koyo DL ETH driver has been developed for the connection of Koyo DL series controllers trough Ethernet.

Protocol Editor Settings

Add (+) a new driver in the Protocol editor and select the protocol called "Koyo DL ETH" from the list of available protocols.


The driver configuration dialog is shown in the following figure:

Element	Description
Address Type	Allow to select which address type to use
IP Address	When Address Type is "IP", define the controller IP Address
Device ID	When Address Type is "ID", define the controller Device ID


Element	Description		
Device Name	When Address Type is "Name", define the controller name		
UDP Port	UDP port of controller		
use new EBC Mode	If PLC Model is "EBC" allow to use the new EBC Mode		
Timeout (ms)	Defines the time inserted by the protocol between two retries of the same message in case of missing response from the server device. Value is expressed in milliseconds.		
Retry count	Defines the number of times a certain message will be sent to the controller before reporting the communication error status. A value of 1 for this parameter means the HMI will eventually report the communication error status if the response to the first request packet is not correct.		
PLC Models	The driver supports communication with different DL controllers. Please check directly in the programming IDE software for a complete list of supported controllers.		
PLC Network	The protocol allows the connection of multiple controllers to one operator panel. To set-up multiple connections, check "PLC network" checkbox and configure all controllers.		

Tag Editor Settings

Into Tag editor select the protocol "Koyo DL" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description			
Memory Type	Memory resource where tag is located.			
Offset	Offset address w	Offset address where tag is located.		
SubInd ex	This allows resource offset selection within the register.			
Data Type	Data Type	Memory Space	Limits	
Type	boolean	1 bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	

Element Description Limits **Data Type Memory Space** float IEEE single-precision 1.17e-38 ... 3.40e38 32-bit floating point type double IEEE double-precision 64-bit floating 2.2e-308 ... 1.79e308 point type string Array of elements containing character code defined by selected encoding. Arbitrary binary data binary NOTE: to define arrays, select one of Data Type format followed by square brackets like "byte[]", "short[]"... **Arraysi** • In case of array Tag, this property represents the number of array elements. ze • In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Conver Conversion to be applied to the Tag. sion Conversion Allowed Configured inv,swap2 BCD Inv bits AB->BA ABCD->CDAB ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits Cancel OK

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Element	Description	
	Value	Description
	Inv bits	Invert all the bits of the tag.
		Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
	Negate	Set the opposite of the tag value.
		<i>Example:</i> 25.36 → -25.36
	AB -> BA	Swap nibbles of a byte.
		Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
	ABCD -> CDAB	Swap bytes of a word.
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
	ABCDEFGH ->	Swap bytes of a double word.
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP ->	Swap bytes of a long word.
	OPMDAB	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

Element	Description
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to order the configured conversions.

KNX TP/IP

KNX is the association that promotes the KNX communication standard, designed for applications in home and building automation systems.

The KNX standard, approved as European Standard EN 50090, EN 13321-1, is based on the communication stack of EIB with some extensions. EIB is the acronym for European Installation Bus.

Additional information and further details can be found in the KNX web site www.knx.org.

The network communication media supported by the HMI panels are:

- TP-1: twisted pair, type 1, which corresponds to a bus line operating at 9600 bit/s.
- IP: network connection via TCP/IP over Ethernet network.

Note: Connection to KNX systems in TP Mode requires the optional KNX communication module PLCM02. Verify the suitable version of communication module for your HMI model.

The EIB is an event-driven decentralized automation system.

The information to be transmitted over the bus is organized in "telegrams" sent by a source to one or more destination devices.

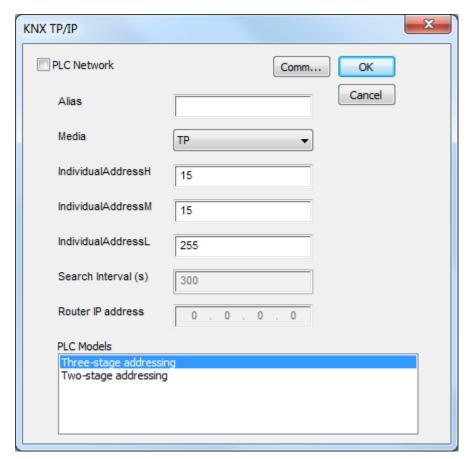
The bus line of EIB systems carries both data and power for the devices. The data is modulated over the DC voltage of the power supply.

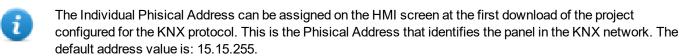
HMI panels are not powered from the network and they still need the usual power supply.

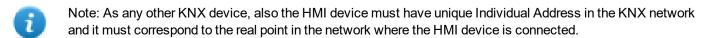
The planning, design and commissioning of KNX installations are normally done using the ETS configuration software. This software tool is supplied by the KNX organization. ETS is a registered trademark of KNX.

This document contains the information required to use ETS in combination with the HMI panels.

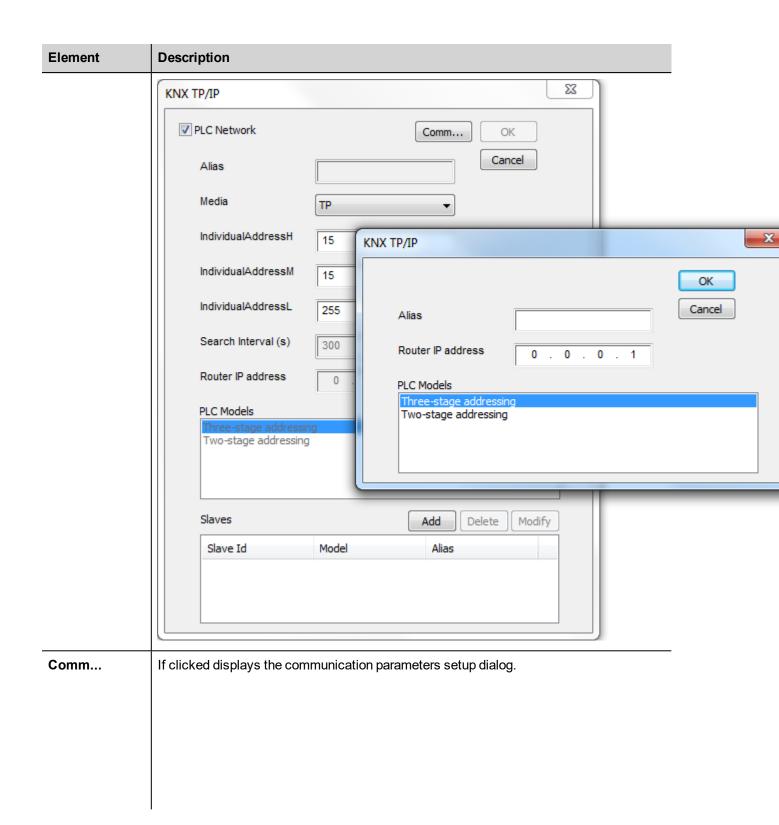
All KNX compliant devices come with a device descriptor delivered as a file to be imported in the configuration tool.


The model adopted by HMIs corresponds to a KNX device with no objects. For what concerns the ETS, the only function supported by the HMI panels is the device physical address assignment.


Protocol Editor Settings

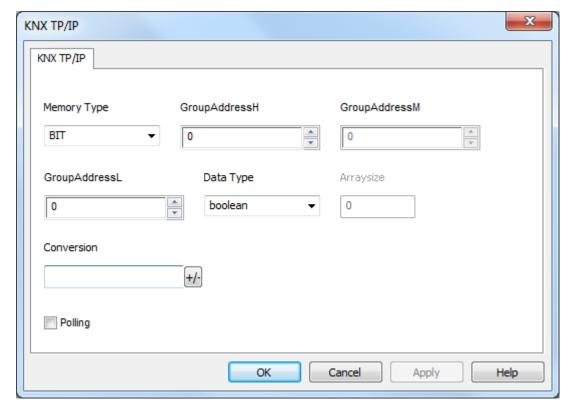

Add (+) a driver in the Protocol Editor and select the protocol called "KNX TP/IP" from the list of available protocols.

The protocol parameters can be selected from the dedicated dialog box:



Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
Media	Allows the selection of the transport Media. select TP to connect to the KNX network using the optional KNX communication module PLCM02 select IP to connect to the KNX network via TCP/IP
IndividualAddr essH	Physical Address High Part (Area)
IndividualAddr essM	Physical Address Medium Part (Line)

Element	Description	
IndividualAddr essL	Physical Address Low Part (Device)	
PLC Models	Allows to choose if KNX telegrams have two or three stage addressing. This selection have to be made basing on KNX device used.	
	Two-stage addressing = KNX telegrams are composed by GoupAddressH / GroupAddressL	
	Three-stage addressing = KNX telegrams are composed by GoupAddressH / GroupAddressM / GroupAddressL	
Search Interval (s)	Available only when Media property is set to IP . The KNX driver will re-evaluate the network with period "Search Interval" (default: 300 seconds). On searching the network, the KNX driver will discover the tunneling endpoints that are available at that time. Endpoints will therefore be registered as possible sources / destinations for group address operations. Depending on endpoints settings or endpoints temporary unavailability the available sources / destinations for group address operations may vary. Thus the capability for the KNX driver to re-evaluate periodically its knowledge about the network.	
Router IP address	Available only when Media property is set to IP . This option allows to define the KNX router IP address. If this property is left "0.0.0.0", a multicast request is sent (with timing specified in Search Interval property) via TCP/IP to find a valid KNX TCP interface.	
PLC Network	This option allows to define a network of devices, by specifying Alias, Router IP address and PLC Model for each node.	

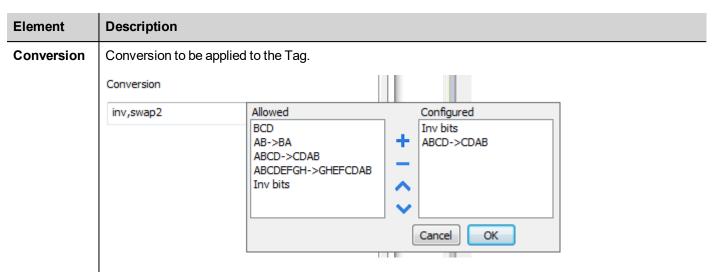

	Element	Description
	Polling Time	Defines how often the tags with Polling attribute enabled are requested to the network (seconds).
Communication Protoco	Transmission ols User Manual v20 Rate	Defines the interval of time between two consecutive write 06 (2017-04-04) EN © 2009-2017 Exor International S.p. A. operations performed by the operator panel (milliseconds).

Element	Description	
	Element Description	
	Polling Time	Defines how often the tags with Polling attribute enabled are requested to the network (seconds).
	Transmission Rate	Defines the interval of time between two consecutive write operations performed by the operator panel (milliseconds).

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select KNX TP/IP from the Driver list: tag definition dialog is displayed.



	ent Description			
Memory Type	KNX resource where tag is located.			
/pe	Memory Type	KNX Data Type	KNX Datapoint Type	
	BIT	Bit	1.0xx	
	1BIT	1 Bit Controlled	2.0xx	
	3BIT	3 Bits Controlled	3.007	
	CS	Character Set	4.00x	
	OU	Octet, Unsigned	5.00x 17.001 18.001	
	os	Octet, Signed	6.001 6.010	
	2OU	2 Octets, Unsigned	7.0xx	
	2OS	2 Octets, Signed	8.0xx	
	2OF	2 Octets, Float	9.0xx	
	TIM	Time	10.001	
	DAT	Date	11.001	
	STR	String	16.000 16.001	
	4OU	4 Octets, Unsigned	12.001	
	4OS	4 Octets, Signed	13.0xx	
	4OF	4 Octets, Float	14.0xx	
	ACC	Access	15.000	
	U1	Uncertain (1 byte)	Uncertain	
	U2	Uncertain (2 Bytes)	Uncertain	
	U3	Uncertain (3 Bytes)	Uncertain	
	U4	Uncertain (4 Bytes)	Uncertain	
	Programming Mode	Check "Special Data Types" chapter for details		
	Individual Address			

Element	Description		
GroupAddre	conversion, the "0/0/ 0÷255 of Unsigned C 1:Page1 protocols* Tags + - ^ V * I I I I I I I I I I I I I I I I I I	KNX TP:prot1	÷100 instead of standard range Comment Simulator Scaling 100 / 255 *x + 0
ssH	Range: 0 - 31		
GroupAddre ssM	Middle Group Address of KNX resource. Range: 0 - 2047 Available only if PLC Model property is set to Three-stage addressing. Check "Protocol Editor Settings" chapter for details.		
GroupAddre ssL	Low Group Address of KNX rerource. Range: 0 - 255		
Data Type	Data Type	Memory Space	Limits
	boolean	1-bit data	01
	byte	8-bit data	-128 127
	short	16-bit data	-32768 32767
	int	32-bit data	-2.1e9 2.1e9
	unsignedByte	8-bit data	0 255
	unsignedShort	16-bit data	0 65535
	unsignedInt	32-bit data	0 4.2e9
	float	IEEE single-precision 32-bit floating point type	1.17e-38 3.4e38
	string Array of elements containing character code defined by encoding		code defined by selected
	Note: to define arrays. select one of Data Type format followed by square brackets []", "short[]"		
Arraysize		s property represents the number of array s property represents the maximum numl	
	Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 of Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 by		

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

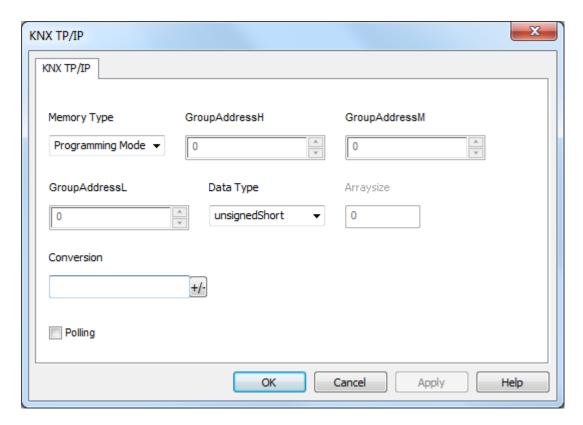
Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format)

Element	Description		
	Value	Description	
		0 1000000110 0001110010111011001000101101000011100101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	KNX_DATE	Check "Special Data Types" chapter for details	
	KNX_TIME		
	KNX_DayOfWeek		
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list) Use the arrow buttons to order the configured conversions.		
Polling	If checked, this option allows to force continuous read requests from the HMI to the Tag. The timing of polling requests is defined from "Polling Time" option available in "Comm" window. Check "Protocol Editor Settings" chapter for details.		

Special Data Types

Programming Mode

Programming Mode is a special device operating mode that allows changing some system parameters. It is common to most KNX TP devices.


Programming Mode for Individual Address programming via ETS can be set directly in the HMI device.

The first time a HMI project made for the KNX TP communication driver is downloaded to an HMI panel, the unit is assigned the specified Physical Address.

Programming Mode for the HMI panel can be enabled by placing on the screen a widget assigned to the Programming Mode internal variable.

At present there are no database files that can be imported in ETS, so the HMI device can't be programmed using ETS software. The Programming Mode is available only for future functions.

The "Programming Mode" value can be 0 or 1.

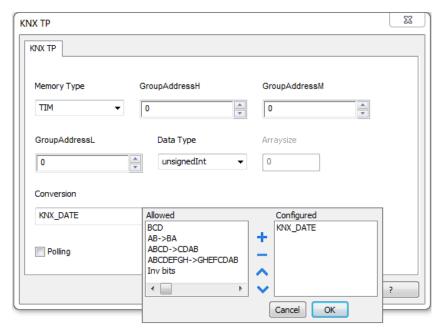
Individual Address

The Individual Address can be displayed placing on the HMI screen an object for "Individual Address" data type.

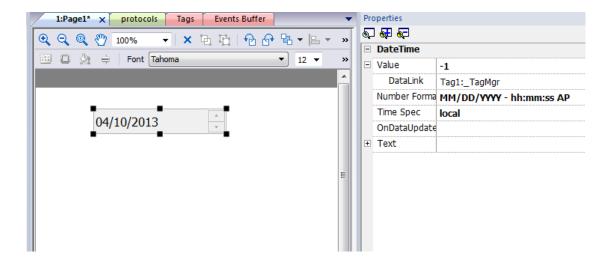
The Individual Address can be alternatively assigned directly on HMI screen with a write operation to the internal variable.

Please note that, as any other KNX device, also the HMI device must have unique Individual Address in a KNX network.

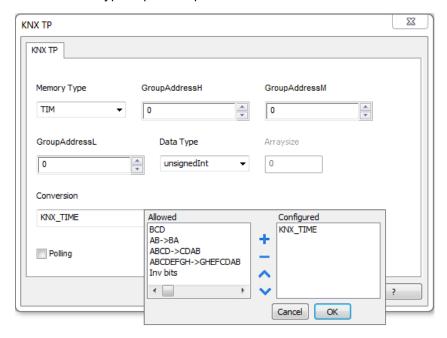
In the following figure an example of how the individual address in hex format has to be interpreted.

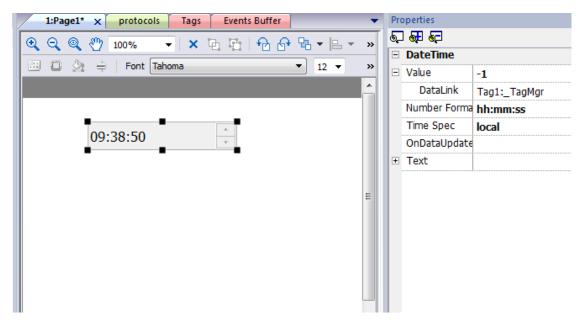


Note: The max value for Individual address is 15.15.255


Date

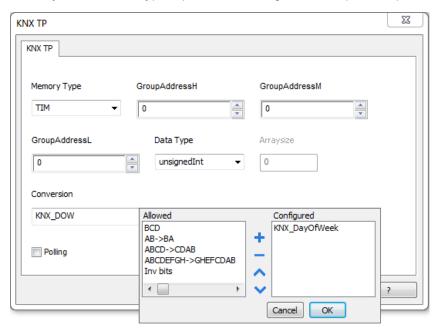
The Date data type requires a special data conversion.


The correct visualization of the date information from this tag can be achieved using the widget dedicated to handle "DateTime" data source.



Time

The Time data type requires a special data conversion.

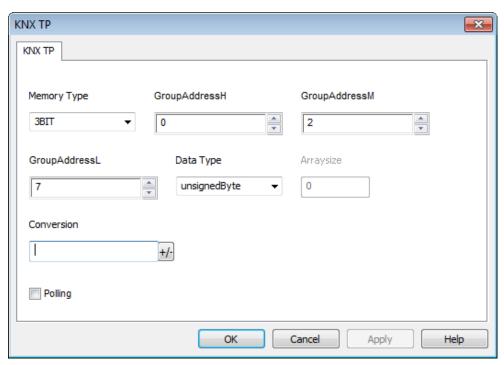

The correct visualization of the time information from this tag can be achieved using the widget dedicated to handle "Time" data source.

- Note: In the "DateTime" widget it is important to set properly the "Time Spec" property in order to avoid the influence on the visualization of the HMI clock timezone and DST settings; Select Number format properly.
- Note: Write operation from HMI to KNX network will be executed only with "No Day" information.

Day of Week

The Day of Week data type is part of Time telegram and requires a special data conversion.

Note: This object is in read-only mode

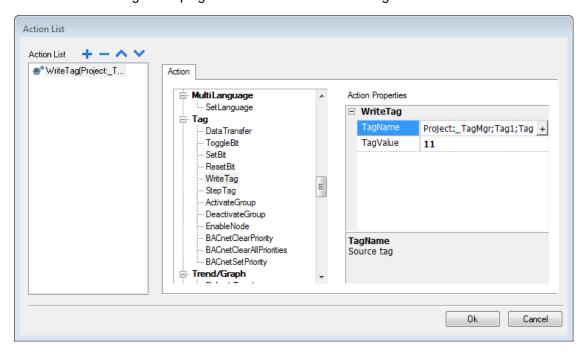


Dimming function

3 Bits Controlled data type has to be used to operate a dimming function.

This is a 4 bit data where the 1st bit is used to determine if increment or decrement the value and the remaining 3 bits determines the percentage of dimming applied.

The Tag will represent a fixed percentage value (from 0% to 100%) of increasing or decreasing of a particular device value.


The table below reports the action performed for each value assumed by the Tag.

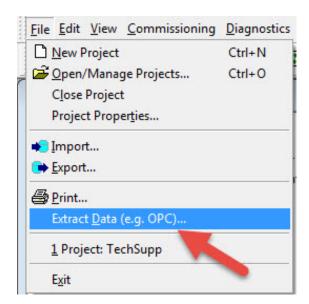
For example, to increase the dimmed value of 25% it is necessary to write into the Tag that manages the dimming the binary value "1011", which in decimal code, corresponds to "11".

Direction	Data	Action
0	001	Down 100%
0	010	Down 50%
0	011	Down 25%
0	100	Down 12%
0	101	Down 6%
0	110	Down 3%
0	111	Down 1%
1	001	Up 100%
1	010	Up 50%
1	011	Up 25%

Direction	Data	Action
1	100	Up 12%
1	101	Up 6%
1	110	Up 3%
1	111	Up 1%

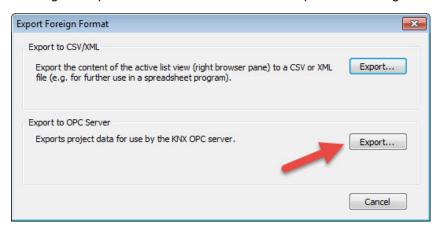
As mentioned before to increase the dimmed value by 25% it is necessary to write 11 in the corresponding Tag. To do this a Write Tag action programmed as shown in the next figure must be created.

Tag Import


Exporting Tags from PLC

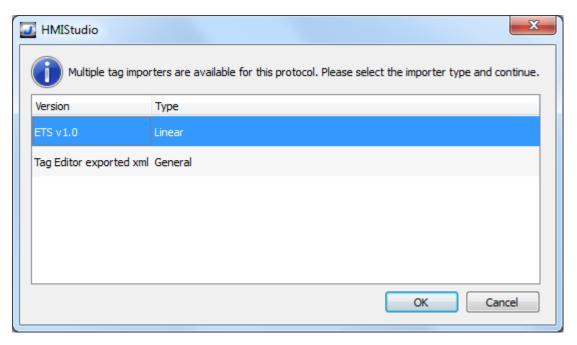
The KNX TP/IP driver supports the Tag import facility. The import filter accepts symbol files with extension ".esf" created by the ETS programming tools.

The ETS configuration software can export the database information related to group addresses.


To export database information select "Extract data" from the File menu of ETS software.

Select the option "Export to OPC Server" to export data in ".esf" format.

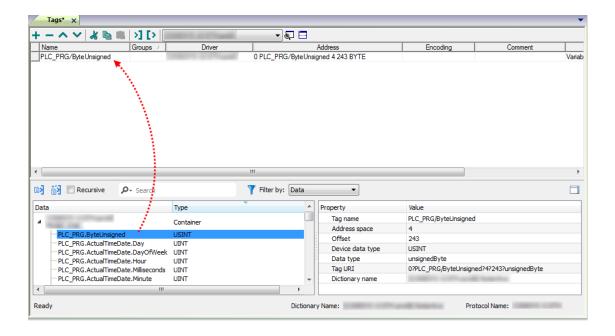
Clicking on "Export..." creates the ".esf" file to be imported in the Tag Editor.



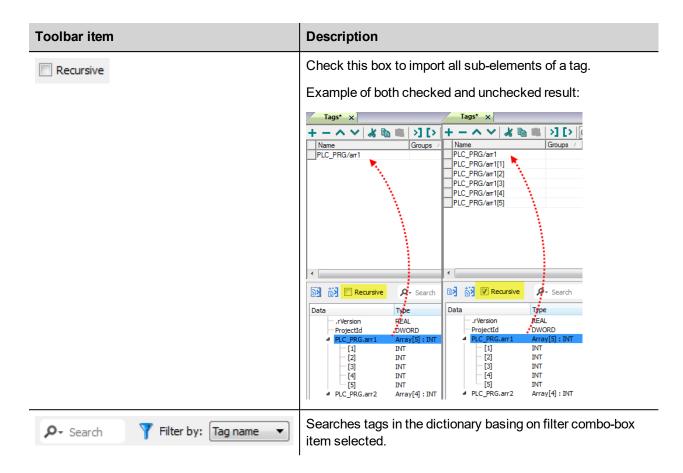
Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the Import Tags button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description	
ETS v1.0	Requires a .esf file.	
Linear	All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

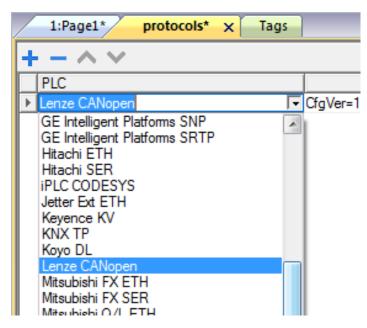
Communication Status

The communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

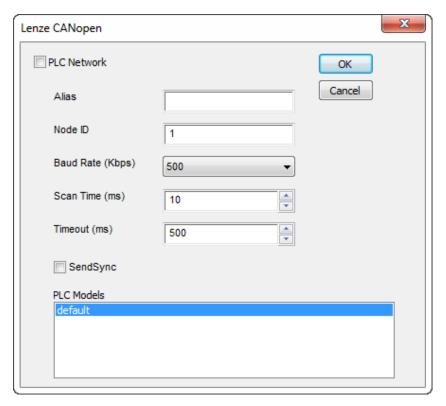
The status codes supported for this communication driver are:

Error	Notes
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Response error	The tag requested by the panel may be not available in the system or communication session completed with errors
General Error	Error cannot be identified; should never be reported; contact technical support
Internal software error	Unrecognized error

Lenze CANopen

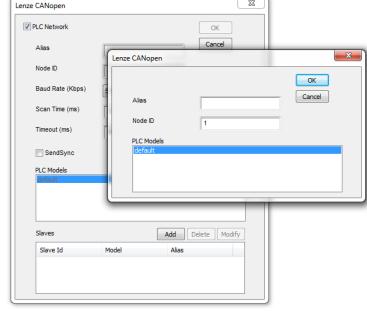

The Lenze CANopen communication driver has been designed to connect HMI products to Lenze controllers using the CANopen network. A new device communication profile has been developed to takes advantage from the advanced user interface features of the software, while retaining the simple networking concept supported by the CANopen network.

Connection to CANopen networks requires the optional CANopen communication module.

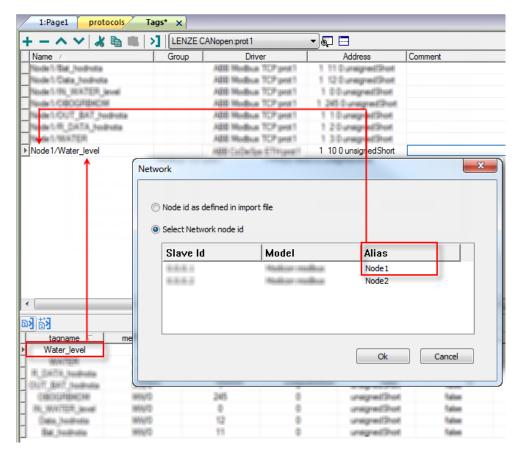

Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Please ensure that the latest driver is used in the application.

Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "Lenze CANopen" from the list of available protocols.


The protocol configuration dialog is shown in figure.

Element	Description
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node
Node ID	CANopen Node ID assigned to the slave device
Baud Rate (kbps)	Speed of the CANopen network
Scan Time (ms)	Scan time is dependent upon your specific process or application requirements and the capabilities of your controller.
Timeout (ms)	Maximum allowed time the driver will wait for a response from the device before reporting a communication error
SendSync	The Sync-Producer provides the synchronization-signal for the Sync-Consumer. When the Sync-Consumers receive the signal they start carrying out their synchronous tasks.

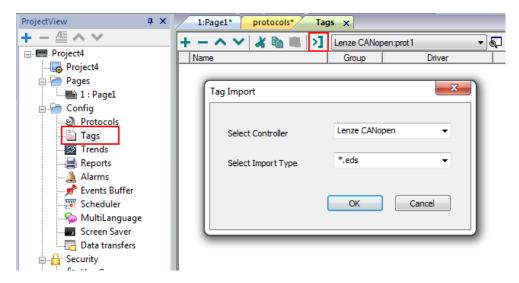

Element	Description	
PLC Models	This version supports only one device model.	
PLC Network	The protocol allows the connection of multiple controllers to one operator panel. To set-up multiple connections, check "PLC network" checkbox and enter the node ID per each slave you need to access.	
	Lenze CANopen	
	▼ PLC Network OK	
	Alias Cancel	

Aliasing Tag Names in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

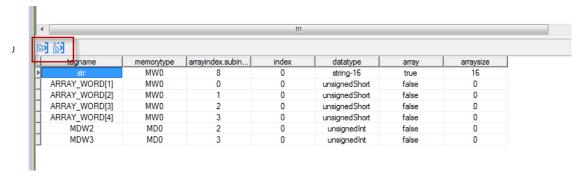
The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: Aliasing tag names is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.


The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Tag Import

The Lenze CANopen driver supports the Tag import facility. The import filter accepts symbol files with extension ".eds" provided by Lenze, the device manufacturer.


In Tag Editor select the communication driver and click on the "Import tag" button to start the importer.

Locate the ".eds" file and confirm.

The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the "add tags" button as shown in figure.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
No response	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Invalid access to var	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Wrong answer frame from server	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
Var is too long	The panel did receive from the controller a response, but its length exceeded the max length admitted ensure the data programmed in the project are consistent with the controller resources.

Modbus RTU

The operator panels can be connected to a Modbus network as the network master using this communication driver.

Implementation details

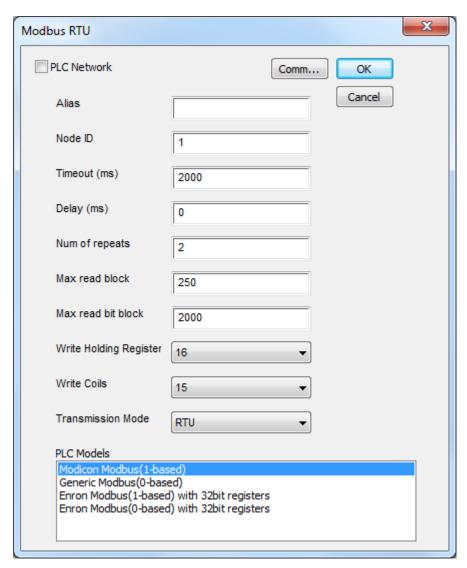
The Modbus RTU implementation supports only a subset of the Modbus standard RTU function codes.

Code	Function	Description
01	Read Coil Status	Reads multiple bits in the device Coil area
02	Read Input Status	Read the ON/OFF status of the discrete inputs (1x reference) in the slave
03	Read Holding Registers	Read multiple Registers
04	Read Input Registers	Reads the binary contents of input registers (3x reference) in the slave
05	Force Single Coil	Forces a single Coil to either ON or OFF
06	Preset Single Register	Presets a value in a Register
16	Preset Multiple Registers	Presets value in multiple Registers

Note: Communication speed with controllers is supported up to 115200 baud.

Note: Floating point data format is IEEE standard compliant.

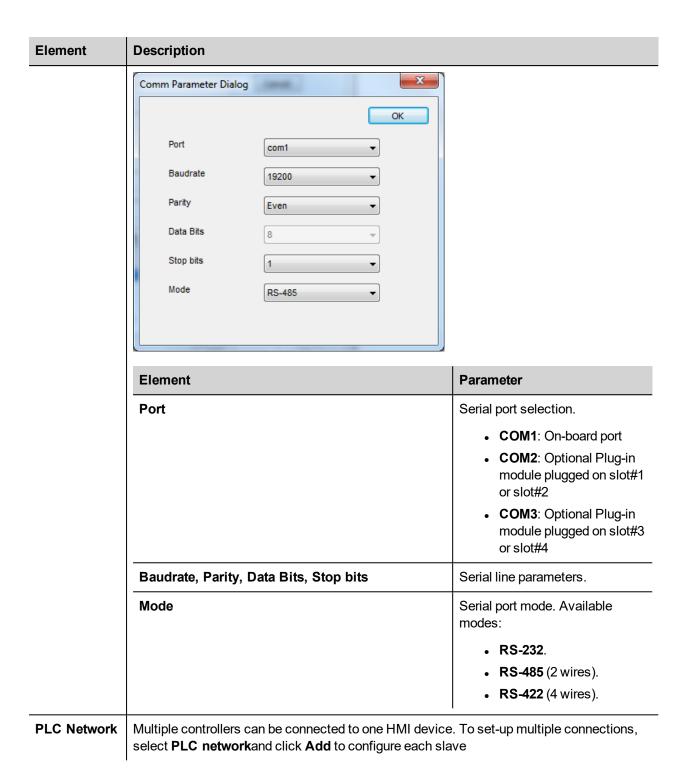
Protocol Editor Settings


Adding a protocol

To configure the protocol:

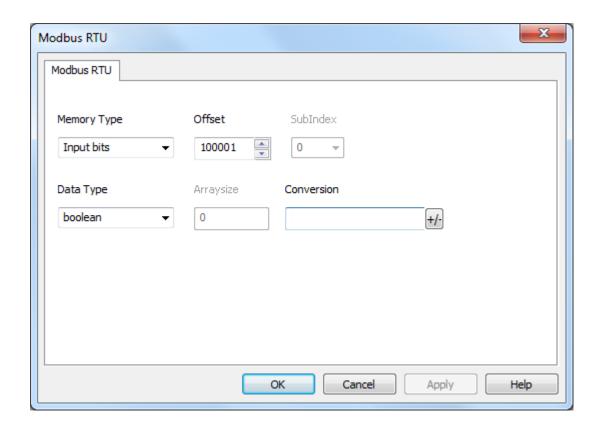
- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.



Element	Description
Alias Name identifying nodes in network configurations. The name will be added as a preach tag name imported for each network node.	
Node ID	Modbus node of the slave device.
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the server device.
Delay (ms)	Time delay in milliseconds between the end of the last received frame and the starting of a new request. If set to 0, the new request will be issued as soon as the internal system is able to reschedule it.
Num of repeats	Number of times a certain message will be sent to the controller before reporting the communication error status.
	When set to 1 the panel will report the communication error if the response to the first request packet is not correct.

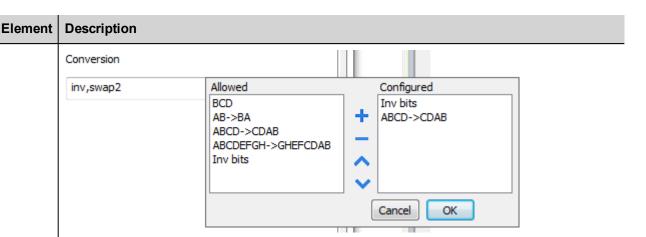
Element	Description		
Max read block	Maximum length in bytes of a data block request. It applies only to read access of Holding Registers.		
Max read bit block	Maximum length in bits of a block request. It applies only to read access of Input Bits and Output Coils.		
Write Holding	Modbus function for write operations to Holding Registers. Select between the function 06 (preset single register) and function 16 (preset multiple registers).		
Register	If function 06 is selected, the protocol will always use function 06 for writing to the controller, even when writing to multiple consecutive registers.		
	If function 16 is selected, the protocol will always use function 16 to write to the controller, even for a single register write request and the Max read block size parameter of the query is set to 2 . The use of function 16 may result in higher communication performance.		
Write Coils	Modbus function for write operations to Output Coils. Select between the function 05 (write single coil) and function 15 (write multiple coils).		
	If Modbus function 05 is selected, the protocol will always use function 05 for writing to the controller, even when writing to multiple consecutive coils.		
	If Modbus function 15 is selected, the protocol will always use function 15 to write to the controller, even for a single coil write request. The use of function 15 may result in higher communication performance.		
Transmission	RTU: use RTU mode		
Mode	ASCII: use ASCII mode		
	Note: When PLC network is active, all nodes will be configured with the same Transmission Mode.		
PLC Models	Allows to select between different PLC models:		
	Modicon Modbus (1-based): Modbus implementation where all resources starts with offset 1.		
	Generic Modbus (0-based): Modbus implementation where all resources starts with offset 0.		
	 Enron Modbus (1-based): Extends Modicon Mobdus implementation with 32 bit registers memory area. 		
	Enron Modbus (0-base): Extends Generic Modbus implementation with 32 bit registers memory area.		
	Note: The address range used in the Modbus frames is always between 0 and 65535 for the Holding Registers and between 0 and 65535 for Coils.		
Comm	If clicked displays the communication parameters setup dialog.		



Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select Modbus RTU from the protocol list: tag definition dialog is displayed.



Element	Description			
Memory	Modbus resource where tag is located.			
Туре	Memory Type	Description		
	Coil Status	Coils		
	Input Status	Discrete Input		
	Input Registers	Input Registers		
	Holding Registers	Holding Registers		
	32 bit Registers	32 bit registers memory a	area.	
		Available only for Enron	Modbus PLC Models	
	Node Override ID			
	Modicon Mode			
	Serial Baudrate			
	Serial Parity	protocol parameter (see \$	Special Data Types for mod	e details)
	Serial Stop Bits			
	Serial Mode			
	Serial Done			
Offset	Offset address where tag is loca	ated.		
	Offset addresses are six digits address.	composed by one digit data	a type prefix + five digits reso	ource
	Memory Type	Studio Offset range	Modicon Offset range	Generic Modbus Offset range
	Coil Status	0-65535		
	Input Status	100000 – 165535		
	Input Registers	300000 – 365535	1 – 65536	0 – 65535
	Holding Registers	400000 – 465535		
	32 bit Registers	0 – 65535		
SubInd ex	This allows resource offset sele	ection within the register.		

Element	ent Description			
Data Type	Data Type	Memory Space	Limits	
ı yp e	boolean	1-bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	int64	64-bit data	-9.2e18 9.2e18	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	uint64	64-bit data	0 1.8e19	
	float	IEEE single-precision 32-bit floating point type	1.17e-38 3.4e38	
	double	IEEE double-precision 64-bit floating point type	2.2e-308 1.79e308	
	string	Array of elements containing character selected encoding	code defined by	
	binary	Arbitrary binary data		
	Note: to define arrays. select one of Data Type format followed by square brackets like "byte[]", "short[]"			
Arraysi ze		s property represents the number of array		
	 In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 			
	or Latin1 in Tag Editor.	onds to number of string chars if Encoding		
Conver	Conversion to be applied to the Tag.			

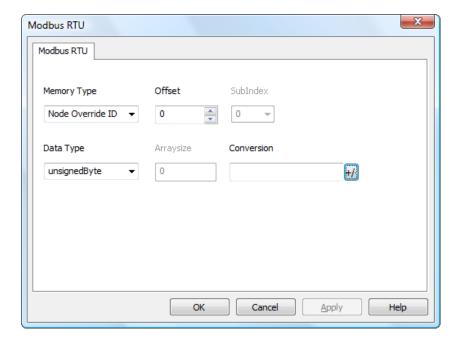
Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011001000101101000011100101

Element	Description		
	Value	Description	
		→ 1 10000011100 10101010000101101101101100101101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversion list.	and click on plus button. The selected item will be added on Configured	
	If more conversions ar Configured list).	re configured, they will be applied in order (from top to bottom of	
	Use the arrow buttons	to order the configured conversions.	

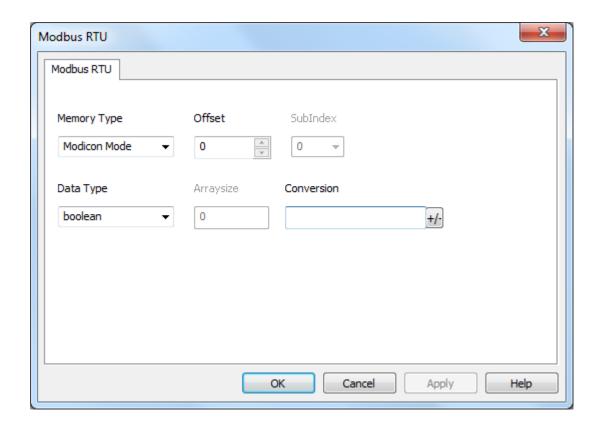
Node Override ID

The protocol provides the special data type Node Override ID which allows you to change the node ID of the slave at runtime. This memory type is an unsigned byte.


The node Override ID is initialized with the value of the node ID specified in the project at programming time.

Node Override ID	Modbus operation	
0	Communication with the controller is stopped. In case of write operation, the request will be transmitted without waiting for a reply.	
1 to 254 It is interpreted as the value of the new node ID and is replaced for runtime operation.		
255	Communication with the controller is stopped; no request messages are generated.	

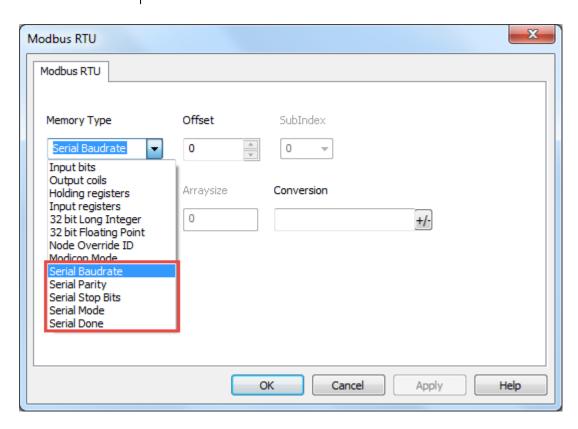
Note: Node Override ID value assigned at runtime is retained through power cycles.


Modicon Mode

The protocol provide a special data type that can be used to override the Modicon Mode parameter at runtime.

Modicon Mode	Description
0	Generic Modbus (0-based). Register indexes start from 0.
1	Modicon Modbus (1-based). Register indexes start from 1.

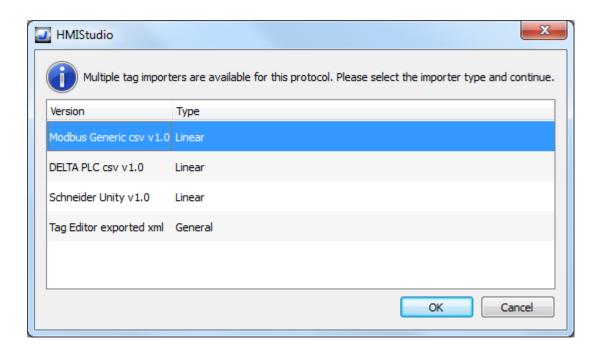
Note: Modicon Mode parameter value assigned at runtime is retained through power cycles.


Serial Parameters Override

The protocol provide special data types that can be used to override the serial parameters at runtime.

Parameter	Descripti	Description	
Serial Baudrate	_	unsigned 32 bit value for baudrate overriding. Possible values are 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.	
Serial Parity	unsigned	unsigned 8 bit value for parity overriding. Possible values are described in the following list.	
	Value Description		
	0	none parity	
1 even parity 2 odd parity		even parity	
		odd parity	
Serial Stop Bits	unsigned 8 bit value for stop bits overriding. Possible values are 1, 2.		
Serial Mode	unsigned 8 bit value for serial mode overriding. Possible values are described in the following list.		

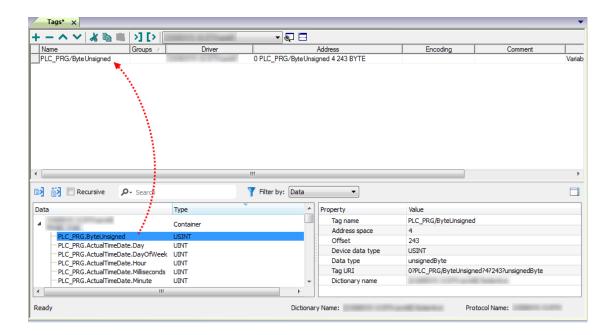
Parameter	Description	
	Value	Description
	0	RS-232 mode
	1	RS-485 mode
	2	RS-422 mode
Serial Done	Set to 1 to overwrite the communication line parameters. The parameters are processed all together only when this variable is set to value 1	



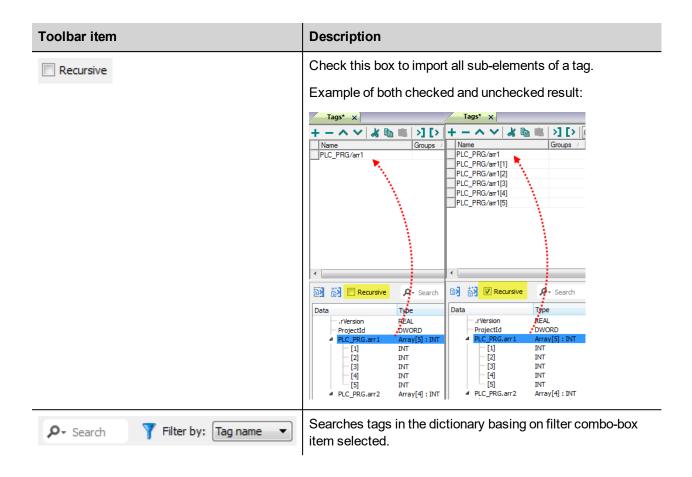
Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Туре	Description	
Modbus Generic csv v1.0 Linear	Requires a .csv file. All variables will be displayed at the same level.	
DELTA PLC csv v1.0	Requires a .csv file. All variables will be displayed at the same level.	
Schneider Unity v1.0 Linear	Requires a .uny file. The file containing symbols must be exported in .txt format and later renamed as .uny. The importer considers only variables located at fixed address and disregards arrays of strings. All other arrays, except for boolean type, are expanded.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button. 1:Page1 Tags* ×	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item Description	
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Ki Ki	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Modbus Generic csv file structure

This protocol supports the import of tag information when provided in .csv format according to the following format:

NodeID, TagName, MemoryType, Address, DataFormat,...,[Comment]

Note: Fields in brackets are optional as well as fields between Data Format and Comment.

Field	Description	
NodelD	Node the tag belongs to	
TagName	Tag description	
MemoryType	OUTPINPIREGHREG	
Address	Offset compatible with Modbus notation	
DataFormat	Data type in internal notation. See "Programming concepts" section in the main manual.	
Comment	Optional additional description.	

Tag file example

Example of .csv line:

2, Holding Register 1, HREG, 400001, unsignedShort,

Note: This line has no comment. When the Comment is missing, the comma as a terminator character is mandatory.

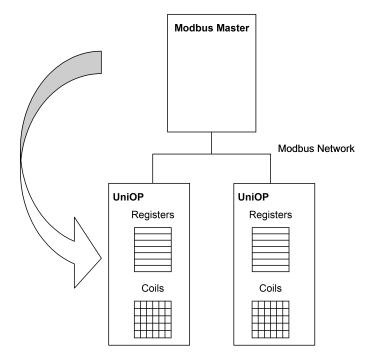
Communication status

Current communication status can be displayed using System Variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

Error	Cause	Action	
No response	No reply within the specified timeout.	Check if the controller is connected and properly configured to get network access.	
Incorrect node address in response	The device received a response with an invalid node address from the controller.	d -	
The received message too short	The device received a response with an invalid format from the controller.	-	
Incorrect writing data acknowledge	The controller did not accept a write request.	Check if project data is consistent with the controller resources.	

Modbus RTU Server


Modbus RTU Server communication driver allows connecting the HMI device as a slave in a Modbus RTU network. Standard Modbus messages are used for information exchange.

This approach allows connecting HMI devices to SCADA systems through the universally supported Modbus RTU communication protocol.

Principle of operation

This communication driver implements a Modbus RTU slave unit in the HMI device. A subset of the complete range of Modbus function codes is supported. The available function codes allow data transfer between the master and the slave.

The following diagram shows the system architecture.

The HMI device is actually simulating the communication interface of a PLC: Coils and Registers are respectively boolean and 16 bit integers.

The device always access data in its internal memory. Data can be transferred to and from the Modbus Master only on initiative of the Master itself.

Implementation details

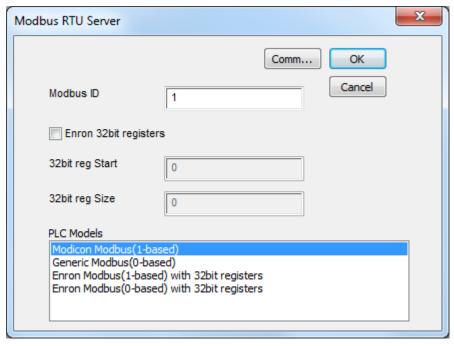
This Modbus RTU slave implementation supports only a subset of the standard Modbus function codes.

Code	Function	Description
01	Read Coil Status	Reads multiple bits in the device Coil area.
03	Read Holding Registers	Read multiple device Registers.

Code	Function	Description	
05	Force Single Coil	Forces a single device Coil to either ON or OFF.	
06	Preset Single Register	Presets a value in a device Register.	
08	Loopback Diagnostic Test	Only sub function 00 (Return Query Data) is supported.	
15	Force Multiple Coils	Forces multiple device Coils to either ON or OFF.	
16	Preset Multiple Registers	Presets value in multiple device Registers.	
17	Report Slave ID	Returns diagnostic information of the controller present at the slave address.	
23	Read Write Multiple Registers	Read & presets values in multiple device Registers	

Exception Codes

Code	Description		
01	Illegal Function. the function code received in the query is not supported		
02	Illegal Data Address. Data Address received in the query exceeds the predefined data range (see Tag Definition for detailed ranges of all types).		
03	Illegal Data Value. A sub function other than 00 is specified in Loopback Diagnostic Test (Code 08).		


Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the ${f PLC}$ list.

The driver configuration dialog is displayed.

Elem ent	Description			
Modb us ID	Modbus node ID. Every Modbus server device in the network must have its own Modbus ID.			
Enron 32bit regist ers	If selected, allows to define the first register address and the number of registers for 32 bit registers memory area. Note: 32 bit registers are available only for Enron Modbus PLC Models.			
32bit	32 bit registries memory area definition. Start value represents the first register address.			
reg Start	Size value represents the number of registries.			
32bit reg Size	Note: A request to one of the registries inside this area gives a 4 byte answer.			
PLC	Allows to select between different PLC models:			
Model s	 Modicon Modbus (1-based): Modbus implementation where all resources starts with offset 1. 			
	 Generic Modbus (0-based): Modbus implementation where all resources starts with offset 0. 			
	 Enron Modbus (1-based): Extends Modicon Mobdus implementation with 32 bit registers memory area. 			
	 Enron Modbus (0-base): Extends Generic Modbus implementation with 32 bit registers memory area. 			

Elem ent	Description			
	Note: The address range used in the Modbus frames is always between 0 and 65535 for the Holding Registers and between 0 and 65535 for Coils.			
Com	If clicked, displays the communication parameters setup dialog.			
m	You have to set parameters according to the values programmed in Modbus Master.			

Comm Parameter Dialog

OK

Uart

Baudrate

9600

Parity

even

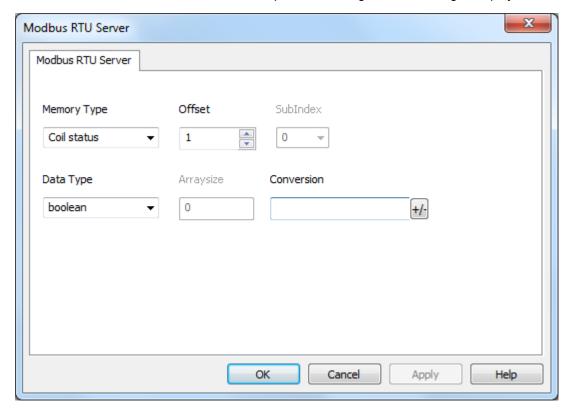
Data bits

8

Stop bits

1

Mode


RS-485

Element	Description	
Uart	Serial port selection.	
	COM1: On-board port	
	COM2: Optional Plug-in module plugged on slot#1 or slot#2	
	COM3: Optional Plug-in module plugged on slot#3 or slot#4	
Baudrate, Parity, Data bits, Stop bits	Serial line parameters.	
Mode	Serial port mode. Available options:	
	• RS-232	
	• RS-485 (2 wires)	
	• RS-422 (4 wires)	

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select **Modbus RTU Server** from the protocol list: tag definition dialog is displayed.

Element	Description			
Memory	Modbus resource where tag is located.			
Type	Memory Type	Modbus Resource		
	Coil Status	Coils		
	Input Status	Discrete Input		
	Input Registers	Input Registers		
	Holding Registers	Holding Registers		
	32 bit Registers	32 bit registers memory a	area.	
		Available only for Enron	Modbus PLC Models	
	Node Override ID			
	Modicon Mode			
	Serial Baudrate			
	Serial Parity	protocol parameter (see Special Data Types for mode details)		
	Serial Stop Bits			
	Serial Mode			
	Serial Done			
Offset	Offset address where tag is loca	ated.		
	Offset addresses are six digits address.	ix digits composed by one digit data type prefix + five digits resource		ource
	Memory Type	Studio Offset range	Modicon Offset range	Generic Modbus Offset range
	Coil Status	0 – 65535		
	Input Status	100000 – 165535		
	Input Registers	300000 – 365535	1 – 65536	0 – 65535
	Holding Registers	400000 – 465535		
	32 bit Registers	0 – 65535		
SubInd ex	This allows resource offset sele	ection within the register.		

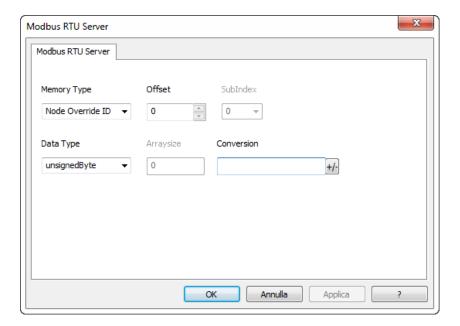
Element	Description			
Data	Data Type	Memory Space	Limits	
type	boolean	1-bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	int64	64-bit data	-9.2e18 9.2e18	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	uint64	64-bit data	0 1.8e19	
	float	IEEE single-precision 32-bit floating point type	1.17e-38 3.4e38	
	double	IEEE double-precision 64-bit floating point type	2.2e-308 1.79e308	
	string	Array of elements containing character code defined by selected encoding		
	binary	Arbitrary binary data		
	Note: to define arra "byte[]", "short[]"	ys. select one of Data Type format followe	l by square brackets like	
Arraysi ze	When configuring array or stri characters of the string.	ng tags, this option define the amount of an	ray elements or	
Conver	Conversion to be applied to the	e Tag.		
sion	Conversion			
	inv,swap2 Allov	ed Configured Inv bits		
	AB-: ABC	BA + ABCD->CDAB D->CDAB DEFGH->GHEFCDAB -		
	Depending on data type selec	ted, the Allowed list shows one or more co	onversions, listed below.	

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 1000000110 0001110010111011001000101101000011100101
	1 10000011100 1010101000010100010110110110
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on ${f Configured}$ list.

Element	Description
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to order the configured conversions.

Node Override ID

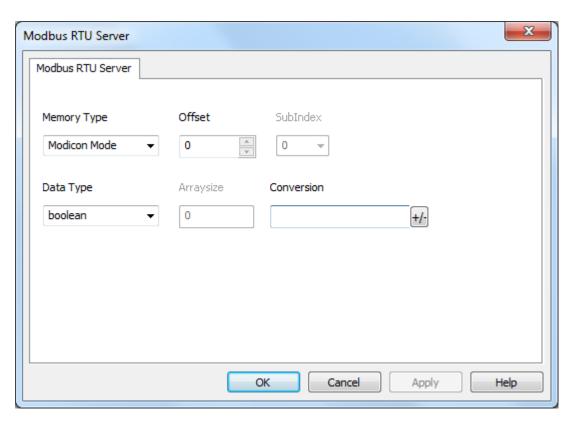

The protocol provides the special data type Node Override ID which allows you to change the node ID of the slave at runtime. This memory type is an unsigned byte.

The node Override ID is initialized with the value of the node ID specified in the project at programming time.

Node Override ID	Modbus operation
0	Communication with the slave is stopped. In case of write operation, the device will not respond to request frames.
1 to 255	It is interpreted as the value of the new node ID and is replaced for runtime operation.

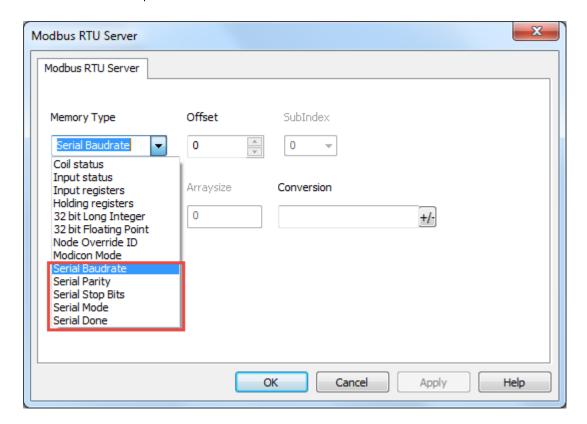
Note: Node Override ID value assigned at runtime is retained through power cycles.

Modicon Mode


The protocol provide a special data type that can be used to override the Modicon Mode parameter at runtime.

Modicon Mode	Description
0	Generic Modbus (0-based). Register indexes start from 0.
1	Modicon Modbus (1-based). Register indexes start from 1.

Note: Modicon Mode parameter value assigned at runtime is retained through power cycles.

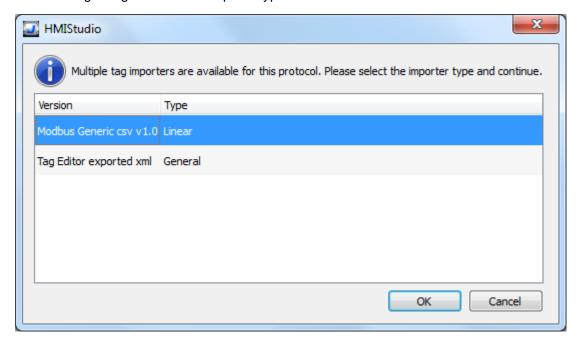


Serial Parameters Override

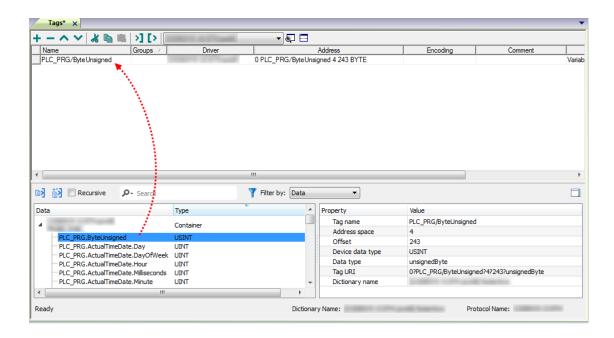
The protocol provide special data types that can be used to override the serial parameters at runtime.

Parameter	Description
Serial Baudrate	unsigned 32 bit value for baudrate overriding. Possible values are 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200.
Serial Parity	unsigned 8 bit value for parity overriding. Possible values are described in the following list.

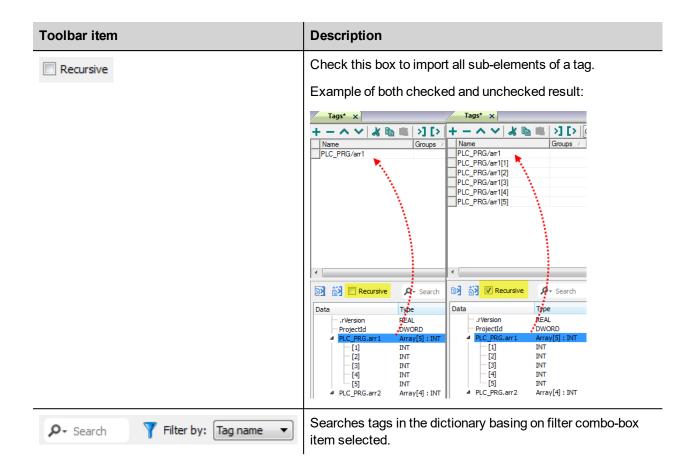
Parameter	Description	
	Value	Description
	0	none parity
	1	even parity
	2	odd parity
Serial Stop Bits	unsigned 8 bit value for stop bits overriding. Possible values are 1, 2.	
Serial Mode	unsigned 8 bit value for serial mode overriding. Possible values are described in the following list.	
	Value	Description
	0	RS-232 mode
	1	RS-485 mode
	2	RS-422 mode
Serial Done	Set to 1 to overwrite the communication line parameters. The parameters are processed all together only when this variable is set to value 1	


Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.


The following dialog shows which importer type can be selected.

Туре	Description
Modbus Generic csv v1.0 Linear	Requires a .csv file. All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ĕ ä	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Modbus Generic csv file structure

This protocol supports the import of tag information when provided in .csv format according to the following format:

NodeID, TagName, MemoryType, Address, DataFormat,...,[Comment]

Note: Fields in brackets are optional as well as fields between Data Format and Comment.

Field	Description	
NodelD	Node the tag belongs to	
TagName	Tag description	
MemoryType	OUTP INP IREG HREG	
Address	Offset compatible with Modbus notation	
DataFormat	Data type in internal notation. See "Programming concepts" section in the main manual.	
Comment	Optional additional description.	

Tag file example

Example of .csv line:

2, Holding Register 1, HREG, 400001, unsignedShort,

Note: This line has no comment. When the Comment is missing, the comma as a terminator character is mandatory.

Communication status

Current communication status can be displayed using system variables. This communication protocol acts as server and doesn't return any specific Protocol Error Message.

See "System Variables" section in the main manual.

Modbus TCP

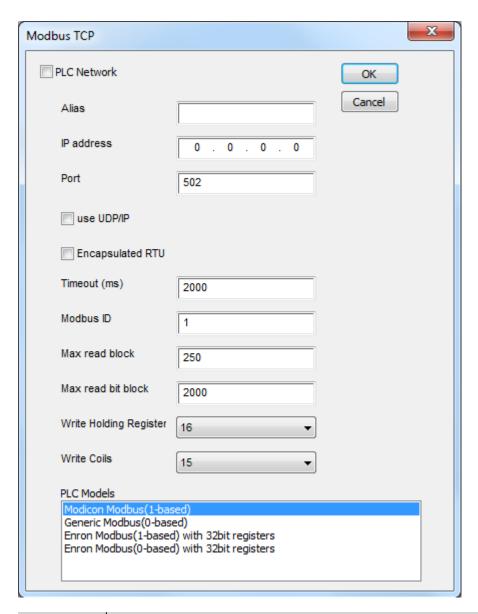
Various Modbus TCP-capable devices can be connected to HMI devices. To set-up your Modbus TCP device, please refer to the documentation you have received with the device.

The implementation of the protocol operates as a Modbus TCP client only.

Implementation details

This Modbus TCP implementation supports only a subset of the Modbus TCP standard function codes.

Code	Function	Description
01	Read Coil Status	Reads multiple bits in the HMI device Coil area.
02	Read Input Status	Reads the ON/OFF status of the discrete inputs (1x reference) in the slave.
03	Read Holding Registers	Reads multiple registers.
04	Read Input Registers	Reads the binary contents of input registers (3x reference) in the slave.
05	Force Single Coil	Forces a single coil to either ON or OFF.
06	Preset Single Register	Writes a value to one register.
15	Write Multiple Coils	Writes each coil in a sequence of coils to either ON or OFF.
16	Preset Multiple Registers	Writes values to a block of registers in sequence.

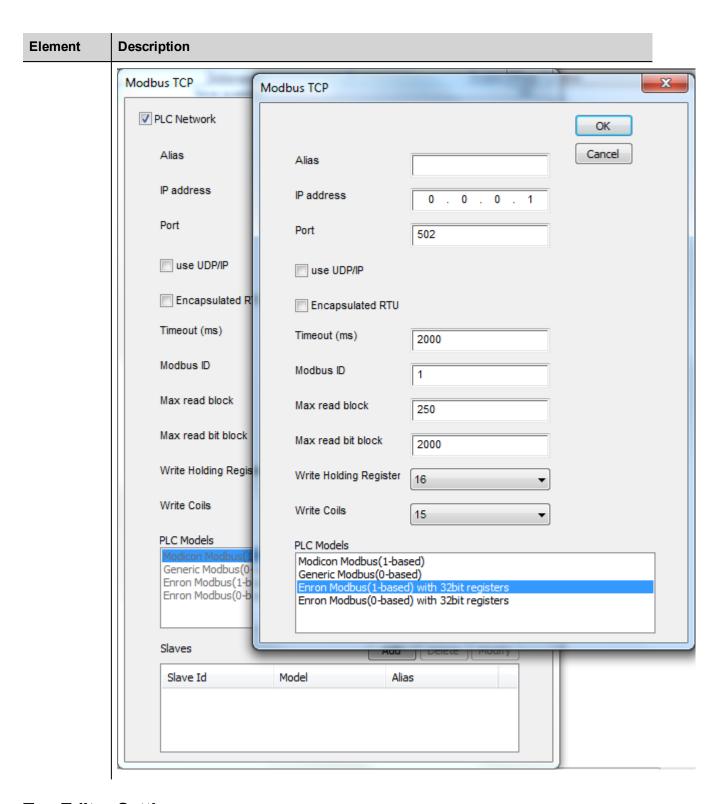

Protocol Editor Settings

Adding a protocol

To configure the protocol:

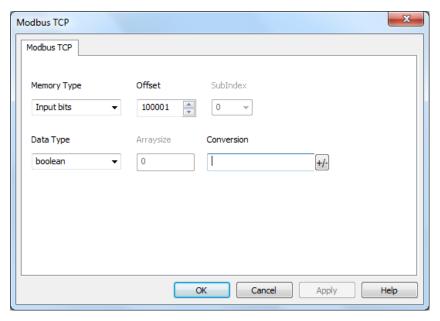
- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.


Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP address	Address of the controller.
Port	Port number used by the Modbus TCP driver. The default value is 502 and can be changed when the communication goes through routers or Internet gateways where the default port number is already in use.
use UDP/IP	If selected, the protocol will use connectionless UDP datagrams.
Encapsulat ed RTU	If selected, the protocol will use serial RTU protocol over Ethernet instead of Modbus TCP protocol, independently from TCP or UDP usage.
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the server device.

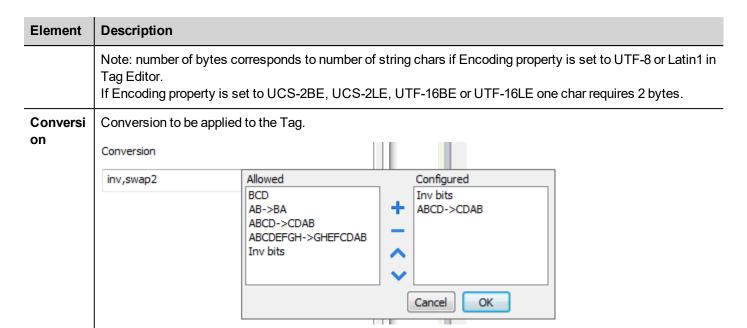
Element	Description
Modbus ID	Usually used when communicating over Ethernet-to-serial gateways and then interpreted as the Slave ID. This value is simply copied into the Unit Identifier field of the Modbus TCP communication frame. This is rarely used and in most cases can be left zero.
Max read block	Maximum length in bytes of a data block request. It applies only to read access of Holding Registers.
Max read bit block	Maximum length in bits of a block request. It applies only to read access of Input Bits and Output Coils.
Write Holding	Modbus function for write operations to Holding Registers. Select between the function 06 (preset single register) and function 16 (preset multiple registers).
Register	If 06 is selected, the protocol will always use function 06 for writing to the controller, even when writing to multiple consecutive registers.
	If 16 is selected, the protocol will always use function 16 to write to the controller, even for a single register write request and the Max read block size parameter of the query is set to 2 . The use of function 16 may result in higher communication performance.
	If Auto is selected, the protocol will use both function 06 or function 16 depending on number of registries to be written.
Write Coils	Modbus function for write operations to Output Coils. Select between the function 05 (write single coil) and function 15 (write multiple coils).
	If Modbus function 05 is selected, the protocol will always use function 05 for writing to the controller, even when writing to multiple consecutive coils.
	If Modbus function 15 is selected, the protocol will always use function 15 to write to the controller, even for a single coil write request. The use of function 15 may result in higher communication performance.

Element	Description
PLC Models	Allows to select between different PLC models:
	 Modicon Modbus (1-based): Modbus implementation where all resources starts with offset 1.
	 Generic Modbus (0-based): Modbus implementation where all resources starts with offset 0.
	 Enron Modbus (1-based): Extends Modicon Mobdus implementation with 32 bit registers memory area.
	 Enron Modbus (0-base): Extends Generic Modbus implementation with 32 bit registers memory area.
	Note: The address range used in the Modbus frames is always between 0 and 65535 for the Holding Registers and between 0 and 65535 for Coils.
PLC Network	IP address for all controllers in multiple connections. PLC Network must be selected to enable multiple connections.



Tag Editor Settings

Path: ProjectView> Config > double-click Tags


- 1. To add a tag, click +: a new line is added.
- 2. Select Modbus TCP from the Driver list: tag definition dialog is displayed.

Element	Description		
Memory	· 1		
Туре	Memory Type	Modbus Resource	
	Coil Status	Coils	
	Input Status	Discrete Input	
	Input Registers	Input Registers	
	Holding registers	Holding Registers	
	32 bit Registers	32 bit registers memory area.	
		Available only for Enron Modbus PLC Models	
	Node Override IP		
	Node Override Port	protocol parameter (see Special Data Types for mode details)	
	Node Override ID	protocor parameter (see Opecial Data Types for mode details)	
	Modicon Mode		
Offset	Offset address where tag is located.		
	Offset addresses are six digits composed by one digit data type prefix + five digits resource address.		

Element	Description				
	Memory Type	Studio Offset range	Modicon Offset range)	Generic Modbus Offset range
	Coil Status	0 – 65535			
	Input Status	100000 – 165535			
	Input Registers	300000 – 365535	1 – 65536		0 – 65535
	Holding Registers	400000 – 465535			
	32 bit Registers	0-65535			
SubInde x	This allows resource offset sele	ection within the register.			
Data Type	Data Type	Memory Space		Limits	
туре	boolean	1-bit data		0 1	
	byte	8-bit data		-128 127	
	short	16-bit data		-32768 32	767
	int	32-bit data		-2.1e9 2.1	e9
	int64	64-bit data		-9.2e18 9.	2e18
	unsignedByte	8-bit data		0 255	
	unsignedShort	16-bit data		0 65535	
	unsignedInt	32-bit data 0 4.2e9 64-bit data 0 1.8e19			
	uint64				
	float	IEEE single-precision 32-bit floating point type 1.17e-3		1.17e-38 3	3.4e38
	double	IEEE double-precision 64-bit floating point type 2.2e-308 1.79e308		1.79e308	
string Array of elements containing character co		ode defined by selected encoding			
	binary	Arbitrary binary data			
	Note: to define arrays. select one of Data Type format followed by square brackets lik "short[]"			ackets like "byte[]",	
Arraysiz e	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 				

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

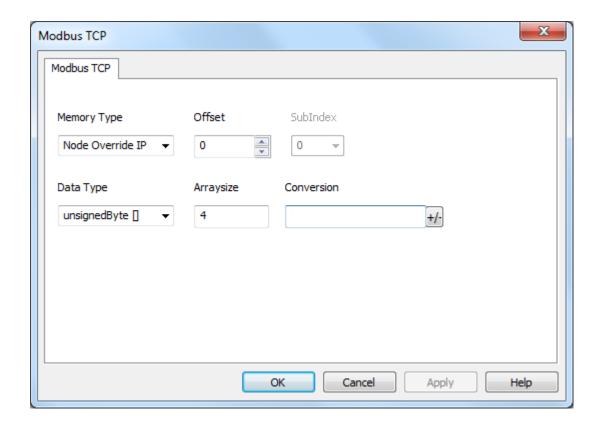
Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)

Element	Description		
	Value	Description	
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 00011100101110110110010011101000011100101	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	If more conversions are co	click on plus button. The selected item will be added on Configured list. Infigured, they will be applied in order (from top to bottom of Configured list). Indeed the configured conversions.	

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.


The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

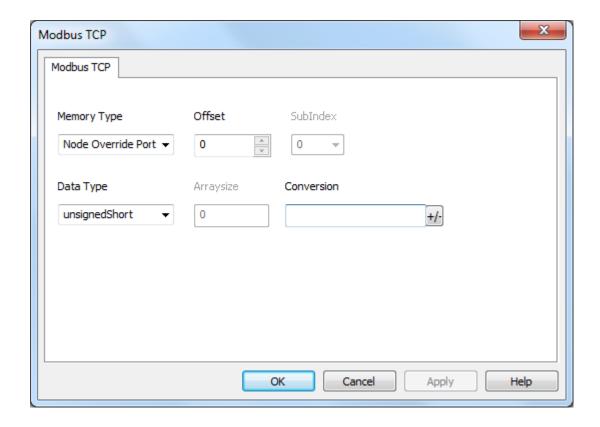
Note: Node Override IP values assigned at runtime are retained through power cycles.

Node Override Port

The protocol provides the special data type Node Override Port which allows you to change the network Port of the target controller at runtime.

This memory type is an unsigned short.

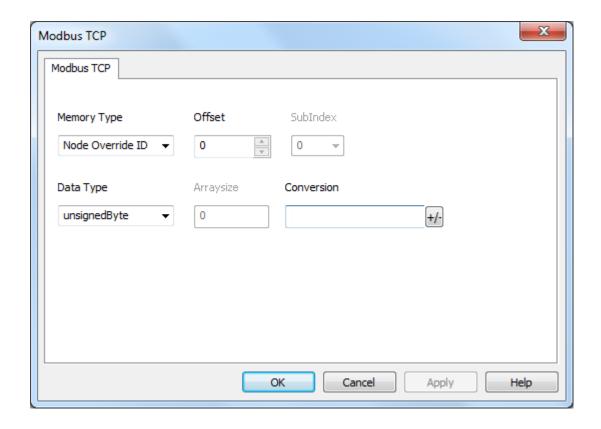
The Node Override Port is initialized with the value of the controller Port specified in the project at programming time.


Node Override Port	Modbus operation
0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0	It is interpreted as the value of the new port and is replaced for runtime operation.

If the HMI device is connected to a network with more than one controller node, each node has its own Node Override Port variable.

Note: Node Override Port values assigned at runtime are retained through power cycles.

Node Override ID

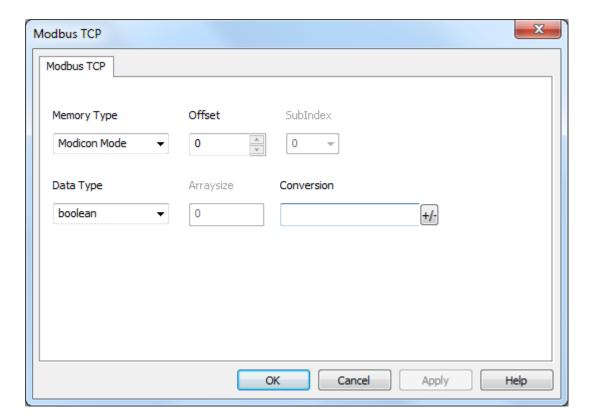

The protocol provides the special data type Node Override ID which allows you to change the node ID of the slave at runtime. This memory type is an unsigned byte.

The node Override ID is initialized with the value of the node ID specified in the project at programming time.

Node Override ID	Modbus operation
0	Communication with the controller is stopped. In case of write operation, the request will be transmitted without waiting for a reply.
1 to 254	It is interpreted as the value of the new node ID and is replaced for runtime operation.
255	Communication with the controller is stopped; no request messages are generated.

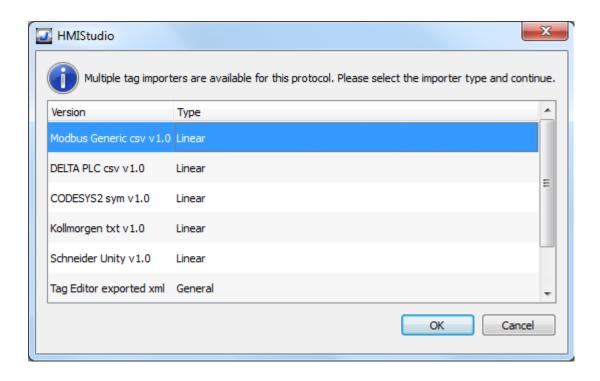
Note: Node Override ID value assigned at runtime is retained through power cycles.

Modicon Mode


The protocol provide a special data type that can be used to override the Modicon Mode parameter at runtime.

Modicon Mode	Description
0	Generic Modbus (0-based). Register indexes start from 0.
1	Modicon Modbus (1-based). Register indexes start from 1.

Note: Modicon Mode parameter value assigned at runtime is retained through power cycles.

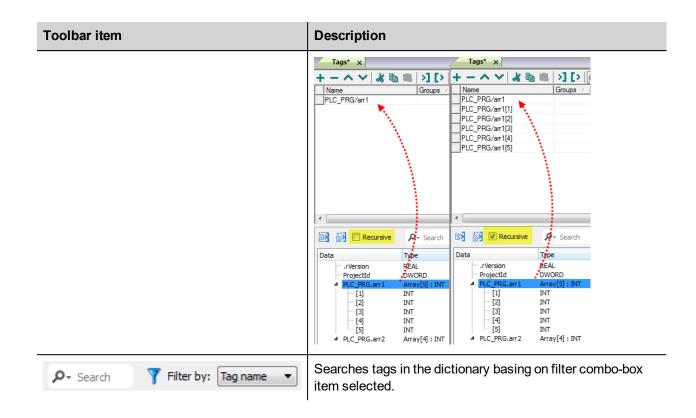


Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.


Туре	Description	
Modbus Generic csv	Requires a .csv file.	
v1.0 Linear	All variables will be displayed at the same level.	
DELTA PLC csv v1.0	Requires a .csv file.	
	All variables will be displayed at the same level.	
CODESYS2 sym v1.0	Requires a .sym file.	
Linear	All variables will be displayed at the same level.	
	After selecting the .sym file, the following dialog will appear for PLC model selection. Modbus TCP importer - Filter selection Available PLC Models OK Cancel	
	WAGO	
Kollmorgen txt v1.0	Requires a .txt file.	
Linear	All variables will be displayed at the same level.	
Schneider Unity v1.0 Linear	Requires a .uny file.	


Туре	Description		
	The file containing symbols must be exported in .txt format and later renamed as .uny. The importer considers only variables located at fixed address and disregards arrays of strings. All other arrays, except for boolean type, are expanded.		
Tag Editor exported xml Select this importer to read a generic XML file exported from Tag Edit appropriate button.			
	1:Page1 Tags* ×		

Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
Ke	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ä	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

Modbus Generic csv file structure

This protocol supports the import of tag information when provided in .csv format according to the following format:

NodeID, TagName, MemoryType, Address, DataFormat,...,[Comment]

Note: Fields in brackets are optional as well as fields between Data Format and Comment.

Field	Description
NodelD	Node the tag belongs to
TagName	Tag description
MemoryType	OUTPINPIREGHREG
Address	Offset compatible with Modbus notation
DataFormat	Data type in internal notation. See "Programming concepts" section in the main manual.
Comment	Optional additional description.

Tag file example

Example of .csv line:

2, Holding Register 1, HREG, 400001, unsignedShort,

Note: This line has no comment. When the Comment is missing, the comma as a terminator character is mandatory.

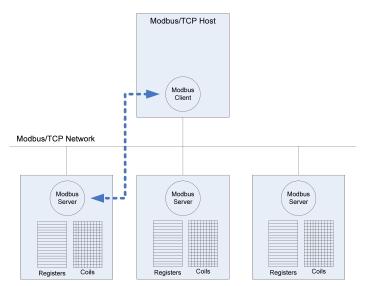
Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

Error	Cause	Action
No response	No reply within the specified timeout.	Check if the controller is connected and properly configured to get network access.
Incorrect node address in response	The device received a response with an invalid node address from the controller.	-
The received message too short The device received a response with an invalid format from the controller.		-
Incorrect writing data acknowledge	The controller did not accept a write request.	Check if project data is consistent with the controller resources.

Modbus TCP Server


Modbus TCP Server communication driver allows connecting the HMI device as a server in a Modbus TCP network. It is possible for Modbus TCP clients to connect then to multiple HMI panels acting as servers. Standard Modbus TCP messages are used for information exchange.

This approach allows connecting HMI devices to SCADA systems through the universally supported Modbus TCP communication protocol.

Principle of operation

This communication driver implements a Modbus TCP Server unit in HMI device. A subset of the complete range of Modbus function codes is supported. The available function codes allow data transfer between clients on the TCP network and the server. The HMI device acts as a server in the network. It can exchange data with up to 32 clients. This means that up to 32 clients can be connected to the HMI device at the same time. If all the 32 available connections are in use, any further attempt to connect by a client will be refused by the system.

The following diagram shows the system architecture.

The device simulates the communication interface of a PLC: Coils and Registers data types are respectively boolean and 16 bit integers.

The device always access data in its internal memory. Data can be transferred to and from the Modbus Client only on the initiative of the client itself.

Implementation details

This Modbus TCP Server implementation supports only a subset of the Modbus standard function codes.

Code	Function	Description
01	Read Coil Status	Reads multiple bits in the device Coil area.
02	Read Input Status	Reads multiple bits in the device Coil area.
03	Read Holding Registers	Read multiple device Registers.

Code	Function	Description
04	Read Input Registers	Read multiple device Registers.
05	Force Single Coil	Forces a single device Coil to either ON or OFF.
06	Preset Single Register	Presets a value in a device Register.
15	Force Multiple Coils	Forces multiple device Coils to either ON or OFF.
16	Preset Multiple Registers	Presets value in multiple device Registers.
23	Read Write Multiple Registers	Read & presets values in multiple device Registers

Note: For both PLC models the Read Coil Status and Read Input Status function codes both access the same Coil memory area in the HMI device memory. The Read Holding Registers and Read Input Registers function codes both access the same Register area in the HMI device memory.

Exception Codes

Code	Description	
01	Illegal Function. the function code received in the query is not supported	
02	Illegal Data Address. Data Address received in the query exceeds the predefined da range (see Tag Editor Settings for detailed ranges of all types).	
03	Illegal Data Value. A sub function other than 00 is specified in Loopback Diagnostic Test (Code 08).	

Protocol Editor Settings

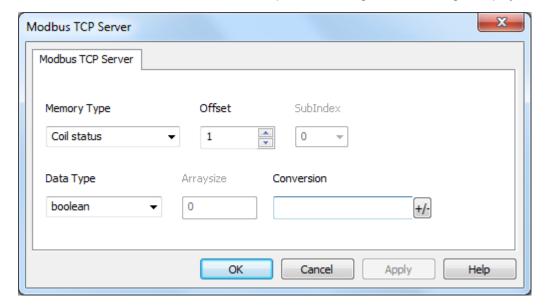
Adding a protocol

To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the **PLC** list.

The driver configuration dialog is displayed.

Element	Description	
Modbus ID	Modbus node ID of the HMI device. Every Modbus server device in the network must have its own Modbus ID.	
Port	Port number used by the Modbus TCP protocol. Default value is 502 . Set the value accordingly to the port number used by your Modbus TCP Network.	
use UDP/IP	If selected, the protocol will use connectionless UDP datagrams.	
Encapsulated RTU	If selected, the protocol will use serial RTU protocol over Ethernet instead of Modbus TCP protocol, independently from TCP or UDP usage.	
Enron 32bit registers	If selected, allows to define the first register address and the number of registers for 32 bit registers memory area.	
	Note: 32 bit registers are available only for Enron Modbus PLC Models.	



Element	Description	
	32 bit registries memory area definition.	
32bit reg	Start value represents the first register address.	
Start	Size value represents the number of registries.	
32bit reg Size	Note: A request to one of the registries inside this area gives a 4 byte answer.	
PLC Models	Allows to select between different PLC models:	
	Modicon Modbus (1-based): Modbus implementation where all resources starts with offset 1.	
	Generic Modbus (0-based): Modbus implementation where all resources starts with offset 0.	
	 Enron Modbus (1-based): Extends Modicon Mobdus implementation with 32 bit registers memory area. 	
	Enron Modbus (0-base): Extends Generic Modbus implementation with 32 bit registers memory area.	
	Note: The address range used in the Modbus frames is always between 0 and 65535 for the Holding Registers and between 0 and 65535 for Coils.	

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select **Modbus TCP Server** from the protocol list: tag definition dialog is displayed.

Element	Description					
Memory	Modbus resource where tag is located.					
Туре	Memory Type N		Modbus Resource			
	Coil Status C		oils			
	Input Status	Di	screte Input			
	Input Registers	In	out Registers			
	Holding Registers	Н	olding Registers			
	32 bit Registers	32	bit registers memory area			
		Α١	ailable only for Enron Mo	dbus PLC Mod	dels.	
	Modicon Mode	pro	otocol parameter (see Spe	cial Data Type	es for mode de	etails)
Offset	Offset address where tag is	loca	ated.			
	Offset addresses are six digits composed by one digit data type prefix + five digits resource address.		ource			
	Memory Type		Studio Offset range	Modicon Offset range		Generic Modbus Offset range
	Coil Status		0 – 65535			
	Input Status		100000 – 165535			
	Input Registers		300000 – 365535	1 – 65536		0 – 65535
	Holding Registers		400000 – 465535			
	32 bit Registers		0 – 65535			
SubInd ex	This allows resource offset s	sele	ction within the register.			
Data type	Data Type		Memory Space		Limits	
турс	boolean		1-bit data		0 1	
	byte		8-bit data		-128 127	
	short		16-bit data		-32768 32	767
	int		32-bit data		-2.1e9 2.1	e9
	int64		64-bit data		-9.2e18 9.2e18	

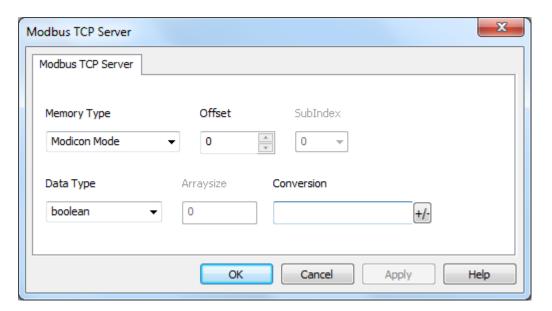
Element Description Limits **Data Type Memory Space** unsignedByte 8-bit data 0 ... 255 unsignedShort 16-bit data 0...65535 unsignedInt 32-bit data 0 ... 4.2e9 uint64 64-bit data 0 ... 1.8e19 float 1.17e-38 ... 3.4e38 IEEE single-precision 32-bit floating point type double IEEE double-precision 64-bit floating 2.2e-308 ... 1.79e308 point type string Array of elements containing character code defined by selected encoding binary Arbitrary binary data Note: to define arrays. select one of Data Type format followed by square brackets like "byte[]", "short[]"... • In case of array Tag, this property represents the number of array elements. Arraysi ze • In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 Conver Conversion to be applied to the Tag. sion Conversion Allowed Configured inv,swap2 BCD Inv bits AB->BA ABCD->CDAB ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits Cancel OK

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Element	t Description		
	Value	Description	
	Inv bits	Invert all the bits of the tag.	
		Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)	
	Negate	Set the opposite of the tag value.	
		<i>Example:</i> 25.36 → -25.36	
	AB -> BA	Swap nibbles of a byte.	
		Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)	
	ABCD -> CDAB	Swap bytes of a word.	
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
	ABCDEFGH ->	Swap bytes of a double word.	
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP ->	Swap bytes of a long word.	
	OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011011001011101000011 → 1 10000011100 10101010	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

Element	Description
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to order the configured conversions.

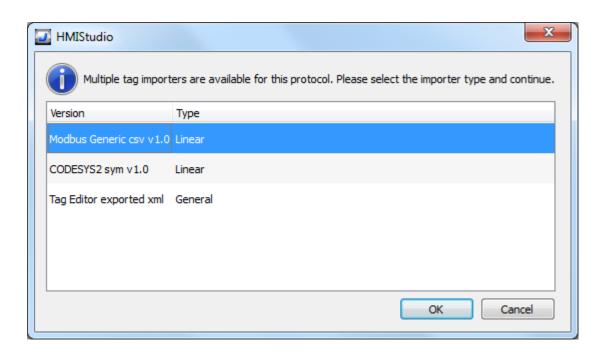

Modicon Mode

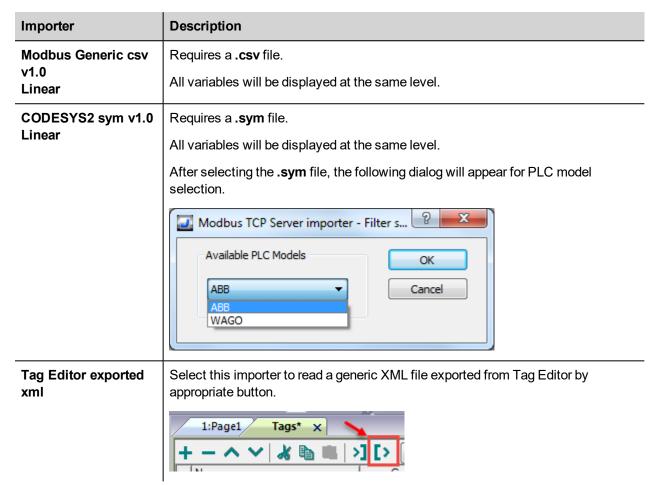
The protocol provide a special data type that can be used to override the Modicon Mode parameter at runtime.

Modicon Mode	Description	
0	Generic Modbus (0-based). Register indexes start from 0.	
1	Modicon Modbus (1-based). Register indexes start from 1.	



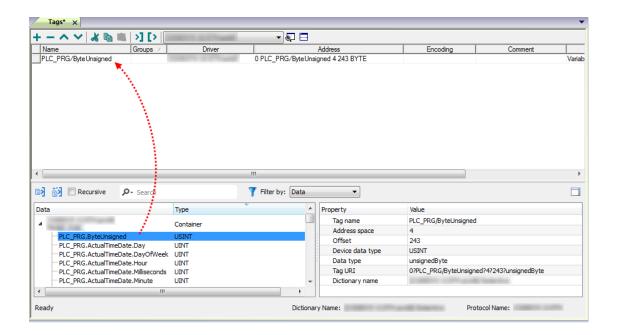
Note: Modicon Mode parameter value assigned at runtime is retained through power cycles.

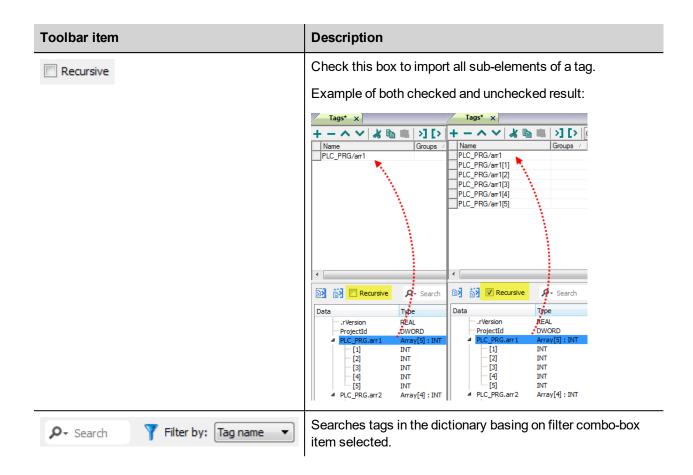



Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.




Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
k ≘	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Modbus Generic csv file structure

This protocol supports the import of tag information when provided in .csv format according to the following format:

NodeID, TagName, MemoryType, Address, DataFormat,...,[Comment]

Note: Fields in brackets are optional as well as fields between Data Format and Comment.

Field	Description	
NodelD	Node the tag belongs to	
TagName	Tag description	
MemoryType	OUTPINPIREGHREG	
Address	Offset compatible with Modbus notation	
DataFormat	Data type in internal notation. See "Programming concepts" section in the main manual.	
Comment	Optional additional description.	

Tag file example

Example of .csv line:

2, Holding Register 1, HREG, 400001, unsignedShort,

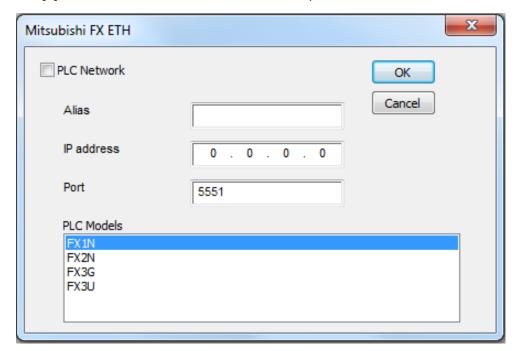
Note: This line has no comment. When the Comment is missing, the comma as a terminator character is mandatory.

Communication status

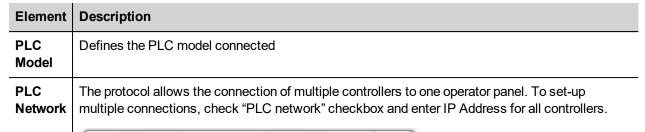
The HMI device is a server station in the Modbus TCP network. The current implementation of the protocol doesn't report any communication error code apart from standard communication error codes related to the proper driver loading.

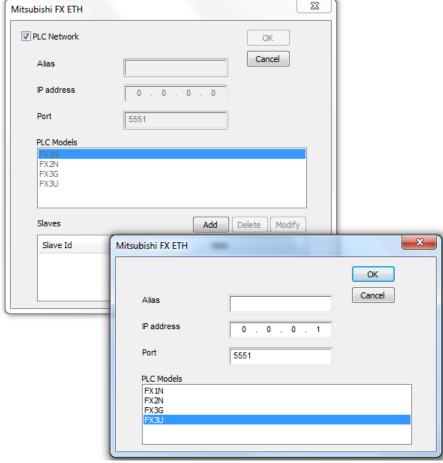
See "System Variables" section in the main manual.

Mitsubishi FX ETH

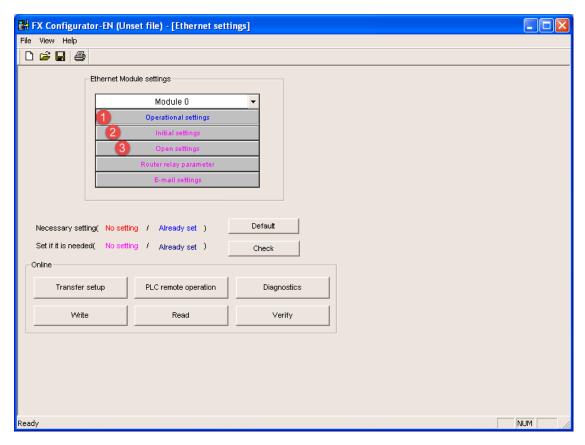

Mitsubishi FX ETH implements the MELSEC-F (or MC) communication protocol that can be used with FX CPUs as described in the Mitsubishi document "FX3U-ENET USER'S MANUAL", chapter 8 "Communication using MC protocol".

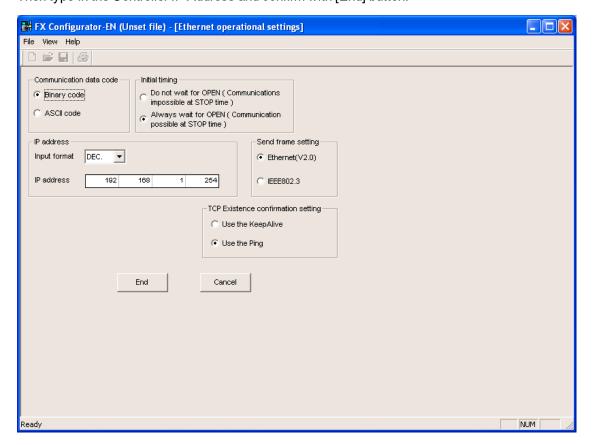
Note: Mitsubishi FX3U controller must be equipped with the appropriate Ethernet module: FX3U-ENET


Protocol Editor Settings

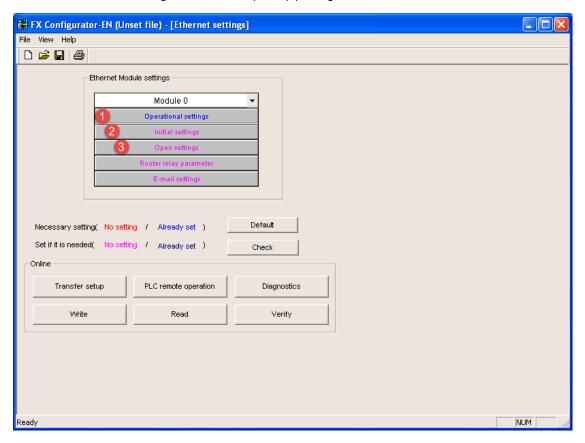

Add [+] a driver in the Protocol editor and select the protocol called "Mitsubishi FX ETH" from the list of available protocols.

Element	Description
IP address	Ethernet IP address of the controller
Port	Specifies the port number (decimal) used in the communication with the PLC.

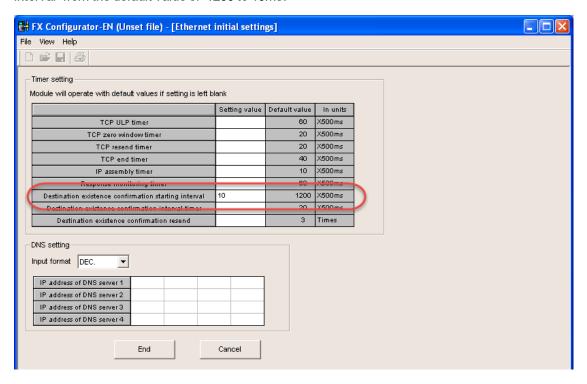



Controller Settings with GX Developer

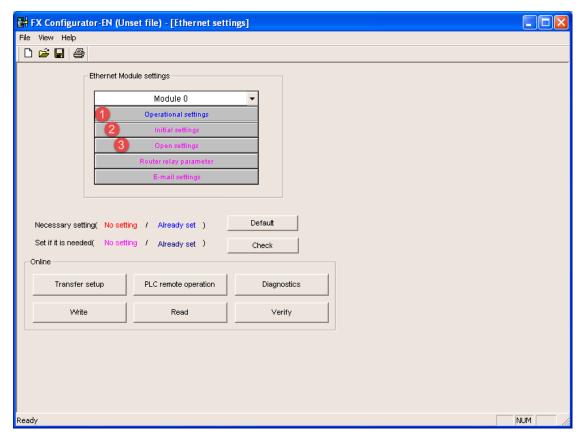
The Mitsubishi FX system must be properly configured for Ethernet communication using the Mitsubishi FX Configurator. Click on "Operational settings" as shown at point (1) in the following figure:


Into Operational Settings dialog, verify the "Communication data code" is set to "Binary code",

Then type-in the Controller IP Address and confirm with [End] button.



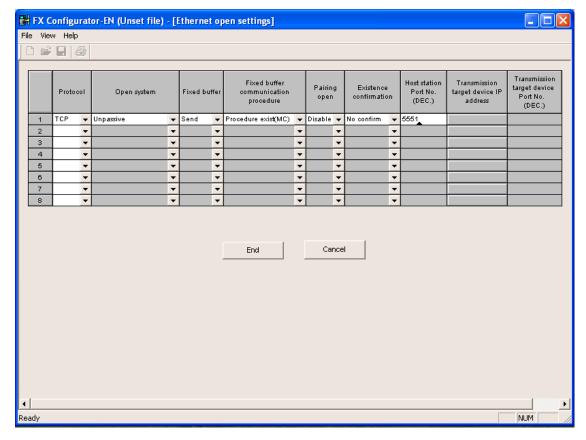
Click now on "Initial settings" as shown at point (2) of Figure below:



For proper communication between HMI and controller it is required to change "Destination existence confirmation starting interval" from the default value of 1200 to 10ms.

In case of communication error, this avoid controller keeps alive the connection for a too long time before to allow a new connection from the HMI.

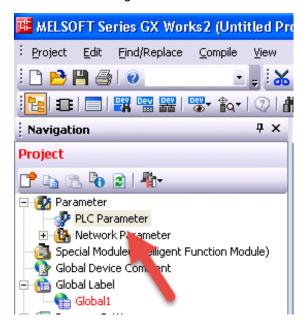
Click now on "Open settings" as shown at point (3) of Figure below



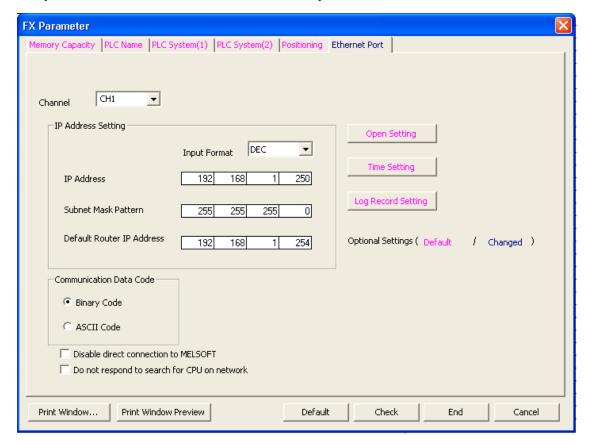
The next figure shows the "Ethernet open settings" configuration.

The detailed explanation of the meaning of each setting is available in Chapter 5.5 of the Mitsubishi "FX3U-ENET USER'S MANUAL".

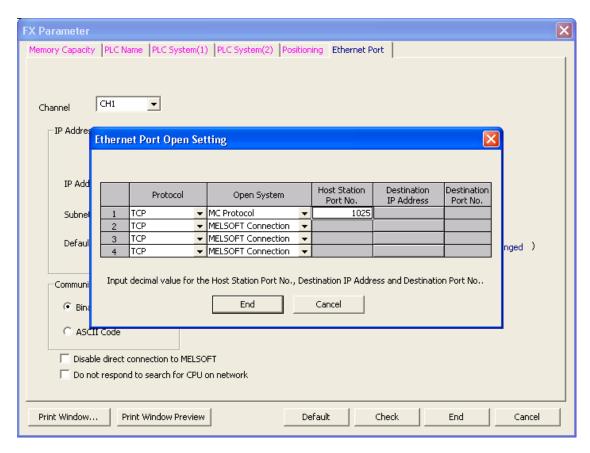
"Host station Port No." defined here is the same must be used into Protocol Editor Settings chapter.



Note: the usage of more than one panel communicating with the same controller requires to define proper settings in the "Open settings" configuration dialog: one connection per each panel must be configured with proper properties


Controller Settings with GX Works2

The Mitsubishi FX system must be properly configured for Ethernet communication inside GX Works2 programming suite. FX Parameter dialog can be recalled with double-click on PLC Parameter:


Then select "Ethernet Port" tab where is possible to configure IP Address.

Verify the "Communication data code" is set to "Binary code" as shown below:

Then click on "Open Settings" button to recall the "Ethernet Port Open Setting" dialog.

"Host station Port No." defined here is the same must be used into Protocol Editor Settings chapter.

Note: For FX3GE Controller, the Open System must be set as "Data Monitor" and Port set to 1025.

Note: the usage of more than one panel communicating with the same controller requires to define proper settings in the "Open settings" configuration dialog: one connection per each panel must be configured with proper properties.

Tag Editor Settings

Into Tag editor select the protocol "Mitsubishi FX ETH" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description				
Resour ces	Area of PLC where tag is located				
Offset	Offset address where tag is located.				
SubInd ex	This allows resource offset selection within the register.				
Туре	Data Type	Memory Space	Limits		
	boolean	1 bit data	01		
	byte	8-bit data	-128 127		
	short	16-bit data	-32768 32767		
	int	32-bit data	-2.1e9 2.1e9		
	unsignedByte	8-bit data	0 255		
	unsignedShort	16-bit data	0 65535		
	unsignedInt	32-bit data	0 4.2e9		
	float	IEEE single-precision	1.17e-38 3.40e38		
		32-bit floating point type			
	string	Refer to "String data type chapter	יני		
	Note: to define arrays, select one of Data Type format followed by square brackets I "byte[]", "short[]"				
Arraysi ze	In case of array Tag, this property represents the number of array elements.				

Element **Description** In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Conver Conversion to be applied to the Tag. sion Conversion inv,swap2 Allowed Configured BCD Inv bits

AB->BA

Inv bits

ABCD->CDAB

ABCDEFGH->GHEFCDAB

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

ABCD->CDAB

OK

Cancel

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example:

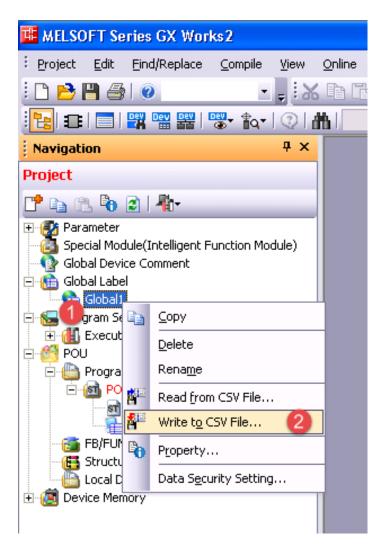
Element	Description		
	Value	Description	
		32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0\ 10000000110 \\ 000111001011101101100100010$	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

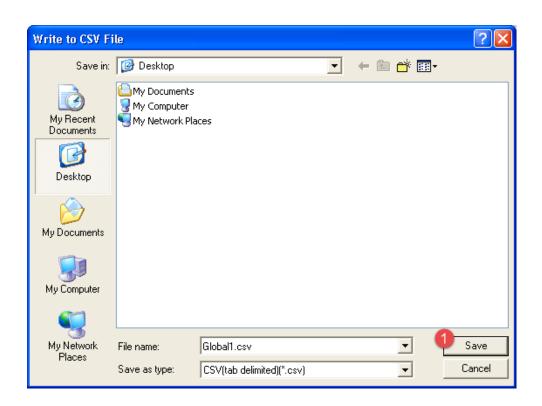
If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

Tag Import

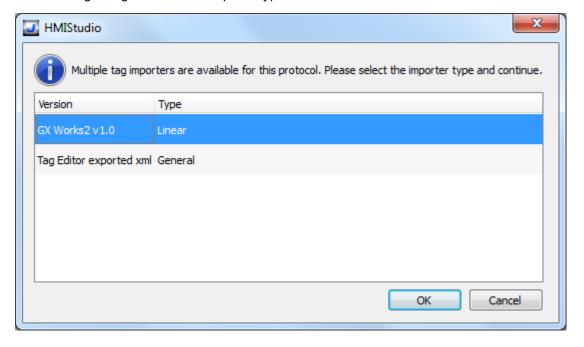

Exporting Tags from PLC

The Mitsubishi FX Ethernet tag import accepts symbol files with extension "csv" created by the Mitsubishi GX Works2 (Not from GX Developer).


The ".csv" file can be exported from the Project tree, as shown in the following figure.

- 1. Right-click on the Global variable list that need to be exported,
- 2. Select "Write to CSV File..."

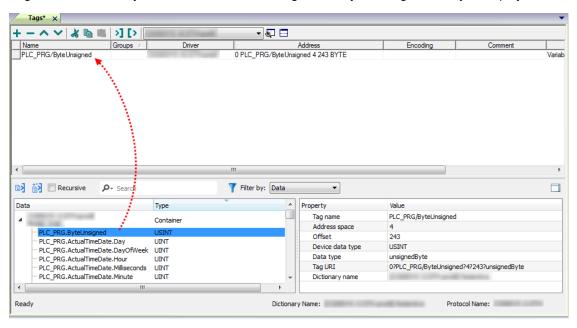
Into following dialog select the file name and location:

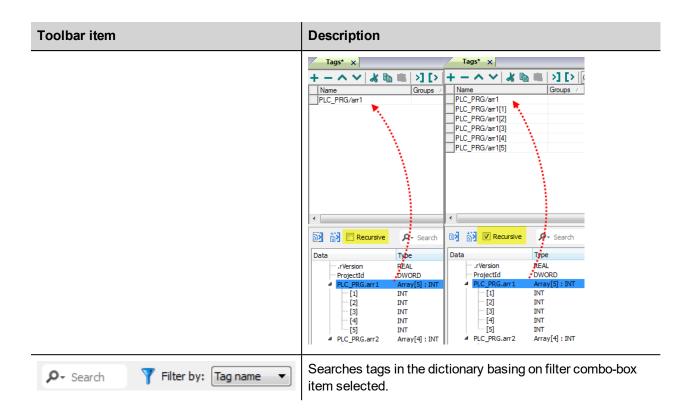


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.




Importer	Description	
GX Works2 v1.0 Linear	Requires a .csvfile. All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button. 1:Page1 Tags* ×	

Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
Ke	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K å	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

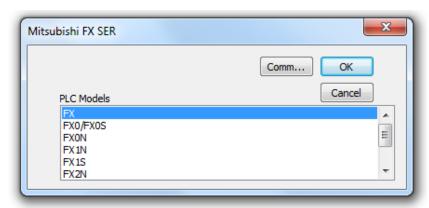
Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

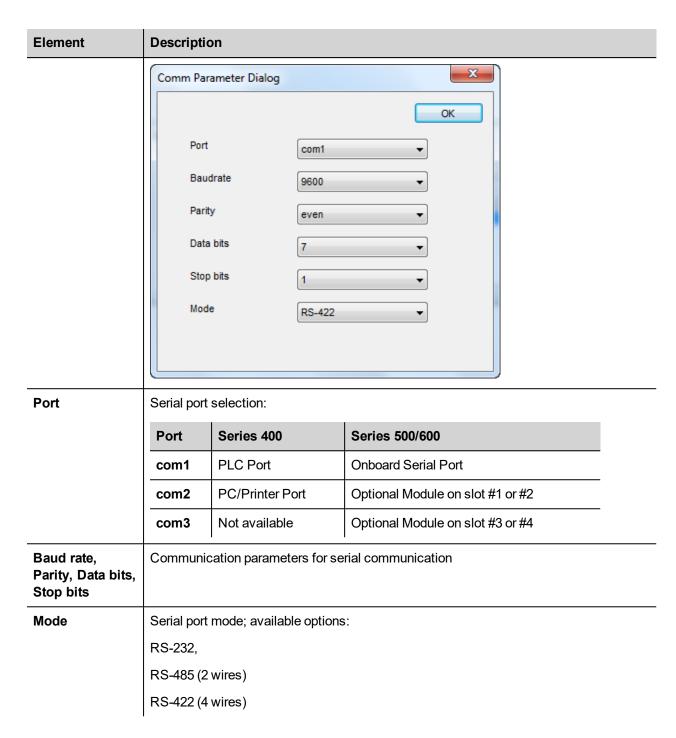
The codes supported for this communication driver are:

Error	Notes
NAK	Returned in case the controller replies with a not acknowledge
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources
General Error	Error cannot be identified; should never be reported; contact technical support

Mitsubishi FX SER


The HMI operator panels can be connected to Mitsubishi FX PLC as the network master using this communication driver.

The protocol has been designed to connect to the programming port of the PLC.


Please note that changes in the communication protocol specifications or PLC hardware may have occurred since this documentation was created. Some changes may eventually affect the functionality of this communication driver. Always test and verify the functionality of your application. To fully support changes in PLC hardware and communication protocols, communication drivers are continuously updated. Always ensure that the latest version of communication driver is used in your application.

Protocol Editor Settings

Add [+] a driver in the Protocol editor and select the protocol called "Mitsubishi FX SER" from the list of available protocols.

Element	Description
PLC Models	The list allows selecting the PLC model you are going to connect to. The selection will influence the data range offset per each data type according to the specific PLC memory resources.
Comm	Gives access to the serial port configuration parameters as shown in the figure below.

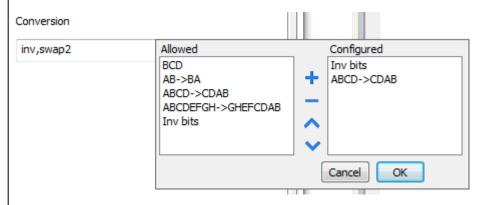
Tag Editor Settings

Into Tag editor select the protocol "Mitsubishi FX ETH" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description			
Resour ces	Area of PLC where tag is located			
Offset	Offset address where tag is located.			
SubInd ex	This allows resource	offset selection within the register.		
Туре	Data Type	Data Type Memory Space Limits		
	boolean	1 bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	float	IEEE single-precision	1.17e-38 3.40e38	
		32-bit floating point type		
	string	Refer to "String data type chapter	yı	
	Note: to d "byte[]", "s		e format followed by square brackets li	
Arraysi ze	In case of array Tag, this property represents the number of array elements.			

Element Description


• In case of string Tag, this property represents the maximum number of bytes available in the string Tag.

Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor.

If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.

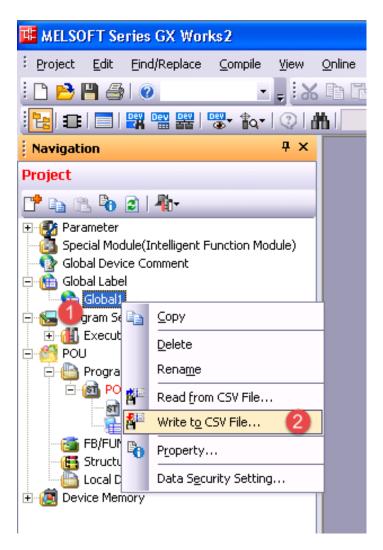
Conver sion

Conversion to be applied to the Tag.

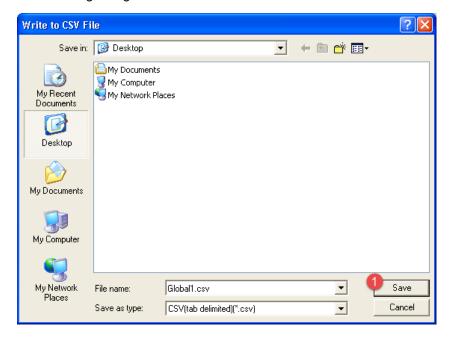
Depending on data type selected, the Allowed list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example:

Element	Description	
	Value	Description
		32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905$ (in decimal format) 0.10000000110 $0001110010111011011001001011101000011100101$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	Select the conversion list.	and click on plus button. The selected item will be added on Configured
	If more conversions are Configured list).	e configured, they will be applied in order (from top to bottom of
	Use the arrow buttons	to order the configured conversions.


Tag Import

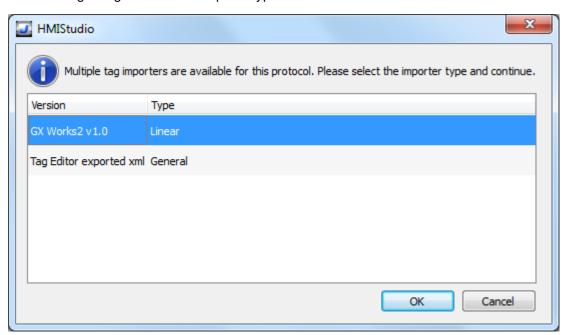
Exporting Tags from PLC


The Mitsubishi FX Serial tag import accepts symbol files with extension "csv" created by the Mitsubishi GX Works2 (Not from GX Developer).

The ".csv" file can be exported from the Project tree, as shown in the following figure.

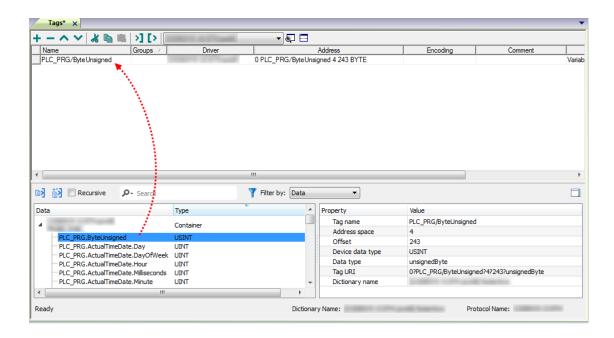
- 1. Right-click on the Global variable list that need to be exported,
- 2. Select "Write to CSV File..."

Into following dialog select the file name and location:

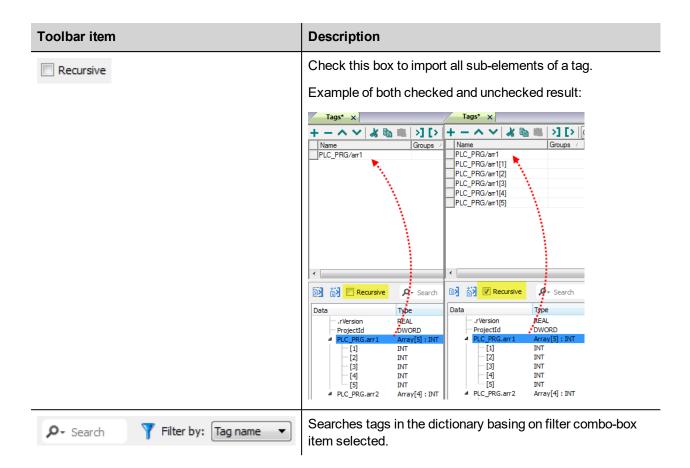


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the Import Tags button to start the importer.


The following dialog shows which importer type can be selected.

Importer	Description	
GX Works2 v1.0 Linear	Requires a .csv file.	
Lilleai	All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

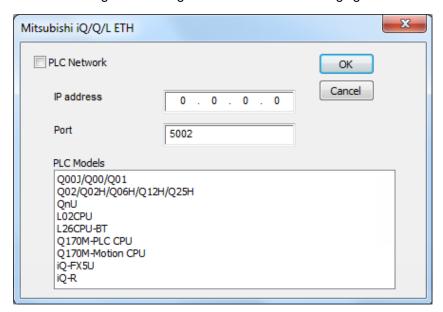
Toolbar item	Description
E ∉	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

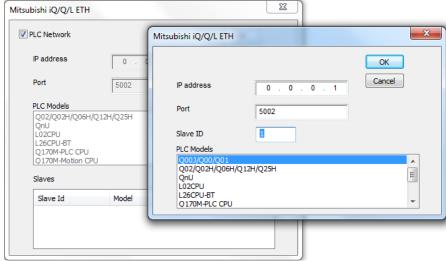
Error	Notes
NAK	Returned in case the controller replies with a not acknowledge
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Line Error	Returned when an error on the communication parameter setup is detected (parity, baud rate, data bits, stop bits); ensure the communication parameter settings of the controller is compatible with panel communication setup
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources
General Error	Error cannot be identified; should never be reported; contact technical support


Mitsubishi iQ/Q/L ETH

The Mitsubishi iQ/Q/L ETH driver supports communication with Mitsubishi controllers with integrated Ethernet port and with external Ethernet card (QJ71E71-100).

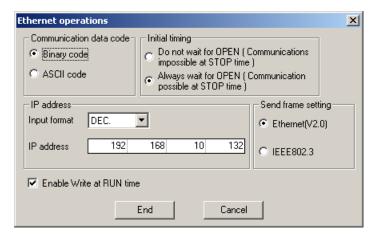
Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "Mitsubishi iQ/Q/L ETH" from the list of available protocols.


The driver configuration dialog is shown as in the following figure:

Element	Description
IP address	Ethernet IP address of the controller
Port	Specifies the port number (decimal) used in the communication with the PLC.

Element	Description	
PLC	The driver supports communication with different Mitsubishi iQ, Q and L controllers.	
Model	Note: PLC Model selection has only effect on range values of variables. If a particular model is not present in the list, try selecting a similar one. If range values of variables are the same, the communication will be correctly established.	
PLC Network	The protocol allows the connection of multiple controllers to one HMI device. To set-up multiple connections, check "PLC network" checkbox and create your network using the command "Add" per each slave device you need to include in the network. Mitsubishi iQ/Q/L ETH	

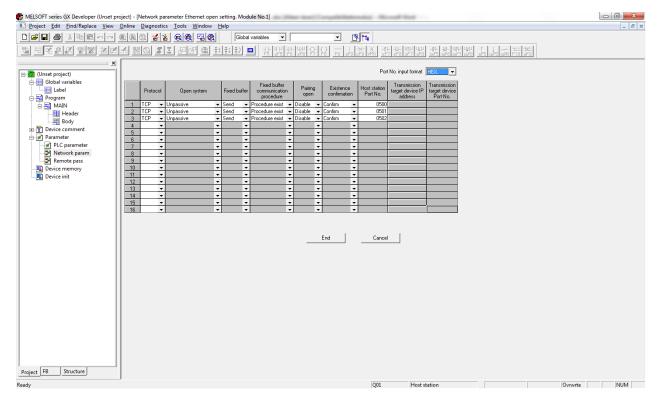


Controller Settings

GX Works2

The Mitsubishi Q system must be properly configured for Ethernet communication using the Mitsubishi GX Developer software version 7 or higher, from GX Works2 software.

The Figure below shows an example of network configuration for Ethernet communication.

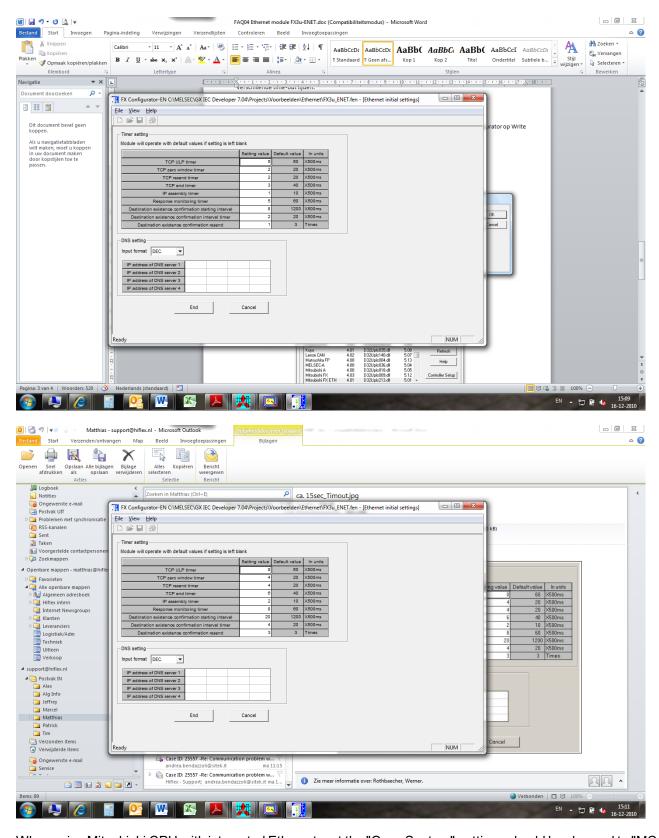


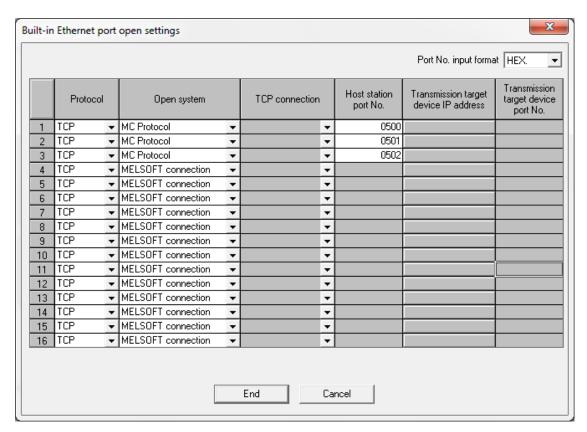
Please note that the communication protocol supports only Binary code communication.

The PLC system must be configured to accept incoming data from the external device.

In the GX Developer Software open "Parameters", "Network Param" and select Ethernet/ CC IE/ MELSECNET". Add the number of connections of the operator panels you want to configure in the network.

When using the Mitsubishi CPU with external Ethernet card (QJ71E71-100) the connections have to be configured according to the following figure as "Unpassive":


When the "Existence confirmation" setting has been set to Confirm, the TCP connection will be closed when it is not used (connection lost); by default the TCP port remains open and it is not possible to reconnect.

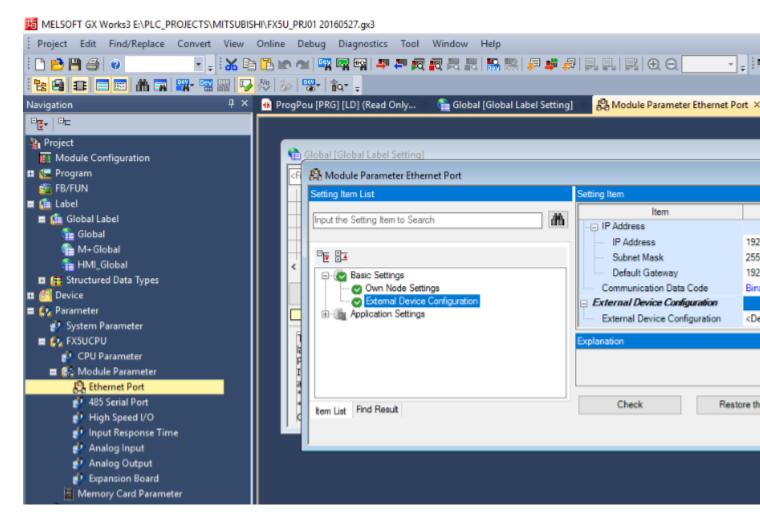

Note: The GX Developer software allows entering the conventional representation settings (decimal or hexadecimal) for the port number; in the above figure it is in hexadecimal.

In the next figures there are 2 examples about how to set "Initial settings" for 5 and 15 seconds timeout.

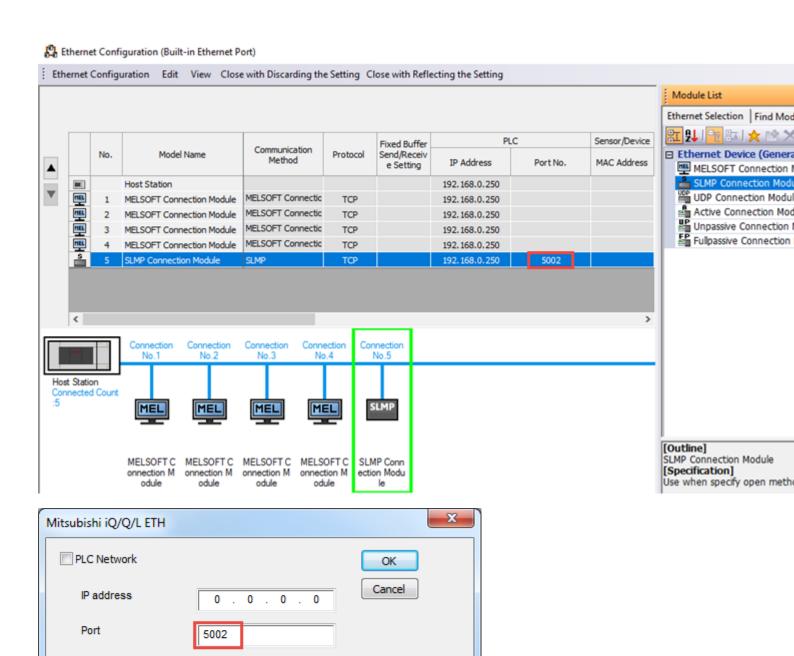
When using Mitsubishi CPU with integrated Ethernet port the "Open System" settings should be changed to "MC connection"

Note: The number format for Host Station Port No. is hexadecimal, not decimal.

GX Works3


The Mitsubishi Q system must be properly configured for Ethernet communication using GX Works3 software.

The communication driver is based on SLMP function.


SLMP (Seamless Message Protocol) is a protocol for accessing SLMP-compatible devices from an external device (such as HMI) using TCP or UDP through Ethernet.

From GX Works3 software, Ethernet port parameters must be set from **Module parameter > Ethernet Port > Basic Settings > Own Node Settings**.

SLMP Connection Module must be added in **Module parameter > Ethernet Port > Basic Settings > External Device Configuration > Detailed Settings > Ethernet Configuration (Built-in Ethernet Port)**. **Port No.** parameter must be the same as per **Port** parameter from Protocol Editor Settings (see images below).

Note: To actually get communication with HMI it is necessary to initialize the PLC after the above settings have been applied.

Ε

To initialize the PLC it possibile to use the Run/Stop/Reset switch or by simply rebooting the PLC.

Tag Import

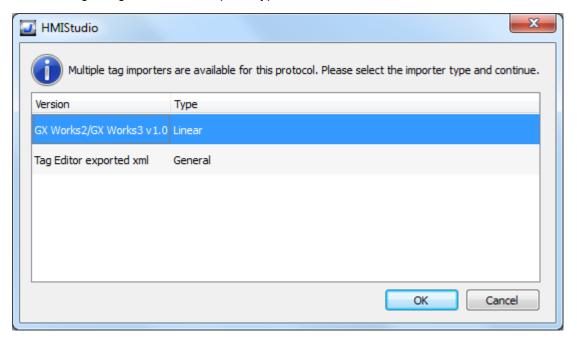
PLC Models

Q003/Q00/Q01

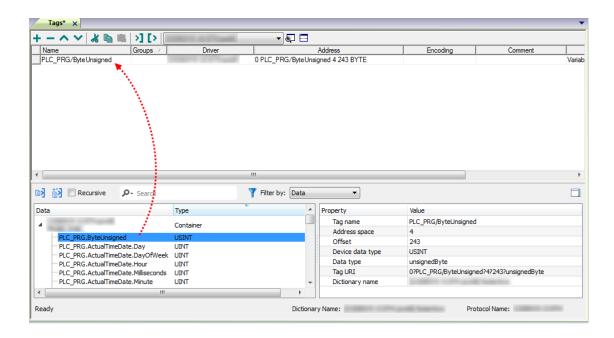
Q170M-PLC CPU

Q02/Q02H/Q06H/Q12H/Q25H

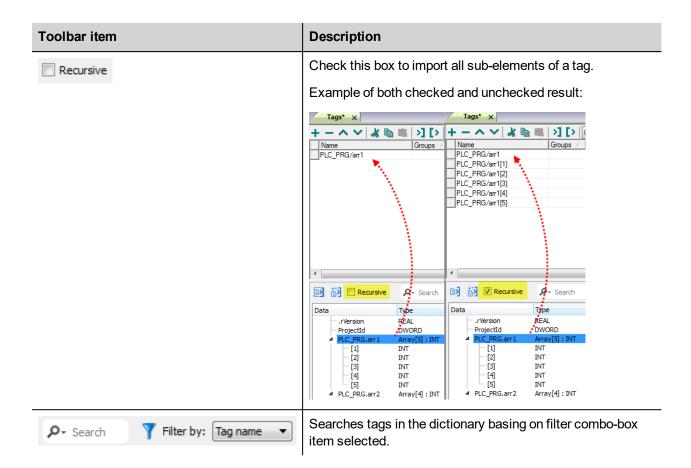
iQ-R


QnU

Select the driver in Tag Editor and click on the Import Tags button to start the importer.


The following dialog shows which importer type can be selected.

Importer	Description	
GX Works2/GX Works3 v1.0 Linear	Requires a .csvfile. All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button. 1:Page1 Tags* X	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

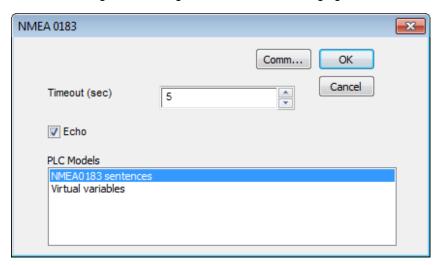
Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
ĕ ä	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes	
NAK	Returned in case the controller replies with a not acknowledge	
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access	
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources	
General Error	Error cannot be identified; should never be reported; contact technical support	

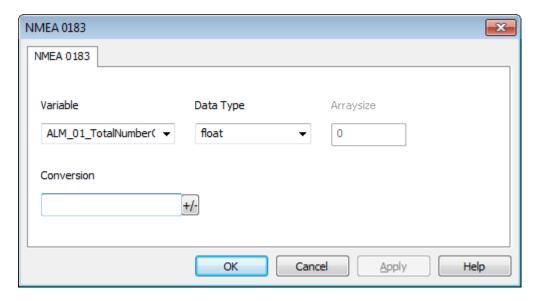

NMEA 0183

The NMEA 0183 driver has been developed to communicate with NMEA 0183 compatible devices trough the operator panel serial ports.

Protocol Editor Settings

Add (+) a new driver in the Protocol editor and select the protocol called "NMEA 0183" from the list of available protocols.

The driver configuration dialog is shown in the following figure.


Element	Description	
Timeout (sec)	Defines the time inserted by the protocol between two retries of the same message in case of missing response from the server device. It is expressed in seconds.	
Echo	If selected the NMEA messages received on the RX channel of serial port are sent out from the TX channel. This allows to continue the NMEA network downstream of the operator panel whether required.	
PLC Models	Two PLC models are available: NMEA 0183 Sentences: when selected the Tags will point univocally to the specified NMEA sentence.	
	Virtual variables: when selected the Tag will show the value coming from any NMEA sentence of the specified type, for example any NMEA sentence of Latitude type.	

Tag Editor Settings

Into Tag editor select the protocol "NMEA 0183" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description		
Variable	The NMEA Sentence or Virtual variable		
Data Type	Data Type	Memory Space	Limits
	boolean	1 bit data	01
	byte	8-bit data	-128 127
	short	16-bit data	-32768 32767
	int	32-bit data	-2.1e9 2.1e9
	unsignedByte	8-bit data	0 255
	unsignedShort	16-bit data	0 65535
	unsignedInt	32-bit data	0 4.2e9
	float	IEEE single-precision	1.17e-38 3.40e38
		32-bit floating point type	
	string	String data	

Element	Description		
Arraysize	In case of array Tag, this property represents the number of array elements.		
	 In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 		
	Note: number of bytes corresponds to number of string chars if Encoding property is set to		
	UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.		
Conversion	Conversion to be applied to the tag.		
	Value	Description	
	Degrees	Shows Degrees data only from coordinates sentence	
	Minutes	Shows Minutes data only from coordinates sentence	
	Seconds	Shows Seconds data only from coordinates sentence	

List of supported NMEA 0183 commands

The NMEA 0183 commands supported from the communication protocol are the following:

AAM_01_StatusArrivalCircle

AAM_02_StatusPerpendicular

AAM_03_ArrivalCircleRadius

AAM_04_UnitsOfRadius

AAM_05_WaypointID

ACK_01_LocalAlarmNumber

ALM_01_TotalNumberOfMessages

ALM_02_MessageNumber

ALM_03_SatelliteNumber

ALM 04 WeekNumber

ALM_05_SVhealth

ALM_06_Eccentricity

ALM_07_AlmanacReferenceTime

ALM_08_InclinacionAngle

ALM_09_RateOfRightAscension

ALM_10_RootOfSemimajorAxis

ALM_11_ArgumentOfPerigee

ALM_12_LongitudeOfAscesionNode

ALM_13_MeanAnomaly

ALM_14_ClockParameter0

ALM_15_ClockParameter1

ALR_01_TimeOfAlarmConditionChange

ALR_02_LocalAlarmNumber

ALR_03_AlarmCondition

ALR_04_AlarmAcknowledgeState

ALR_05_AlarmDescriptionState

APB_01_StatusSNR

APB_02_StatusLock

APB_03_MagnitudeOfXTE

APB 04 DirectionToStear

APB_05_UnitsXTE

APB_06_StatusArrivalCircle

APB_07_StatusPerpendicular

APB_08_BearingOriginToDestination

APB_09_MagneticOrTrue

APB_10_DestinatonWaypointID

APB_11_Bearing

APB_12_BearingMagneticOrTrue

APB_13_HeadingToSteer

APB_14_HeadingMagneticOrTrue

APB_15_ModeIndicator

BEC_01_ObservationUTC

BEC_02_WaypointLatitude

BEC_03_WaypointLatitudeInd

BEC_04_WaypointLongitude

BEC_05_WaypointLongitudeInd

BEC_06_BearingTrue

BEC_07_BearingTrueInd

BEC_08_BearingMagnetic

BEC_09_BearingMagneticInd)

BEC_10_Distance

BEC_11_DistanceUnits

BEC_12_WaypointID

BOD_01_BearingTrue

BOD_02_BearingTrueInd

BOD_03_BearingMagnetic

BOD_04_BearingMagneticInd

BOD_05_DestinationWaypointID

BOD_06_OriginWaypointID

BWC_01_ObservationUTC

BWC_02_WaypointLatitude

BWC_03_WaypointLatitudeInd

BWC_04_WaypointLongitude

BWC_05_WaypointLongitudeInd)

BWC_06_BearingTrue

BWC_07_BearingTrueInd

BWC_08_BearingMagnetic

BWC_09_BearingMagneticInd

BWC_10_Distance

BWC_11_DistanceUnits

BWC_12_WaypointID

BWC_13_ModeIndicator

BWR_01_ObservationUTC

BWR_02_WaypointLatitude

BWR_03_WaypointLatitudeInd

BWR_04_WaypointLongitude

BWR_05_WaypointLongitudeInd

BWR_06_BearingTrue

BWR_07_BearingTrueInd

BWR_08_BearingMagnetic

BWR_09_BearingMagneticInd

BWR_10_Distance

BWR_11_DistanceInd

BWR_12_WaypointID

BWR_13_ModeIndicator

BWW_01_BearingTrue

BWW_02_BearingTrueInd

BWW_03_BearingMagnetic

BWW_04_BearingMagneticInd

BWW_05_ToWaypointID

BWW_06_FromWaypointID

DBT_01_WaterDepthFeet

DBT_02_WaterDepthFeetInd

DBT_03_WaterDepthMeters

DBT_04_WaterDepthMetersInd

DBT_05_WaterDepthFathoms

DBT_06_WaterDepthFathomsInd

DCN_01_DeccaChainIdentifier

DCN 02 RedZoneIdentifier

DCN_03_RedLineOfPosition

DCN_04_StatusRedMasterLine

DCN_05_GreenZoneIdentifier

DCN_06_GreenLineOfPosition

DCN_07_StatusGreenMasterLine

DCN_08_PurpleZoneIdentifier

DCN_09_PurpleLineOfPosition

DCN_10_StatusPurpleMasterLine

DCN_11_RedLineNavigationUse, A=Valid

DCN_12_GreenLineNavigationUse, A=Valid

DCN_13_PurpleLineNavigationUse, A=Valid

DCN 14 PositionUncertainty

DCN_15_PositionUncertaintyInd

DCN_16_FixDataBasis

DPT 01 WaterDepth

DPT_02_OffsetFromTransducer

DPT_03_MaximumRangeScale

DSC_01_FormatSpecifier

DSC_02_Address

DSC_03_Cattegory

DSC_04_NatureOfDistress

DSC_05_TypeOfCommunication

DSC_06_PositionOrChannel

DSC_07_TimeOrTelNo

DSC_08_ShipMMSI

DSC_09_NatureOfDistress

DSC_10_Acknowledgment

DSC_11_ExpansionIndicator

DSE_01_TotalNumberOfMessages

DSE_02_MessageNumber

DSE_03_Query_ReplyFlag

DSE_04_Vessel_MMSI

DSE_05_DataSet1Code

DSE_06_Dataset1Data

DSE_07_Dataset2Code

DSE 08 Dataset2Data

DSE_09_Dataset3Code

DSE_10_Dataset3Data

DSE_11_Dataset4Code

DSE_12_Dataset4Data

DSE_13_Dataset5Code

DSE_14_Dataset5Data

DSE_15_Dataset6Code

DSE_16_Dataset6Data

DSE_17_Dataset7Code

DSE_18_Dataset7Data

DSE_19_Dataset8Code

DSE_20_Dataset8Data

DSE_21_Dataset9Code

DSE_22_Dataset9Data

DSE_23_Dataset10Code

DSE_24_Dataset10Data

DSI_01_TotalNumberOfMessages

DSI_02_MessageNumber

DSI 03 Vessel MMSI

DSI_04_VesselCourse

DSI_05_VesselType

DSI_06_GeographicArea

DSI_07_Commandset1Code

DSI_08_Commandset1Data

DSI_09_Commandset2Code

DSI_10_Commandset2Data

DSI_11_Commandset3Code

DSI_12_Commandset3Data

DSI_13_ExpansionIndicator

DSR_01_TotalNumberOfMessages

DSR_02_MessageNumber

DSR_03_Vessel_MMSI

DSR_04_Dataset1Code

DSR_05_Dataset1Data

DSR_06_Dataset2Code

DSR_07_Dataset2Data

DSR_08_Dataset3Code

DSR_09_Dataset3Data

DSR_10_ExpansionIndicator

DTM_01_LocalDatumCode

DTM_02_LocalDatumSubdivisioncode

DTM_03_LatOffset

DTM_04_LatOffsetInd

DTM_05_LonOffset

DTM_06_LonOffsetInd

DTM_07_AltitudeOffset

DTM 08 ReferenceDatumCode

FSI_01_TransmitingFrequency

FSI_02_ReceivingFrequency

FSI_03_ModeOfOperation

FSI_04_PowerLevel

GBS_01_UTC

GBS_02_ExpectedLatitudeError

GBS_03_ExpectedLongitudeError

GBS_04_ExpectedAltitudeError

GBS_05_FailedSatelliteID

GBS_06_ProbabilityOfMissedDetection

GBS_07_EstimateOfBiasMeters

GBS_08_StandardDeviationOfBiasEstimate

GGA_01_UTC

GGA_02_Latitude

GGA_03_LatitudeInd

GGA_04_Longitude

GGA_05_LongitudeInd

GGA_06_QualityIndicator

GGA_07_NumberOfSatellitesInUse

GGA_08_HorizontalDilutionOfPrecision

GGA_09_Altitude

GGA_10_AltitudeInd

GGA_11_GeoidalSeparation

GGA_12_GeoidalSeparationInd

GGA_13_AgeOfDifferentialData

GGA_14_DifferentialReferenceID

GLC_01_GRI

GLC_02_MasterTOA

GLC_03_SignalStatus1

GLC_04_TD1

GLC_05_SignalStatus2

GLC_06_TD2

GLC_07_SignalStatus3

GLC_08_TD3

GLC_09_SignalStatus4

GLC_10_TD4

GLC_11_SignalStatus5

GLC_12_TD5

GLC_13_SignalStatus6

GLL_01_Latitude

GLL 02 LatitudeInd

GLL_03_Longitude

GLL_04_LongitudeInd

GLL_05_UTC

GLL_06_Status

GLL_07_ModeIndicator

GNS_01_UTC

GNS_02_Latitude

GNS_03_LatitudeInd

GNS_04_Longitude

GNS_05_LongitudeInd

GNS_06_ModeIndicator

GNS_07_NumberOfSatellitesInUse

GNS_08_HDOP

GNS_09_AntennaAltitude

GNS_10_GeoidalSeparation

GNS_11_AgeOfDifferentialData

GNS_12_DifferentialStationID

GRS_01_UTC

GRS_02_Mode

GRS_03_RangeResidual

GRS_04_RangeResidual

GRS_05_RangeResidual

GRS_06_RangeResidual

GRS_07_RangeResidual

GRS_08_RangeResidual

GRS_09_RangeResidual

GRS_10_RangeResidual

GRS_11_RangeResidual

GRS_12_RangeResidual

GRS_13_RangeResidual

GRS_14_RangeResidual

GSA_01_Mode

GSA_02_Mode

GSA_03_ID

GSA_04_ID

GSA_05_ID

GSA_06_ID

GSA_07_ID

GSA_08_ID

GSA_09_ID

GSA_10_ID

GSA_11_ID

GSA_12_ID

GSA_13_ID

GSA_14_ID

GSA_15_PDOP

GSA_16_HDOP

GSA_17_VDOP

GST_01_UTC

GST_02_RMSvalueOfStandardDeviation

GST_03_StandardDeviationOfSemiMajorAxis

 $GST_04_Standard Deviation Of Semi Minor Axis$

GST_05_OrientationOfSemiMajorAxis

GST_06_StandardDeviationOfLatitude

GST_07_StandardDeviationOfLongitude

GST_08_StandardDeviationOfAltitude

GSV_01_NumberOfMessages

GSV_02_MessageNumber

GSV_03_NumberOfSatellitesInView

GSV_04_SET1_SatelliteID

GSV_05_SET1_Elevation

GSV_06_SET1_Azimuth

GSV_07_SET1_SNR

GSV_08_SET2_SatelliteID

GSV_09_SET2_Elevation

GSV_10_SET2_Azimuth

GSV_11_SET2_SNR

GSV_12_SET3_SatelliteID

GSV_13_SET3_Elevation

GSV_14_SET3_Azimuth

GSV_15_SET3_SNR

GSV_16_SET4_SatelliteID

GSV_17_SET4_Elevation

GSV_18_SET4_Azimuth

GSV_19_SET4_SNR

HDG_01_MagneticHeading

HDG_02_MagneticDeviation

HDG_03_MagneticDeviationInd

HDG_04_MagneticVariation

HDG_05_MagneticVariation

HDM_01_MagneticHeading

HDM_02_MagneticHeadingInd

HDT_01_Heading

HDT_02_HeadingInd

HMR_01_HeadingSensor1ID

HMR_02_HeadingSensor2ID

HMR_03_DifferenceLimit

HMR_04_HeadingSensorDifference

HMR_05_WarningFlag

HMR_06_HeadingReadingSensor1

HMR_07_StatusSensor1

HMR_08_TypeSensor1

HMR_09_DeviationSensor1

HMR_10_DeviationSensor1Ind)

HMR_11_HeadingReadingSensor

HMR_12_StatusSensor2

HMR_13_TypeSensor2

HMR_14_DeviationSensor2

HMR_15_DeviationSensor2Ind)

HMR_16_Variation

HMR_17_VariationInd)

HMS_01_HeadingSensor1ID

HMS_02_HeadingSensor2ID

HMS_03_MaximumDifference

HSC_01_CommandedHeading

HSC_02_CommandedHeadingInd

HSC_03_CommandedHeadingMagnetic

HSC_04_CommandedHeadingMagneticInd

HTC_01_Override

HTC_02_CommandedRudderAngle

HTC_03_CommandedRudderDirection

HTC_04_SelectedSteeringMmode

HTC_05_TurnMode

HTC 06 CommandedRudderLimit

HTC_07_CommandedOffHeadingLimit

HTC 08 CommandedRadiusOfTurn

HTC_09_CommandedRateOfTurn

HTC 10 CommandedHeadingToSteer

HTC_11_CommandedOffTrackLimit

HTC 12 CommandedTrack

HTC_13_HeadingReferenceInUse

HTD_01_Override

HTD_02_CommandedRudderAngle

HTD_03_CommandedRudderDirection

HTD_04_SelectedSteeringMode

HTD 05 TurnMode

HTD_06_CommandedRudderLimit

HTD_07_CommandedOffHeadingLimit

HTD 08 CommandedRadiusOfTurn

HTD_09_CommandedRateOfTurn

HTD_10_CommandedHeadingToSteer

HTD_11_CommandedOffTrackLimit

HTD_12_CommandedTrack

HTD 13 HeadingReferenceInUse

HTD_14_RudderStatus

HTD_15_OffHeadingStatus

HTD_16_OffTrackstatus

HTD_17_VesselHeading

LCD_01_GRI

LCD_02_MasterSNR

LCD_03_MasterECD

LCD_04_Secondary1_SNR

LCD_05_Secondary1_ECD

LCD_06_Secondary2_SNR

LCD_07_Secondary2_ECD

LCD_08_Secondary3_SNR

LCD_09_Secondary3_ECD

LCD 10 Secondary4 SNR

LCD_11_Secondary4_ECD

LCD_12_Secondary5_SNR

LCD_13_Secondary5_ECD

MDA_01_BarometricPressureInchesOfMercury

MDA_02_BarometricPressureInchesOfMercuryInd

MDA_03_Barometric pressureBars

MDA_04_Barometric pressureBarsInd

MDA 05 AirTemperature

MDA_06_AirTemperatureInd

MDA_07_WaterTemperature

MDA_08_WaterTemperatureInd

MDA_09_RelativeHumidity

MDA_10_AbsoluteHumidity

MDA_11_DewPoint

MDA 12 DewPointInd

MDA_13_WindDirectionTrue

MDA_14_WindDirectionTrueInd

MDA_15_WindDirectionMagnetic

MDA_16_WindDirectionMagneticInd

MDA_17_WindSpeedKnots

MDA_18_WindSpeedKnotsInd

MDA_19_WindSpeedMs

MDA_20_WindSpeedMsInd

MLA_01_TotalNumberOfMessages

MLA_02_MessageNumber

MLA_03_SatelliteID

MLA_04_CalendarDay

MLA 05 GeneralizedHealth

MLA_06_Eccentricity

MLA_07_DOT

MLA_08_ArgumentOfPerigee

MLA_09_SystemTimeScaleCorrectionMSB

MLA_10_CorrectionOfAverageValueDraconitic

MLA 11 TimeOfAscensionNode

MLA 12 GreenwichLongitude

MLA_13_CorrectionToAverageValueInclination

MLA_14_SystemTimeScaleCorrectionLSB

MLA_15_CourseValueOfTimeScaleShift

MSK_01_BeaconFrequency

MSK_02_Auto_Manual_Frequency

MSK_03_BeaconBitRate

MSK 04 Auto Manual BitRate

MSK_05_IntervalForSending

MSK_06_ChannelNumber

MSS_01_SignalStrength

MSS 02 SNR

MSS_03_BeaconFrequency

MSS_04_BeaconBitRate

MSS 05 ChannelNumber

MTW_01_Temperature

MTW_02_TemperatureInd

MWD_01_WindDirection

MWD_02_WindDirectionInd

MWD_03_WindDirectionMagnetic

MWD_04_WindDirectionMagneticInd

MWD_05_WindSpeedKnots

MWD_06_WindSpeedKnotsInd

MWD_07_WindSpeedMs

MWD_08_WindSpeedMsInd

MWV_01_WindAngle

MWV_02_Reference

MWV_03_WindSpeed

MWV_04_WindSpeedInd

MWV_05_Status

NMEA_Altitude

NMEA_Course

NMEA_Latitude

NMEA_LatitudeInd

NMEA_Longitude

NMEA_LongitudeInd

NMEA_SpeedKnots

NMEA_UTC

OSD_01_Heading

OSD_02_HeadingStatus

OSD_03_VesselCourse

OSD_04_CourseReference

OSD_05_VesselSpeed

OSD_06_SpeedReference

OSD_07_VesselSet

OSD_08_VesselDrift

OSD_09_SpeedUnits

RMA_01_Status

RMA_02_Latitude

RMA_03_LatitudeInd

RMA_04_Longitude

RMA_05_LongitudeInd

RMA_06_TimeDifferenceA

RMA_07_TimeDifferenceB

RMA_08_SpeedOverGroundKnots

RMA_09_CourseOverGround

RMA_10_MagneticVariation

RMA_11_MagneticVariationInd

RMA_12_ModeIndicator

RMB_01_DataStatus

RMB_02_CrossTrackError

RMB_03_DirectionToSteer

RMB_04_OriginWaypointID

RMB_05_DestinationwaypointID

RMB_06_DestinationwaypointLat

RMB_07_DestinationwaypointLatInd

RMB 08 DestinationWaypointLongitude

RMB_09_DestinationWaypointLongitudeInd

RMB_10_RangeToDestination

RMB_11_BearingToDestination

RMB_12_DestinationClosingVelocity

RMB_13_ArrivalStatus

RMB_14_ModeIndicator

RMC_01_UTC

RMC_02_Status

RMC 03 Latitude

RMC_04_LatitudeInd

RMC_05_Longitude

RMC_06_LongitudeInd

RMC_07_SpeedOverGround

RMC_08_CourseOverGround

RMC_09_Date

RMC_10_MagneticVariation

RMC_11_MagneticVariationInd

RMC_12_ModeIndicator

ROT_01_RateOfTurn

ROT_02_Status

RPM_01_SourceShaftEngine

RPM_02_EngineOfShaftNumber

RPM_03_Speed

RPM_04_PropellerPitch

RPM_05_Status

RSA_01_StarboardRudderSensor

RSA_02_StatusRudderSensor)

RSA_03_PortRudderSensor

RSA_04_StatusPortRudderSensor)

RSD_01_Origin1Range

RSD_02_Origin1Bearing

RSD_03_VariableRangeMarker1

RSD_04_BearingLine1

RSD_05_Origin2Range

RSD_06_Origin2Bearing

RSD_07_VRM2

RSD_08_EBL2

RSD_09_CursorRange

RSD_10_CursorBearing

RSD_11_RangeScale

RSD_12_RangeScaleUnits

RSD_13_DisplayRotation

RTE_01_TotalNumberOfMessages

RTE_02_MessageNumber

RTE_03_MessageMode

RTE_04_RouteIdentifier

RTE_05_WaypointIdentifier1

RTE_06_WaypointIdentifier2

RTE_07_WaypointIdentifier3

RTE_08_WaypointIdentifier4

RTE_09_WaypointIdentifier5

RTE_10_WaypointIdentifier6

RTE_11_WaypointIdentifier7

RTE_12_WaypointIdentifier8

RTE_13_WaypointIdentifier9

RTE_14_WaypointIdentifier10

SFI_01_TotalNumberOfMessages

SFI_02_MessageNumber

SFI_03_1stFrequency

SFI_04_1stMode

SFI_05_2ndFrequency

SFI_06_2ndMode

SFI_07_3rdFrequency

SFI_08_3rdMode

SFI_09_4thFrequency

SFI_10_4thMode

SFI_11_5thFrequency

SFI_12_5thMode

SFI_13_6thFrequency

SFI_14_6thMode

STN_01_TalkerID

TLB_01_TargetNumber

TLB_02_LabelAssigned

TLB_03_TargetNumber1

TLB_04_LabelAssigned1

TLB_05_TargetNumber2

TLB_06_LabelAssigned2

TLB_07_TargetNumber3

TLB_08_LabelAssigned3

TLB_09_TargetNumber4

TLB_10_LabelAssigned4

TLB_11_TargetNumber5

TLB_12_Labelassigned5

TLB_13_TargetNumber6

TLB_14_LabelAssigned6

TLB_15_TargetNumber7

TLB_16_LabelAassigned7

TLB_17_TargetNumber8

TLB_18_LabelAssigned8

TLB_19_TargetNumberReported

TLB_20_TargetLabelAssigned

TLL_01_TargetNumber

TLL_02_TargetLatitude

TLL_03_TargetLatitudeInd

TLL_04_TargetLongitude

TLL_05_TargetLongitudeInd

TLL_06_TargetName

TLL_07_UTC

TLL_08_TargetStatus

TLL_09_ReferenceTarget

TTM_01_TargetNumber

TTM_02_TargetDistance

TTM_03_Bearing

TTM_04_BearingInd

TTM_05_TargetSpeed

TTM_06_TargetCourse

TTM_07_TargetCourseInd

TTM_08_DistanceOfClosestPoint

TTM_09_TimeToCPA

TTM_10_SpeedAndDistanceUnits

TTM_11_TargetName

TTM_12_TargetStatus

TTM_13_ReferenceTarget

TTM_14_UTC

TTM_15_TypeOfAcquisition

TXT_01_TotalNumberOfMessages

TXT_02_MessageNumber

TXT_03_TextIdentifier

TXT_04_TextMessage

VBW_01_LongitudinalWaterSpeed

VBW_02_TransverseWaterSpeed

VBW_03_StatusWaterSpeed

VBW 04 LongitudinalGroundSpeed

VBW_05_TransverseGroundSpeed

VBW_06_StatusGroundSpeed

VBW_07_SternTransverseWaterSpeed

VBW_08_StatusSternWaterSpeed

VBW_09_SternTransverseGroundSpeed

VBW_10_StatusSternGroundSpeed

VDR_01_Direction

VDR_02_DirectionInd

VDR 03 DirectionMagnetic

VDR_04_DirectionMagneticInd

VDR_05_CurrentSpeed

VDR_06_CurrentspeedInd

VHW_01_Heading

VHW_02_HeadingInd

VHW_03_HeadingMagnetic

VHW_04_HeadingMagneticInd

VHW_05_SpeedKnots

VHW_06_SpeedKnotsInd

VHW_07_SpeedKmh

VHW_08_SpeedKmhInd

VLW 01 TotalCumulativeDistance

VLW_02_TotalCumulativeDistanceInd

VLW_03_DistanceSinceReset

VLW_04_DistanceSinceResetInd

VPW_01_SpeedKnots

VPW 02 SpeedKnotsInd)

VPW_03_SpeedMs

VPW_04_SpeedMsInd

VTG 01 CourseOverGround

VTG_02_CourseOverGroundInd

VTG_03_CourseOverGroundMagnetic

VTG_04_CourseOverGroundMagneticInd

VTG_05_SpeedOverGroundKnots

VTG_06_SpeedOverGroundKnotsInd

VTG_07_SpeedOverGroundKmh

VTG_08_SpeedOverGroundKmhInd

VTG_09_ModeIndicator

VWR_01_MeasuredWindAngle

VWR_02_VesselHeading

VWR_03_MeasuredWindSpeed

VWR_04_MeasuredWindSpeedInd

VWR_05_WindSpeedMeters

VWR_06_WindSpeedMetersInd

VWR_07_WindSpeedKmh

VWR_08_WindSpeedKmhInd

VWT_01_CalculatedWindAngle

VWT_02_VesselHeading

VWT_03_CalculatedWindSpeed

VWT_04_CalculatedWindSpeedInd

VWT_05_WindSpeedMeters

VWT_06_WindSpeedMetersInd

VWT_07_WindSpeedKmh

VWT_08_WindSpeedKmhInd

WCV 01 VelocityComponent

WCV_02_VelocityComponentInd

WCV_03_WaypointIdentifier

WCV_04_ModeIndicator

WNC_01_DistanceMiles

WNC_02_DistanceMilesInd

WNC 03 DistanceKm

WNC_04_DistanceKmInd

WNC_05_WaypointIdentifierFrom

WNC 06 WaypointIdentifierTo

WPL_01_WaypointLatitude

WPL_02_WaypointLatitudeInd

WPL_03_WaypointLongitude

WPL_04_WaypointLongitudeInd

WPL_05_WaypointIdentifier

XDR_01_Transducer1Type

XDR_02_Measurmnt1Data

XDR_03_UnitsOfMeasure1

XDR_04_Transducer1

XDR_05_Transducer2Type

XDR_06_Measurment2Data

XDR_07_UnitsOfMeasure2

XDR_08_Transducer2

XDR_09_Transducer3Type

XDR_10_Measurment3Data

XDR_11_UnitsOfMeasure3

XDR_12_Transducer3

XDR_13_Transducer4Type

XDR_14_Measurment4Data

XDR_15_UnitsOfMeasure4

XDR_16_Transducer4

XDR_17_Transducer5Type

XDR_18_Measurment5Data

XDR_19_UnitsOfMeasure5

XDR_20_Transducer5

XDR_21_Transducer6Type

XDR_22_Measurment6Data

XDR_23_UnitsOfMeasure6

XDR_24_Transducer6

XDR_25_Transducer7Type

XDR 26 Measurment7Data

XDR_27_UnitsOfMeasure7

XDR_28_Transducer7

XDR_29_Transducer8Type

XDR_30_Measurment8Data

XDR_31_UnitsOfMeasure8

XDR_32_Transducer8

XTE_01_Status1

XTE_02_Status2

XTE_03_MagnitudeOfCrossTrackError

XTE_04_DirectionToSteer

XTE_05_Units

XTE_06_ModeIndicator

 $XTR_01_MagnitudeOfCrossTrackError$

XTR_02_DirectionToSteer

XTR_03_Units

ZDA_01_UTC

ZDA_02_Day

ZDA_03_Month

ZDA_04_Year

ZDA_05_LocalZoneHours

ZDA_06_LocalZoneMinutes

ZDL_01_TimeToPoint

ZDL_02_DistanceToPoint

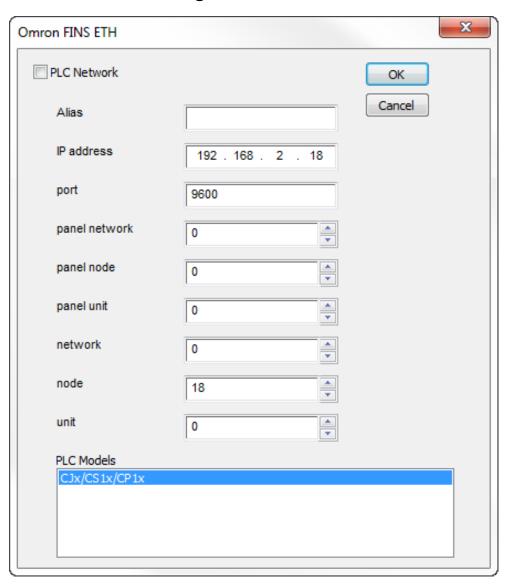
ZDL_03_TypeOfPoint

ZFO_01_UTC

ZFO_02_ElapsedTime

 $ZFO_03_OriginWaypointID$

ZTG_01_UTC

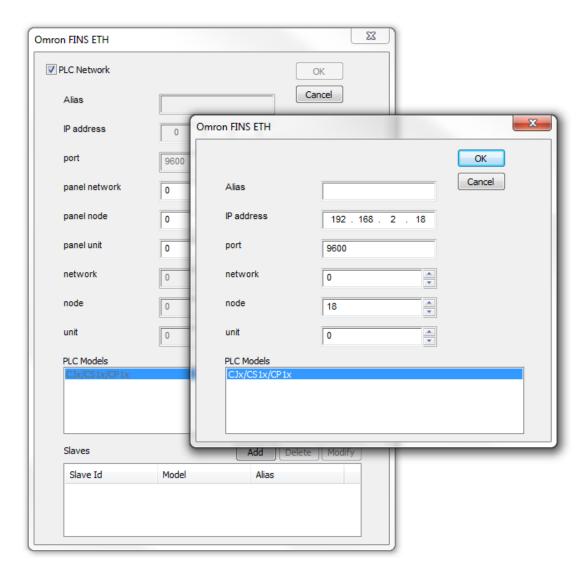

ZTG_02_TimeToGo

ZTG_03_DestinationWaypointID

Omron FINS ETH

This driver supports the FINS protocol via Ethernet connection. For a list of models that support the FINS Communications Service, refer to the manufacturer's website.

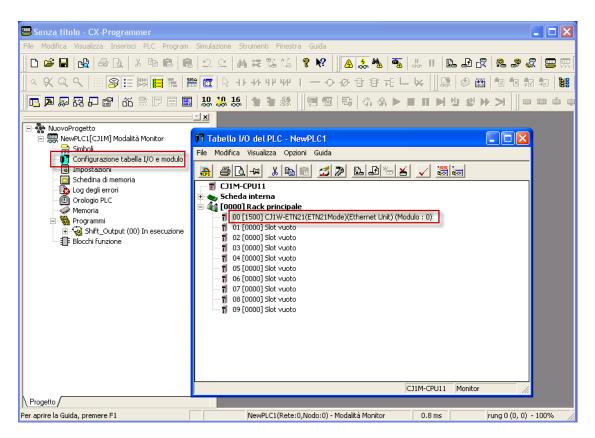
Protocol Editor Settings


Element	Description
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node
IP address	The Ethernet IP address of the controller connected to the operator panel
Port	Defines the port number used in the communication with the PLC. The UDP Port number must

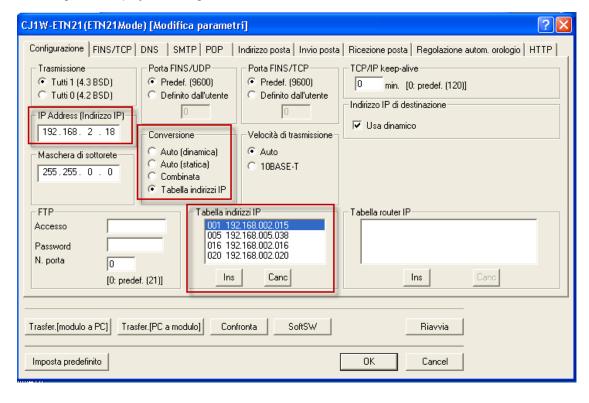
Element	Description	
	match the value specified in the PLC configuration; the default value is 9600. Most applications will use the default value.	
Network Node Unit		
	 Automatic generation (default) IP address table Combined method (uses Automatic and IP address table) The Omron documentation contains all the details related to determine the IP address of the controller depending on the FINS address assigned to it. The next chapter shows an example of controller configuration based on IP address table.	
Panel Network	The Panel Network/Node/Unit parameters assigned to HMI should be compatible with the ones assigned in the Omron network to the PLC:	
Panel Node Panel Unit	 Network Number must match the one specified for the PLC Node Number should match the last number of the IP address of the HMI; in the figure above the panel has been configured with IP address 192.168.2.15. Unit represent the possible different network cards over the same node; for the HMI should be always set to zero since there is always only one communication unit. 	

The protocol supports the connections to multiple controllers.

To enable this, check the "PLC Network" check box and provide the configuration per each node.



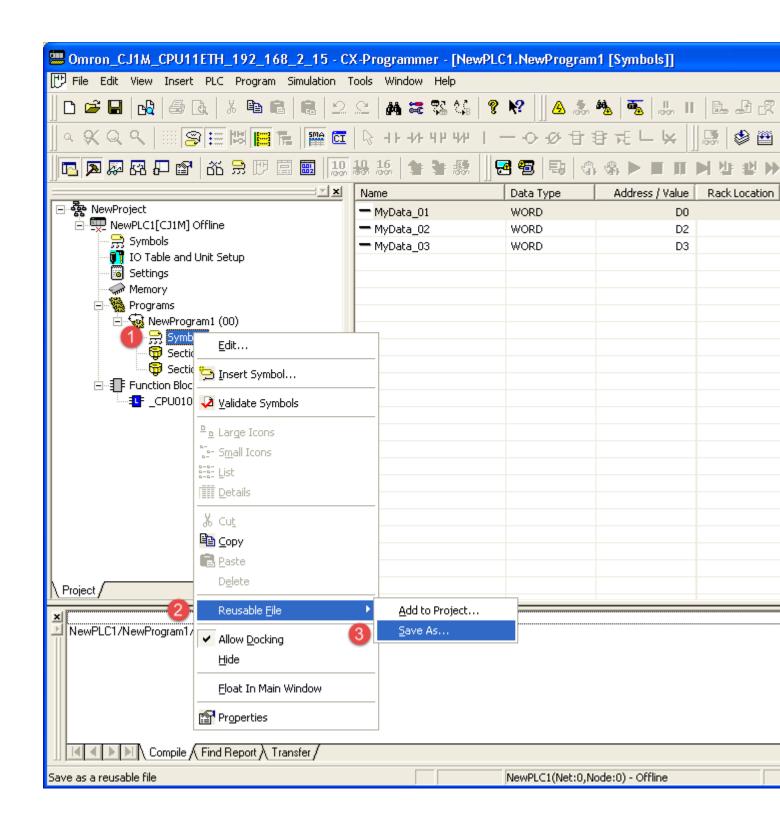
Controller Settings


The controller must be properly configured to handle the communication with the panel.

The next figure shows the screen of the Omron CX programming software from where you can define the network parameters.

The figure below shows an example of configuration based on the IP address table conversion. The IP addresses used are matching the HMI project settings screens as shown above.

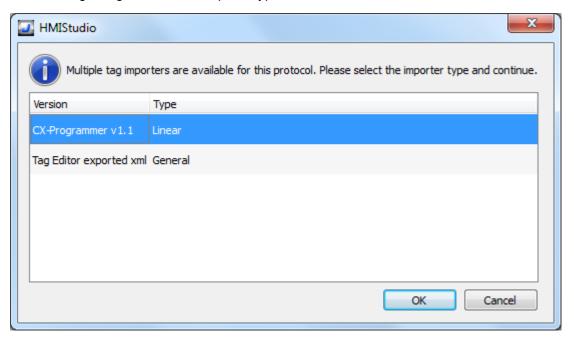
Tag Import


Exporting Tags from PLC

The Omron FINS Ethernet driver can import tag information from CX-Programmer PLC programming software. The tag import filter accepts symbol files with extension ".cxr" created by the Omron programming tool.

The ".cxr" files can be exported from the symbol table utility.

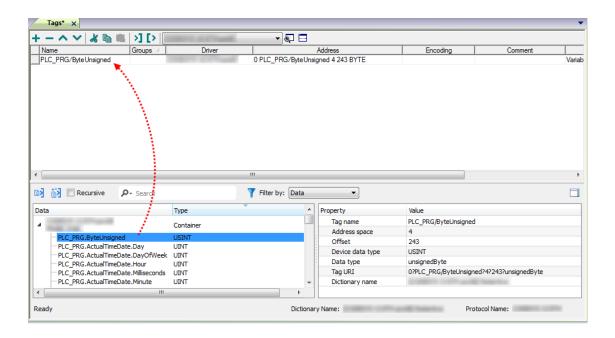
See in figure how to access the Symbol Table (if configured) from the Omron programming software.



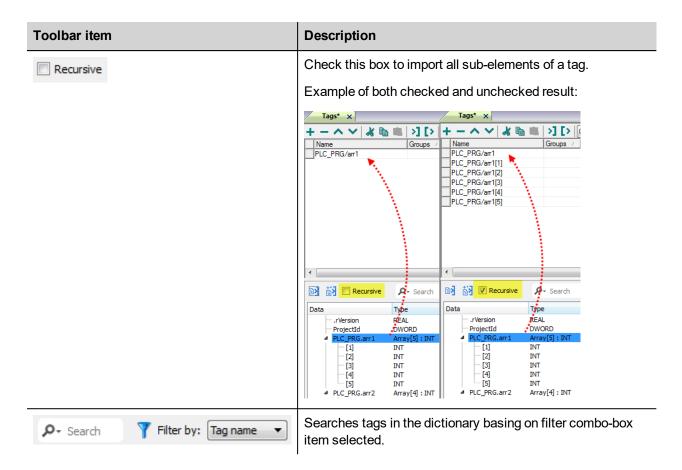
Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.

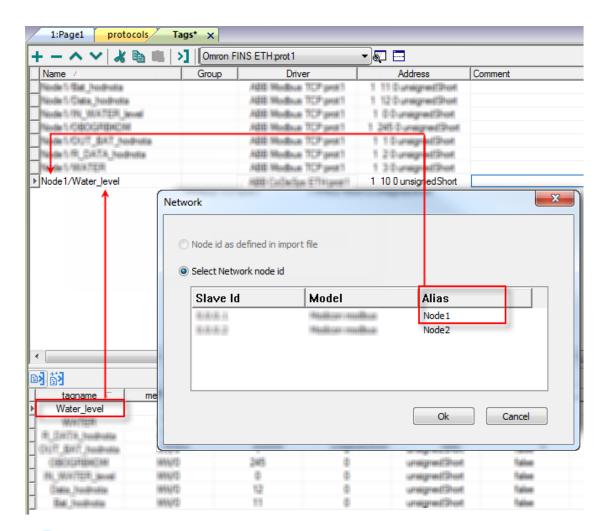


Importer	Description
CX-Programmer v1.1 Linear	Requires a .cxrfile.
	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Ki Ki	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.



Aliasing Tag Names in Network Configurations

Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: aliasing tag names is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

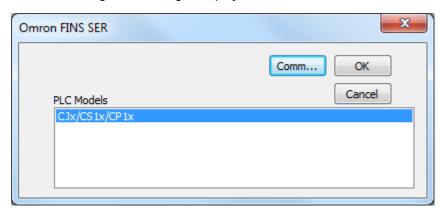
The codes supported for this communication driver are:

Error	Notes
NAK	Returned in case the controller replies with a not acknowledge; can be returned also in case the network/node/unit parameters contained in the PLC response are not matching with panel configuration
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access

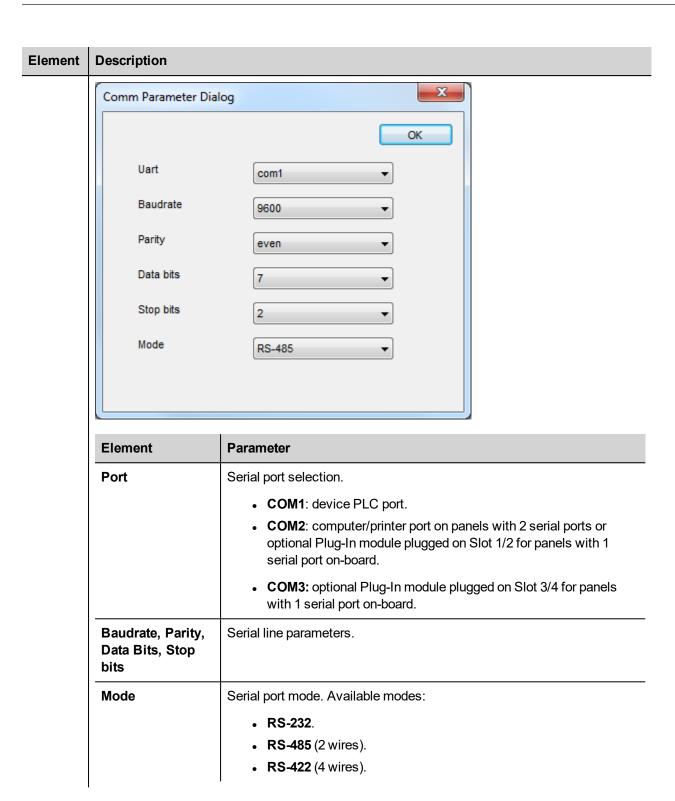
Error	Notes
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources. The same error can be returned also in case the PLC could not complete the processing of the panel request and sent back to the panel and invalid/not completed response.
Cnt error	Returned when a specific control character in the protocol frame received does not match with the corresponding one in the request; verify the proper settings of the controller network configuration
General Error	Error cannot be identified; should never be reported; contact technical support

Omron FINS SER

This driver supports the FINS protocol via serial connection. For a list of models that support the FINS Communications Service, refer to the manufacturer's website.


Protocol Editor Settings

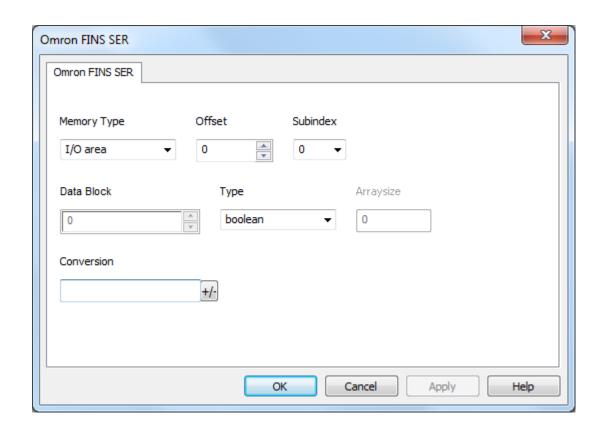
Adding a protocol


To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description
PLC Models	PLC models available:
	CJx/CSx/CP1x
Comm	If clicked displays the communication parameters setup dialog.



Tag Editor Settings

In Tag Editor select the protocol Omron FINS SER.

Add a tag using [+] button. Tag setting can be defined using the following dialog:

Element	Description		
Memory Type	Memory Type	Description	
. , , , ,	I/O area	Corresponds to CIO resource on PLC	
	Auxiliary area	Corresponds to A resource on PLC	
	Holding area	Corresponds to H resource on PLC	
	Timer completion flags	Corresponds to T resource on PLC	
	Timer PVs	Corresponds to TPV resource on PLC	
	DM area	Corresponds to D resource on PLC	
	Counter completion area	Corresponds to C resource on PLC	
	Counter CVs	Corresponds to CVS resource on PLC	
	EM area	Corresponds to E resource on PLC	
	Work area	Corresponds to W resource on PLC	
	Index registers	Corresponds to IR resource on PLC	
	Data registers	Corresponds to DR resource on PLC	
Offset	Starting address for the Tag. The possible range depend on memory type selected.		

Element	Description		
Subind ex	This parameter allow to select a single part of the resource if the selected data type is shorter than the resource data type		
Data block	Instance of resource of the PLC.		
Data Type			

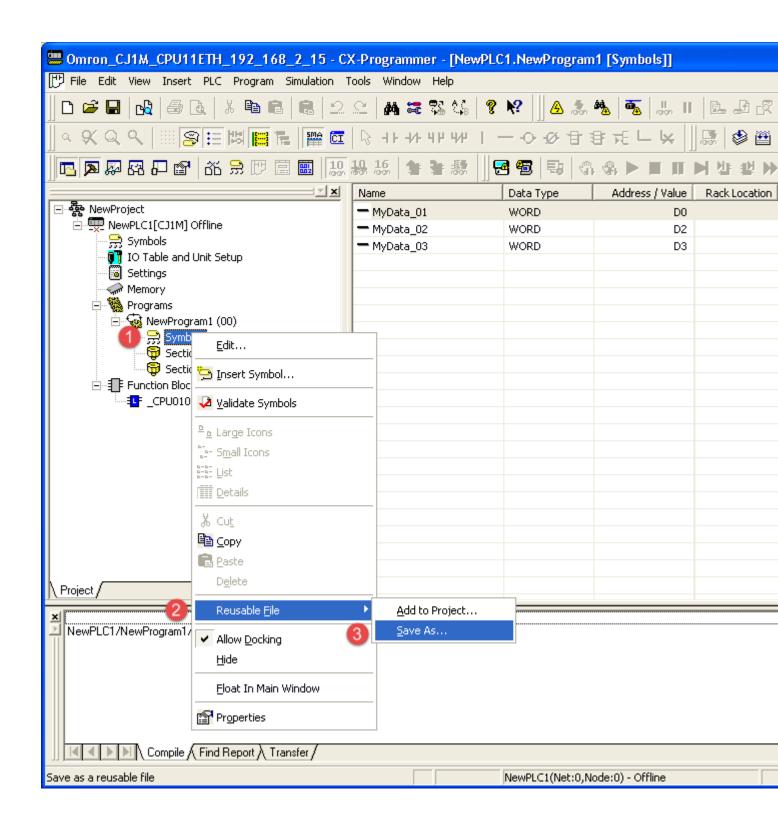
Element	Description		
Arraysi ze	In case of string Tag. Note: number of bytes cor Latin1 in Tag Editor.	Tag, this property represonant	ents the number of array elements. ents the maximum number of bytes available in f string chars if Encoding property is set to UTF-6 LE, UTF-16BE or UTF-16LE one char requires 2
Conversion	Conversion to be applied	to the Tag.	
	inv,swap2	Allowed BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	Configured Inv bits ABCD->CDAB

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.

Element	Description		
	Value	Description	
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 000111001011101101100100010	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversion and click on plus button. The selected item will be added on Configure list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.		

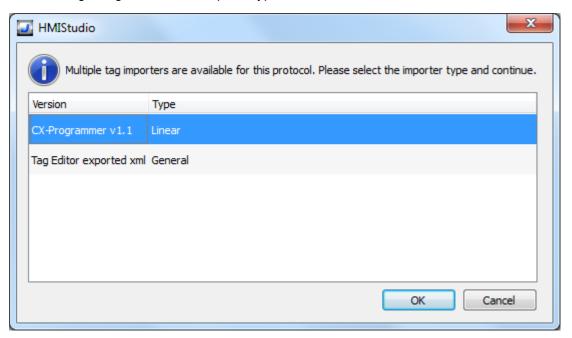
Tag Import


Exporting Tags from PLC

The Omron FINS SER driver can import tag information from CX-Programmer PLC programming software. The tag import filter accepts symbol files with extension ".cxr" created by the Omron programming tool.

The ".cxr" files can be exported from the symbol table utility.

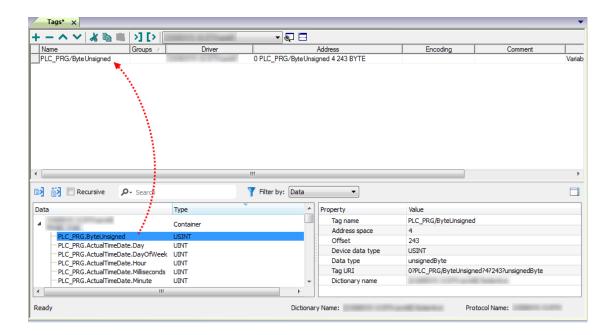
See in figure how to access the Symbol Table (if configured) from the Omron programming software.



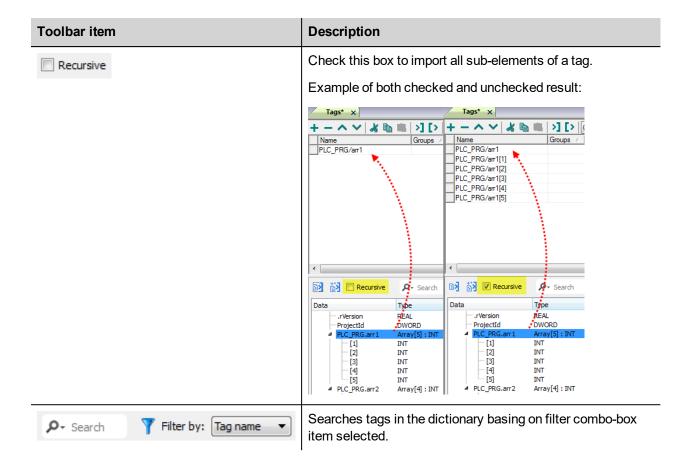
Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description
CX-Programmer v1.1	Requires a .cxr file.
Linear	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

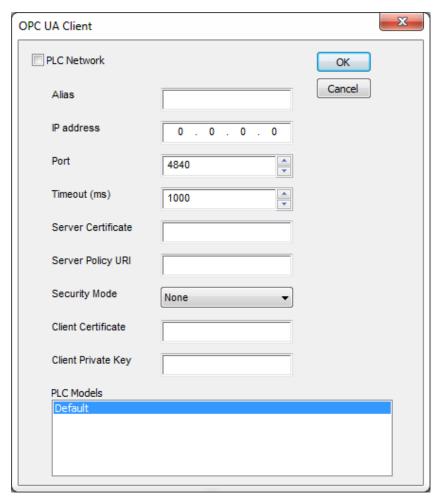
Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Ki Ki	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

OPC UA Client

The OPC UA Client communication driver has been designed to connect HMI devices to OPC UA servers.

This implementation of the protocol operates as a client only.

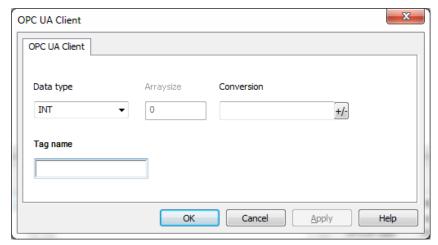

Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.


Element	Description
PLC Network	Enable access to multiple networked controllers. For every controller set the proper option.
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP Address	IP address of the server.
Port	Port number where the server is listening.
Timeout (ms)	Time delay in milliseconds between two retries in case of no response from the server device.
Server Certificate	Certificate for OPC UA Server (PEM format). If blank, no security is enabled for communication.
Server Policy URI	URI (Uniform Resource Identifier) of the requested endpoint in the OPC server.
	If blank, default endpoint will be used. Default endpoint normally has no security enabled.
Security	Type of authentication:
Mode	None: No authentication with server and no data encryption.
	Sign: Certificates only used for authentication with server.
	SignAndEncrypt: Certificates used for authentication with server and data encryption.
	Note: set Security Mode consistently with Server Policy URI . For example, do not select SignAndEncrypt for an endpoint that does not support encryption.
Client Certificate	Certificate used by the OPC UA client. If blank, a certificate is automatically generated.
Client Private Key	Key used by the OPC UA client. If blank, a key is automatically generated.
PLC Models	No options available.

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. Select **OPC UA Client** from the protocol list.
- 2. To add a tag, click +: the tag definition dialog is displayed.

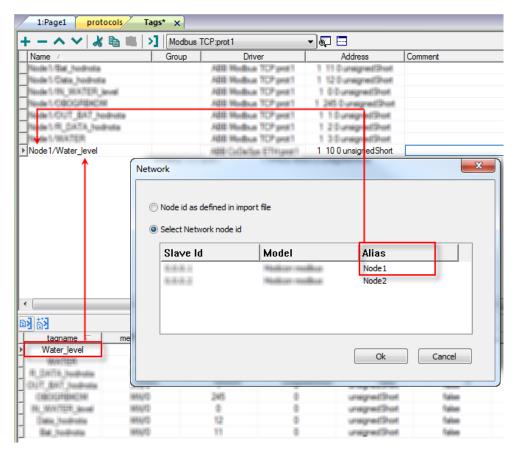
Element	Description	
	·	
Data Type	Available data types:	
. 7,60	• boolean	
	• byte	
	• short	
	• int	
	unsignedByte	
	unsignedShort	
	unsignedInt	
	float	
	double	
	• time	
	• uint64	
	• int64	
	• string	
	• binary	
	See "Programming concepts" section in the main manual.	
	Note: To define arrays, select one of Data Type format followed by square brackets.	
Arraysi	In case of array Tag, this property represents the number of array elements.	
ze	 In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 	
	Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor.	
	If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.	
Conver	Conversion to be applied to the Tag.	

Element Description sion Conversion inv,swap2 Allowed Configured BCD Inv bits ABCD->CDAB AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits Cancel OK

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	Example: 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011001000101101000011100101

Element	Description			
	Value	Description		
		→ 1 10000011100 1010101000010100010110110110		
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)		
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)		
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.			
Tag name	Name of tag to be used in communication.			


Note: Tags properties result from the import process. In most cases manual creation of a new tag is not necessary.

Adding an alias name to a protocol

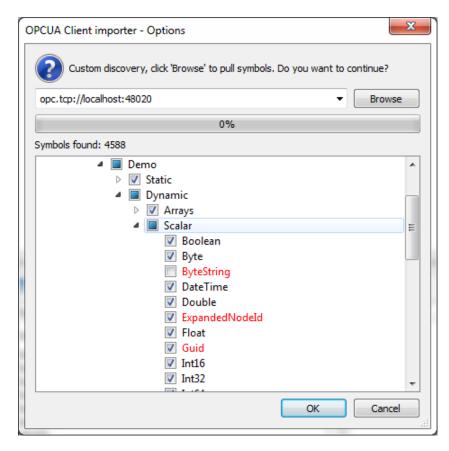
Tag names must be unique at project level, however, the same tag names might need to be used for different controller nodes (for example when the HMI device is connected to two devices running the same application).

When creating a protocol you can add an alias name that will be added to tag names imported for this protocol.

In the example, the connection to a certain controller is assigned the name **Node1**. When tags are imported for this node, all tag names will have the prefix **Node1** making each of them unique at the network/project level.

Note: Aliasing tag names is only available for imported tags. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

The Alias string is attached on the import. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are re-imported, all tags will be re-imported with the new prefix string.


Importing tags

Tags must be imported from OPC UA servers.

Path: ProjectView> Config > double-click Tags

- 1. From the protocols list select OPC UA Client.
- 2. Click on Import Tags.
- 3. Select Hierarchical importer.
- 4. Enter the address of the server and click **Browse**.

5. When the discovery process is completed, click **OK** to create the dictionary with the tags.

See "My first project" section in the main manual.

Communication status

Current communication status can be displayed using System Variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

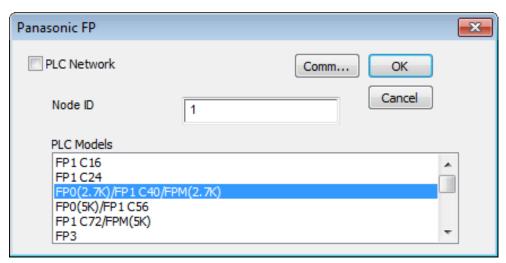
Error	Description
Connecting <error description=""></error>	Error during connection
Connection while reading: <error description=""></error>	Error encountered when connecting for read operation
Bad status while reading: <error description=""></error>	Error in read operation
Connection while writing: <error description=""></error>	Error encountered when connecting for write operation
Bad status writing: <error description=""></error>	Error in write operation
OPC UA client for given node ID not found	Wrong node ID information

<Error description> can be one of the following:

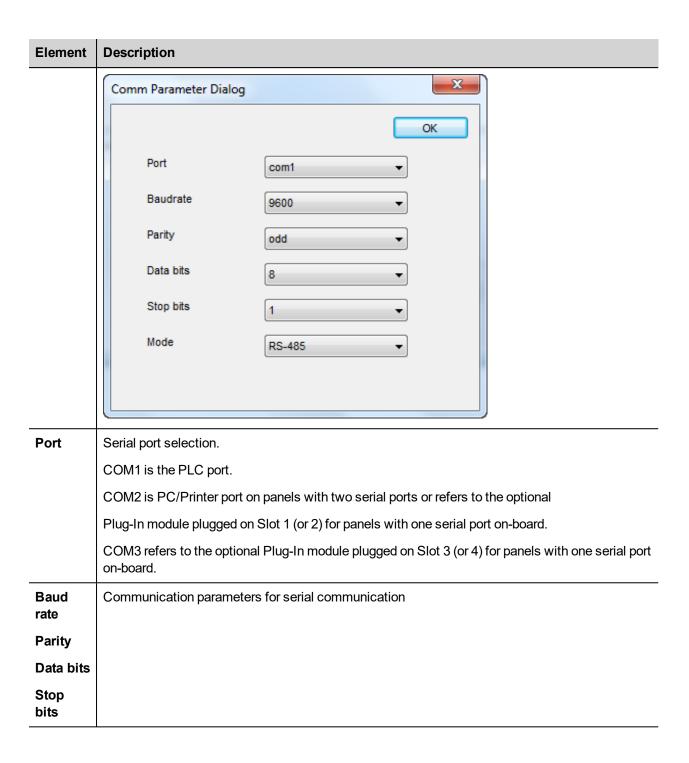
Error	Notes	
BadTimeout Timeout error. No answer from server.		
BadSecurityChecksFailed	Error during exchange of certificates. Typically occurs when the server does not accept the client certificate as trusted.	
BadCertificatexxxInvalid	Error in client or server certificate.	
BadNodeUnknown	The tag (node) does not exist.	
BadAttributeNotFound	Attempt to access an invalid attribute.	
BadNotWritable	Attempt to write to a read-only attribute.	

Panasonic FP

The operator panels can be connected to a Panasonic FP PLC as the network master using this communication driver.


This driver has been designed for connection to the programming port of the PLC.

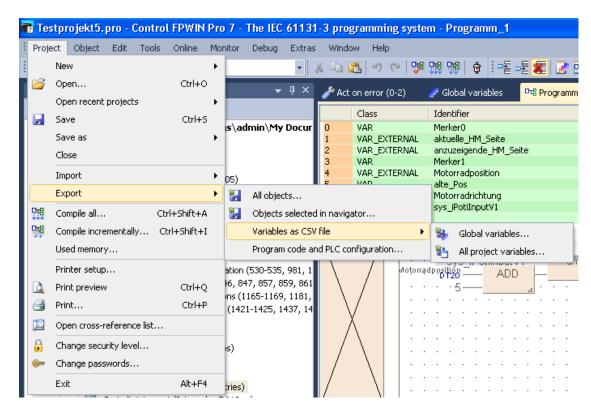
Please note that changes in the communication protocol specifications or PLC hardware may have occurred since this documentation was created. Some changes may eventually affect the functionality of this communication driver. Always test and verify the functionality of your application. To fully support changes in PLC hardware and communication protocols, communication drivers are continuously updated. Always ensure that the latest version of communication driver is used in your application.


Protocol Editor Settings

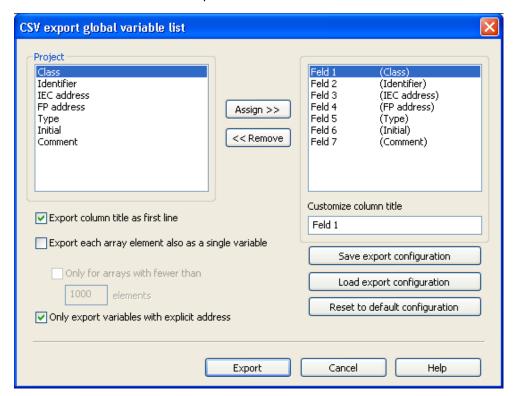
Add (+) a driver in the Protocol editor and select the protocol called "Panasonic FP" from the list of available protocols.

The driver configuration dialog is shown in the following figure.

Element	Description
Node ID	Node number of the slave device
PLC Models	The list allows selecting the PLC model you are going to connect to. The selection will influence the data range offset per each data type according to the specific PLC memory resources.
Comm	Recalls the serial port configuration parameters as shown in the figure below.

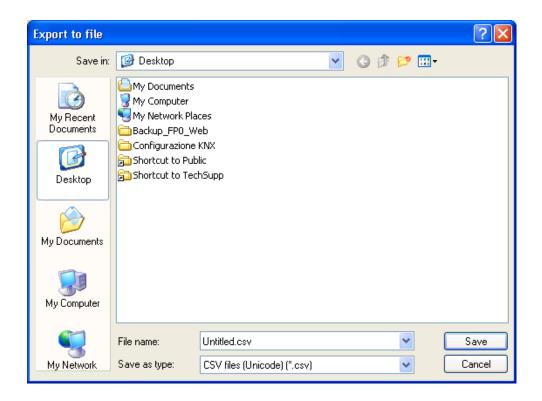

Element	Description		
Mode	Serial port mode. Available options:		
	RS-232,		
	RS-485 (2 wires)		
	RS-422 (4 wires)		
PLC Network	The protocol supports connection to multiple controllers. To enable this, check the "PLC Network" check box and provide the configuration per each node.		
	Panasonic FP 🔯		
	Node ID		

Tag Import


Exporting Tags from PLC

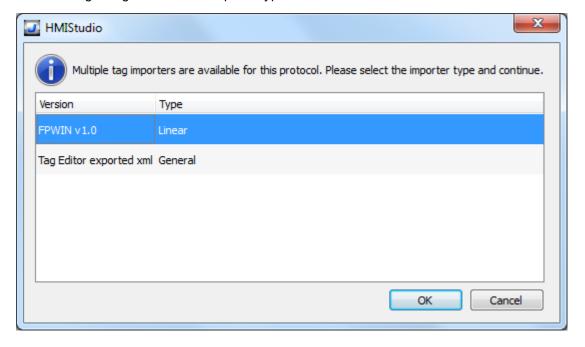
The Panasonic FP driver supports the Tag Import facility. The symbol file can be exported by the controller programming software FPWIN.

In FPWIN menu, click on "Project > Export > Variables as CSV file", then you can choose if you want to export only the Global variables or All project variables.



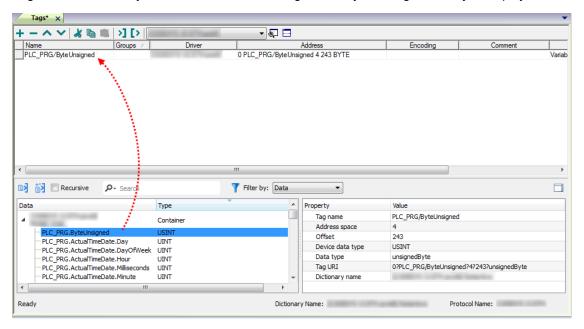
If you choose to export only the Global variables, FPWIN will show the window of the following picture that allow to customize the elements of the exported csv file.

Then, in the "Export to file" window, choose the "CSV file (Unicode)" format.

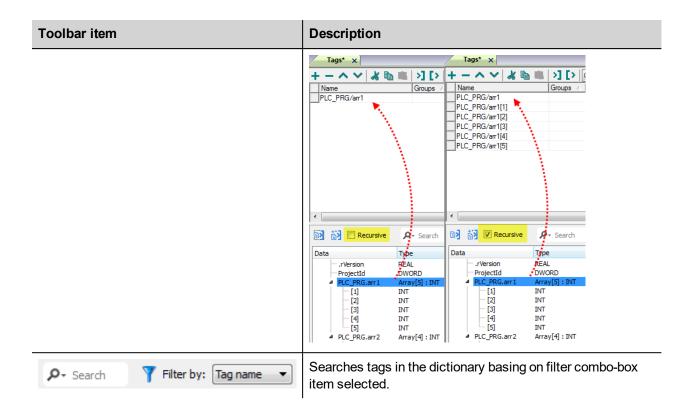


Importing Tags in Tag Editor

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.


The following dialog shows which importer type can be selected.

Importer	Description
FPWIN v1.0	Requires a .csv file.
Linear	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

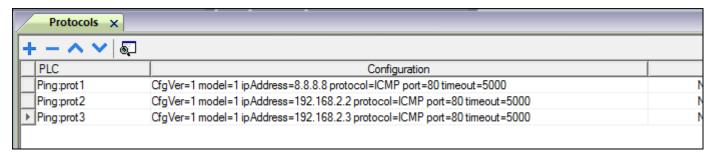
Toolbar item	Description
Ke	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Returned in case the controller replies with a not acknowledge
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access
Line Error	Returned when an error on the communication parameter setup is detected (parity, baud rate, data bits, stop bits); ensure the communication parameter settings of the controller is compatible with panel communication setup
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources
General Error	Error cannot be identified; should never be reported; contact technical support


Ping

Ping communication driver allows to send ping commands to a specific IP address.

The purpose of this communication driver are:

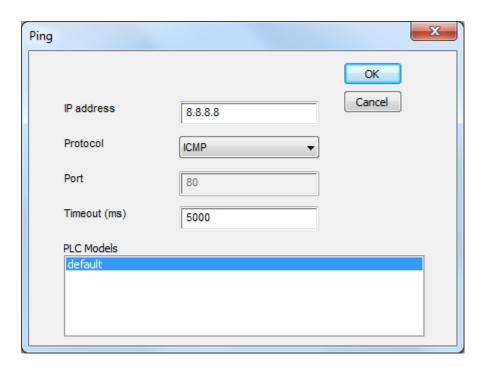
- test a connection between the HMI and another device in the same network
- check internet connectivity by executing ping commands to a public IP address (example 8.8.8.8)

In case it is needed to send ping commands to many IP addresses at the same time, it is possible to create many instances of Ping protocol:

Ping communication driver is not counted as physical protocol.

Refer to Table of functions and limits from main manual in "Number of physical protocols" line.

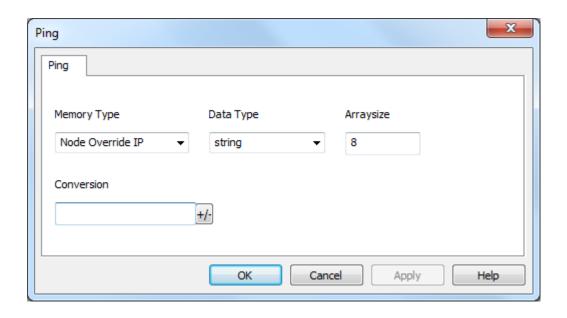
Protocol Editor Settings


Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.



Element	Description	
IP address	Destination IP address to which ping commands are sent.	
Protocol	Network protocol used to send ping commands (default is ICMP).	
Port	Network port used for sending ping commands (fixed to 53 for ICMP Protocol).	
Timeout (ms) Polling time between each ping command sent.		
PLC Models	Fixed to default.	

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select **Ping** from the protocol list: tag definition dialog is displayed.

Eleme nt	Description				
Memor y Type	Name	Description			
, .ypo	Node Override IP	If defined, this Tag allows to change the destination IP address to which ping commands are sent, at runtime.			
			If defined, this Tag allows to change the network port used to send ping commands, at runtime.		
	Status	Represents the result of last ping command:			
		 0 = last ping command failed 1 = last ping command got response 			
	Last ping time	Represents the result of last ping time, expressed in milliseconds.			
Data Type	Data Type		Memory Space	Limits	
. , , ,	boolean		1-bit data	01	
	unsignedShort		16-bit data	0 65535	
	unsignedInt		32-bit data	0 4.2e9	
	string		Express the number of characters used to specify the destination IP address Example: string[15]> xxx.xxx.xxx.xxx		
Arraysi ze			aximum number of bytes a	available in the string Tag. hars if Encoding property is set to UTF-8	

Eleme nt	Description
	If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.

Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The system will require a generic XML file exported from Tag Editor by appropriate button.

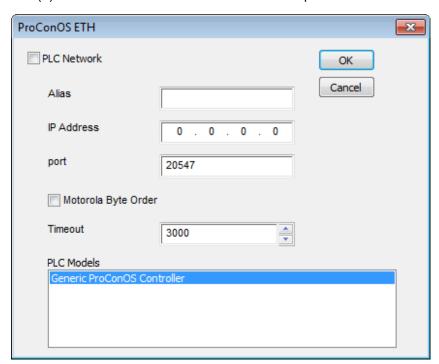
Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
Ka Ka	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ia and the state of the sta	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.
Recursive	Check this box to import all sub-elements of a tag.
	Example of both checked and unchecked result:
	Tags* x
P → Search Filter by: Tag name ▼	Searches tags in the dictionary basing on filter combo-box item selected.

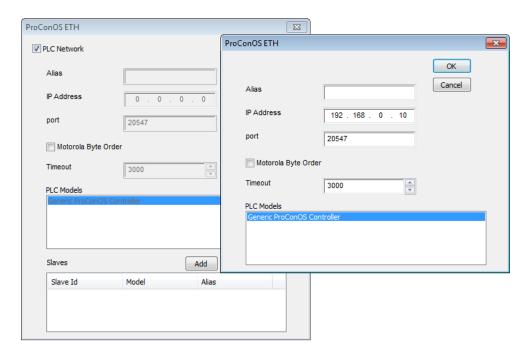
ProConOS ETH

The ProConOS ETH driver has been developed for the connection to ProConOS compatible controllers via Ethernet.


Yaskawa MPiec controllers that can communiucate using ProConOSdriver are:

- MP2300Siec
- MP2310iec

For such models it is possible to export variables to be imported in Tag Editor (see Tag Import chapter).


Protocol Editor Settings

Add (+) a driver in the Protocol editor and select the protocol called "ProCoNos ETH" from the list of available protocols.

Element	Description
Alias	Name to be used to identify nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node
IP Address	Controller IP address
Port	Controller port number for Ethernet interface
Motorola Byte Order	This option is used to identify if the PLC you're working with is a Big Endian type (default, option checked), or Little Endian (option unchecked).
Timeout	The time the protocol waits the answer from the controller before issuing a new retry.

Element	Description
PLC Models	List of compatible controller models. Make sure to select the right model in this list when configuring the protocol.
PLC Network	The protocol supports connection to multiple controllers.
	To enable this, check the "PLC Network" check box and provide the configuration
	per each node.

Data Types

The import module supports variables of standard data types as per the following list.

- BOOL
- SINT (8-bits signed integers)
- INT (16-bit signed integers)
- DINT (32-bits signed integers)
- USINT (8-bits unsigned integers)
- BYTE (8-bits unsigned integers)
- UINT (16-bit unsigned integers)
- WORD (16-bit bit strings, displayed as unsigned integers)
- UDINT (32-bits unsigned integers)
- DWORD (32-bit bit strings, displayed as unsigned integers)
- REAL (32-bit floating point data)
- LREAL (64-bit floating point data)
- TIME
- STRING (character string)

Tag Conversion

Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB	Swap bytes of a long word.
	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 000111001011101100100010

Value	Description
	1 10000011100 10101010000101000101101101
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on Configured list.

If more conversions are configured, they will be applied in order (from top to bottom of Configured list).

Use the arrow buttons to order the configured conversions.

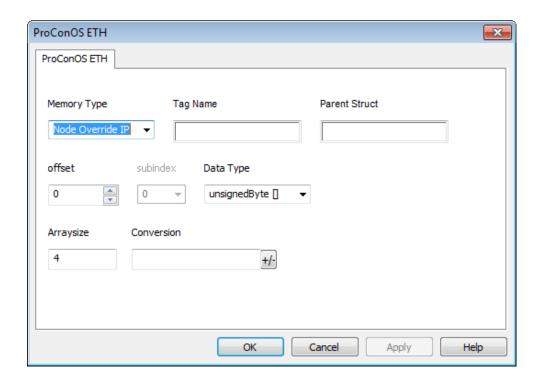
Special Data Types

The ProCoNos Ethernet driver provides one special data type called "Node Override IP".

The Node Override IP allows changing at run time the IP address of the target controller you want to connect. This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

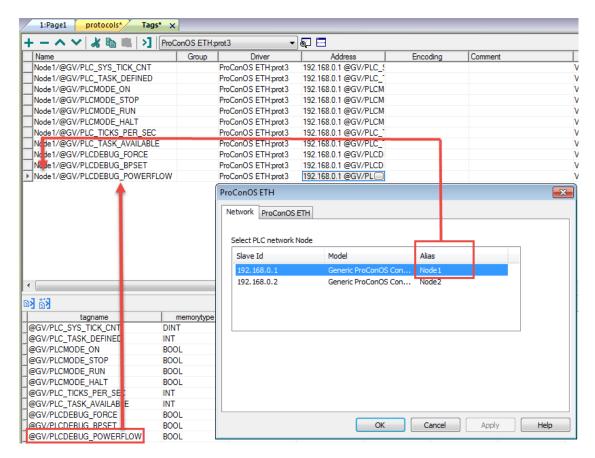
The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.

If the IP Override is set to 0.0.0.0, all the communication with the node is stopped, no request frames are generated anymore.


If the IP Override has a value different from 0.0.0.0, it is interpreted as node IP override and the target IP address is replaced at run-time with the new value.

In case the panel has been contabld to access to a network of controllers, each node has its own Override variable.

Note: the IP Override values assigned at run-time are retained through power cycles.



Aliasing Tag Names in Network Configurations

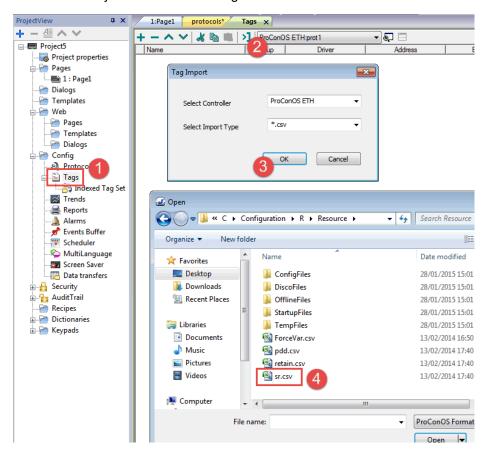
Tag names must be unique at project level; it often happens that the same tag names are to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: Aliasing tag names is only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name. The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

Tag Import

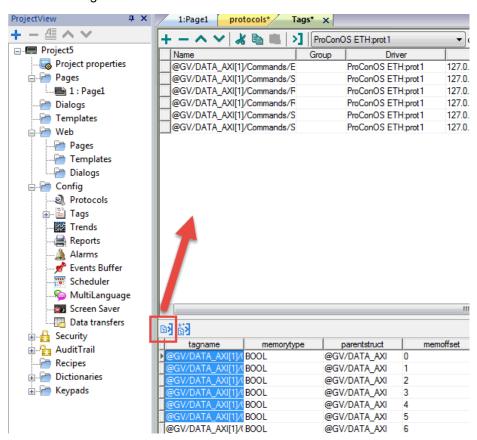
The ProCoNos Ethernet driver support the Tag Import facility.


The symbol file can be exported by the controller programming software.

To import the tags from IEC project:

- 1. Select the Tags tab from ProjectView
- 2. Click the "Import tag" button
- 3. In the Tag Import window click the "OK" button to select the .csv file
- 4. Point to the "sr.csv" file from the IEC project

The Path is "ProjectFolder > C > Configuration > R > Resource"



5. After "sr.csv" file import, select the "DT" Directory for Data Types.

If the IEC project contains custom data types you have to select the "DT" folder from IEC Project to correctly import all the Tags.

6. Now all the variables are available as Dictionary in project. Select the desired variables and add to the tag list as shown in the figure below.

Communication Status

The communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The status codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
General Error	Error cannot be identified; should never be reported; contact technical support

Profibus DP

The Profibus DP communication driver has been designed to connect HMI products to a Profibus DP network as slave nodes. With the Profibus DP driver, the HMI simply exchanges Input and Output data with the Master. It is up to the Master to make sense of this data.

Connection to Profibus DP network requires the optional Profibus DP communication module. Verify the suitable version for your HMI model.

Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Please ensure that the latest driver is used in the application.

Protocol Editor Settings

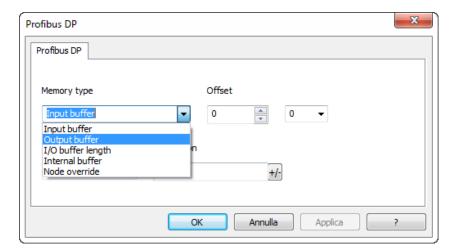
Add (+) a driver in the Protocol editor and select the protocol called "Profibus DP" from the list of available protocols.

The driver configuration dialog is shown in figure.

Element	Description
Panel Node ID	The Profibus node ID assigned to the HMI

Configuring the HMI as a Slave Node

The Profibus DP master must be configured to communicate with the slaves devices present in the network. To configure the Master System you will generally need a software package available from the manufacturer of the Master System. Before the master configuration software can recognize the the HMI device as slave, it must be included in the catalog of devices. For this purpose it is available a device description file in the standard GSD format. The device description file is EX9649AX.GSD. It must be installed following the instructions of the network configuration software you are using.


One of the fundamental steps of the configuration of a slave station in a Profibus DP system is the mapping of the slave's I/O buffers in the memory of the master.

The HMI panels support Input / Output buffer sizes of 8, 16 or 32 bytes and they expect that both the Input and the Output areas are configured to the same size, i.e. both 8 bytes, either 16 bytes or both 32 bytes. The HMI panels will automatically detect the buffer size used by the master.

The feature generally referred to as Response Monitoring should always be disabled in the master for the HMI panel slaves.

Tag Editor Settings

- 1. Studio allows you to access the HMI panel "Output Buffer", the area containing data sent from the PLC, as well as the HMI panel "Input Buffer", the area containing data to be sent to the PLC. The data in the Output Buffer is read only, while the data in the Input Buffer is read write. The Address Offset range (in bytes) for these 2 types is from 0 31. It should be borne in mind, however, that that Input / Output buffer range configured in the PLC for the panel can be either in the range 0 7, 0 15 or 0 31.
- In addition to the Input Buffer and the Output Buffer Designer also allows you to access the "Internal Work Buffer"
 data type. This buffer is purely an internal buffer in the panel. The panel sets aside 256 bytes for this buffer. The data
 in this buffer is neither read from nor written to the PLC. It is purely a work area.

Tag Conversion

Conversion to be applied to the Tag.

Depending on data type selected, the Allowed list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag. Example: 1001 → 0110 (in binary format)
	9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.

Value	Description
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB	Swap bytes of a long word.
	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0\ 10000000110\ 000111001011101101100100101101000011100100101$
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)

Select the conversion and click on plus button. The selected item will be added on Configured list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

Use the arrow buttons to order the configured conversions.

Special Data Types

The Profibus DP communication driver provides one special data type called "Node Override".

The Node Override ID allows changing at run time the value of Panel Node ID. This memory type is an unsigned byte.

The Node Override ID is initialized to the value defined as Panel Node ID in the project at programming time.

The communication with the master is described in the table.

Node Override ID value	Behavior
0	The communication with the master is stopped
1 to 255	If Node Override ID has a value different from 0, it is interpreted as the new node ID for the slave device.

Note: the Node Override values assigned at run-time are retained through power cycles

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
General error	Error cannot be identified; should never be reported; contact technical support

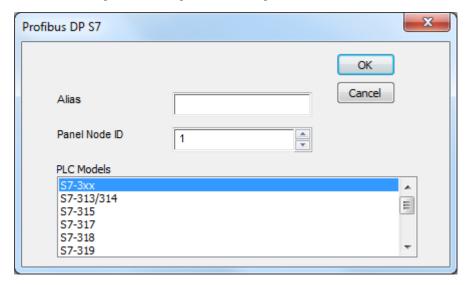
Profibus DP S7

The Profibus DP S7 communication driver has been designed to connect the HMI products to a Profibus DP network as slave nodes. This communication driver has been specially created to offer optimal data exchange features for Profibus DP networks where the bus master is a Siemens Simatic S7 PLC.

This Technical Note gives the technical details for a successful connection.

A Profibus DP network can contain multiple nodes. A node in a Profibus DP network can be either a Master or a Slave. The Masters in the network have a group of Slaves assigned to them. A Master is able to exchange data with the Slaves that are under its control.

The HMI panel is always a Slave device in a Profibus DP network and it is only able to exchange data with a single Master PLC. The HMI has a complex communication profile, as it needs to access data in the Master PLC memory. This communication profile is not something normally available for Profibus DP Slave devices. To enable the HMI to communicate under this profile, a set of special function blocks must be added to the PLC program in the Master PLC. These special function blocks are required by the PLC to process the requests from the HMI. These special function blocks use a Data Block, called the Comm DB, within the Master PLC to store configuration information. This approach has the advantage that it offers to the HMI slave device full access to the data in the PLC, as if the HMI device was directly connected to the programming port of the PLC.


Note: Connection to Profibus DP network requires the optional Profibus communication module. Verify the suitable version for your HMI model.

Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated. Please ensure that the latest communication driver is used in the application.

Protocol Editor Settings

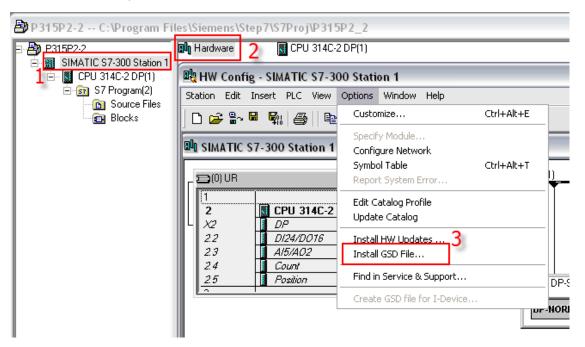
Add [+] a driver in the Protocol Editor and select the protocol called "Profibus DP S7" from the list of available protocols.

The driver configuration dialog is shown in figure.

Element	Description
Panel Node ID	The Profibus node ID assigned to the HMI.
PLC Models	List of compatible controller models. Make sure to select the correct PLC model in this list when configuring the protocol.

Configuring HMI as a slave station with STEP7

The Master PLC must be configured to communicate with Profibus DP slaves. You can do this with the STEP 7 programming software. This package configures the Profibus DP network attached to the Master PLC (or to the CP communication processor) so that it exchanges data with the specified Slaves. With this package you can select different types of Slaves such as HMI, distributed I/O, drives, etc.

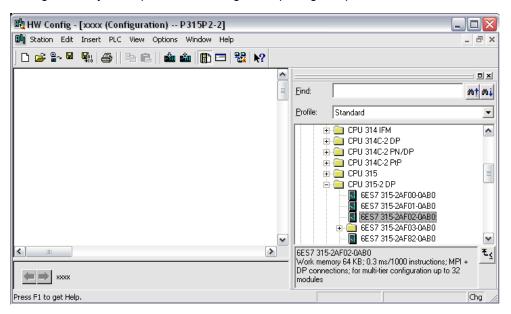

Note: Step7 versions 5.5 SP1 has been used to create the examples included in this Tech Note. Using another version of the Step7 software package may require changes to the procedures described in this document.

Adding the DDB file to your system

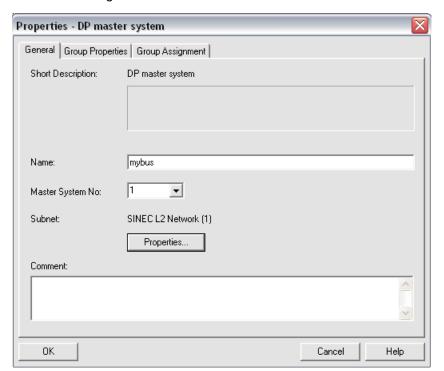
A Profibus DP Slave type file (GSD) is available for the Profibus DP configuration. The filename is EX9649AX.GSD; this file contains the description of the HMI devices as Profibus DP Slaves.

To include the file in the system, follow the procedure:

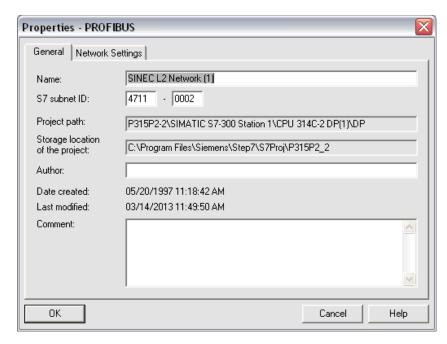
- 1. Select your station
- 2. Double click on "Hardware" to open "HW Config" editor
- 3. From menu Options select "Install GSD File..." and follow the wizard

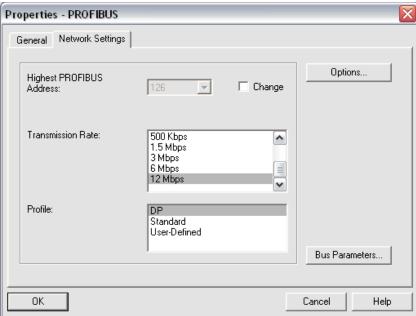

This will enable STEP 7 to recognize the HMI panels as an element of the class 'Additional Field Devices'.

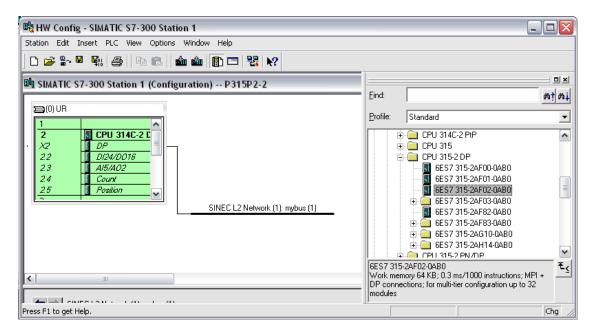
Network configuration

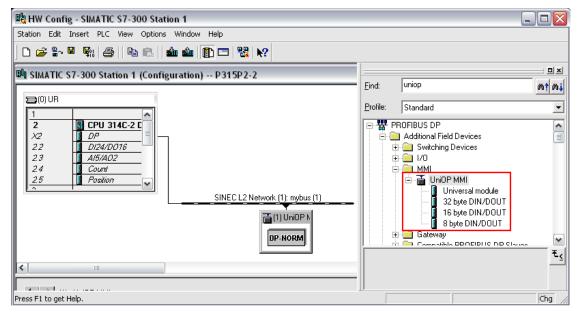

The basic steps of the Profibus DP configuration are described below.

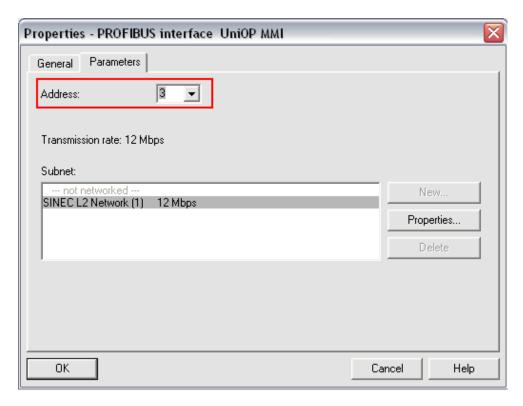
Create a new Step7 project or open an existing project.


Configure the system (Hardware Configuration) using components from the Hardware Catalog

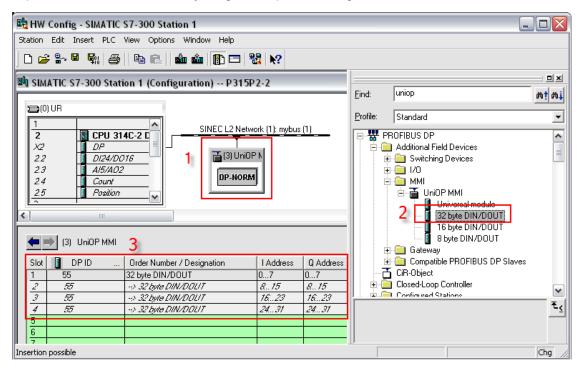



Create and configure the Profibus DP network.

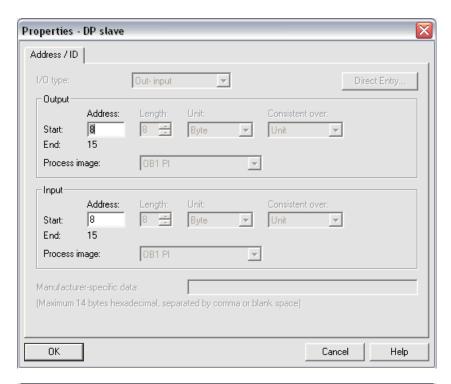


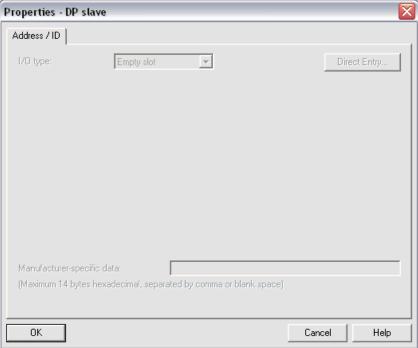


The Operator Panels will then be available for selection in the Hardware Catalog as shown in the figure below. Note that the DDB Files must have been updated as described in chapter 1.1.

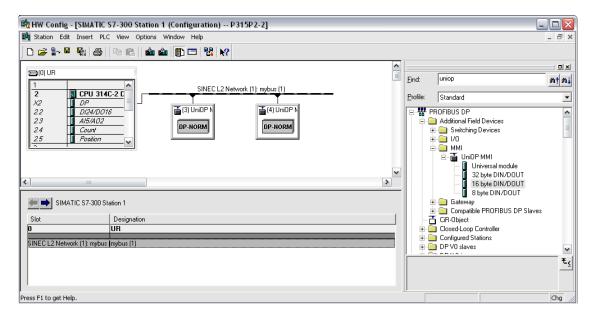


Select the Device from Hardware catalog and Drag & Drop it to the Bus line, once added assign the Address properly





Once the HMI devices have been included in the Profibus DP network configuration, you will have to open the slave configuration and enter the required parameters. 2 or 4 blocks must be configured in the DP image area for the device depending on the size of the buffer (16 or 32 bytes) which has been selected in the previous step. The HMI panels can work with a DP image size of 16 bytes or 32 bytes. Using 32 bytes will offer improved communication performance at the expense of an increased memory usage in the process image area



Configure the blocks in the DP image area. If buffer size of 16 bytes is selected, unused blocks are automatically set to 'Empty slot'.

The configuration procedure must be repeated for all the HMI devices to be included as slaves in the Profibus DP network. Finally the network configuration will have to be transferred to the master PLC.

Using the function blocks in the master PLC

To make possible for the HMI device to access all the data in the Master PLC, some support from the PLC program is required. It is accomplished by adding to the user PLC application some special program modules. Samples of these program modules required to support Profibus DP communication are available.

The core functionality is provided by one special function block must be added to the user's program. The complete support includes also 2 Data Blocks.

The Function Block and the other blocks are available in the form of ready-to-run sample projects. Function and Data Blocks may be extracted from the sample projects for integration into the user's project.

Apart from adding the special blocks to the PLC program you also need to cyclically call FB1. You can do this by adding a call to FB1 in OB1.

It is important that FB1 is called cyclically; you should not call it only one time, as the function block only processes the requests from the slave devices when it is called.

The HMI devices will not be able to communicate with the Master PLC if it is in STOP mode as the special function block will not be called.

Note: if you have multiple HMI devices connected to the Master PLC you do NOT need to call FB1 once for each panel. One call to the FB1 for every cycle of the PLC program is sufficient to process all the HMI slave devices in the Profibus DP network attached to the Master PLC.

Sample PLC programs

Sample PLC programs are available on our website in Software section.

Click on **Profibus DP S7 example projects** to start the download, as shown in picture below.

Creating the comm data block

The Comm DB (Communication Data Block) is used to provide the program modules supporting Profibus DP communication with information on:

- the number of HMI devices configured as Profibus DP slaves and
- the addresses for the Input and Output data of the slave devices in the Master PLCs memory.

The Comm DB has 2 distinct parts; the first part contains information about the configuration of the Profibus DP network of the PLC while the second part contains information about the various HMI devices that are connected to this port. Basically this information is a duplication of the data that you enter in the Profibus Master with Step7.

The Profibus DP Port part is placed in the first 14 bytes of the Comm DB and has the following format:

DBB0	Number of Panels
DBB1	Frame Length
DBB2	Data Type for Input Buffer
DBB3	Data Type for Output Buffer
DBW4	DB Number (Input Buffer)
DBW6	Input Area Base (Input Buffer)
DBW8	DB Number (Output Buffer)
DBW10	Output Area Base (Output Buffer)
DBB12	Sequence Type
DBB13	Reserved for Internal Use
Number total numb	er of HMI nanels that have to communicate with the Master PLC

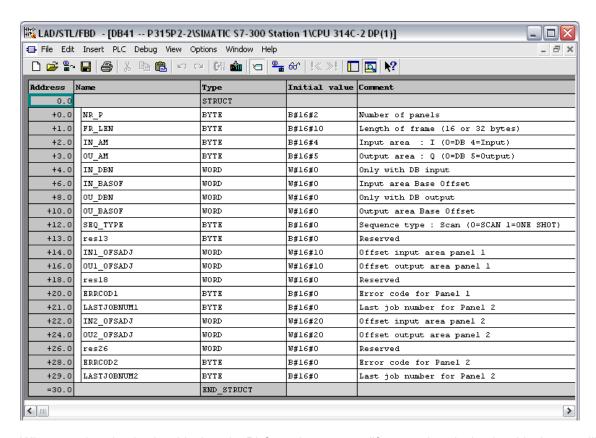
Number of Panels	total number of HMI panels that have to communicate with the Master PLC.			
Frame Length	size of the Profibus buffers used to communicate with the Master. Two buffer sizes are supported: 16 bytes and 32 bytes. Enter the appropriate number in this location. Input and Output buffers always have the same size			
Data Type for	type of PLC data where the Profibus DP input buffer for the panels is located.			
Type for Input				
•	Value	Data Type		
Input Buffer	Value 0	Data Type DB		
•				

Data	type of PLC data where the Profibus DP output buffer for the panels is located.		
Type for Output	Value	Data Type	
Buffer	0	DB	
	5	Q	
	The Output buffer contains the inf	ormation written by the Master to be sent to a Slave.	
DB Number (Input Buffer)	if the location specified for the Input Buffer is a DB, enter here the DB number		
Input Area Base (Input Buffer)	offset in the Input Buffer where the data for the panels starts.		
DB Number (Output Buffer)	if the location specified for the Output Buffer is a DB, enter here the DB number.		
Output Area Base (Output Buffer)	offset in the Output Buffer where the data for the panels starts.		
Sequence Type	specifies how you want to handle the case of having Number of Panels set to greater than 1. If you set this item to 0 then the function block will process the requests from all the HMI panels before returning. If you set this item to 1 then the function block will process the request from only a single panel before returning, it will then process the request for the next panel on the subsequent call. This means that if Sequence Type is set to 0 the requests from the HMI panels will be processed faster but the execution time of the PLC program will be longer. If the increased execution time of the PLC program causes problems for your application you can set Sequence Type to 1.		
Reserved For Internal Use	is actually used to keep track of which panel was processed last. This is used if Sequence Type is set to 1		

Note: in this chapter the terms 'Input' and 'Output' are referred to the Master PLC and not to the slaves. The information entered in this section must be the same entered in the Profibus DP network configuration.

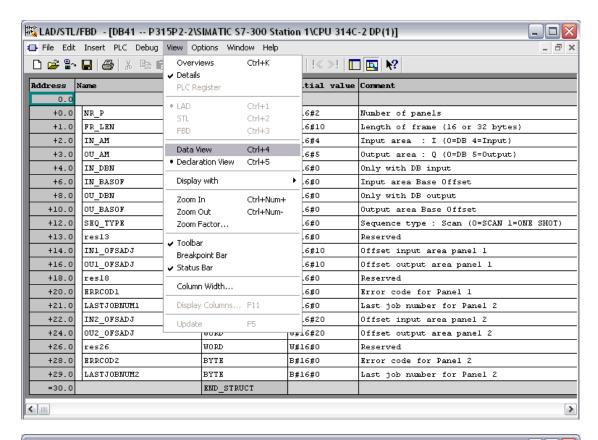
Following on from the header data comes the HMI panel data. The number of HMI panels connected to this port is specified by 'Number of Panels'. Each HMI panel is assigned 8 bytes in the Comm DB.

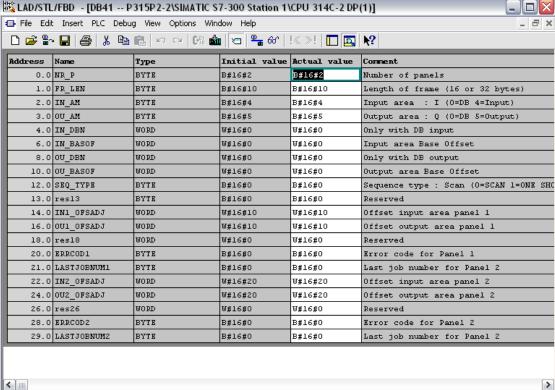
Note: each panel included in the Profibus DP network must have its descriptor in the Comm Data Block. All descriptors have to be placed in consecutive memory locations.


The format of the data block for the individual slave devices has the following format:

DBW14		Input Area Offset		
DBW16		Output Area Offset		
DBB18	Reserved			
DBB19	9 Reserved			
DBB20	20 Error Code for Last Request		Last Request	
DBB21	B21 Last Job Number		ber	
Input Area Offset	this number is added to the Input Area Base (in the header) to obtain the address where this input data for this panel starts			
Output Area Offset		nber is added to the Output Area Base (in the header) to obtain the address where this lata for this panel starts		
Error Code for Last		for the last communication request for this panel. odes have the following meaning:		
Request	Error Code		Meaning	
	0		No Request Received	
	1		No Request Received Request Processed OK	
			<u> </u>	
	1 2 You do not need		Request Processed OK	

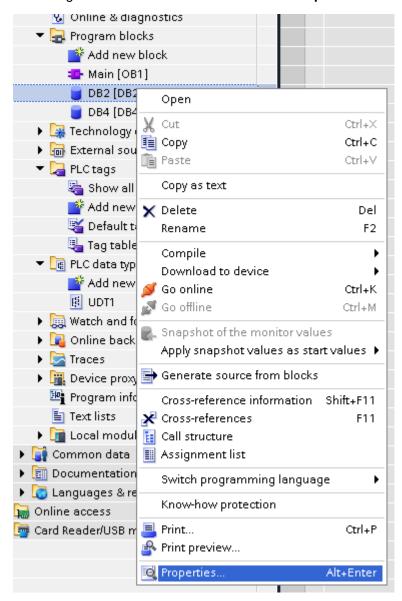
Example


As an example, imagine we have 2 HMI devices attached to a Master PLC that uses I/O addressing and 16 bytes Frame Length. The Input address for the first panel is set to IB16 and the Output address to QB16. The Input address for the second panel is set to IB32 and the Output address to QB32. The Comm DB would take the following form:



When you download a data block to the PLC or when you modify any values in the data block, you will have to make sure that the modified values are also the current values into the PLC memory. To do this you should change the viewing mode of the data block in the Step7 software from "Declaration View" to "Data View" as shown in the next figure.

When you are in Data View mode, the values in the column 'Actual Value' must match the values on the column 'Initial Value'. If there are some differences you have to correct the wrong value on the 'Actual Value' column and download again the Data Block to the PLC. The 'Actual Value' column displays at any time the actual PLC data values.

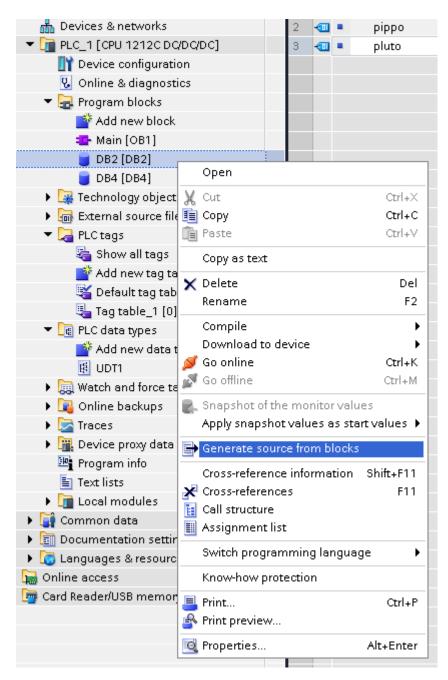

Export using TIA Portal v13, v14 or newer

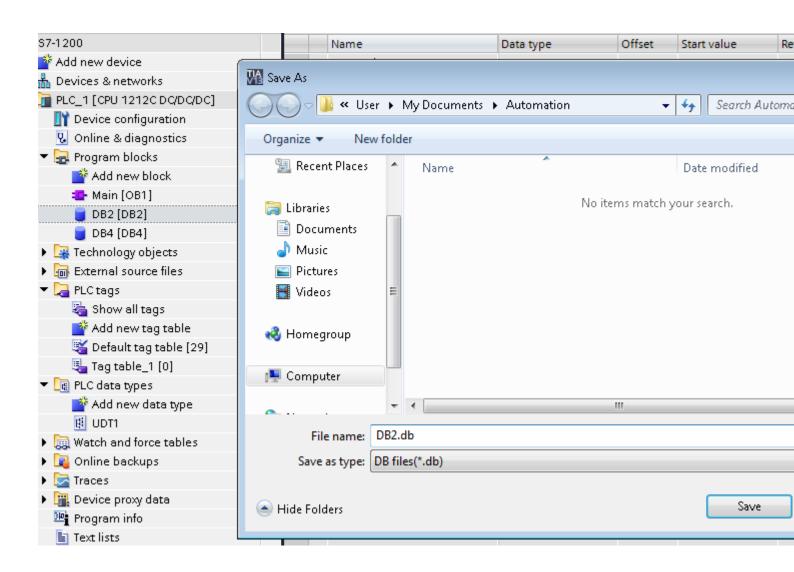
Exporting Program blocks

These files refer to DB tags defined in Program blocks.

- 1. Configure the Data Block as Not optimized.
- 2. Right-click on the Data Block and choose Properties:

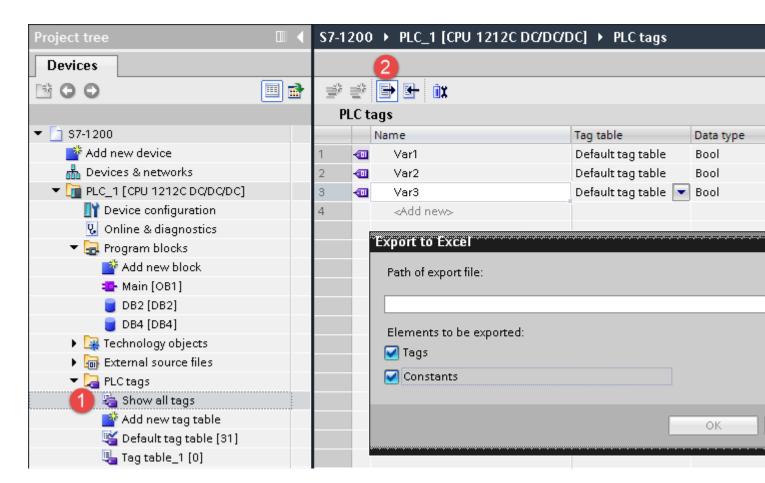
3. In the General tab select Attributes and unselect Optimized block access.



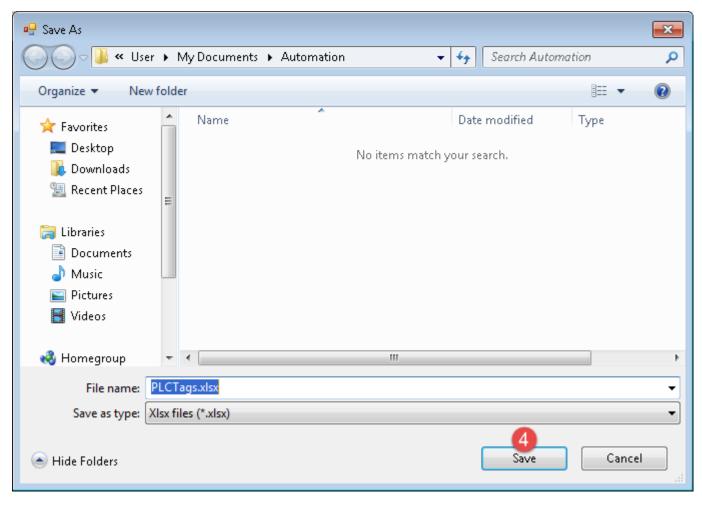

Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".

4. Right-click on the Data Block and choose **Generate source from blocks**:

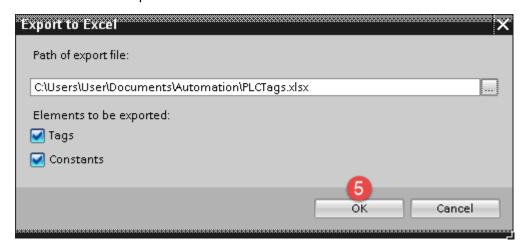
5. Save the file as DBxxx.db, where xxx=number of DB.



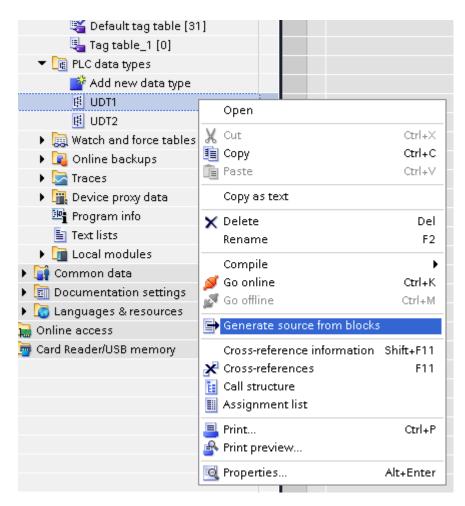
Exporting PLC tags

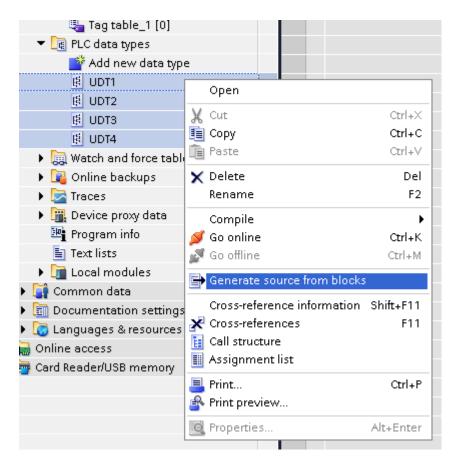

An Excel file refers to PLC tags.

- 1. Double-click **Show all tags**: the tag table is displayed.
- 2. Click the **Export** button and browse for path file.
- 3. Define file name.

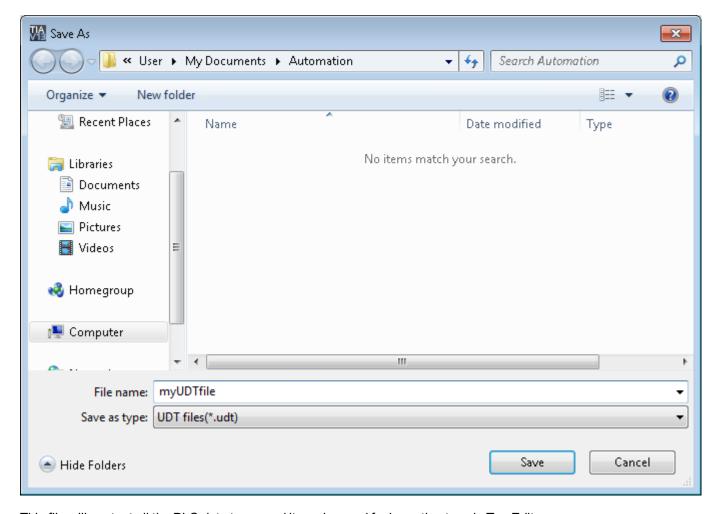


4. Click Save to confirm.


5. Click **OK** to export.


Exporting PLC data types

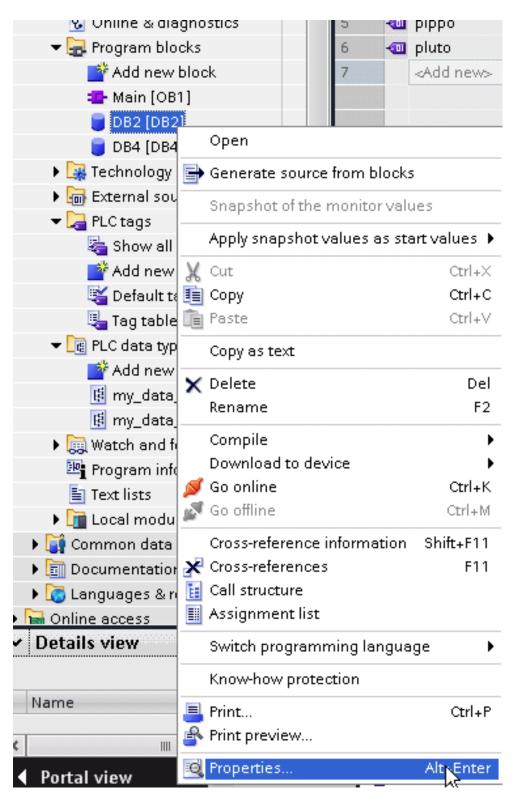
To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.



In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .UDT file that contains all the PLC data types defined.

In the next step, give a name to the .UDT file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.


Check Tag Import chapter for more details.

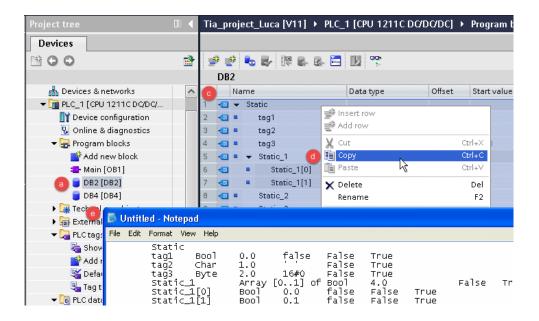
Export using TIA Portal v10, v11, v12

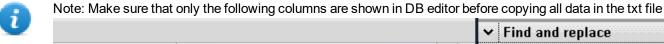
Exporting Program blocks

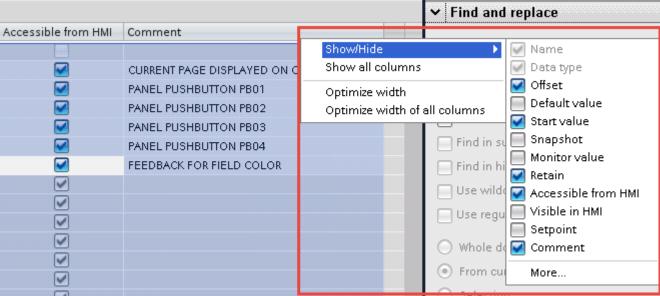
These files refer to DB tags defined in **Program blocks**.

- 1. Configure the Data Block as **Not optimized**.
- 2. Right-click on the Data Block and choose **Properties**:

3. In the General tab select Attributes and unselect Optimized block access.

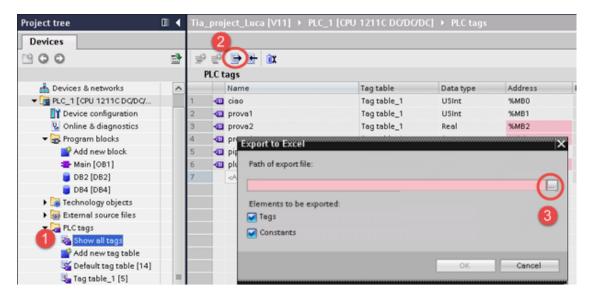



Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".

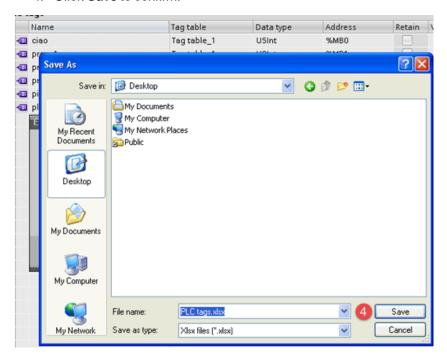


4. Build the project to make sure TIA Portal calculates the tags offset.

- 5. Double-click on a DB name.
- 6. Expand the view of program block selected.
- 7. Select all rows.
- 8. Copy and paste into any text editor.
- 9. Save the file as DBxxx.tia, where xxx=number of DB.
- Note: Make sure you use the Save As function or the file will be named DB2.tia.txt and will not be visible from the importer.
- 10. Repeat from step 5 for all program blocks.

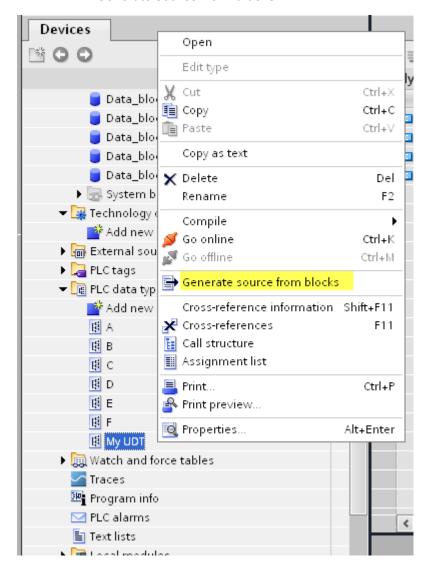


Exporting PLC tags

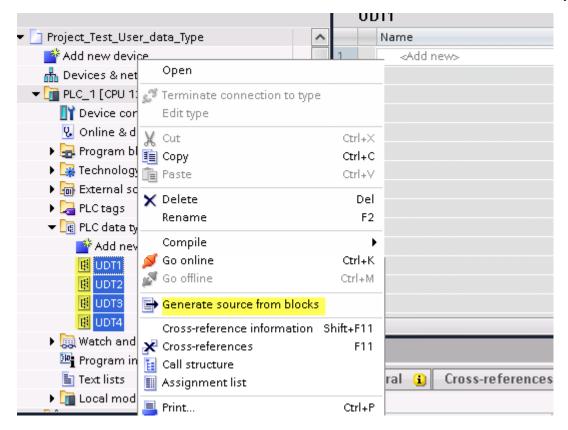

An Excel file refers to PLC tags.

1. Double-click **Show all tags**: the tag table is displayed.

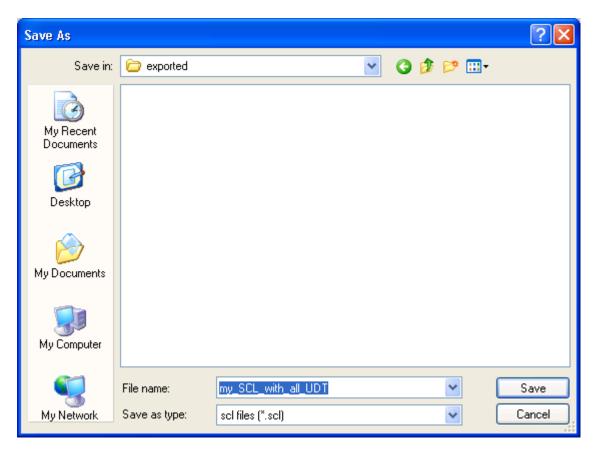
- 2. Click the **Export** button and browse for path file.
- 3. Define file name.
- 4. Click Save to confirm.



5. Click **OK** to export.


Exporting PLC data types

To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.

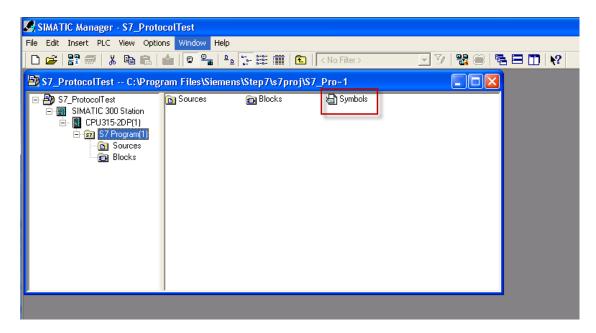


In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .SCL file that contains all the PLC data types defined.

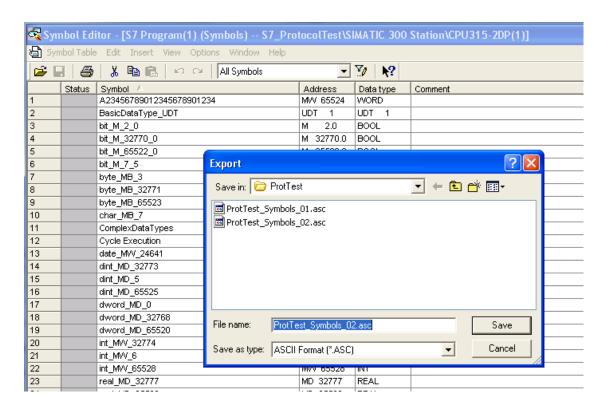
In the next step, give a name to the .SCL file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.

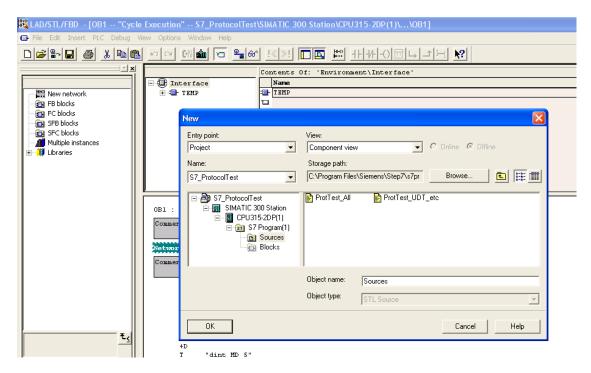
Check Tag Import chapter for more details.

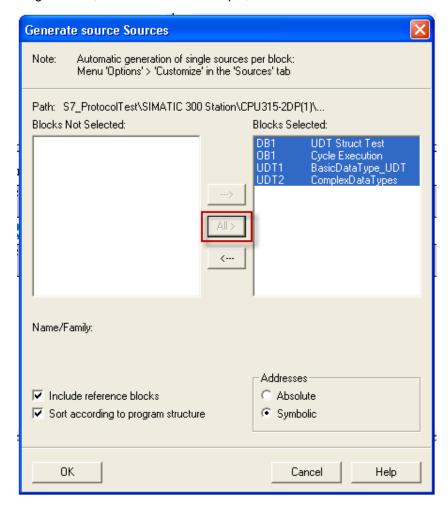

Export using STEP7

The Simatic S7 ETH Tag importer accepts symbol files (ASCII format .asc) and source files (.awl extension) created by the Simatic Step7. The symbol file can be previously exported using the Step7 symbol table utility.


Exporting Symbols table

Symbol files (.asc) can be exported from the symbol table utility.

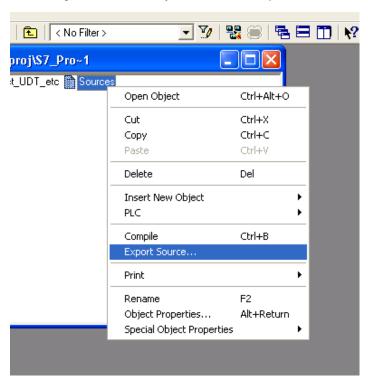

- 1. From the **Symbol Table** menu in the Symbol Editor choose **Export**.
- 2. Assign a name and save the symbol table as ASCII file.


Exporting Sources

These files are created exporting source code.

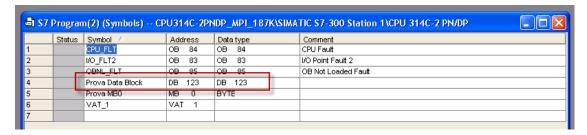
- 1. Open any program block in the editor, "OB1" in this example.
- 2. From the **File** menu choose **Generate Source**: the following dialog is displayed:

1. Assign a name, "Sources" in the example, and click **OK**: the **Generate source Sources** dialog is displayed.



- 2. Click All > to generate source for all blocks.
- 3. Select the following options:
- · Include reference blocks
- · Sort according to program structure
- · Symbolic address
- 4. Click **OK** to confirm: the "Sources" object is generated in the Step7 project as in the example.

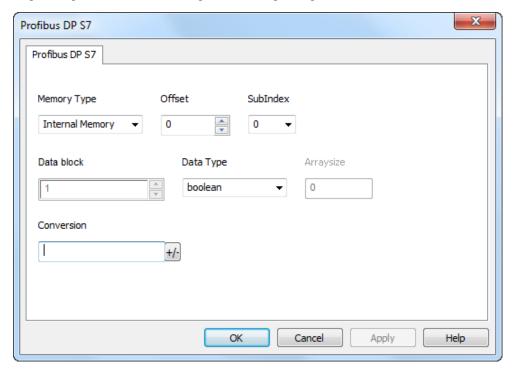
5. Right click on the object and select **Export Sources**.



The generated .awl file can be imported in the Tag Editor.

Note: The .awl file contains additional information not included in the .asc file exported from the symbol table.

Make sure that reference to all data blocks is inserted in the symbol table. The tags from a data block are imported only if the symbol table contains a line with the data block name and related comment.



Each entry enables the import filter to import the tags related to the specified data block.

Tag Editor Settings

Into Tag editor select the protocol "Simatic S7 ETH" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description				
Memory	Area of PLC where tag is located				
Type	Data Type		Simatic Type		
	Internal Memory		М		
	Data Block		DB		
	Input		I (E)		
	Output		O (A)		
	Timer value		Т		
	Counter value		С		
Offset	Offset address wher	e tag is located			
SubInd ex	In case of Boolean data type, this is the offset of single bit				
Data Block	If Memory Type is "Data Block", this will identify the DB number				
Data Type	Data Type	Memory Space	Memory Space		
Турс	boolean	1 bit data		0 1	
	byte	8-bit data		-128 127	
	short	16-bit data		-32768 32767	
	int	32-bit data		-2.1e9 2.1e9	
	unsignedByte	8-bit data		0 255	
	unsignedShort	16-bit data		0 65535	
	unsignedInt	32-bit data		0 4.2e9	
	float	IEEE single-precision	IEEE single-precision		
		32-bit floating point typ	32-bit floating point type		
	string Refer to "String data type channel"				
	Note: to define arrays, select one of Data Type format followed by square brackets like "byte[]", "short[]"				
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. 				

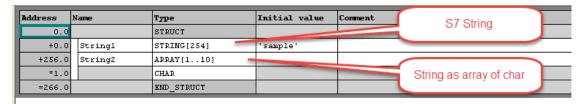
Element **Description** Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. Conver Conversion to be applied to the tag. sion Allowed Configured inv,swap2 BCD Inv bits AB->BA ABCD->CDAB ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

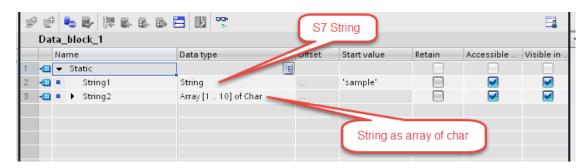
Cancel

OK

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)


Element	Description		
	Value	Description	
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 000111001011101101100100010	
BCD S5timer(BCD	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	S5timer(BCD)	Used to support S5timer. Check Simatic S5timer special data type for more details.	
	S5timer(BIN)	Legacy transformation for S5timer in binary format.	
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.		

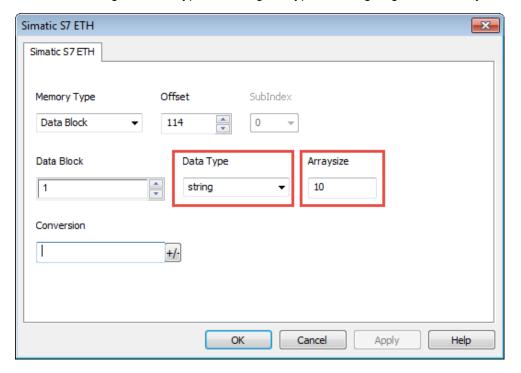
String data type

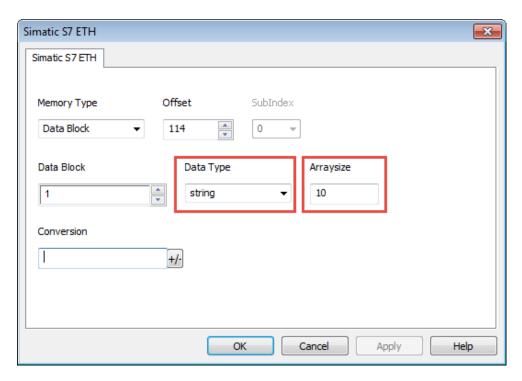

In Simatic S7 PLC it's possible to define two different types of tags to manage string variables.

- as Array [1..xx] of Chars,
- as String[xx].

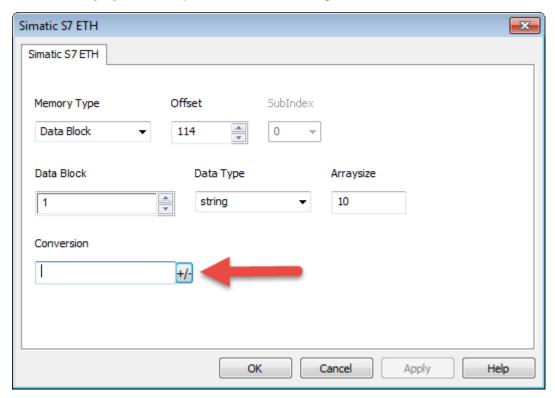
Step7 string declaration is showed in the following figure:

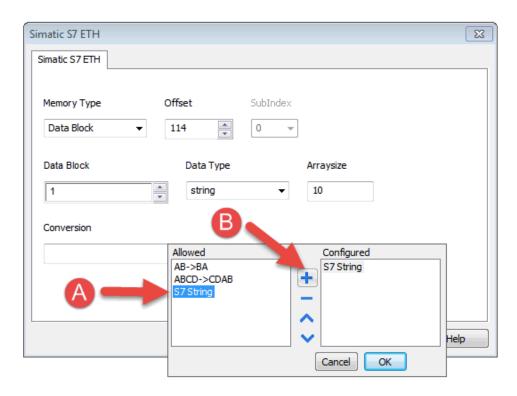
TIA Portal string declaration is showed in the following figure:




Note: Usage of String[xx] data type is allowed but a specific Conversion must be applied to the tag. Anyway using tag importer to import tag dictionary from TIA Portal or Step7 string tags are automatically configured and no changes/conversion are needed.

To manually add an "Array [1..xx] of Chars" data type tag, press the [+] button in the Tag Editor,


then select "string" as Data Type of the Tag and type the string length in the "Arraysize" field:

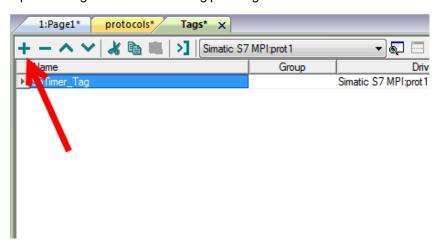


then click on [+/-] button to open the Conversion dialog.

Into conversion dialog:

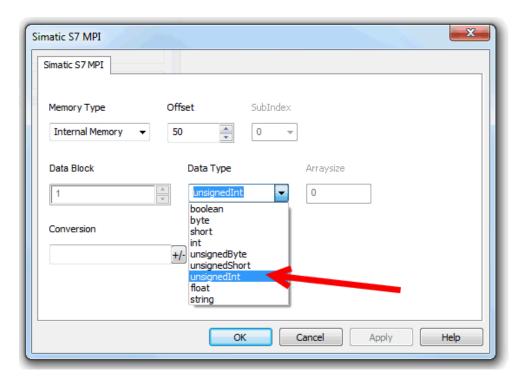
- select the "S7 String" conversion type
- click on [+] button to add the conversion.

The conversion will be listed into the Configured window on the right.


Confirm with OK button.

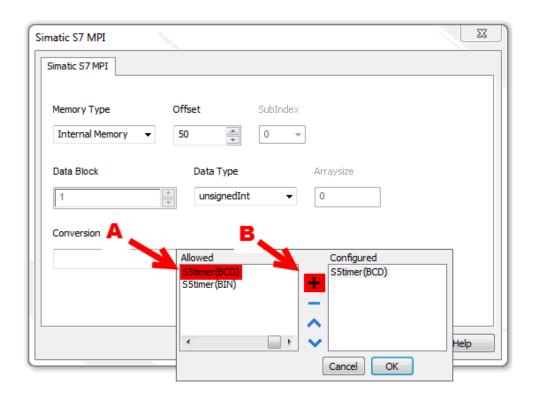
Simatic S5timer data type

Simatic drivers support a special data type, called S5Timer.


The tag must be configured with a specific data type and a conversion must be applied to the Tag to correctly read/write a Simatic S5Timer Variable.

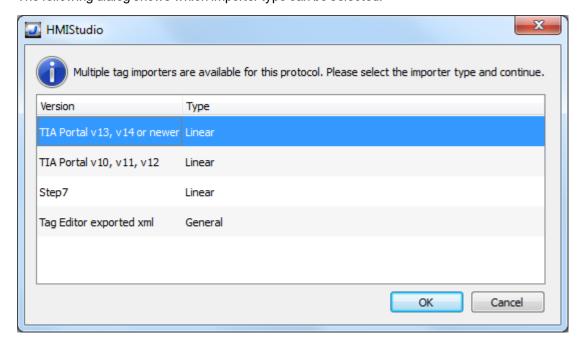
Open the Tag Editor and add a Tag pressing the Plus button.

Select "unsignedInt" as Data Type of the Tag.



Click on +/- button to open the Conversion dialog.

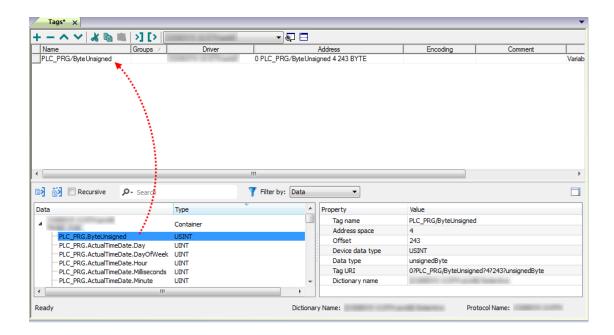
In the Conversion dialog select the S5timer(BCD) conversion type [A] then click on Plus button [B] to add the conversion, the configured conversion will be listed into the Configured window on the right. Then confirm with OK.



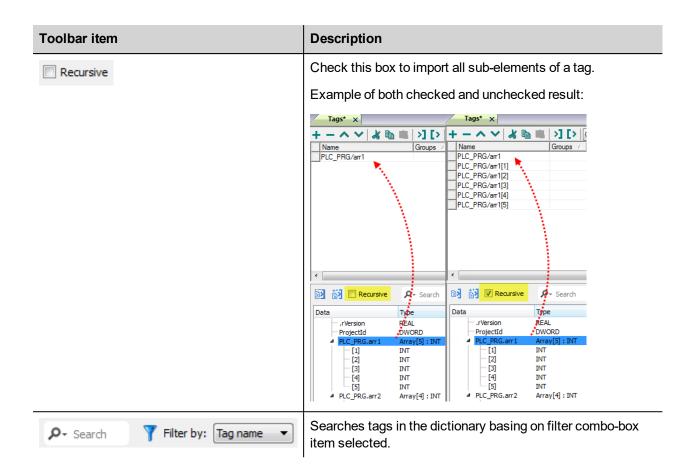
Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description
TIA Portal v13, v14 or	Allows to import:
newer Linear	Program blocks using .dbfile
	PLC tags using .xlsx file
	PLC data types using .udt file
	Check Export using TIA Portal v13, v14 or newer for more details.
	All variables will be displayed at the same level.
TIA Portal v10, v11, v12	Allows to import:
Linear	Program blocks using .tiafile
	PLC tags using .xlsx file
	PLC data types using .scl file
	Check Export using TIA Portal v10, v11, v12 for more details.
	All variables will be displayed at the same level.
Step7	Allows to import:
Linear	Symbols table .ascfile
	Sources using .awl file
	Check Export using STEP7 for more details.
	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
K €	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
K ₫	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication status

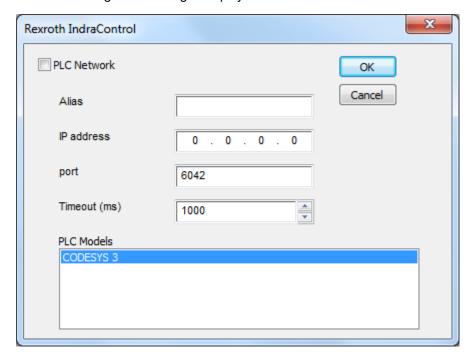
The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The codes supported for this communication driver are:

Error	Notes
NAK	Controller replies with a not acknowledge.
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected and properly configured for network access
Invalid response	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.
General error	Error cannot be identified; should never be reported; contact technical support

Rexroth IndraControl

The Rextoth IndraControl communication driver has been designed to connect HMI devices to Bosch Rexroth PLC trough ethernet connection.


Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description	
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.	
IP address	Ethernet IP address of the controller.	
Port	Port number used by the driver. The default value is 6042 .	
Timeout	Time delay in milliseconds between two retries in case of missing response from the server device.	
PLC Models	PLC models available:	

Element	Description
	• CODESYS 3
PLC Network	Multiple controllers can be connected to one HMI device. To set-up multiple connections, select PLC network and click Add to configure each node

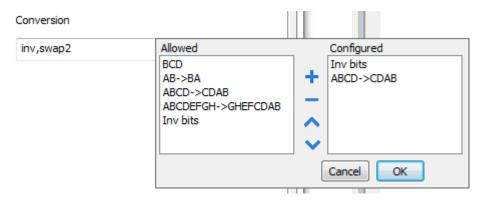
Data Types

The import module supports variables of standard data types and user defined data types.

Supported data types

- BOOL
- INT
- SINT
- UINT
- UDINT
- DINT
- STRING*
- REAL
- LREAL
- BYTE
- ULINT
- LINT

and 1-dimensional ARRAY of the types above. See "Programming concepts" section in the main manual.


Note *: String length for a STRING variable in PLC should be max 80 characters. Declare a STRING variable either with a specified size (str: STRING(35) or default size (str: STRING) which is 80 characters.

Unsupported data types

- LWORD
- LINT

Tag Conversion

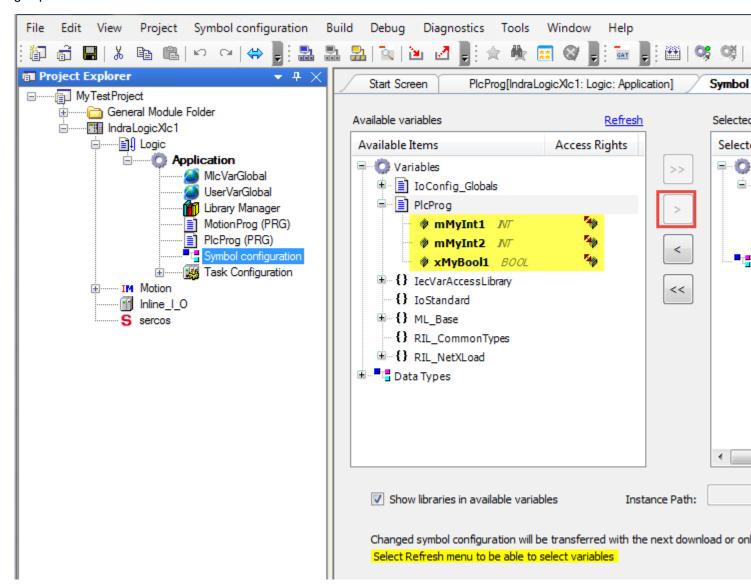
Conversion to be applied to the Tag.

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

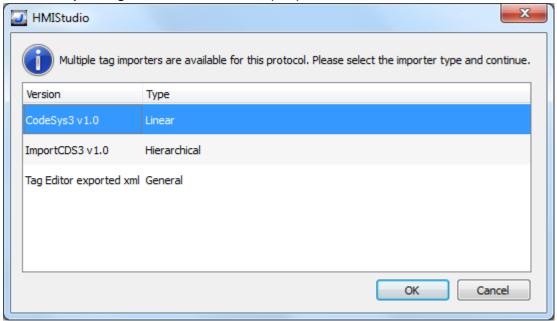
Value	Description		
Inv bits	Invert all the bits of the tag.		
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)		
Negate	Set the opposite of the tag value.		
	<i>Example:</i> 25.36 → -25.36		
AB -> BA	Swap nibbles of a byte.		
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)		
ABCD -> CDAB	Swap bytes of a word.		
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)		
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word.		
	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)		
ABCNOP -> OPMDAB	Swap bytes of a long word.		
	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 000111001011101100100010		
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)		
	Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)		

Select the conversion and click on plus button. The selected item will be added on Configured list.

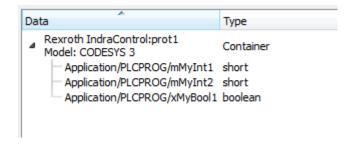
If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).


Use the arrow buttons to order the configured conversions.

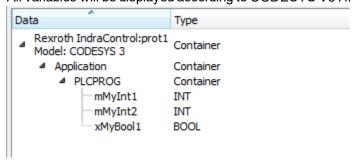
Tag import


When creating the project using IndraWorks programming software, properly configure the symbol file to contain the required variables.

Symbol configuration item contains a list of all the variables available into the IndraWorks project, single variables or groups of variables can be selected and moved to **Selected variables** column.

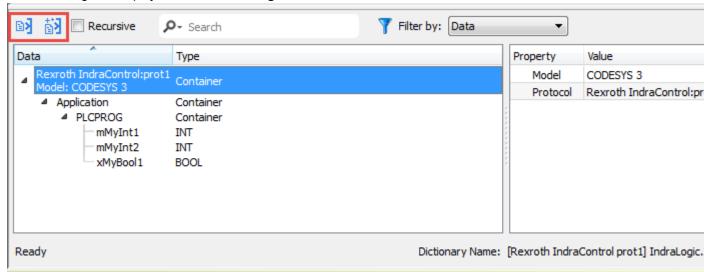

1. After the symbols have been configured, download the project or use the **Generate code** function (Build > Generate code) to create an .xml file containing all the variables read to be imported in the Tag Editor. The .xml file is created in "C:\ProgramData\IW-Projects\0\Project\IndraLogic" by default.

- 2. Select the driver in the Tag Editor.
- 3. Click the **Import Tags** button to start the import process.



Select the importer by choosing from the list above.

Linear All variables will be displayed at the same level.


Hierarchical All variables will be displayed according to CODESYS V3 Hierarchical view

General Select this importer to read a general XML file exported from the Tag editor

- 4. Locate the .xml file and click **OK**: the tags included in the created document are listed in the tag dictionary.
- 5. To add the tags to the project click the **Add tags** button.

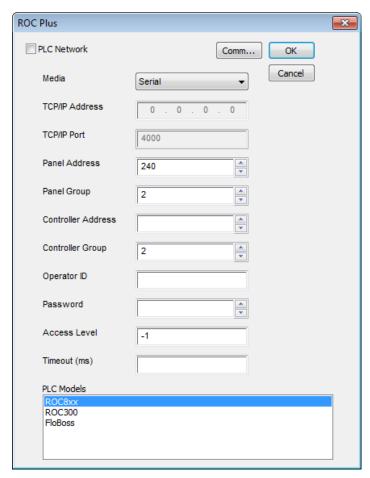
See "My first project" section in the main manual.

Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

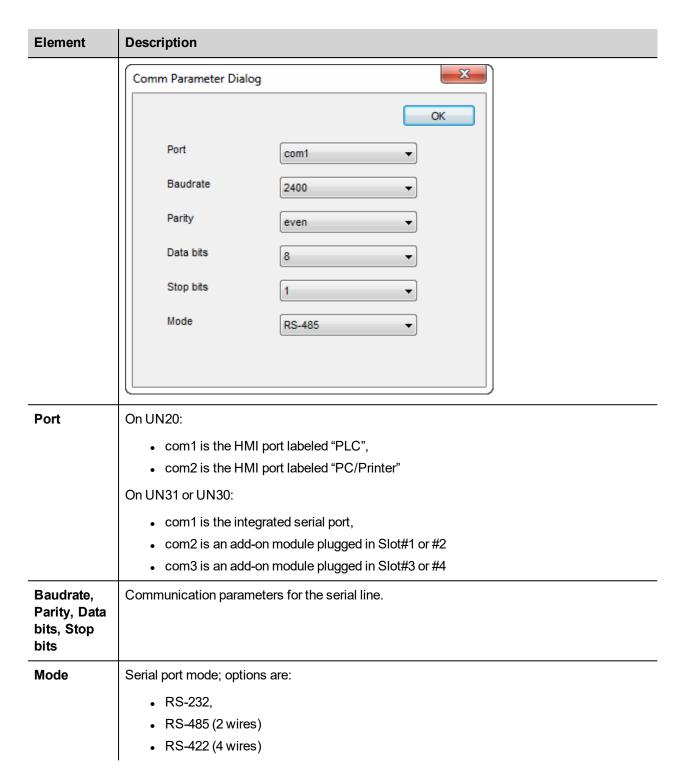
Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Check if the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.


ROC Plus

The HMI device can be connected to a ROC Plus network as the network master using this communication driver. Communication with the ROC800 controllers is over an Ethernet or serial link. Please note that changes in the controller protocol or hardware, which may interfere with the functionality of this driver, may have occurred since this documentation was created. Therefore, always test and verify the functionality of the application. To accommodate developments in the controller protocol and hardware, drivers are continuously updated.

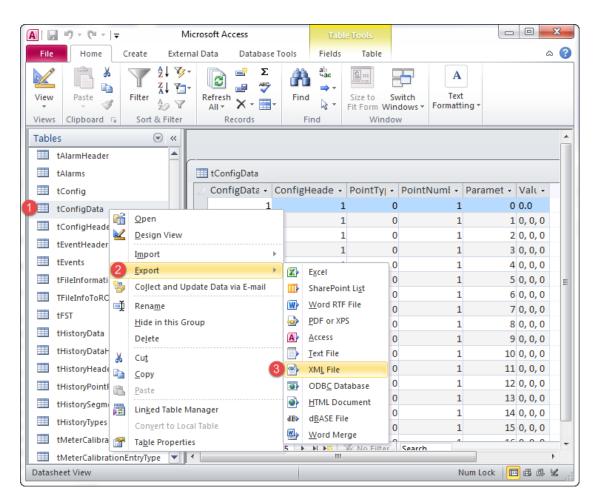
Accordingly, always ensure that the latest driver is used in the application.

Protocol Editor Settings

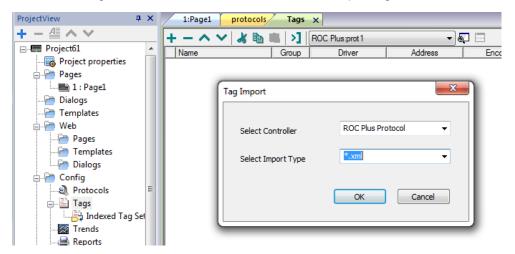

Add (+) a driver in the Protocol editor and select the protocol called "ROC Plus" from the list of available protocols. The driver configuration dialog is shown in figure.

Element	Description
Media	Specify if the HMI is connected to the controller via serial communication link or Ethernet (TCP/IP)
TCP/IP Address	Ethernet IP address of the controller

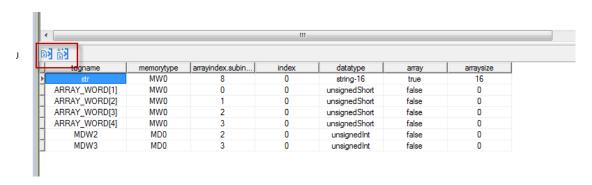
Element	Description		
TCP/IP Port	Port number used by the ROC plus driver; the default value can be changed when the communication goes through routers or Internet gateways where the default port number is already in use		
Panel Address	Indicates the address of the HMI, this must be a unique number. 0 represents "broadcast within group" and 240 is the "direct connect address."		
Panel Group	Indicates the group code for the station address. This is user-configurable and usually set to 2.		
Controller Address	Indicates the address of the controller, this must be unique		
Controller Group	Indicates the group code for the station address. This is user-configurable and usually set to 2.		
Operator ID	Sets operator identification code for the communications port through which communications are occurring. The operator identification is logged with an event, indicating the operator responsible for creating the event.		
Password	A numerical value that is used as a password for the Operator Identifier		
Access Level	A value that is used to limit access to parameters.		
Timeout(ms)	Defines the time inserted by the protocol between two retries of the same message in case of missing response from the server device. Value is expressed in milliseconds.		
PLC Models	The driver supports the communication with a number of different Emerson controllers. Please check directly in the programming IDE software for a complete list of supported controllers.		
PLC Network	The protocol allows the connection of multiple controllers to one HMI device. To set-up multiple connections, check "PLC network" checkbox and create your network using the command "Add" per each slave device you need to include in the network.		
Comm	Click on this button to configure the serial port on the panel to be used		



Tag Import


The ROC Plus driver, support the generic import of tags when provided in XML. Import procedure is described.

- make a copy of saved configuration file ".800" and rename as ".MDB"
- · open the ".MDB" using Microsoft Access
- export the table "tConfigData" to a XML file choosing XML format



• In the tag editor select the driver and click on the "Import tag" button to start the importer.

• Locate the ".XML" file and confirm. The tags present in the exported document are listed in the tag dictionary from where they can be directly added to the project using the add tags button as shown in figure.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

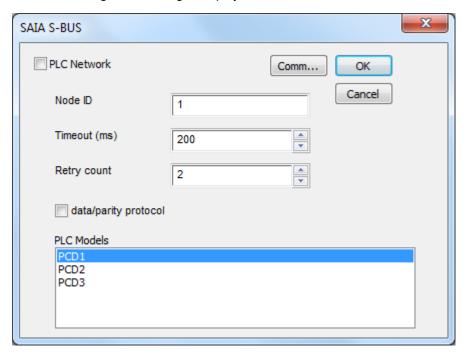
The codes supported for this communication driver are:

Error	Notes	
No response	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured to get network access	
Not expected response TLP	The panel did receive from the controller a response with invalid Type Logical Parameter	
Can't find the TLP location	The panel can't get the physical location of the type or the logical number in the ROC800	
Not expected number of items	Controller did not accept write request; ensure the data programmed in the project are consistent with the controller resources	
Wrong datagram data length	The panel did receive from controller a response frame contains wrong data length	
PLC is in the firmware update mode	Firmware Update Mode – Extremely limited functionality is available.	
Not expected response length	The panel did receive from the controller a response with invalid message length	
Can't read port security mode	Security Access Mode for the port the request was not received	
Can't read compatibility mode	Logical Compatibility Mode was not received	
Can't get IO point types The ROC Plus database is broken into individual parameters. Each database is uniquely associated by parameter number and point The panel did not received requested Point Type		

Error	Notes		
Can't send the request	The panel cannot sent any request to the controller		
Not expected response group/unit	The panel did receive from the controller a response with invalid Group/Unit		
Not expected opcode in the response	The panel did receive from the controller a response contains an unexpected operation code action to perform.		
Invalid format received	The panel did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.		
Message checksum error The panel did receive from the controller a response contains an invalid checksum error			

SAIA S-BUS

The SAIA S-BUS communication driver has been designed to connect HMI devices to SAIA PLCs through serial connection.


Protocol Editor Settings

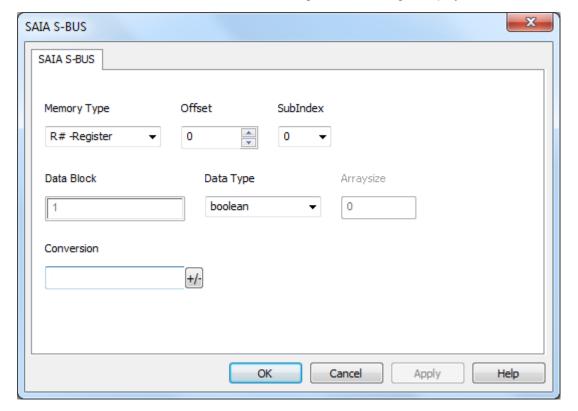
Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description	
Node ID	SAIA PLC node on the serial network.	
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the server device.	
Retry count	Defines the number of times a certain message will be sent to the controller before reporting the communication error status.	
data/parity protocol	SAIA protocol mode: unchecked (default): parity mode checked: data mode	

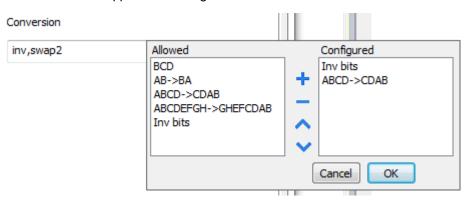

Element	Description	Description	
PLC Models	SAIA PLC model PCD1 PCD2 PCD3	• PCD2	
Comm	Comm Paramete Port Baudrate Mode	s the communication parameters setup dialog. r Dialog OK 9600 RS-485	
	Element	Parameter	
	Port	 COM1: device PLC port. COM2: computer/printer port on panels with 2 serial ports or optional Plug-In module plugged on Slot 1/2 for panels with 1 serial port on-board. COM3: optional Plug-In module plugged on Slot 3/4 for panels with 1 serial port on-board. 	
	Baudrate	Serial baudrate. Available speeds:	
	Mode	Serial port mode. Available modes:	

Element	Description	
	Element	Parameter
		• RS-232.
		• RS-485 (2 wires).
		• RS-422 (4 wires).
PLC Network	Multiple controllers can be connected to one HMI device. To set-up multiple connections, select PLC network and click Add to configure each node	

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select SAIA S-BUS from the Driver list: tag definition dialog is displayed.



Memory Type			
R # -Register unsigned 32 bit data register (default)			
T # -Timer			
F # -Flag			
I # -Input			
O # -Output 1 bit data output Data Block unsigned 32 bit data block (default) Real Time Clock unsigned 8 bit real time clock (default) (see Special Data Types for mode details) Offset Memory Type Offset PCD1 Offset PCD2 Offset R # -Register 0 - 4095 0 - 4095 0 - 16 C # -Counter 0 - 1599 0 - 15 T # -Timer 0 - 1599 0 - 15 F # -Flag 0 - 8191 0 - 8191 0 - 8192 0 - 51 O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 Node Override 0 0 0 0 0 0 0 0 <th col<="" th=""><th></th></th>	<th></th>		
Data Block unsigned 32 bit data block (default) Real Time Clock unsigned 8 bit real time clock (default) (see Special Data Types for Mode Data Types for mode details) Offset Memory Type Offset PCD1 Offset PCD2 Offset PCD2 <th colspa<="" th=""><th></th></th>	<th></th>		
Real Time Clock unsigned 8 bit real time clock (default) (see Special Data Types for Node Override protocol parameter (see Special Data Types for mode details)			
Node Override protocol parameter (see Special Data Types for mode details) Offset Memory Type Offset PCD1 Offset PCD2 Offset PCD2 R # -Register 0 - 4095 0 - 4095 0 - 16 C # -Counter 0 - 1599 0 - 1599 0 - 15 T # -Timer 0 - 1599 0 - 1599 0 - 15 F # -Flag 0 - 8191 0 - 8191 0 - 81 I # -Input 0 - 512 0 - 8192 0 - 51 O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 1 - 8 Node Override 0 0 0			
Memory Type Offset PCD1 Offset PCD2 Offset PCD2 R # -Register 0 - 4095 0 - 4095 0 - 16 C # -Counter 0 - 1599 0 - 1599 0 - 15 T # -Timer 0 - 1599 0 - 1599 0 - 15 F # -Flag 0 - 8191 0 - 8191 0 - 81 I # -Input 0 - 512 0 - 8192 0 - 51 O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 3333 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 1 - 8 Node Override 0 0 0	mode details)		
R # -Register 0 - 4095 0 - 4095 0 - 16 C # -Counter 0 - 1599 0 - 1599 0 - 15 T # -Timer 0 - 1599 0 - 1599 0 - 15 F # -Flag 0 - 8191 0 - 8191 0 - 81 I # -Input 0 - 512 0 - 8192 0 - 51 O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 1 - 8 Node Override 0 0 0			
C # -Counter 0 - 1599 0 - 1599 0 - 15 T # -Timer 0 - 1599 0 - 1599 0 - 15 F # -Flag 0 - 8191 0 - 8191 0 - 81 I # -Input 0 - 512 0 - 8192 0 - 51 O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 3333 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 1 - 8 Node Override 0 0 0	PCD3		
T#-Timer 0-1599 0-1599 0-15 F#-Flag 0-8191 0-8191 0-81 I#-Input 0-512 0-8192 0-51 O#-Output 0-512 0-8192 0-51 Data Block 0-3333 0-3333 0-16 Real Time Clock 1-8 1-8 1-8 Node Override 0 0 0	383		
F#-Flag 0-8191 0-8191 0-81 I#-Input 0-512 0-8192 0-51 O#-Output 0-512 0-8192 0-51 Data Block 0-3333 0-16 Real Time Clock 1-8 1-8 1-8 Node Override 0 0 0	 99		
I # -Input 0-512 0-8192 0-51 O # -Output 0-512 0-8192 0-51 Data Block 0-3333 0-3333 0-16 Real Time Clock 1-8 1-8 1-8 Node Override 0 0 0	 99		
O # -Output 0 - 512 0 - 8192 0 - 51 Data Block 0 - 3333 0 - 3333 0 - 16 Real Time Clock 1 - 8 1 - 8 1 - 8 Node Override 0 0 0	 91		
Data Block 0-3333 0-3333 0-16 Real Time Clock 1-8 1-8 1-8 Node Override 0 0 0	20		
Real Time Clock 1-8 1-8 1-8 Node Override 0 0 0	20		
Node Override 0 0	383		
Sublinde This allows resource offset selection within the register			
x			
Data Available data types:			
Type • boolean	• boolean		
• byte			
• short			
	int unsignedByte		
unsignedShort			
• unsignedint			

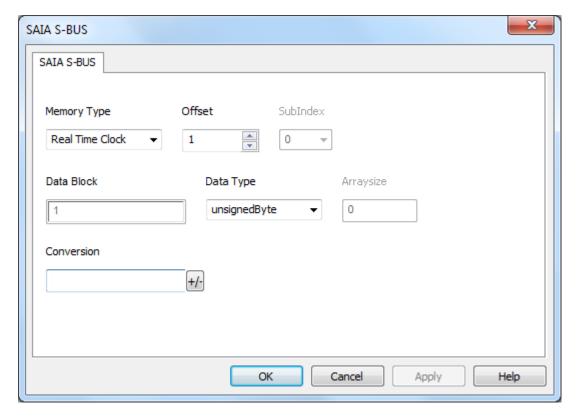
Programming concepts" section in the main manual. Note: To define arrays, select one of Data Type format followed by square brackets. In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.

Conversi on

Conversion to be applied to the Tag.

Depending on data type selected, the Allowed list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: 1001 → 0110 (in binary format) 9 → 6 (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)

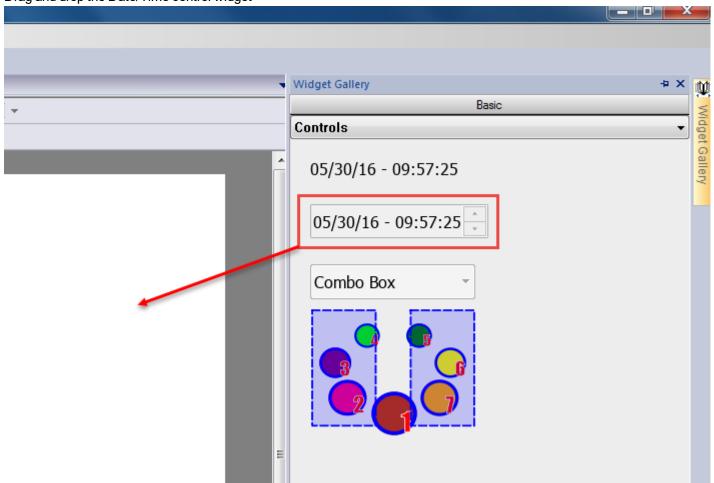

Element	Description	
	Value	Description
	ABCD -> CDAB	Swap bytes of a word.
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
	ABCDEFGH -> GHEFCDAB	Swap bytes of a double word. Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011011001000101101
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	Select the conversion and o	click on plus button. The selected item will be added on Configured list.
	If more conversions are cor	nfigured, they will be applied in order (from top to bottom of Configured list).
	Use the arrow buttons to or	der the configured conversions.

Real Time Clock

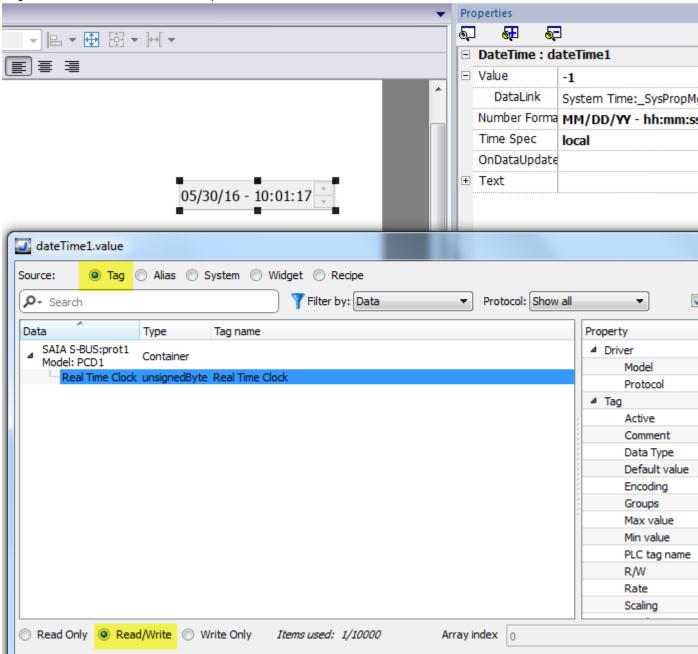
The protocol provides the special data type Real Time Clock which allows you to change the date and time on PLC. This memory type is an unsigned byte.

Offset	Description
1	Number of week
2	Day of week
3	Year

Offset	Description
4	Month
5	Day
6	Hours
7	Minutes
8	Seconds



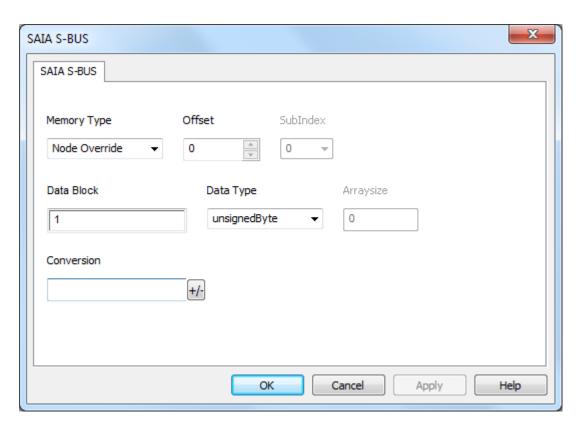
It is also possible to use the Date/Time control widget to directly write in Real Time Clock variable.


1. Define a Real Time Clock, as per above picture

2. Drag and drop the Date/Time control widget

3. From Property Pane, click on the + button beside **Value** property. Then locate the Real Time Clock variable from Tag source, and select Read/Write option.

Node Override


The protocol provides the special data type Node Override which allows you to change the node ID of the slave at runtime. This memory type is an unsigned byte.

The node Override is initialized with the value of the node ID specified in the project at programming time.

Node Override	Description	
0	Communication with the controller is stopped. In case of write operation, the request will be transmitted without waiting for a reply.	
1 to 254	1 to 254 It is interpreted as the value of the new node ID and is replaced for runtime operation.	
255	Communication with the controller is stopped; no request messages are generated.	

Note: Node Override ID value assigned at runtime is retained through power cycles.

Communication Status

The current communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

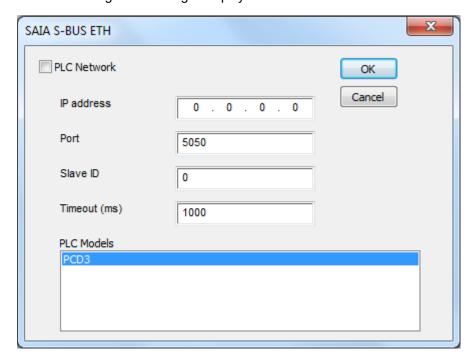
The codes supported for this communication driver are:

Error	Notes
NAK	Returned in case the controller replies with a not acknowledge
Timeout	Returned when a request is not replied within the specified timeout period; ensure the controller is connected and properly configured for communication
Line	Returned when an error on the communication parameter setup is detected (parity, baud rate,

Error	Notes
Error	data bits, stop bits); ensure the communication parameter settings of the controller is compatible with panel communication setup
Invalid response	The panel did receive from the controller a response, but its format or its contents is not as expected; ensure the data programmed in the project are consistent with the controller resources

SAIA S-BUS ETH

The SAIA S-BUS ETH communication driver has been designed to connect HMI devices to SAIA PLCs through ethernet connection.


Protocol Editor Settings

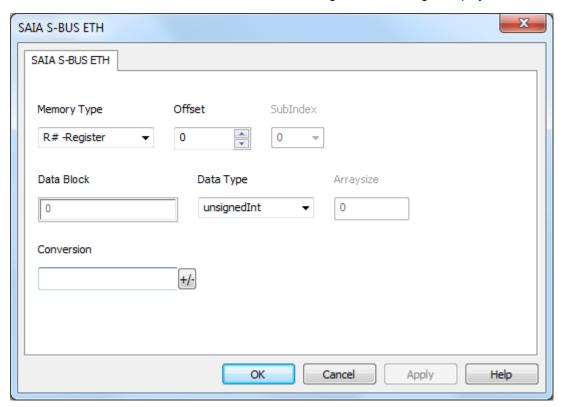
Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.

Element	Description
IP address	Ethernet IP address of the controller.
Port	Port number used by the driver. The default value is 5050 .
Slave ID	ID if the controller.
Timeout (ms)	Time delay in milliseconds between two retries in case of missing response from the server device.



Element	Description
PLC Models	SAIA PLC models available:
	• PCD3
PLC Network	Multiple controllers can be connected to one HMI device. To set-up multiple connections, select PLC network and click Add to configure each node

Tag Editor Settings

Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select SAIA S-BUS ETH from the Driver list: tag definition dialog is displayed.

Element	Description	
Memory Type	Memory Type	Description
	R # -Register	unsigned 32 bit data register (default)
	C # -Counter	unsigned 32 bit data counter (default)
	T # -Timer	unsigned 32 bit data timer (default)
	F # -Flag	1 bit data flag
	I # -Input	1 bit data input
	O # -Output	1 bit data output
	Data Block	unsigned 32 bit data block (default)
	Real Time Clock	unsigned 8 bit real time clock (default) (see Special Data Types for mode details)
Offset	Memory Type	Offset
	R # -Register	0 – 16383
	C # -Counter	0 – 1599
	T # -Timer	0 – 1599
	F # -Flag	0 – 8191
	I # -Input	0-5120
	O # -Output	0 – 5120
	Data Block	0 – 16383
	Real Time Clock	1-8
SubInde x	This allows resource offset selection within the register.	
Data	Available data types:	
Type	booleanbyteshort	
	• int	
	 unsignedByte 	
	 unsignedSho 	rt
	unsignedInt	
	floatstring	
	- Juliy	

Element	Description		
	See "Programming concepts" section in the main manual.		
	Note: To define arrays, select one of Data Type format followed by square brackets.		
Arraysiz e	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. 		
Conversi			

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Cancel

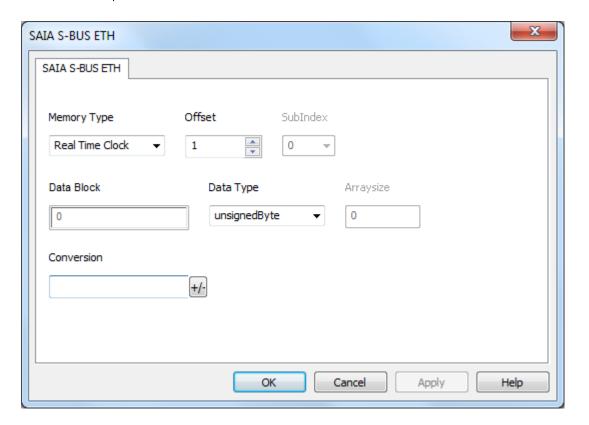
OK

ABCDEFGH->GHEFCDAB

Inv bits

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.

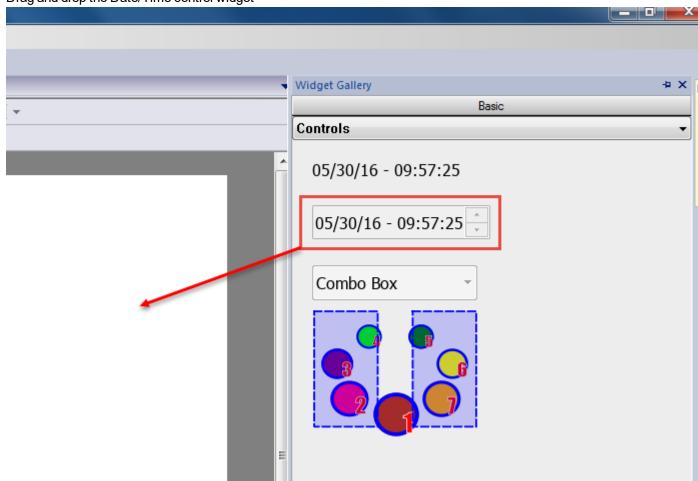
Element	Description	
	Value	Description
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
	ABCDEFGH -> GHEFCDAB	Swap bytes of a double word. Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB		Swap bytes of a long word. Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	Select the conversion and click on plus button. The selected item will be added on Configured list.	
	If more conversions are configured, they will be applied in order (from top to bottom of Configured list).	
	Use the arrow buttons to order the configured conversions.	


Real Time Clock

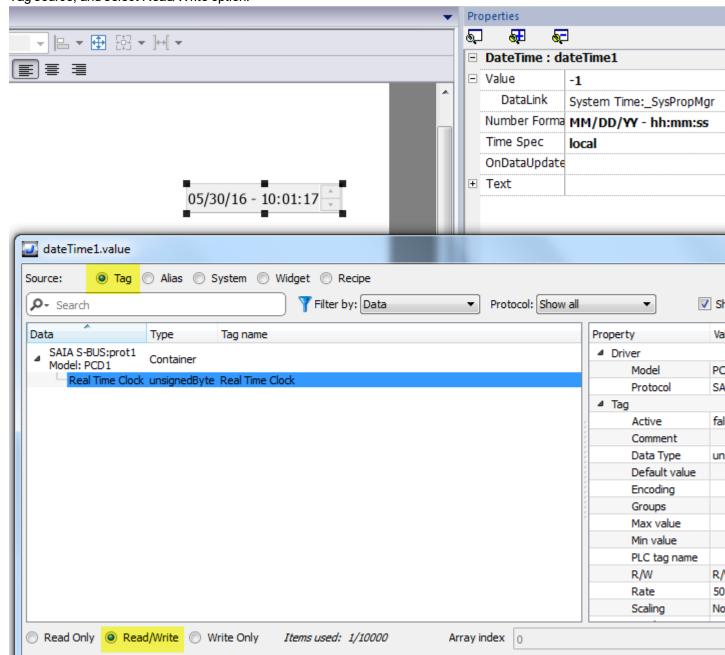
The protocol provides the special data type Real Time Clock which allows you to change the date and time on PLC. This memory type is an unsigned byte.

Offset	Description
1	Number of week
2	Day of week
3	Year
4	Month

Offset	Description
5	Day
6	Hours
7	Minutes
8	Seconds



It is also possible to use the Date/Time control widget to directly write in Real Time Clock variable.


1. Define a Real Time Clock, as per above picture

2. Drag and drop the Date/Time control widget

3. From Property Pane, click on the + button beside **Value** property. Then locate the Real Time Clock variable from Tag source, and select Read/Write option.

Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

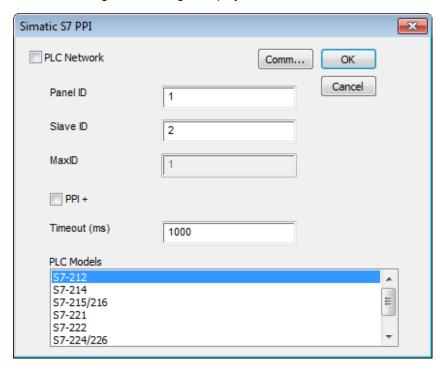
Codes supported for this communication driver:

Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Check if the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

Simatic S7 PPI

HMI devices can be connected to the Siemens Simatic S7-200 family of PLCs. The communication is performed via the PLC programming ports using the PPI and the PPI+ protocols.

This document describes the PPI+ protocol and includes the information needed for a successful connection.

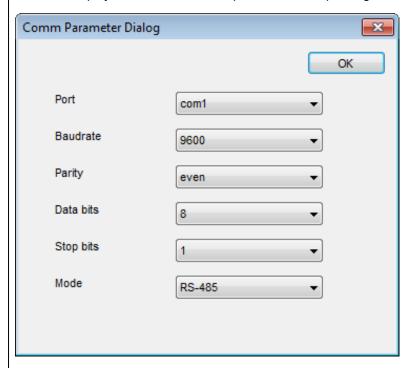

Protocol Editor Settings

Adding a protocol

To configure the protocol:

- 1. In the **Config** node double-click **Protocols**.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

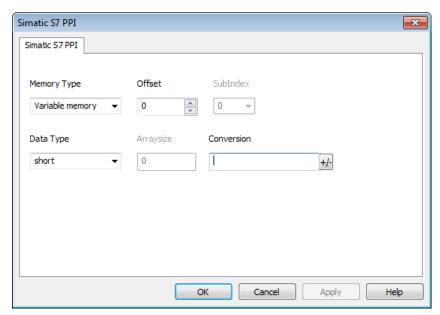
The driver configuration dialog is displayed.


Element	Description	
PLC Network	Enable access to multiple networked controllers. For every controller (slave) set the proper option.	
Panel ID	Node number of the operator panel.	
Slave ID	Node number of the connected PLC.	
Max ID	Available only if PPI+ protocol is in use. Contains the highest node number in PPI+ network.	

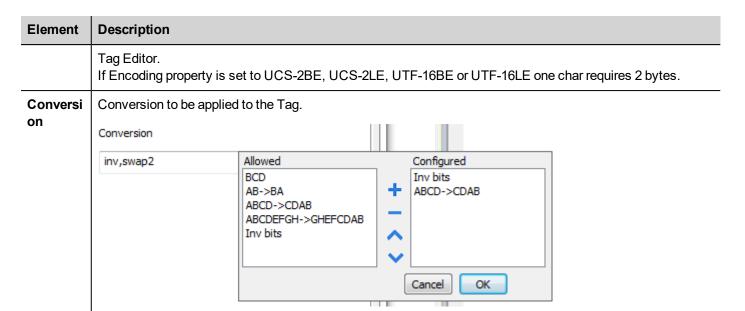
Element	Description
PPI+	Checked to use PPI+ protocol instead of PPI protocol.
Timeout (ms)	Time delay in milliseconds between two retries of the same message when no answer is received from the controller.

Element	Description
PLC Models	Several Siemens controllers are supported. Please check directly in the programming IDE software for a complete list of supported controllers.
_	

Comm... If clicked displays the communication parameters setup dialog.



Parameter
Serial port selection.
On UN20:
COM1: device PLC port.
COM2: PC/printer port
On UN31 or UN30:
COM1: integrated serial port
COM2: optional module plugged on Slot 1/2
• COM3: optional module plugged on Slot 3/4
Serial line parameters.
Serial port mode. Available modes:
• RS-232.
• RS-485 (2 wires).
• RS-422 (4 wires).



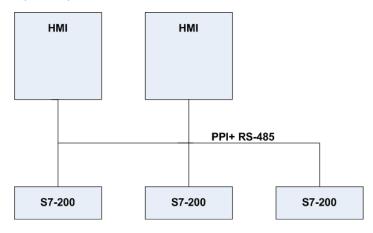
Tag Editor Settings

In the Tag Editor select Simatic S7 PPI from the list of defined protocols and click + to add a tag.

Element	Description	
Memory Type	Area of PLC where tag is located.	
Offset	Offset address where tag is located.	
SubInde x	In case of Boolean data type, this is the offset of single bit.	
Data Type	Available data types:	
Arraysiz e	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in 	

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH -> GHEFCDAB	Swap bytes of a double word. Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP -> OPMDAB	Swap bytes of a long word.



Element	Description		
	Value	Description	
		Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.		

PPI+ Connectivity

HMI devices can be connected to more than one CPU S7-200, more than one operator panel can also be connected to the same PLC.

Operator panels will not interfere with PPI+ communication between the PLC's.

PPI+ protocol allows you to use more complex configurations than the standard PPI protocol.

Each PLC can execute read and write operations to and from other PLCs. At the same time more than one panel can be connected on the PPI network and can access all the variables from all the PLCs.

PLC programming software can be used and online programming can be performed without interfering with the panel-PLC communication .

Communication Status

Current communication status can be displayed using System Variables. See "System Variables" section in the main manual.

Codes supported for this communication driver:

Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Ensure the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

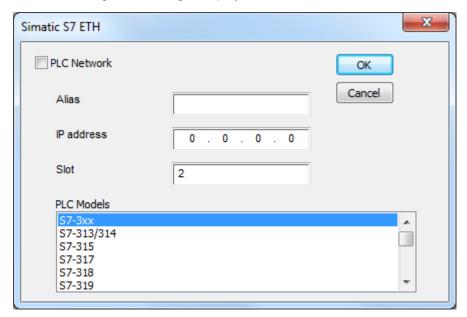
Simatic S7 ETH

Simatic S7 ETH communication driver has been designed to communicate with Simatic controllers through Ethernet connection.

The Simatic controller must either have an on-board Ethernet port or be equipped with an appropriate Ethernet interface (either built-in or with a module).

Communication is based on the PG/OP (ISO on TCP) communication functions.

This documents describes the driver settings to be applied in programming IDE software and in S7 PLC programming software.

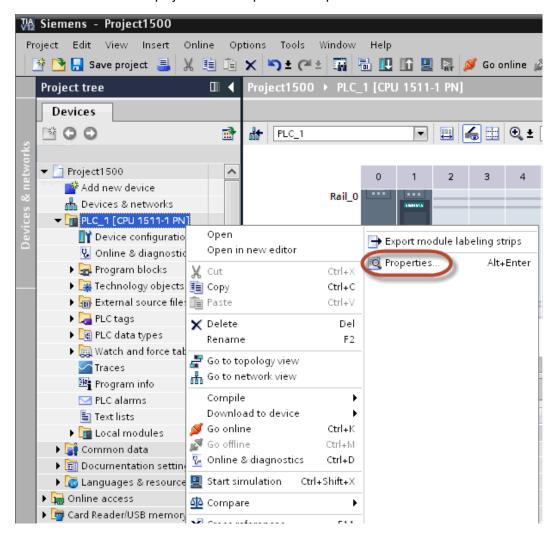

Protocol Editor Settings

Adding a protocol

To configure the protocol:

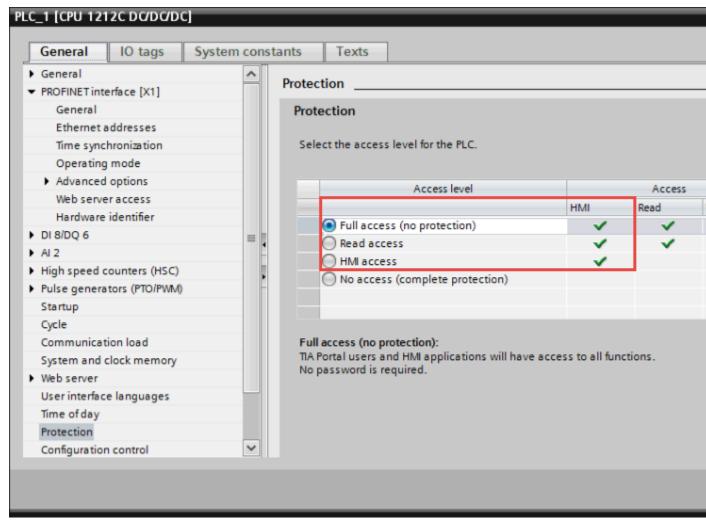
- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the protocol from the PLC list.

The driver configuration dialog is displayed.


Element	Description
Alias	Name identifying nodes in network configurations. The name will be added as a prefix to each tag name imported for each network node.
IP address	Ethernet IP address of the controller.
Slot	Number of the slot where the CPU is mounted. 2 for S7-300, may take a higher value for S7-400

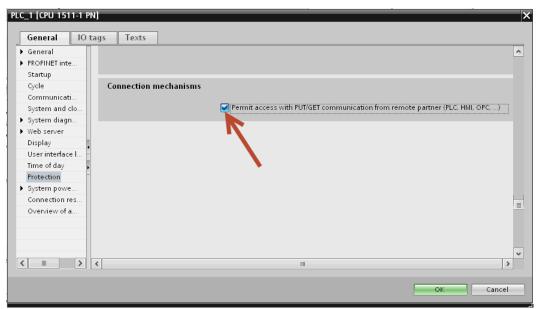
Element	Description	
	systems.	
PLC Models	List of compatible controller models. Make sure to select the correct PLC model in this list when configuring the protocol.	
PLC Network	Enable access to multiple networked controllers. For every controller (slave) set the proper option.	

S7-1200 and S7-1500 PLC configuration


S7-1200 (starting from firmware version 4.0) and S7-1500 PLC Series from Siemens have a built-in firewall; by default the maximum protection level is enabled. To establish communication with these PLC models it is necessary to enable S7 communication with 3rd party devices; this setting is available in TIA Portal programming software.

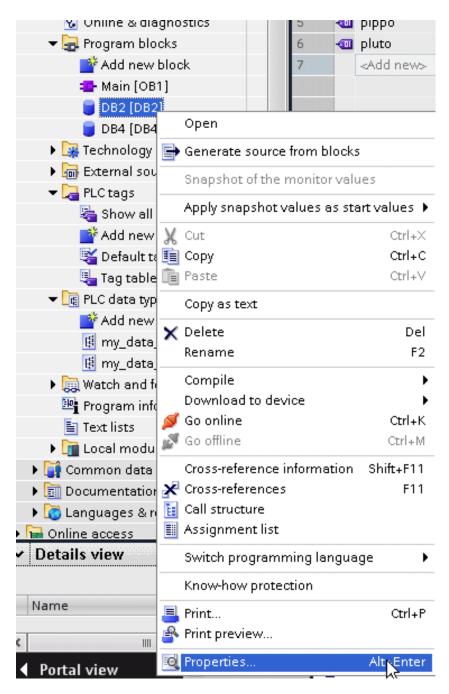
- 1. Open the PLC project in TIA Portal.
- 2. Select the PLC from the project tree and open PLC Properties.





3. In General > Protection choose a permission between the top three (make sure that the tick is present on HMI column).

Note: If "No access" is selected, the communication with the panel will not be established.



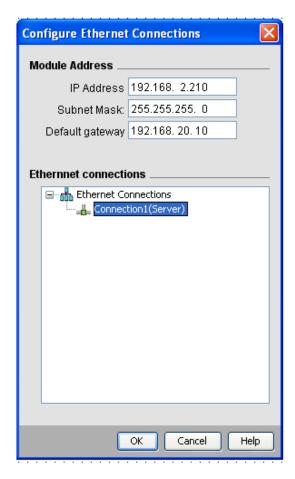
Note: If variables are defined in "Program blocks", DB must configured as "Not optimized".

To check or change DB optimization, open DB Properties:

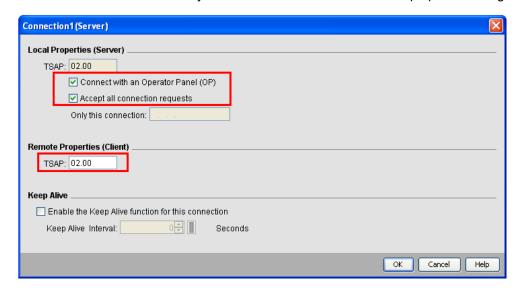
In General > Attributes uncheck "Optimized block access":

If check box "Optimized block access" is not available (grayed-out) it could be because DB is an "instance DB" linked to an "optimized access FB".

After compiling the project, tag offsets will be shown close to variable name.


These settings can be applied to TIA Portal programming software, S7-1200 PLC family starting from PLC firmware version 4.0 and S7-1500 PLC family.

Logo! PLC configuration


To configure communication with Logo! PLC:

- 1. Open the Logo!Soft Comfort project.
- 2. Select **Tools > Ethernet Connections**: the Configure Ethernet Connections dialog is displayed.

- 3. Right-click on **Ethernet Connections** and add a server connection.
- 4. Double-click on the newly created connection: the connection properties dialog is displayed.


- 5. Select the Connect with an operator panel (OP) and Accept all connection requests options.
- 6. In the Remote Properties (Client) section, set TSAP to 02.00.

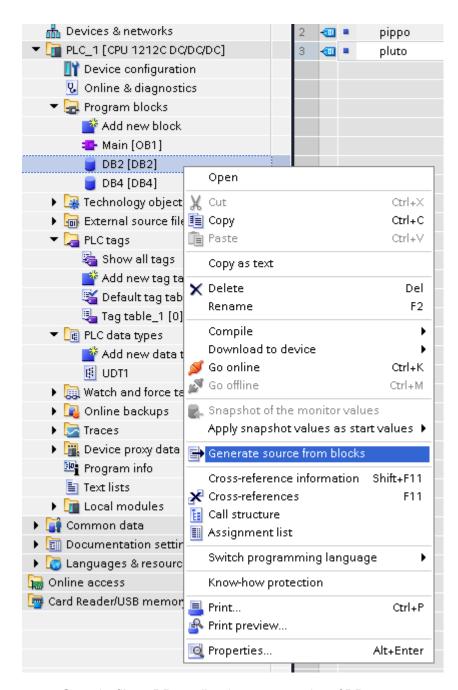
Export using TIA Portal v13, v14 or newer

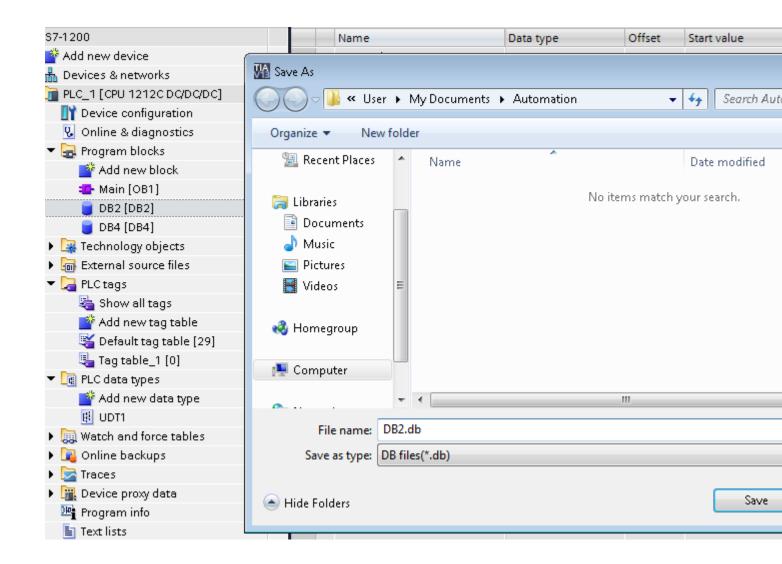
Exporting Program blocks

These files refer to DB tags defined in **Program blocks**.

- 1. Configure the Data Block as Not optimized.
- 2. Right-click on the Data Block and choose **Properties**:

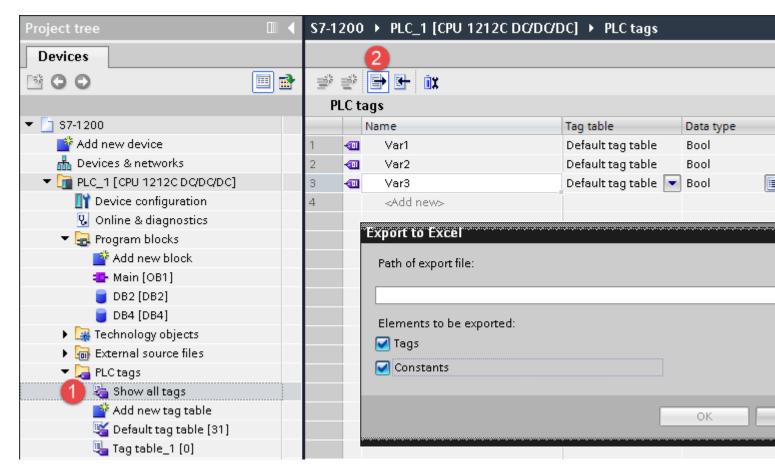
3. In the General tab select Attributes and unselect Optimized block access.



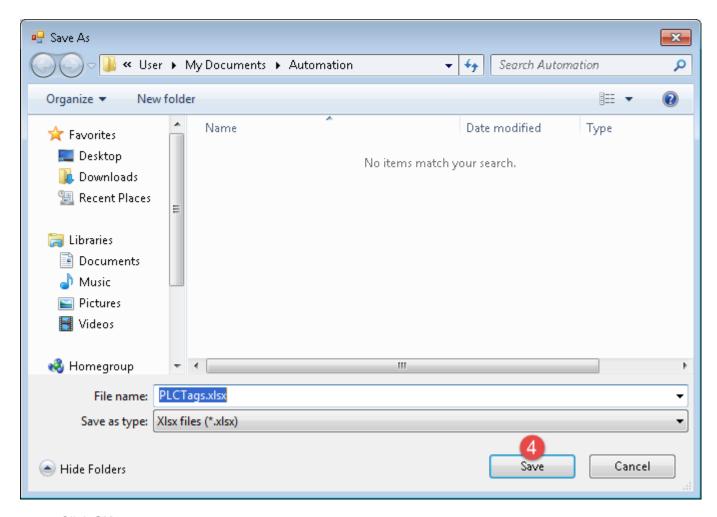

Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".

4. Right-click on the Data Block and choose **Generate source from blocks**:

5. Save the file as DBxxx.db, where xxx=number of DB.



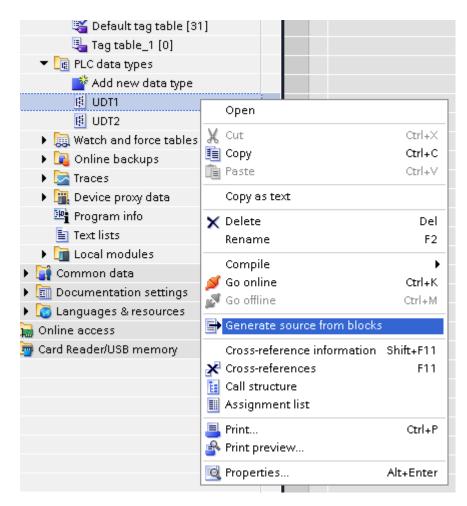
Exporting PLC tags


An Excel file refers to PLC tags.

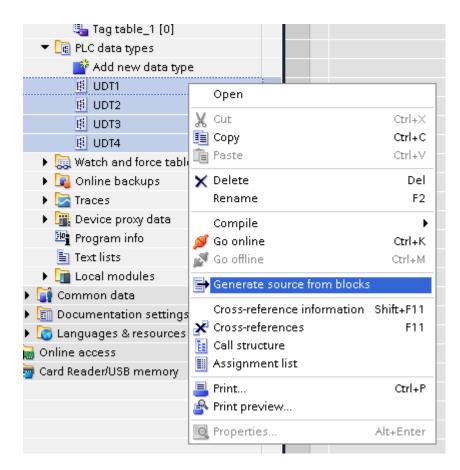
- 1. Double-click **Show all tags**: the tag table is displayed.
- 2. Click the **Export** button and browse for path file.
- 3. Define file name.



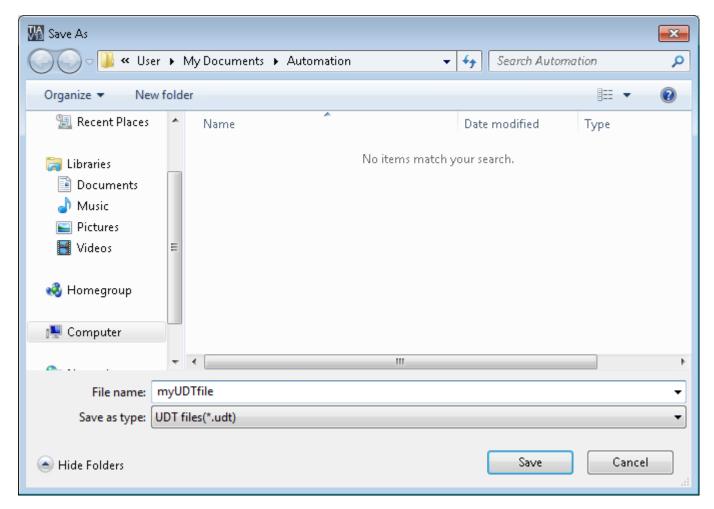
4. Click **Save** to confirm.



5. Click **OK** to export.


Exporting PLC data types

To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.

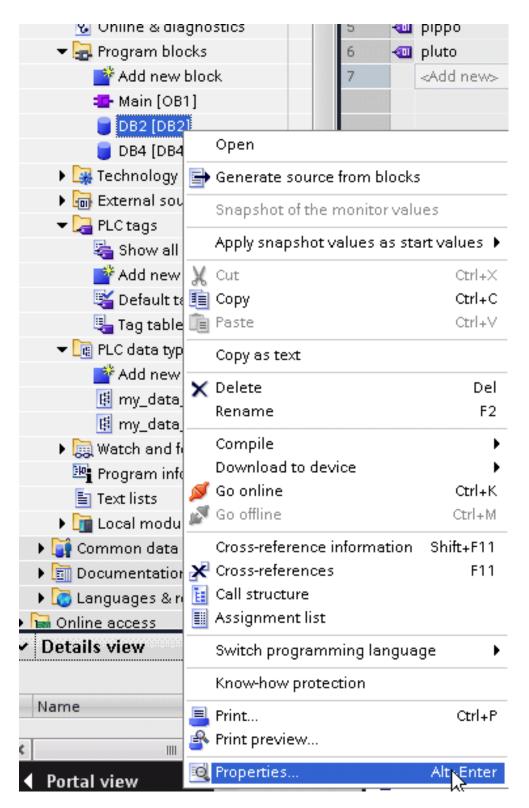


In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .UDT file that contains all the PLC data types defined.

In the next step, give a name to the .UDT file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.

Check Tag Import chapter for more details.

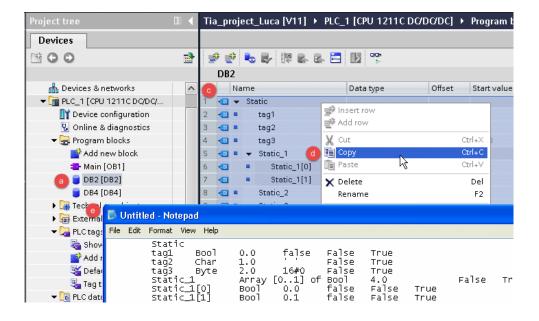

Export using TIA Portal v10, v11, v12

Exporting Program blocks

These files refer to DB tags defined in Program blocks.

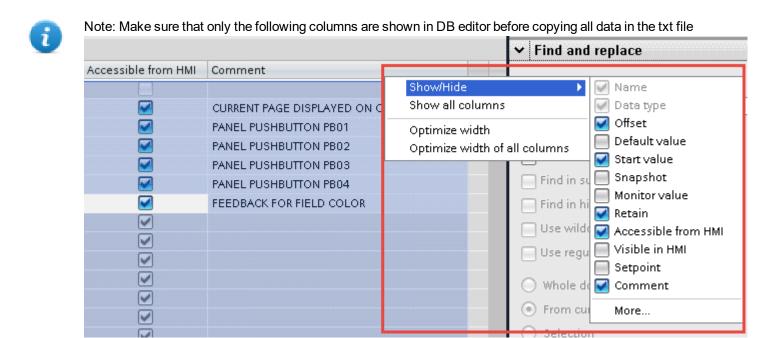
- 1. Configure the Data Block as Not optimized.
- 2. Right-click on the Data Block and choose **Properties**:

3. In the General tab select Attributes and unselect Optimized block access.

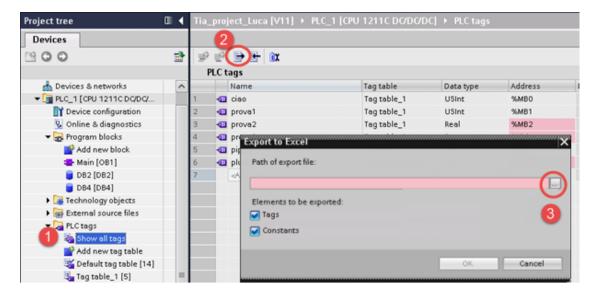


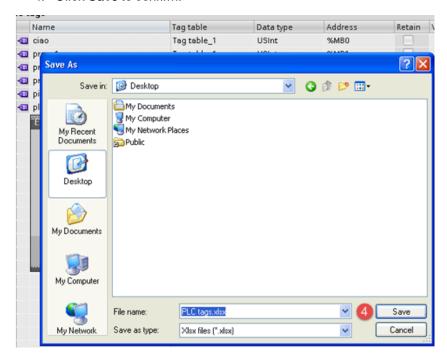
0

Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".



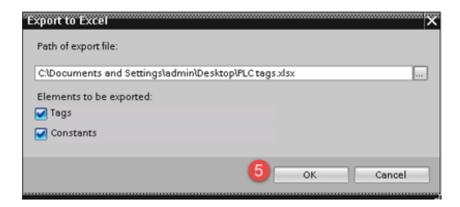
4. Build the project to make sure TIA Portal calculates the tags offset.


- 5. Double-click on a DB name.
- 6. Expand the view of program block selected.
- 7. Select all rows.
- 8. Copy and paste into any text editor.
- 9. Save the file as DBxxx.tia, where xxx=number of DB.
- Note: Make sure you use the **Save As** function or the file will be named DB2.tia.txt and will not be visible from the importer.
- 10. Repeat from step 5 for all program blocks.

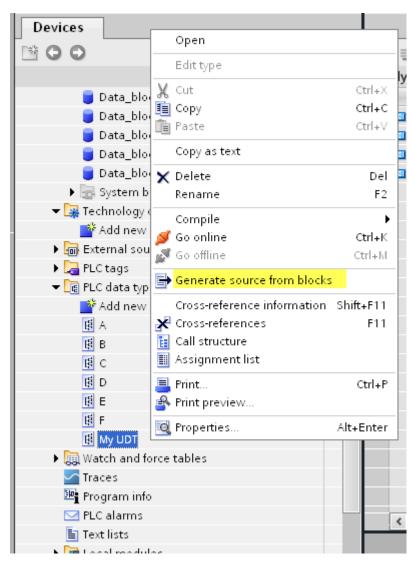

Exporting PLC tags

An Excel file refers to PLC tags.

1. Double-click **Show all tags**: the tag table is displayed.

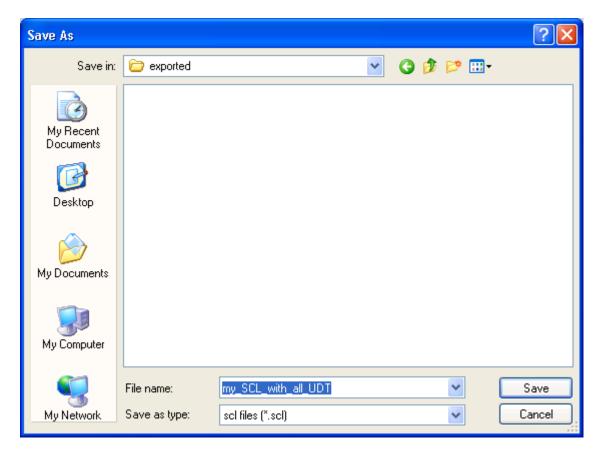


- 2. Click the **Export** button and browse for path file.
- 3. Define file name.
- 4. Click Save to confirm.


5. Click **OK** to export.

Exporting PLC data types

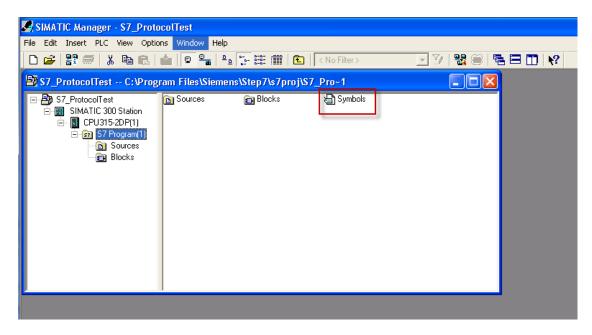
To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.



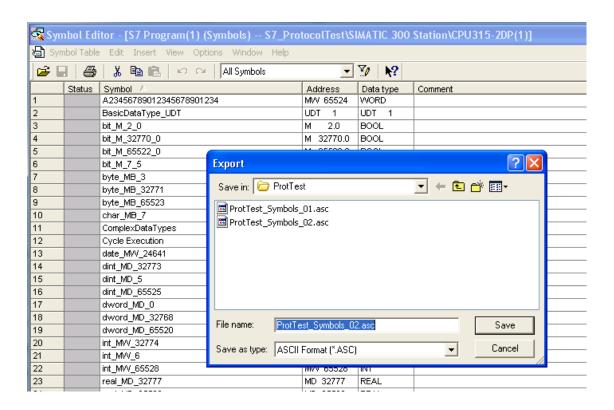
In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .SCL file that contains all the PLC data types defined.

In the next step, give a name to the .SCL file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.


Check Tag Import chapter for more details.

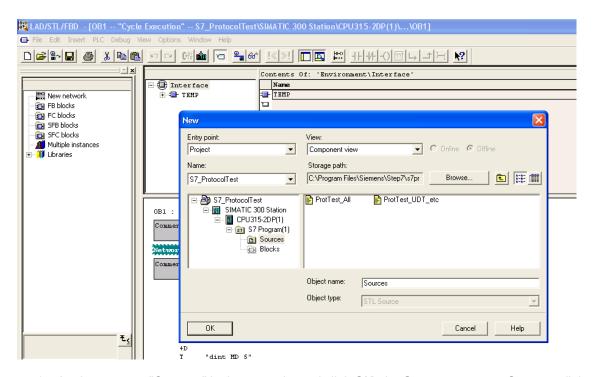
Export using STEP7


The Simatic S7 ETH Tag importer accepts symbol files (ASCII format .asc) and source files (.awl extension) created by the Simatic Step7. The symbol file can be previously exported using the Step7 symbol table utility.

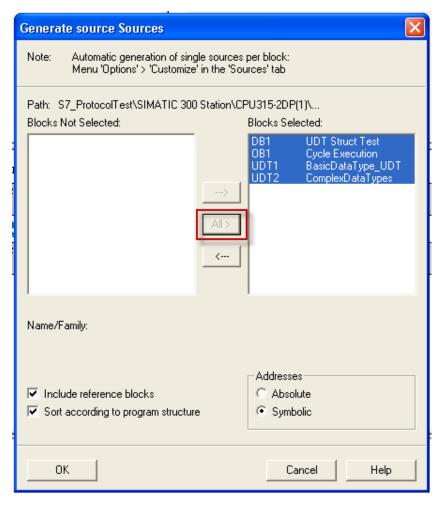
Exporting Symbols table

Symbol files (.asc) can be exported from the symbol table utility.

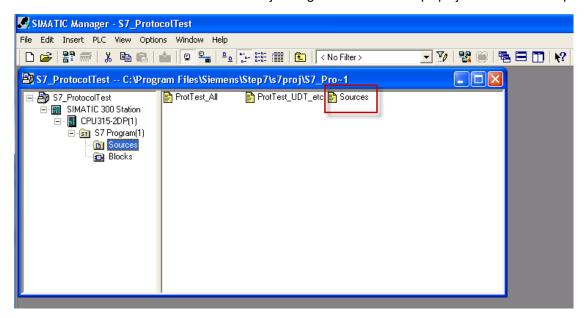
- 1. From the **Symbol Table** menu in the Symbol Editor choose **Export**.
- 2. Assign a name and save the symbol table as ASCII file.

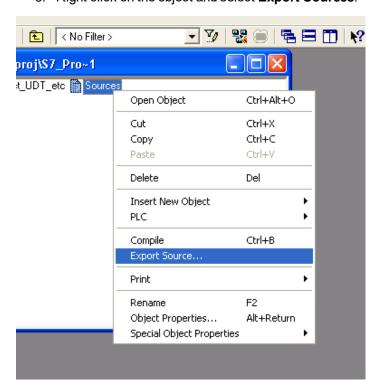


Exporting Sources


These files are created exporting source code.

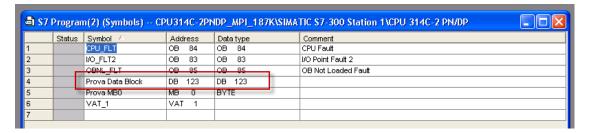
- 1. Open any program block in the editor, "OB1" in this example.
- 2. From the File menu choose Generate Source: the following dialog is displayed:




1. Assign a name, "Sources" in the example, and click **OK**: the **Generate source Sources** dialog is displayed.

- 2. Click All > to generate source for all blocks.
- 3. Select the following options:
- · Include reference blocks
- · Sort according to program structure
- Symbolic address
- 4. Click **OK** to confirm: the "Sources" object is generated in the Step7 project as in the example.

5. Right click on the object and select **Export Sources**.


The generated .awl file can be imported in the Tag Editor.

Note: The .awl file contains additional information not included in the .asc file exported from the symbol table.

Make sure that reference to all data blocks is inserted in the symbol table. The tags from a data block are imported only if the symbol table contains a line with the data block name and related comment.

Each entry enables the import filter to import the tags related to the specified data block.

Tag Editor Settings

In the Tag Editor select "Simatic S7 ETH" from the list of defined protocols and click + to add a tag.

Element	Description		
Memory	Area of PLC where tag is located.		
Туре	Data Type	Simatic Type	
	Internal Memory	M	
	Data Block	DB	
	Input	I (E)	
	Output	O (A)	
	Timer value	Т	
	Counter value	С	
Offset	Offset address where tag is located.		
SubInd ex	Resource offset within the register.		
Data Block	Data block number for Data Block Memory Type.		
Data Type	Available data types:		

Element	Description			
Arraysi ze	In case of string Tag. Note: number of bytes cor Latin1 in Tag Editor.	Tag, this property repressor	ents the number of array elements the maximum number of best string chars if Encoding proper LE, UTF-16BE or UTF-16LE or	ytes available in ty is set to UTF-8
Conver	Conversion to be applied			1
	inv,swap2	Allowed BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	Configured Inv bits ABCD->CDAB Cancel OK	

Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

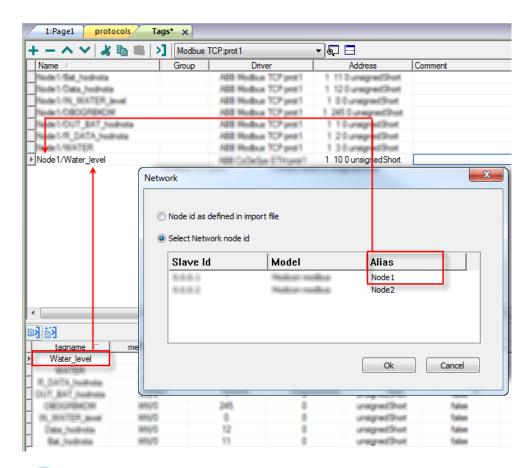
Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.

ıt	Description	
	Value	Description
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
	ABCNOP -> OPMDAB	Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 00011100101101101100100010
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
	S5timer(BCD)	Used to support S5timer. Check Simatic S5timer special data type for more details.
	S5timer(BIN)	Legacy transformation for S5timer in binary format.

If more conversions are configured, they will be applied in order (from top to bottom of

Configured list).

Use the arrow buttons to order the configured conversions.

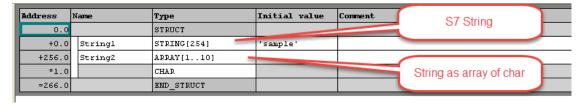

Adding an alias name to a protocol

Tag names must be unique at project level, however, the same tag names might need to be used for different controller nodes (for example when the HMI device is connected to two devices running the same application).

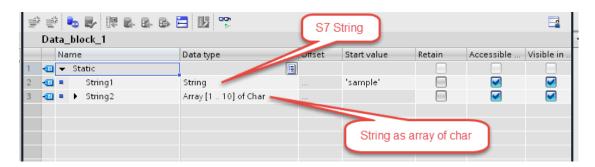
When creating a protocol you can add an alias name that will be added to tag names imported for this protocol.

In the example, the connection to a certain controller is assigned the name **Node1**. When tags are imported for this node, all tag names will have the prefix **Node1** making each of them unique at the network/project level.

Note: Aliasing tag names is only available for imported tags. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.


The Alias string is attached on the import. If you modify the Alias string after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are re-imported, all tags will be re-imported with the new prefix string.

String data type


In Simatic S7 PLC two different types of tags manage string variables:

- as Array [1..xx] of characters,
- as String[xx].

Step7 string declaration is shown in this example:

TIA Portal string declaration is shown in this example:

Note: When using String[xx] data type specific a conversion must be applied to the tag. If the tag dictionary is imported from TIA Portal or Step7 using the import tool, however, conversion of the string tags is performed automatically and no further action is required.

To add a string as an array of characters:

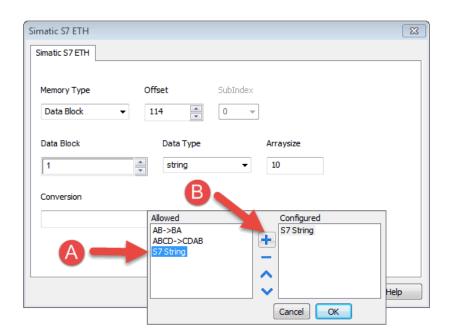
1. Press the + in the Tag Editor.



- 2. Select string as Data Type.
- 3. Enter string length in Arraysize.
- 4. Click **OK** to confirm.

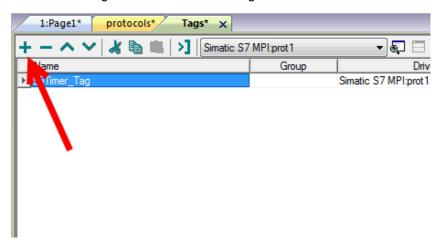
To add a string data type:

1. Press the + in the Tag Editor.



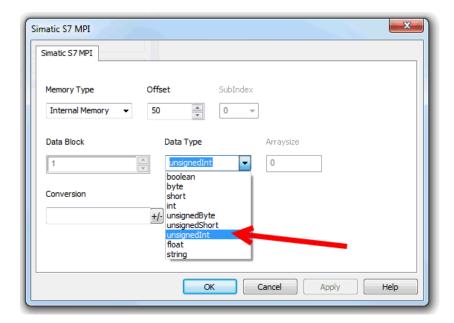
- 2. Select string as Data Type.
- 3. Enter string length in **Arraysize**.
- 4. Click +/- to open the Conversion dialog.

5. In the conversion dialog select the **S7 String** conversion type.


- 6. Click + to add the conversion: the conversion will be listed into the Configured list on the right.
- 7. Click **OK** to confirm.

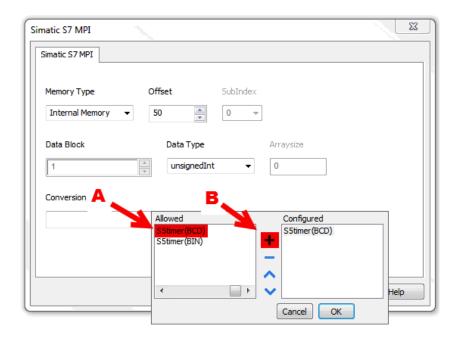
Simatic S5Timer data type

Simatic drivers support a special data type, the S5Timer data type.


The tag must be configured with a specific data type and a conversion must be applied to the tag to correctly read/write a Simatic S5Timer Variable.

1. In the Tag Editor click + to add a tag.

2. Select unsignedInt as Data Type.



3. Click +/- to open the Conversion dialog.

- 4. In the conversion dialog select the **S5timer(BCD)** conversion type.
- 5. Click + to add the conversion: the conversion will be listed into the **Configured** list on the right.

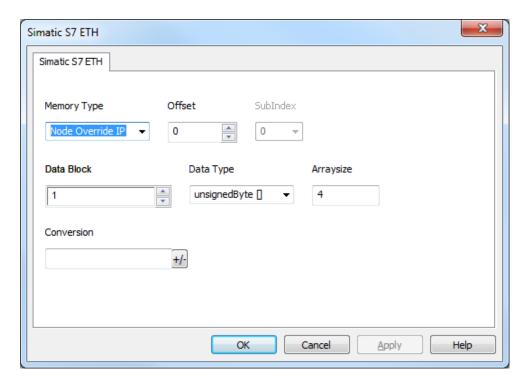
6. Click **OK** to confirm.

Node Override IP

The protocol provides the special data type Node Override IP which allows you to change the IP address of the target controller at runtime.

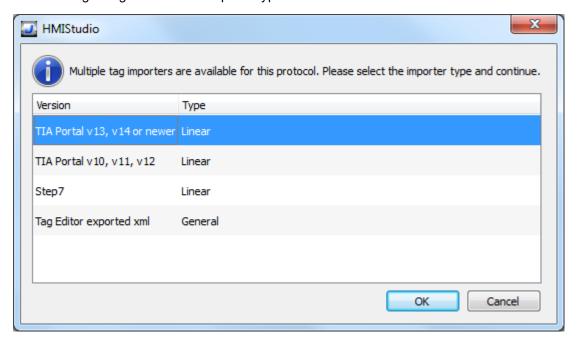
This memory type is an array of 4 unsigned bytes, one per each byte of the IP address.

The Node Override IP is initialized with the value of the controller IP specified in the project at programming time.


Node Override IP	Modbus operation
0.0.0.0	Communication with the controller is stopped, no request frames are generated anymore.
Different from 0.0.0.0	It is interpreted as node IP override and the target IP address is replaced runtime with the new value.

If the HMI device is connected to a network with more than one controller node, each node has its own Node Override IP variable.

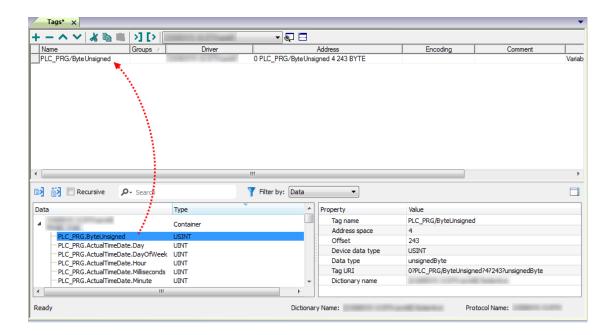
Note: Node Override IP values assigned at runtime are retained through power cycles.



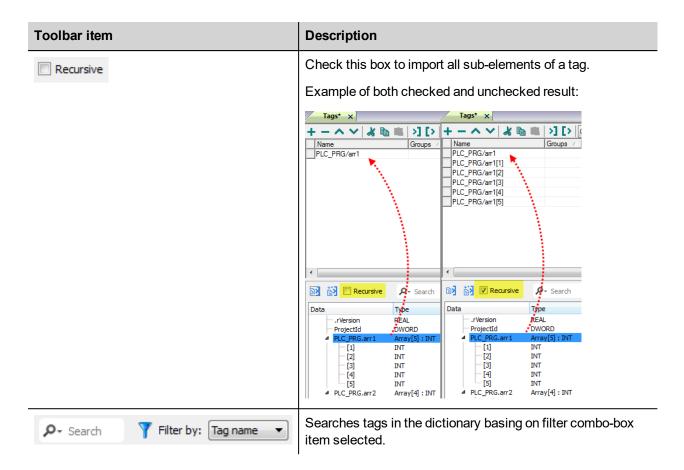
Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description
TIA Portal v13, v14 or	Allows to import:
newer Linear	Program blocks using .dbfile
	PLC tags using .xlsx file
	PLC data types using .udt file
	Check Export using TIA Portal v13, v14 or newer for more details.
	All variables will be displayed at the same level.
TIA Portal v10, v11, v12	Allows to import:
Linear	Program blocks using .tiafile
	PLC tags using .xlsx file
	PLC data types using .scl file
	Check Export using TIA Portal v10, v11, v12 for more details.
	All variables will be displayed at the same level.
Step7	Allows to import:
Linear	Symbols table .ascfile
	Sources using .awl file
	Check Export using STEP7 for more details.
	All variables will be displayed at the same level.
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.
	1:Page1


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description
E ≰	Import Tag(s).
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project
Ki Ki	Update Tag(s).
	Click on this icon to update the tags in the project, due a new dictionary import.

Communication status

Current communication status can be displayed using system variables. See "System Variables" section in the main manual.

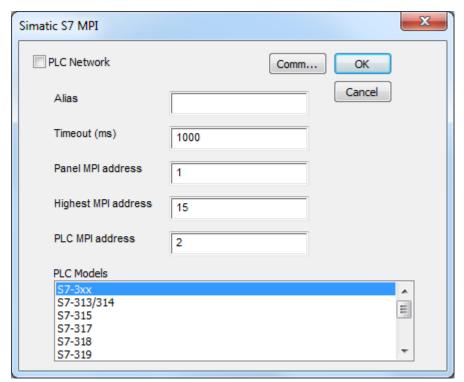
Codes supported by this communication driver:

Error	Cause	Action
NAK	The controller replies with a not acknowledge.	-
Timeout	A request is not replied within the specified timeout period.	Check if the controller is connected and properly configured to get network access.
Invalid response	The device did received a response with invalid format or contents from the controller.	Ensure the data programmed in the project are consistent with the controller resources.
General Error	Unidentifiable error. Should never be reported.	Contact technical support.

Simatic S7 MPI

HMI products support direct Siemens MPI communication without any additional module.

The driver supports the standard communication speed 187Kbit/s.

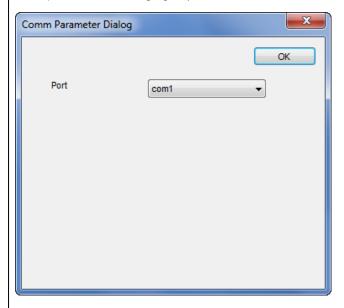

here is a minimum requirement also for the version of operating system running in the HMI (this is normally referenced as BSP version). See in user manual how to read the BSP version with the System Settings menu. The minimum requirements are shown in the following table.

Platform BSP version
UN20 devices V2.59 or newer
UN30/UN31 devices V1.38 or newer

Protocol Editor Settings

Add [+] a driver in the Protocol editor and select the "Simatic S7 MPI" protocol from the list of available protocols.

The protocol type can be selected from the dedicated combo box in the dialog.



Element	Description
Alias	Name to be used to identify nodes in the plc network configuration. The name will be added as a prefix to each tag name imported for each network node.
Timeout (ms)	Defines the time inserted by the protocol between two retries of the

Element	Description	
	same message in case of missing response from controller.	
	Value is expressed in milliseconds.	
Panel MPI Address	MPI node number assigned to the device.	
Highest MPI Address	The highest node number in the MPI network where the device is operating and communicating.	
PLC MPI Address	The MPI address of the controller to which the device needs to communicate.	
PLC Models	List of compatible controller models. Make sure to select the correct PLC model in this list when configuring the protocol.	

Comm...

Click on this button to configure the serial port on the device to be used as MPI port (see example in the following figure)

Communication parameters for Simatic S7 MPI are fixed at:

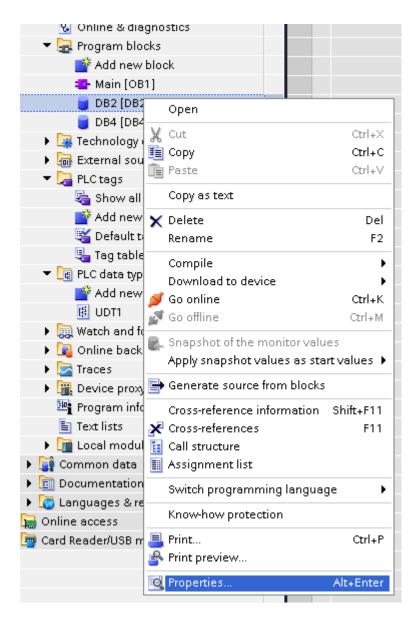
- Baud rate=187500
- Parity=Even
- Data=bits8
- Stop=bit1

On UN20:

- com1 is the HMI port labeled "PLC",
- com2 is the HMI port labeled "PC/Printer"

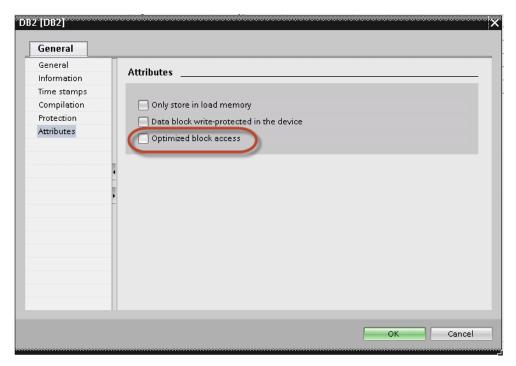
On UN31 or UN30:

- com1 is the integrated serial port,
- com2 is an add-on module plugged in Slot#1 or #2


Element	Description		
	com3 is an add-on module plugged in Slot#3 or #4		
	Note: The connection between device and PLC can be made with the following two options:		
	Creating a custom cable following the scheme provided with document CA255 "eTOP400/500 serie PLC Port to MPI Port"		
	2. Using a standard MPI cable with ADP-0001 "MPI wiring adapter"		
PLC Network	The protocol supports connection to multiple controllers. To enable this option, check the "PLC Network" check box and enter the configuration per each controller node.		

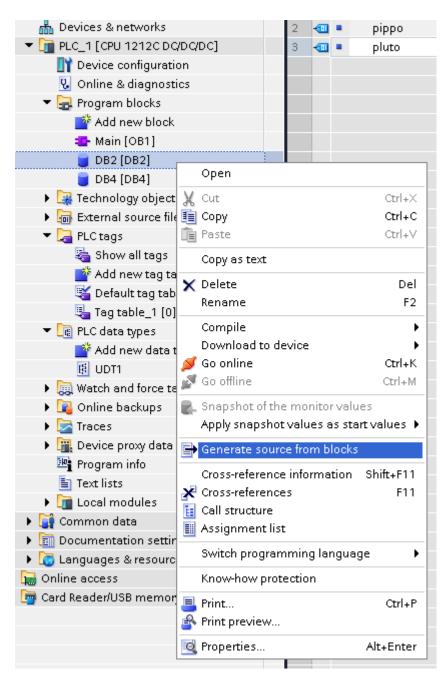
Export using TIA Portal v13, v14 or newer

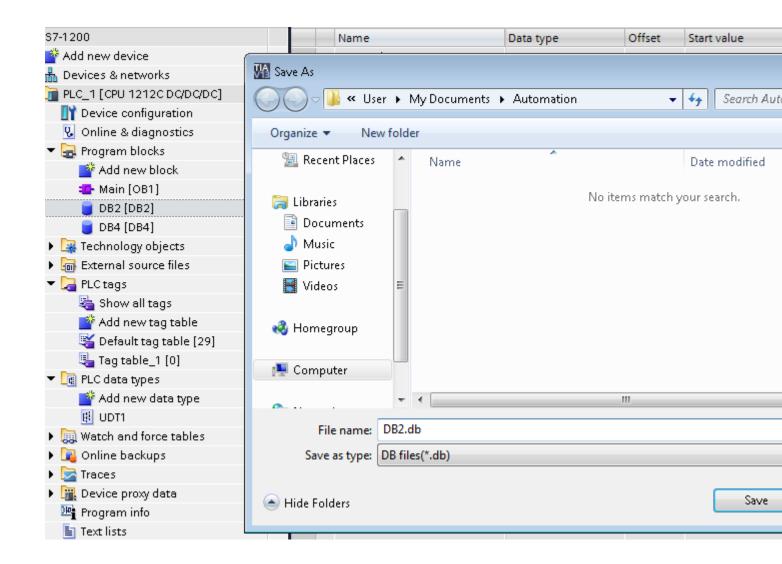
Exporting Program blocks


These files refer to DB tags defined in **Program blocks**.

- 1. Configure the Data Block as **Not optimized**.
- 2. Right-click on the Data Block and choose **Properties**:

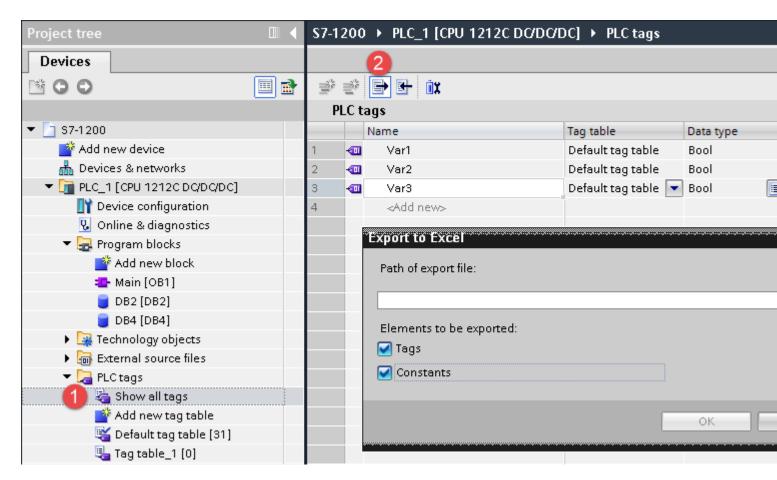
3. In the **General** tab select **Attributes** and unselect **Optimized block access**.



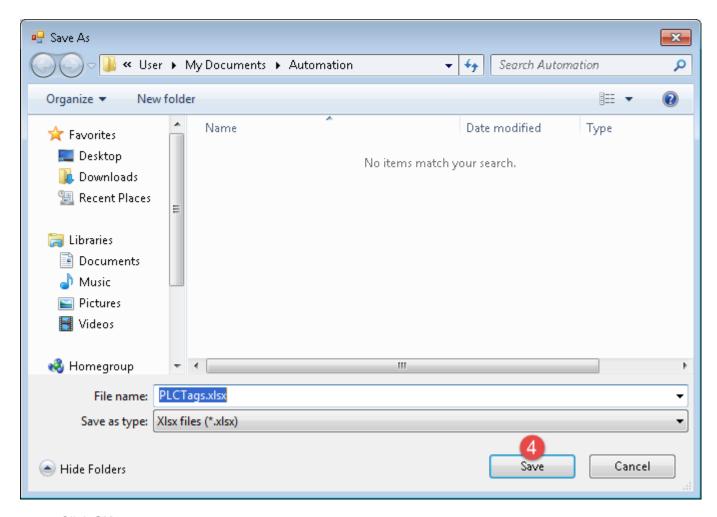

Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".

4. Right-click on the Data Block and choose **Generate source from blocks**:

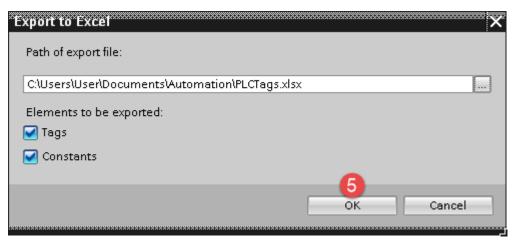
5. Save the file as DBxxx.db, where xxx=number of DB.



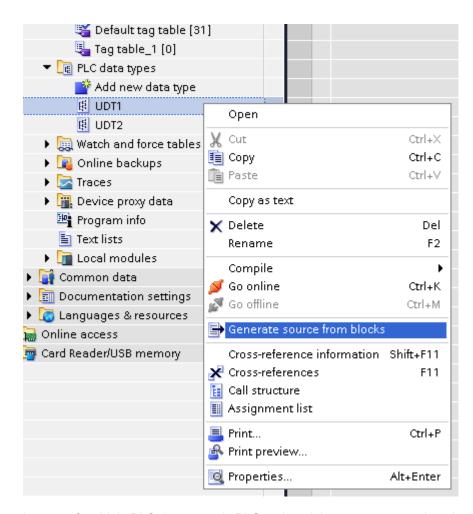
Exporting PLC tags


An Excel file refers to PLC tags.

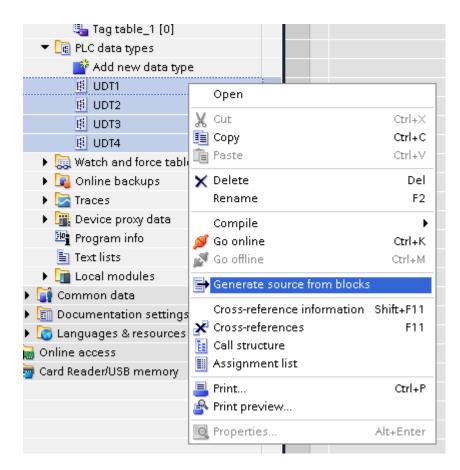
- 1. Double-click **Show all tags**: the tag table is displayed.
- 2. Click the **Export** button and browse for path file.
- 3. Define file name.



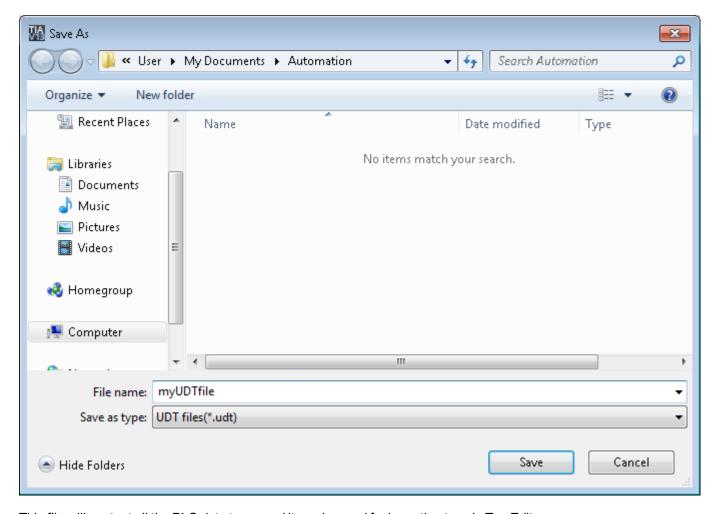
4. Click Save to confirm.



5. Click **OK** to export.


Exporting PLC data types

To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.

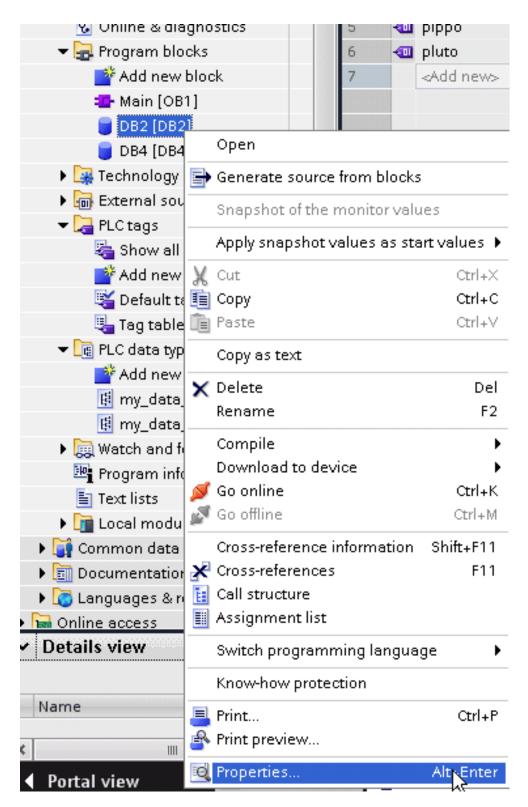


In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .UDT file that contains all the PLC data types defined.

In the next step, give a name to the .UDT file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.

Check Tag Import chapter for more details.

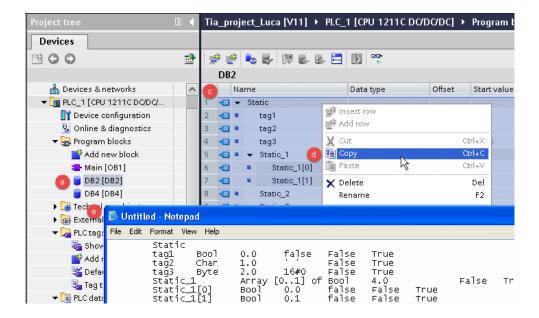

Export using TIA Portal v10, v11, v12

Exporting Program blocks

These files refer to DB tags defined in Program blocks.

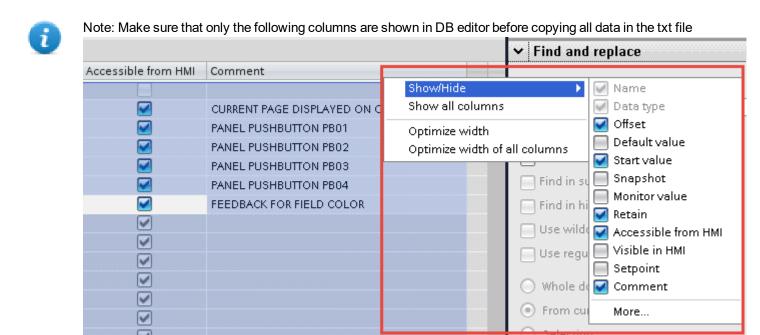
- 1. Configure the Data Block as **Not optimized**.
- 2. Right-click on the Data Block and choose Properties:

3. In the General tab select Attributes and unselect Optimized block access.

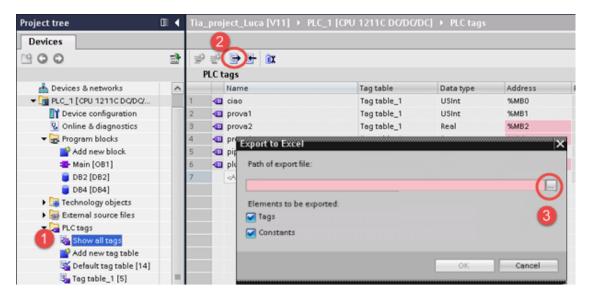


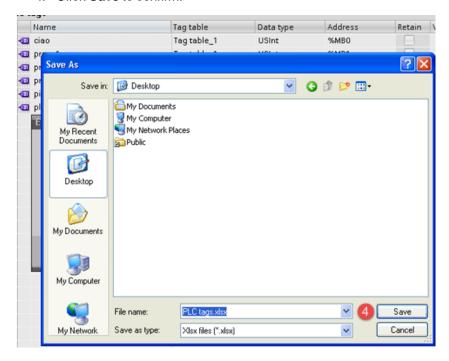
8

Note: If the options **Optimized block access** is not enabled (checkbox grayed out) this might mean that the Data Block is an "instance DB" linked to an "optimized access FB".



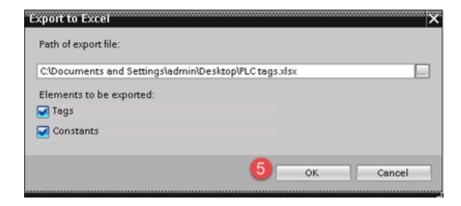
4. Build the project to make sure TIA Portal calculates the tags offset.


- 5. Double-click on a DB name.
- 6. Expand the view of program block selected.
- 7. Select all rows.
- 8. Copy and paste into any text editor.
- 9. Save the file as DBxxx.tia, where xxx=number of DB.
- Note: Make sure you use the **Save As** function or the file will be named DB2.tia.txt and will not be visible from the importer.
- 10. Repeat from step 5 for all program blocks.

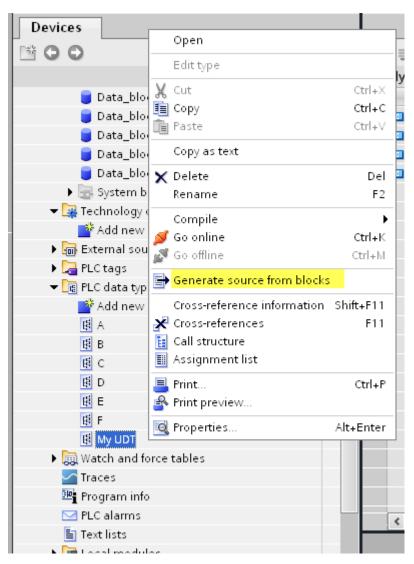

Exporting PLC tags

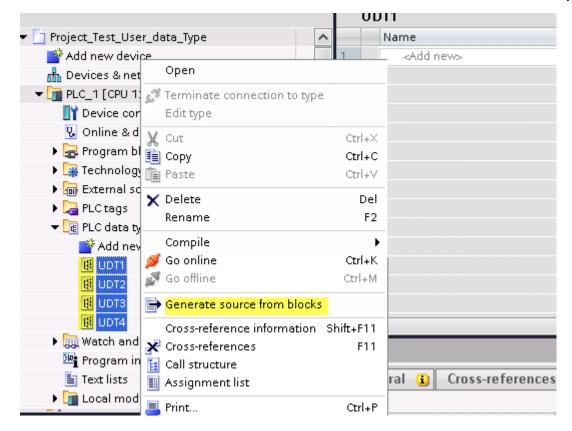
An Excel file refers to PLC tags.

1. Double-click **Show all tags**: the tag table is displayed.



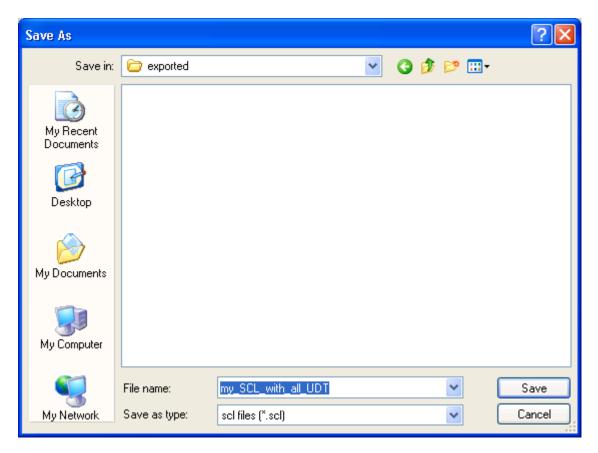
- 2. Click the **Export** button and browse for path file.
- 3. Define file name.
- 4. Click Save to confirm.


5. Click **OK** to export.



Exporting PLC data types

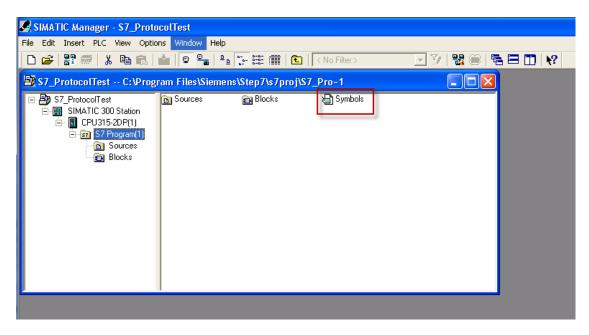
To create the file, expand **PLC data types** item from TIA Portal project tree and right click on the user defined structure. Then click on **Generate source from blocks**.



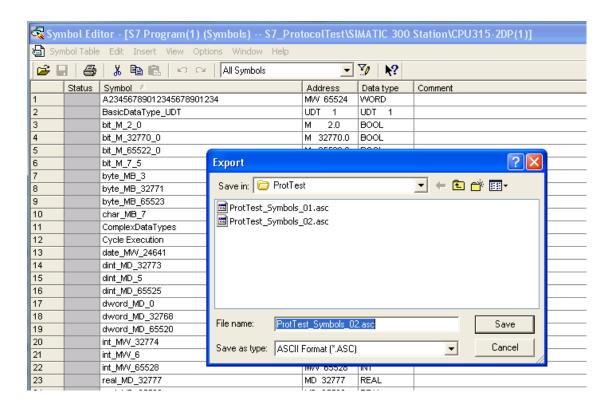
In case of multiple PLC data types in PLC project, it is necessary to select them all from **PLC data types** list, right click and select **Generate source from blocks** to create the .SCL file that contains all the PLC data types defined.

In the next step, give a name to the .SCL file and choose the path to where to save the file.

This file will content all the PLC data types and it can be used for importing tags in Tag Editor.


Check Tag Import chapter for more details.

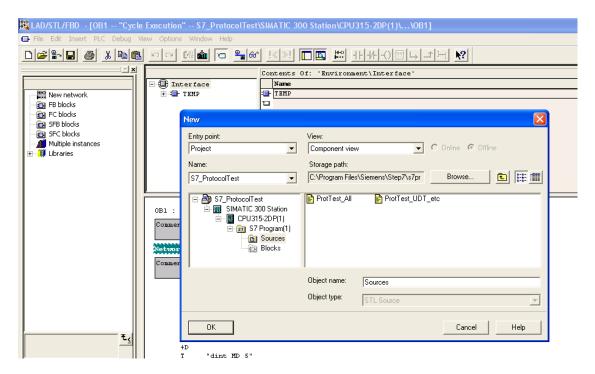
Export using STEP7


The Simatic S7 ETH Tag importer accepts symbol files (ASCII format .asc) and source files (.awl extension) created by the Simatic Step7. The symbol file can be previously exported using the Step7 symbol table utility.

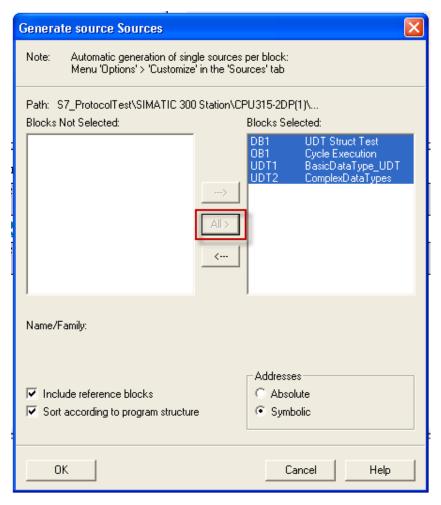
Exporting Symbols table

Symbol files (.asc) can be exported from the symbol table utility.

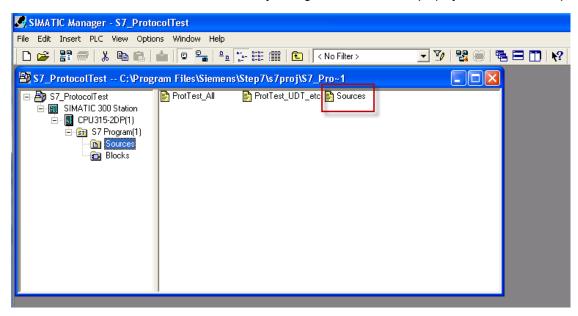
- 1. From the **Symbol Table** menu in the Symbol Editor choose **Export**.
- 2. Assign a name and save the symbol table as ASCII file.

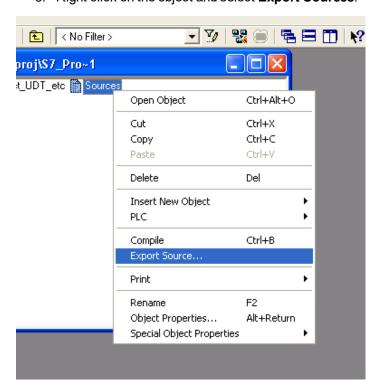


Exporting Sources


These files are created exporting source code.

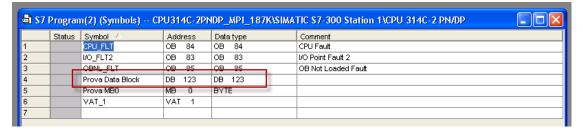
- 1. Open any program block in the editor, "OB1" in this example.
- 2. From the File menu choose Generate Source: the following dialog is displayed:




1. Assign a name, "Sources" in the example, and click **OK**: the **Generate source Sources** dialog is displayed.

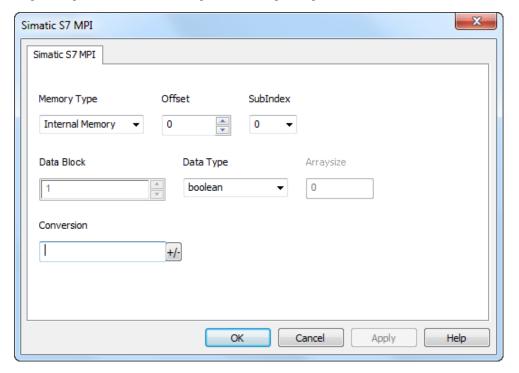
- 2. Click All > to generate source for all blocks.
- 3. Select the following options:
- · Include reference blocks
- · Sort according to program structure
- Symbolic address
- 4. Click **OK** to confirm: the "Sources" object is generated in the Step7 project as in the example.

5. Right click on the object and select **Export Sources**.


The generated .awl file can be imported in the Tag Editor.

Note: The .awl file contains additional information not included in the .asc file exported from the symbol table.

Make sure that reference to all data blocks is inserted in the symbol table. The tags from a data block are imported only if the symbol table contains a line with the data block name and related comment.



Each entry enables the import filter to import the tags related to the specified data block.

Tag Editor Settings

Into Tag editor select the protocol "Simatic S7 MPI" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description			
Memory	Area of PLC where tag i	s located.		
Type	Data Type		Simatic Type	
	Internal Memory		М	
	Data Block		DB	
	Input		I(E)	
	Output		O (A)	
	Timer value		Т	
	Counter value		С	
Offset	Offset address where ta	g is located.		
SubInd ex	In case of Boolean data type, this is the offset of single bit.			
Data Block	If Memory Type is "Data Block", this will identify the DB number.			
Data Type	Data Type	Memory Space		Limits
туре	boolean	1 bit data		01
	byte	8-bit data		-128 127
	short	16-bit data		-32768 32767
	int	32-bit data		-2.1e9 2.1e9
	unsignedByte	8-bit data		0 255
	unsignedShort	16-bit data		0 65535
	unsignedInt	32-bit data		0 4.2e9
	float	IEEE single-precision		1.17e-38 3.40e38
		32-bit floating point type		
	string	Refer to "String data type channel"		
	Note: to defin "byte[]", "sho	-	Data Type	format followed by square brackets like
Arraysi ze	_			umber of array elements. naximum number of bytes available in

Element	Description		
	Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes.		
Conver sion	Conversion to be applied to the tag. Conversion		
	inv,swap2	Allowed BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	Configured Inv bits ABCD->CDAB Cancel OK

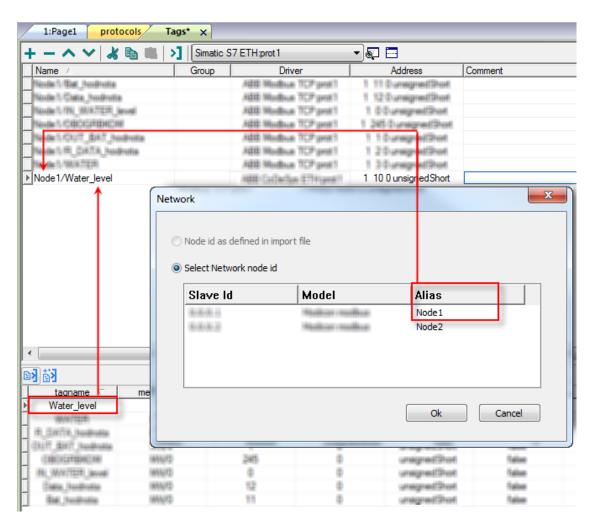
Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)

Value	Description
ABCNOP OPMDAB	> Swap bytes of a long word. Example: 142.366 → -893553517.588905 (in decimal format) 0 1000000110 0001110010111011001000101101000011100101
BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)
S5timer(BC	Used to support S5timer. Check Simatic S5timer special data type f more details.
S5timer(BIN	Legacy transformation for S5timer in binary format.

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

If more conversions are configured, they will be applied in order (from top to bottom of **Configured** list).

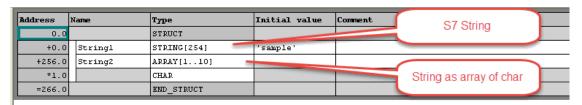

Use the arrow buttons to order the configured conversions.

Aliasing Tag Names in Network Configurations

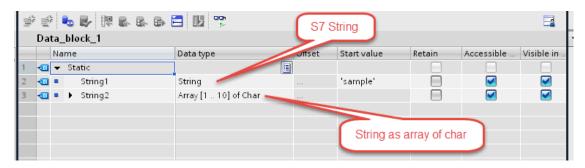
Tag names must be unique at project level; it often happens that the same tag names have to be used for different controller nodes (for example when the HMI is connected to two devices that are running the same application). Since tags include also the identification of the node and Tag Editor does not support duplicate tag names, the import facility in Tag Editor has an aliasing feature that can automatically add a prefix to imported tags. With this feature tag names can be done unique at project level.

The feature works when importing tags for a specific protocol. Each tag name will be prefixed with the string specified by the "Alias". As shown in the figure below, the connection to a certain controller is assigned the name "Node1". When tags are imported for this node, all tag names will have the prefix "Node1" making each of them unique at the network/project level.

Note: Aliasing tag names are only available when tags can be imported. Tags which are added manually in the Tag Editor do not need to have the Alias prefix in the tag name.

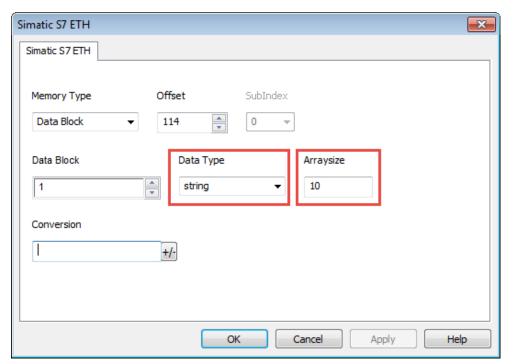

The Alias string is attached to the tag name only at the moment the tags are imported using Tag Editor. If Alias string is modified after the tag import has been completed, there will be no effect on the names already present in the dictionary. When the Alias string is changed and tags are imported again, all tags will be imported again with the new prefix string.

String data type

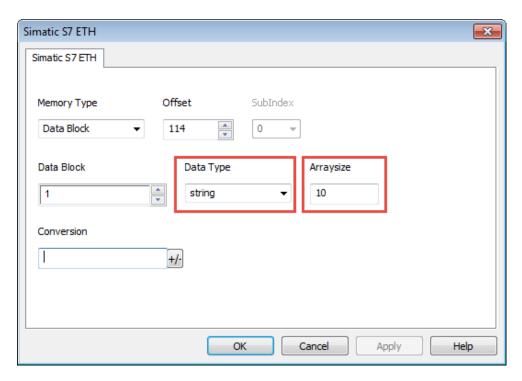

In Simatic S7 PLC it's possible to define two different types of tags to manage string variables.

- as Array [1..xx] of Chars.
- as String[xx].

Step7 string declaration is showed in the following figure:

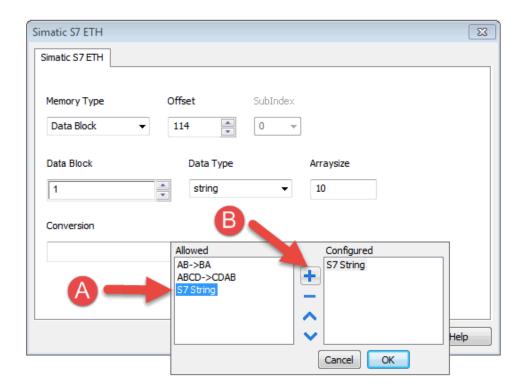

TIA Portal string declaration is showed in the following figure:

Note: Usage of String[xx] data type is allowed but a specific Conversion must be applied to the tag. Anyway using tag importer to import tag dictionary from TIA Portal or Step7 string tags are automatically configured and no changes/conversion are needed.


To manually add an "Array [1..xx] of Chars" data type tag, press the [+] button in the Tag Editor, then select "string" as Data Type of the Tag and type the string length in the "Arraysize" field:


and confirm with OK button.

To manually add a "String[xx]" data type tag, press the [+] button in the Tag Editor, then select "string" as Data Type of the Tag and type the string length in the "Arraysize" field,

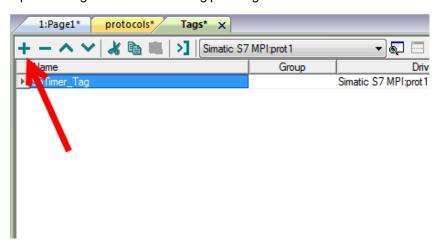


then click on [+/-] button to open the Conversion dialog.

Into conversion dialog:

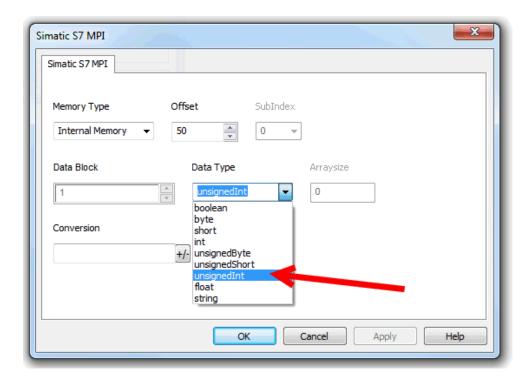
- select the "S7 String" conversion type
- click on [+] button to add the conversion.

The conversion will be listed into the Configured window on the right.


Confirm with OK button.

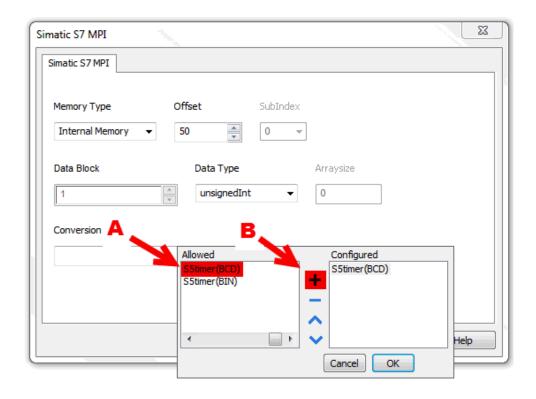
Simatic S5timer data type

Simatic drivers support a special data type, called S5Timer.


The tag must be configured with a specific data type and a conversion must be applied to the Tag to correctly read/write a Simatic S5Timer Variable.

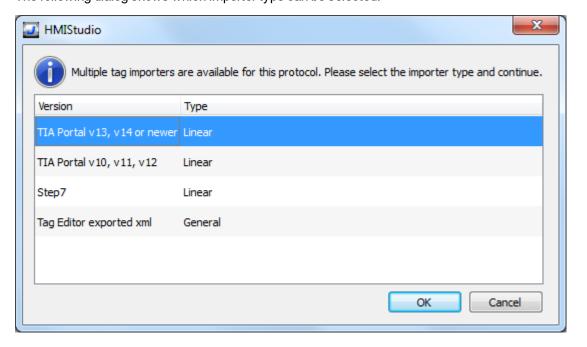
Open the Tag Editor and add a Tag pressing the Plus button.

Select "unsignedInt" as Data Type of the Tag.



Click on +/- button to open the Conversion dialog.

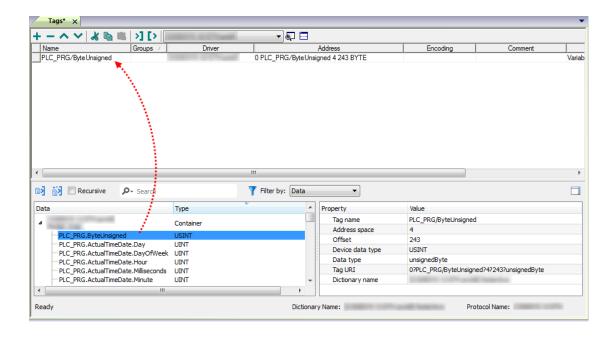
In the Conversion dialog select the S5timer(BCD) conversion type [A] then click on Plus button [B] to add the conversion, the configured conversion will be listed into the Configured window on the right. Then confirm with OK.



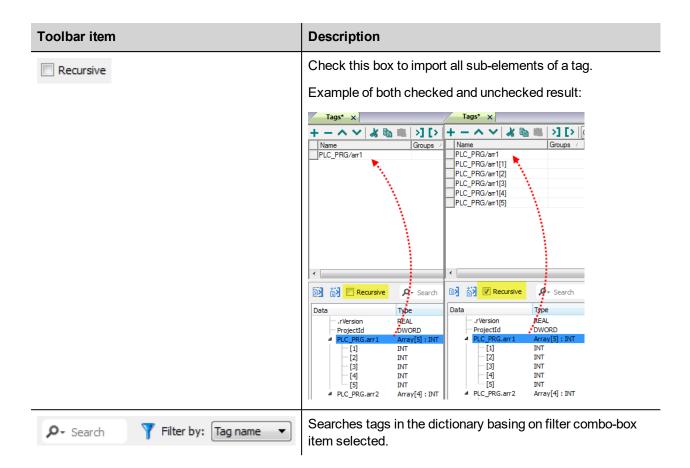
Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.

The following dialog shows which importer type can be selected.



Importer	Description	
TIA Portal v13, v14 or	Allows to import:	
newer Linear	Program blocks using .dbfile	
	PLC tags using .xlsx file	
	PLC data types using .udt file	
	Check Export using TIA Portal v13, v14 or newer for more details.	
	All variables will be displayed at the same level.	
TIA Portal v10, v11, v12	Allows to import:	
Linear	Program blocks using .tiafile	
	 PLC tags using .xlsx file 	
	PLC data types using .scl file	
	Check Export using TIA Portal v10, v11, v12 for more details.	
	All variables will be displayed at the same level.	
Step7	Allows to import:	
Linear	Symbols table .ascfile	
	Sources using .awl file	
	Check Export using STEP7 for more details.	
	All variables will be displayed at the same level.	
Tag Editor exported xml	Select this importer to read a generic XML file exported from Tag Editor by appropriate button.	
	1:Page1	


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description	
E ∉	Import Tag(s).	
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project	
K	Update Tag(s).	
	Click on this icon to update the tags in the project, due a new dictionary import.	

Communication status

The communication status can be displayed using the dedicated system variables. Please refer to the User Manual for further information about available system variables and their use.

The status codes supported for this communication driver are:

Error	Notes	
NAK	Controller replies with a not acknowledge.	
Timeout	Request is not replied within the specified timeout period; ensure the controller is connected an properly configured for network access	
Invalid response	The device did receive from the controller a response, but its format or its contents or its length is not as expected; ensure the data programmed in the project are consistent with the controller resources.	
General Error	Error cannot be identified; should never be reported; contact technical support	

System Variables

System Variables communication driver allows to create Tags that point to system information.

Refer to System Variables > Protocol chapter of User's Manual.

Protocol Editor Settings

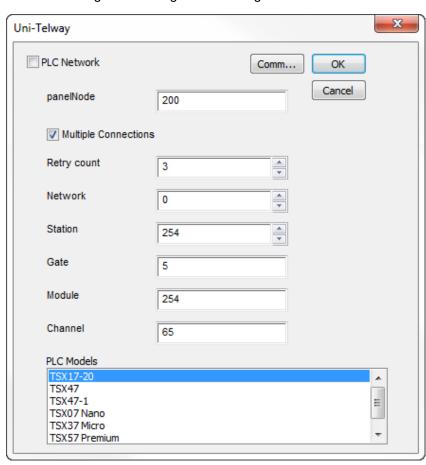
System Variables communication driver allows to create Tags that point to system information.

Refer to System Variables > Protocol chapter of User's Manual.

Uni-Telway

Uni-Telway is a field bus used to communicate between devices of the same type according to a protocol defined by Schneider Electric.

The physical access is based on a Serial Link transmission (half-duplex type). The electrical interface allows multi-point mode connection.


Numerous proprietary or third-party devices can be used on this bus, which has become one of the industry standards.

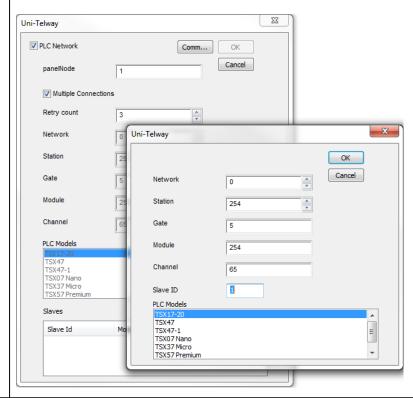
The operator panels can be connected to a Uni-Telway controller using this communication driver.

Protocol Editor Settings

Add (+) a new driver in the Protocol editor and select the protocol called "Uni-Telway" from the list of available protocols.

The driver configuration dialog is shown in figure.

Element	Description	
panelNode	Node of the panel into the Uni-Telway network.	
Multiple Connections	Not used. Available for future implementation.	

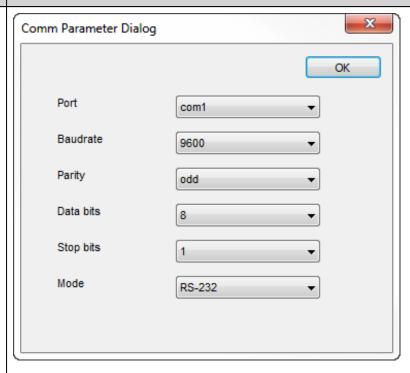


Element	Description	
Retry count This parameter defines the number of times a certain message will be s controller before reporting the communication error status.		
	A value of 1 for the parameter "Retry count" means that the panel will eventually report the communication error status if the response to the first request packet is not correct.	
Network, Station, Gate, Module, Channel	Controller's parameters as defined into controller's programming tool.	
PLC Models	The driver supports communication with different controllers. Please check directly in the programming IDE software for a complete list of supported controllers.	

Element Description

PLC Network

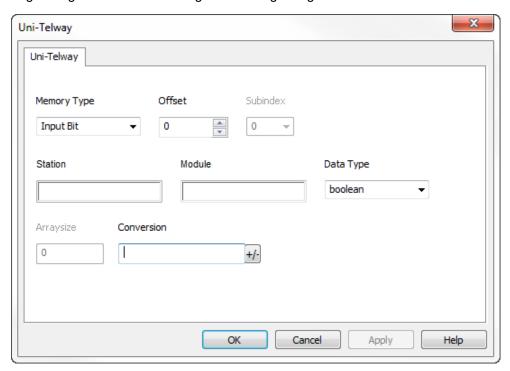
The protocol allows the connection of multiple controllers to one operator panel. To set-up multiple connections, check "PLC network" checkbox and configure all controllers.



Comm...

Gives access to the serial port configuration parameters as shown in the following figure:

Element Description



Element	Description		
Port	Serial port selection:		
		Series 400	Series 500/600
	com1	PLC Port	Onboard Serial Port
	com2	PC/Printer Port	Optional Module
			on slot #1 or #2
	com3	Not available	Optional Module
			on slot #3 or #4
Baud rate, Parity, Data bits, Stop bits	Communication parameters for serial communication		
Mode	Serial port mode; available options:		
	• RS-232,		
	• RS-485 (2 wires)		
	• RS-422 (4 wires)		

Tag Editor Settings

Into Tag editor select the protocol "Uni-Telway" from the list of defined protocols and add a tag using [+] button.

Tag settings can be defined using the following dialog:

Element	Description	
Memory Type	Memory resource where tag is located.	
Offset	Offset address where tag is located.	
SubIndex	This allows resource offset selection within the register.	
Station	Station number.	
	Property available only for Memory Type "Common Word".	
Module	Module number.	
	Property available for Memory Type:	
	Input Bit	
	Output Bit	
	Input Word	
	Output Word	

Element	Description			
Data Type	Data Type	Memory Space	Limits	
турс	boolean	1 bit data	0 1	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	float	IEEE single-precision	1.17e-38 3.40e38	
		32-bit floating point type		
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF-8 or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires 2 bytes. 			
Conver	Conversion to be appli	ed to the Tag.		
sion	Conversion			
	inv,swap2	BCD AB->BA ABCD->CDAB ABCDEFGH->GHEFCDAB Inv bits	onfigured v bits BCD->CDAB	
	Depending on data type selected, the Allowed list shows one or more conversions, listed bel		one or more conversions, listed below.	

Element	Description		
	Value	Description	
	Inv bits	Invert all the bits of the tag.	
		Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)	
	Negate	Set the opposite of the tag value.	
	_	<i>Example:</i> 25.36 → -25.36	
	AB -> BA	Swap nibbles of a byte.	
		Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)	
	ABCD -> CDAB	Swap bytes of a word.	
		Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)	
	ABCDEFGH ->	Swap bytes of a double word.	
	GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)	
	ABCNOP ->	Swap bytes of a long word.	
	OPMDAB	Example: $142.366 \rightarrow -893553517.588905 \text{ (in decimal format)} \\ 0.10000000110 \\ 000111001011101101100100010$	
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9)	
		Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)	

Select the conversion and click on plus button. The selected item will be added on **Configured** list.

	Element	Description	
If more conversions are configured, they will be applied in order (from top to bottom of Configured list).			
		Use the arrow buttons to order the configured conversions.	

Variables

Variables communication driver allows to define Tags which points to HMI internal memory.

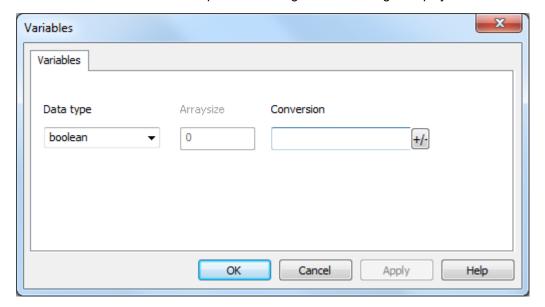
Variables Tags are not retentive: when the project starts, the starting value of any Variables Tag is 0 (or "" in case of string Tag).

Variables communication driver is not counted as physical protocol.

Refer to Table of functions and limits from main manual in "Number of physical protocols" line.

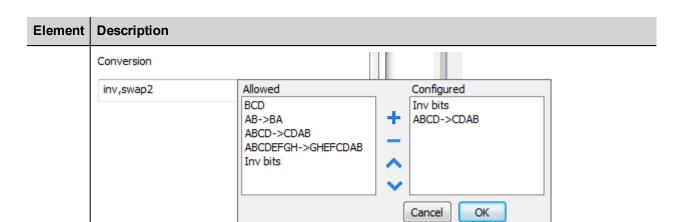
Protocol Editor Settings

Adding a protocol


To configure the protocol:

- 1. In the Config node double-click Protocols.
- 2. To add a driver, click +: a new line is added.
- 3. Select the Variables protocol from the PLC list.

Tag Editor Settings


Path: ProjectView> Config > double-click Tags

- 1. To add a tag, click +: a new line is added.
- 2. Select Variables from the protocol list: tag definition dialog is displayed.

Element	t Description			
Data Type	Data Type	Memory Space	Limits	
турс	boolean	1-bit data	01	
	byte	8-bit data	-128 127	
	short	16-bit data	-32768 32767	
	int	32-bit data	-2.1e9 2.1e9	
	int64	64-bit data	-9.2e18 9.2e18	
	unsignedByte	8-bit data	0 255	
	unsignedShort	16-bit data	0 65535	
	unsignedInt	32-bit data	0 4.2e9	
	uint64	64-bit data	0 1.8e19	
	float	IEEE single-precision 32-bit floating point type	1.17e-38 3.4e38	
	double	IEEE double-precision 64-bit floating point type	2.2e-308 1.79e308	
	string	Array of elements containing character code defined by selected encoding		
	binary	Arbitrary binary data		
	Note: to define arrays. select one of Data Type format followed by square brackets like "byte[]", "short[]"			
Arraysi ze	 In case of array Tag, this property represents the number of array elements. In case of string Tag, this property represents the maximum number of bytes available in the string Tag. Note: number of bytes corresponds to number of string chars if Encoding property is set to UTF or Latin1 in Tag Editor. If Encoding property is set to UCS-2BE, UCS-2LE, UTF-16BE or UTF-16LE one char requires bytes. 		ber of bytes available in g property is set to UTF-8	
Conver sion	Conversion to be applied to the Tag.			

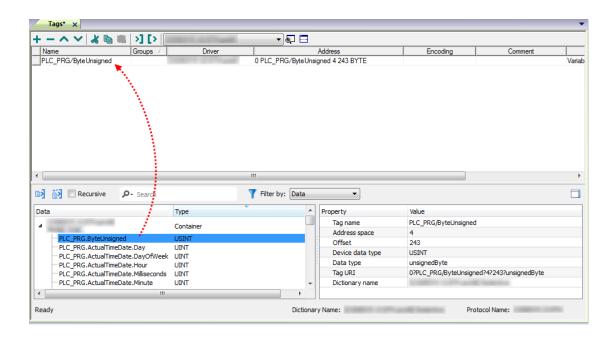
Depending on data type selected, the **Allowed** list shows one or more conversions, listed below.

Value	Description
Inv bits	Invert all the bits of the tag.
	Example: $1001 \rightarrow 0110$ (in binary format) $9 \rightarrow 6$ (in decimal format)
Negate	Set the opposite of the tag value.
	<i>Example:</i> 25.36 → -25.36
AB -> BA	Swap nibbles of a byte.
	Example: 15D4 → 514D (in hexadecimal format) 5588 → 20813 (in decimal format)
ABCD -> CDAB	Swap bytes of a word.
	Example: 9ACC → CC9A (in hexadecimal format) 39628 → 52378 (in decimal format)
ABCDEFGH ->	Swap bytes of a double word.
GHEFCDAB	Example: 32FCFF54 → 54FFFC32 (in hexadecimal format) 855441236 → 1426062386 (in decimal format)
ABCNOP ->	Swap bytes of a long word.
OPMDAB	Example: 142.366 → -893553517.588905 (in decimal format) 0 10000000110 0001110010111011001000101101000011100101

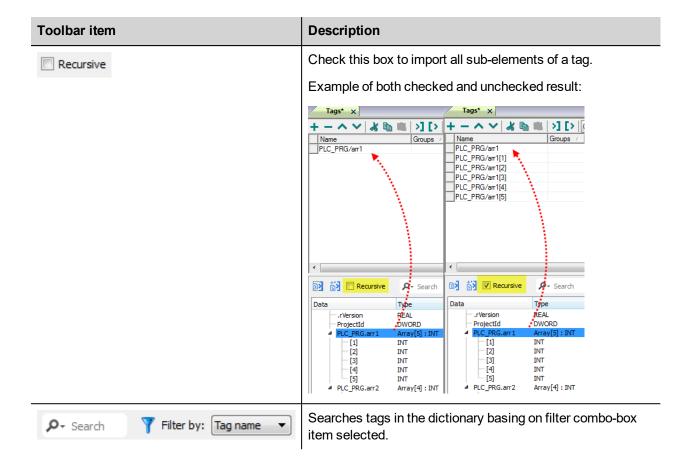
Element	Description				
	Value	Description			
		→ 1 10000011100 1010101000010110110110110110			
	BCD	Separate the byte in two nibbles, and reads them as decimal (from 0 to 9) Example: 23 → 17 (in decimal format) 0001 0111 = 23 0001 = 1 (first nibble) 0111 = 7 (second nibble)			
	Select the conversion and click on plus button. The selected item will be added on Configured list. If more conversions are configured, they will be applied in order (from top to bottom of Configured list). Use the arrow buttons to order the configured conversions.				

Tag Import

Select the driver in Tag Editor and click on the **Import Tags** button to start the importer.



The system will require a generic XML file exported from Tag Editor by appropriate button.


Once the importer has been selected, locate the symbol file and click **Open**.

Tags included in the symbol file are listed in the tag dictionary. The tag dictionary is displayed at the bottom of the screen.

Toolbar item	Description		
E ≰	Import Tag(s).		
	Select tags to be imported and click on this icon to add tags from tag dictionary to the project		
ĕ ä	Update Tag(s).		
	Click on this icon to update the tags in the project, due a new dictionary import.		

Exor International S.p.A.

Via Monte Fiorino, 9 37057 San Giovanni Lupatoto (Verona) Italy

Communication Protocols

User Manual

2017-04-04

info@exorint.com **phone**: +39 045 8750404 fax: +39 045 8779023

Copyright © 2009-2017