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EXECUTIVE SUMMARY 
 
This document continues the HCUP Methods Series of reports, which features information on a 
broad array of methods as they relate to the HCUP databases and software tools. This series is 
designed to help HCUP data users work efficiently and effectively with HCUP data. This report 
is consistent with that goal. 
 
Hierarchical linear modeling (HLM) is a regression technique designed to deal with clustered or 
grouped data in which analytic units are naturally nested or grouped within other units of 
interest. For example, a physician’s patients form a group nested within that physician. In 
analyzing outcomes from a sample of patients treated by a number of physicians, interest 
centers on the effects of both patient and physician characteristics. Since each group of patients 
is treated by a single physician, it is expected that those patients’ outcomes will be correlated, 
which violates one of the assumptions of standard regression methods. If this correlation is 
ignored, wrong inferences can result with respect to the effects of both patient and physician 
factors. HLM accounts for this “within-group” correlation to produce better inferences when the 
proper model is specified. 
 
HLM has been used increasingly in health services research over the past 20 years. Early 
adopters tended to be academicians with an interest in the statistical theory or in the technical 
challenges associated with the development of modeling software. Education was one of the 
first areas for relatively widespread application. In education, the “hierarchy” consists of 
students nested within classrooms nested within schools nested within school districts, and so 
on. Each level of the hierarchy, from students at the first level to school districts at the highest 
level, can conceivably contribute to variation in student performance. Similar hierarchies exist in 
health services research. As more researchers appropriately apply HLM, it moves further into 
the consciousness of the entire health research community.  
 
Nevertheless, many researchers see HLM as a technique that lies too far outside their 
competency to even contemplate its application. It has only recently made its way into college 
curriculum; consequently, many analysts have been forced to learn HLM on the job, which can 
be a daunting task without some guidance. This report was developed to make that task easier. 
It is intended as a basic introduction to HLM, particularly for HCUP data analysts. It presents 
key concepts, introduces standard model notation, covers statistical packages for HLM, and 
gives SAS and Stata program code for a range of standard HLM models. 
 
To be sure, the help of a trained statistician is recommended for the analysis of complex data 
structures possibly involving non-standard patterns of variances and covariances. However, the 
basic models should be easily within the grasp of most analysts with a solid background in 
standard regression techniques. For researchers who want to delve more deeply into HLM, 
numerous readily-available articles, books, and Websites are devoted to this topic. Many of 
these resources are listed in the references found throughout this report, especially in the 
bibliography appearing at the end of this document.
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INTRODUCTION 
 
The Healthcare Cost and Utilization Project (HCUP, pronounced "H-Cup") is a family of health 
care databases and related software tools and products developed through a Federal-State-
Industry partnership and sponsored by the Agency for Healthcare Research and Quality 
(AHRQ). HCUP databases bring together the data collection efforts of state data organizations, 
hospital associations, private data organizations, and the Federal government to create a 
national information resource of patient-level health care data (HCUP Partners). HCUP includes 
the largest collection of longitudinal hospital care data in the United States, with all-payer, 
encounter-level information beginning in 1988. These databases enable research on a broad 
range of health policy issues, including cost and quality of health services, medical practice 
patterns, access to health care programs, and outcomes of treatments at the national, state, 
and local market levels. 
 
This report addresses the practical and statistical reasons and implications for utilizing 
hierarchical linear modeling (HLM) when analyzing HCUP state and national derivative 
databases. This report is intended to: 1) define and explain hierarchical models, 2) explore the 
advantages and disadvantages relative to other statistical approaches, and 3) guide analysts in 
the application of hierarchical models to HCUP data and the interpretation of results. 
 
It is important to recognize that this report is intended as an introduction to HLM. It explains 
basic concepts, standard notation, and elementary analyses. However, it does not cover model-
building strategies and model diagnostics to assess the fit and specification of hierarchical 
models, for which there are several good references contained in the bibliography. 
 
In this report, the term hierarchical modeling refers to regression methods that are pertinent to 
hierarchical data structures, in which lower-level units are nested or grouped within higher-level 
units, such as patients nested within hospitals. In the literature, variations of these models are 
also labeled mixed models, random effects models, random coefficient models, covariance 
components models, or variance components models. The terms hierarchical model and 
multilevel model are often used interchangeably.1 
 
Hierarchical data structures occur naturally in health services research (Goldstein et al., 2002). 
For example, a study might have a group of patients nested within physicians, physicians 
nested within hospitals, and hospitals nested within states. This sets up a four-level hierarchy of 
patients at level one, physicians at level two, hospitals at level three, and states at level four. To 
the extent that physicians uniquely affect patient therapy, health outcomes might be correlated 
among patients treated by a single physician. Likewise, outcomes might be correlated among 
physicians within hospitals and among hospitals within states. In contrast to standard regression 
techniques, hierarchical methods account for these “within-cluster” correlations at each level of 
the hierarchy and properly adjust estimates to account for them. 
 
Hierarchical models are especially relevant when (Normand et al., 1997; Goldstein, 2003; 
Subrumanian, 2004; Shahian et al., 2005): 
 

• the observations being analyzed are correlated, 
• the causal processes are thought to operate at more than one level; and/or 

                                                 
1However, Molenberghs and Verbeke (2004) argue that the satisfactory treatment of a fully hierarchical 
model is only possible within a Bayesian context. 
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• the research interest is especially focussed on describing the variability and 
heterogeneity in the population, rather than on the average values, or 

• there is interest in estimating level-specific effects (e.g., specific hospital effects). 
 
HCUP data often contain nested structures that should not be ignored. For example, patients 
vary, but so do hospitals. Differences among hospitals might be attributed to the characteristics 
of the patients they serve, the characteristics of the hospitals themselves, or both. Thus, both 
patient and hospital factors can affect the study outcome of interest, suggesting that both patient 
and hospital covariates should enter the analysis. Intuitively, patients treated within one hospital 
will be more similar than patients treated within another hospital, inducing some correlation 
among the patients’ outcomes within hospitals. 
 
Historically, analysts sometimes have chosen either 1) to aggregate the data to a higher level 
and conduct analyses on the higher-level units, or more commonly, 2) to disaggregate the data 
to the lowest level units and conduct analyses on the lower-level units. 
 
The primary drawbacks for an aggregate analysis, such as summarizing patient-level data to the 
hospital level, are that: 1) it ignores within-hospital variation, 2) the aggregated variables are 
hospital-level variables, not patient-level variables, and 3) a correlation between hospital-level 
variables cannot be asserted at the patient level.2 
 
The principal drawbacks for a disaggregate analysis, such as inserting hospital-level variables 
into a traditional patient-level regression, are that: 1) it ignores the data hierarchy, causing the 
between-hospital variance to be absorbed into the error term, and 2) it inflates the amount of 
hospital-level information that is available (the patient sample is much larger than the hospital 
sample). Ordinary regression methods require that observations be independent or 
uncorrelated. Failure to account for correlated units, the cause of the correlation, and the nature 
of the correlation, can lead to underestimates of standard errors producing erroneous statistical 
significance, as illustrated by Austin et al. (2003) and by the example analysis presented later in 
this report. 
 
There are several statistical methods that deal with clustered data and render valid estimates of 
standard errors. For example, statistical methods have been devised to handle cluster sampling 
and other sample survey designs involving group sampling protocols. The method of 
generalized estimating equations (GEE) accounts for clustering and treats the covariances as 
“nuisance” parameters not to be estimated. What sets hierarchical modeling apart from these 
other methods is its ability to model variability at each level of the hierarchy. 
 
Using the example of patients within hospitals, the distinguishing features of a hierarchical 
model are: 
 

• A separate regression is fit to the patients at each hospital. 
• For each regression, the outcome is regressed on patient-level variables. 
• The regressions are related across hospitals. 
• There are both within-hospital and between-hospital sources of variation. 
• Each of the regression coefficients on patient-level variables can be either fixed 

(constant) or variable (random) across hospitals (Krumholz et al., 2006). 

                                                 
2Interpreting aggregated data at the individual level is referred to as the ecological fallacy. 
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• For patient-level variables that are allowed to vary across hospitals, the variation can be 
modeled as a function of hospital-level variables (e.g., Gatsonis et al., 1995). For 
example, the effect of age can vary between teaching and non-teaching hospitals. 

• The residual variance at each level can be modeled as a function of explanatory 
variables (Snijders and Bosker, 1999). 

• Hospital-specific effects can be estimated (Normand et al., 1997). 
 
These aspects provide a rich framework for modeling clustered data and exploring complex 
relationships among the various patient and hospital characteristics. 
 
Hierarchical Data Structures 
 
The Healthcare Cost and Utilization Project (HCUP) produces several databases useful to 
health services researchers that contain hierarchical data structures. 
 
Before a hierarchical model can be formulated properly, it is necessary to recognize the type of 
hierarchy that the data represent. Not all multiple-level data configurations consist of units that 
are completely nested within successively larger units. Three main types of data structures are 
discussed: 1) strict hierarchies, 2) cross-classifications, and 3) multiple memberships. In 
practice, complicated relationships among entities can be difficult to untangle. 
 
Strict Hierarchies 
 
This is the simplest structure. In a three-level structure, level-1 units are strictly nested within 
level-2 units, which are strictly nested within level-3 units. For example, each patient might have 
only one physician and each physician might practice in only one hospital. In Figure 1, this 
structure is illustrated for 10 patients, five physicians, and two hospitals. 
 
Figure 1: Strict Hierarchy (patients treated by only one physician, and physicians have 
admitting privileges to only one hospital) 

 
Another example of a strict hierarchy involves patients with multiple visits. For example, some 
patients might have multiple emergency department (ED) visits to the same hospital. In this 
case, the visits (level 1) are nested within patients (level 2), which are nested within hospitals 
(level 3), as illustrated in Figure 2. This same sort of hierarchy would apply to a hospital 
discharge database containing multiple hospital stays for some patients. 
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Figure 2: Strict Hierarchy (ED visits nested within patients nested within hospitals) 

 
Cross Classifications 
 
Cross classifications exist when higher-level units are not nested within one another. For 
example, each patient might have only one physician, and be treated at only one hospital, but 
each physician might use multiple hospitals. Therefore, physicians are not nested within 
hospitals. Patients are nested within a cross-classification of physicians and hospitals, as 
illustrated in Figure 3. Patients are grouped in two ways: by physicians and by hospitals. 
However, physicians and hospitals are considered to be at the same level because physicians 
are not nested within hospitals and hospitals are not nested within physicians. 
 
Figure 3: Cross Classifications (patients treated in one hospital by one physician but 
physicians have admitting privileges at multiple hospitals) 
 

 
 
Multiple Memberships 
 
Multiple memberships exist when level-1 units belong to more than one higher-level unit. For 
example, some patients are treated by more than one physician, as illustrated in Figure 4. In 
this example, each physician uses only one hospital. However, patients 2, 7, and 9 are each 
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treated by two different physicians (heavy lines). That is, some patients are members of more 
than one physician “group.” 
 
Figure 4: Multiple Membership (patients 2, 7, and 9 treated by multiple physicians) 
 

 
 
Other Hierarchical Data Structures 
 
More complicated structures can occur in HCUP data. For example, over the course of several 
hospitalizations, a patient could be treated by more than one physician and be admitted to more 
than one hospital, setting up a combination of multiple memberships and cross classifications. 
Diagrams such as those shown in Figures 1 through 4 become unwieldy for more complex data 
structures.  
 
For simplicity of exposition, this report will be concerned mainly with strict hierarchies. For 
readers interested in more complicated hierarchical data structures, Browne et al. (2001) 
discuss Multiple Membership Multiple Classification (MMMC) models and propose a simple 
scheme for diagramming complex hierarchical data structures. Other useful references for more 
complicated models will be given throughout this report. A structured bibliography, provided by 
Gatsonis, Normand, and Zaslavsky (private communication), is presented near the end of this 
report. 
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Hierarchical Regression Models: Key Concepts 
 
Here, some fundamental concepts are introduced through a few simple illustrations. 
 
Sources of Variation 
 
Consider a simple two-level hierarchy of patients within hospitals for patient lengths of stay 
(LOS) in the state of California. If one ignores the clustering of patients within hospitals, the 
patient-level variation in LOS can be illustrated as in Figure 5. The heavy horizontal line 
represents the overall average length of stay (ALOS) across all patients in California. The length 
of each vertical dashed line represents the residual, which is the difference between each 
patient’s observed LOS and the overall ALOS. The range of residuals around the overall ALOS 
represents the total variance in the data. 
 
Figure 5: Single-Level Information Ignoring Clustering 
 

 
 
 
Informally, one can write an “intercept-only” regression model corresponding to Figure 5: 
 

Lij = M + Eij 

 
where Lij is the observed LOS for patient i in hospital j, M is the overall ALOS for California 
patients, and Eij is the random error (residual) for patient i in hospital j. For simplicity, this 
regression contains only a constant intercept term and a random error term; it does not have 
any explanatory variables such as patient age and gender. 
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Figure 6 shows the same data, accounting for both hospital variance and patient variance. The 
short horizontal lines represent ALOS for each of five hospitals. Each hospital-level residual is 
equal to the difference between the hospital’s ALOS and the overall ALOS (represented by the 
thick horizontal line). Each patient’s residual is now equal to the difference between the patient’s 
observed LOS and the hospital’s ALOS. Thus, the residual in Figure 5 (above) is the sum of the 
patient-level residual and the hospital-level residual shown in Figure 6. The hospital variance is 
represented by the spread of the hospital-level residuals around the overall mean. The patient 
variance is represented by the spread of the patient-level residuals around the hospital means. 
 
Figure 6: Two-Level Information Accounting for Clustering 
 

 
 
Corresponding to Figure 6, one can write an informal hierarchical model, called a “null,” “empty,” 
or “variance components” model: 

Lij = M + Hj + Eij 

 
where Lij is the observed LOS for the patient i in hospital j, M is the overall ALOS for an average 
California hospital, Hj is the residual3 for hospital j, and Eij is the residual for the patient i in 
hospital j. This model has two random errors, Hj and Eij. The main purpose of the empty model 
is to partition the total LOS variance into a variance associated with Hj that occurs between 
hospitals, and a variance associated with Eij that occurs between patients within hospitals: 
 

VTotal = VH + VE. 
 
Estimates for these components of variance can be used to estimate the intraclass correlation 
coefficient (ICC), which is the proportion of total variance that is between hospitals: 
                                                 
3Technically, the hospital residuals are based on Bayes “shrinkage” estimates of the hospital means. This 
concept is described more fully later in this report. 
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One interpretation for the ICC in the patient-hospital hierarchy is as the average correlation 
between the outcomes of randomly-paired patients, where patients are paired only within 
hospitals, not across hospitals. The ICC lies between 0 and 1. If all patients within a hospital 
have the same LOS, then VP = 0 and ICC = 1. At the other extreme, if all hospitals have the 
same ALOS, then VH = 0 and the ICC = 0. Intuitively, the higher the ICC, the more important it is 
to recognize the clustering of patients within hospitals in estimating variances. HCUP 
researchers should pay close attention to this because conventional methods will tend to over-
estimate the significance of higher-level variables, such as hospital teaching status, when the 
ICC is greater than zero by an amount that is substantively important.  
 
These fundamental principles will be expanded and made more mathematically precise in later 
sections. 
 
Graphical Typology 
 
It is instructive to view some typical hierarchical models from a graphical perspective. The 
typology in Figure 7 is based on Subramanian, Jones, and Duncan (2003). These plots 
represent regressions of patient length of stay (response, vertical axis) on patient age (predictor, 
horizontal axis) for data from a two-level structure: patients at level 1 within hospitals at level 2. 
 
Figure 7(a) represents a “fixed effects” model. The relationship is the same straight line for all 
patients from all hospitals. This single straight line could have been estimated using ordinary 
least squares (OLS) regression with a “fixed” intercept and a “fixed” age coefficient. This 
relationship assumes that the same regression holds for patients from every hospital. 
 
Figure 7(b) represents a random intercept or variance components model, which is commonly-
used in hierarchical modeling. There are separate parallel lines for each of 10 hospitals, with the 
same slope for all hospitals, but with different intercepts. These hospital-specific lines vary 
around the underlying average relationship, shown by the thicker line in the middle. These lines 
represent a hierarchical model with a random intercept and a “fixed” or constant slope. The 
intercepts for each hospital vary randomly around the overall average intercept. Hierarchical 
models can be used to estimate the hospital-specific relationships in addition to the overall 
average relationship between LOS and age. 
 
Figures 7(c) - 7(f) represent various random intercept and random slope models. In each plot, 
the thicker line represents the overall (population) average relationship between patient age and 
patient LOS. However, the hospital-specific lines are not parallel because the hospital-specific 
age coefficients are conceptually random draws from the “population” of hospital-specific age 
coefficients. In some of the diagrams, the intercepts and slopes are correlated, and hierarchical 
models can be used to estimate the correlation between these parameters along with the 
intercepts and slopes. 
 
In Figure 7(c), the intercepts and slopes are positively correlated. Hospitals with higher 
intercepts have steeper slopes. The lines are farther apart for older people than they are for 
younger people, indicating that the variation in hospital ALOS is greater for older people than it 
is for younger people. Thus, one would conclude that hospitals have more of an (absolute) 
effect on LOS for older patients than for younger patients. Figure 7(d) exemplifies intercepts and 
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slopes that are negatively correlated. Figure 7(e) illustrates intercepts and slopes that are 
uncorrelated. 
 
Figure 7(f) shows an example where there is no overall relationship between LOS and age 
(thick line has zero slope), but individual hospitals do have relationships.  
 
Figure 7:  Varying Relationships: A Graphical Typography. 
 
a) constant intercept and constant slope 

 
 
b) random intercepts, constant slope 

 
 
c) positive correlation between random 
intercepts and random slopes 

 

 
d) negative correlation between random 
intercepts and random slopes 

 
e) zero correlation between random 
intercepts and random slopes 

 
f) positive correlation between random intercepts 
and random slopes, average slope is zero 
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Hierarchical Modeling in Health Services Research 
 
Why HLM for Health Services Research? 
 
The term hierarchical model represents a regression model that explicitly recognizes the nested 
structure of data. The nature of the clustering and its effects are of substantive interest, and 
therefore modeled explicitly. The term marginal models or population-average models represent 
regression models that also recognize the nested structure of data, but which treat the 
clustering as an uninteresting nuisance that is incorporated only to adjust the standard errors 
associated with the regression estimates. They estimate the population average effects, like 
those represented by the heavy lines in Figure 7. 
  
Although the use of HLM is increasing, to date most studies using clustered data in the health 
services literature have employed OLS models (for continuous outcomes) and marginal models. 
OLS models ignore the clustering and hence tend to under-estimate standard errors for the 
regression coefficients. Marginal models, like GEE, are robust (Liang and Zeger, 1986) and they 
address the OLS problem with standard errors. Both of these methods produce estimates of 
“fixed” (average) effects of a predictor, such as age, that are nearly identical to those produced 
by HLM, when the error terms are normally distributed.  
 
So why bother with HLM? Health services research (HSR) often attempts to distinguish between 
compositional effects and contextual effects. For example, differences in hospital mortality rates 
might be explained by each hospital’s mix of patients (composition), by each hospital’s 
characteristics (context), or by a combination. For instance, inpatient mortality rates might differ 
among hospitals because some hospitals serve more severely ill patients than others, or 
because some hospitals have available more advanced technology than others. If so, the 
benefits of advanced technology might accrue only to specific types of patients. If hospital 
characteristics are found to have a significant impact, then policy might be established to direct 
certain kinds of patients toward appropriate types of hospitals for inpatient care. Thus, it is 
critical to consider both patient and hospital sources of variation, and appropriately assess the 
statistical significance of both patient and hospital effects. 
 
The key to HLM lies in the treatment of the clustering and the heterogeneity of the outcome. 
OLS and marginal models take a “means only” perspective, ignoring potential information about 
the variability in the response that one seeks to explain through the regression model. With 
HLM, one can ask (and try to answer) a number of new questions, such as the interpretation of 
the variances and covariances of the hospital effects, and their predictors. Suddenly, one can 
ask questions about both the averages and the covariance structure. For example, when adding 
a patient-level predictor such as disease severity, how much hospital-to-hospital variability 
remains? Does the relationship between mortality and severity vary among hospitals, and if so, 
what does it mean?  Hierarchical models enable analysts to investigate and explain the sources 
of both within-hospital and between-hospital variation. 
 
Examples of HLM in the Health Services Literature 
 
Hierarchical linear models have been used in HSR since the late 1980s. Numerous authors 
proposed studying “relative effectiveness” or “provider profiling” by means of HLM (Dubois et al., 
1987; Jencks et al., 1988; Thomas et al., 1994; Normand et al., 1995; Epstein, 1995; Schneider 
and Epstein, 1996; Morris and Christiansen, 1996; Goldstein and Spiegelhalter, 1996; Rice and 
Leyland, 1996; Leyland and Boddy, 1998; Marshall and Spiegelhalter, 2001). Subsequently, the 



 

HCUP (01/10/2007) 2 HLM Report 

use of HLM has grown over the past 15 years. For example, a search of PUBMED for HLM-
related terms4 returned titles for more than 650 published articles, over half of which were 
published within the past 5 years. A further search of ongoing health services research projects 
returned more than 75 studies that proposed the use of HLM. 
 
Several general articles on the use of HLM in HSR have appeared. Rice and Leyland (1996) 
published an introductory account of HLM, drawing on then-recent applications in HSR. Duncan, 
Jones, and Moon (1998) also considered the use of HLM in health research. They developed 
four graphical typologies to outline the questions that hierarchical models can address and 
illustrated their potential by drawing on published examples from different research areas. The 
article by Sullivan, Dukes, and Losina (1999) introduced HLM generally and applied a two-level 
model to data from the Type II Diabetes Patient Outcomes Research Team (PORT) study. More 
recently, Goldstein, Browne, and Rasbash (2002) published a tutorial on HLM for medical data. 
They covered a wide range of models and introduced the MLwiN modeling software. Finally, 
Leyland and Goldstein (2001) presented a series of articles on HLM in health statistics. 
 
To date, there have been only a few published examples of HLM applied specifically to HCUP 
data: 
 

• Dowell et al. (2004) applied HLM to the 1994-1997 HCUP Nationwide Inpatient Sample 
(NIS) to study disparities in treatment and outcomes for patients hospitalized with Type II 
diabetes. 

• Carey (2002) fitted hierarchical models to the 1996 HCUP NIS to demonstrate that 
declines in hospital ALOS resulted in hospital cost savings. 

• Bramble and colleagues (2004) also used the 1996 NIS to fit a three-level hierarchical 
linear model, with patients (level one) clustered within hospitals (level two) clustered 
within markets (level 3), to determine the effect of hospital teaching status and hospital 
experience on resource use (charges and length of stay). 

 
However, there have been several published examples of HLM applied to administrative 
databases like those produced by the HCUP project (e.g., Localio et al., 1997; Amaravadi et al., 
2000; Spiegelhalter et al., 2002; Scott et al., 2004; Estabrooks et al., 2005). 
 
More generally, there exist many specific examples of HLM in the HSR literature and other 
areas of research, some of which can be found in the list of references and bibliography at the 
end of this report.  
 

                                                 
4PUBMED (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) and HSRproj (http://www.nlm.nih.gov/hsrproj) 
using search terms “hierarchical model,” “hierarchical linear model,” “multilevel model,” or “multi-level 
model.” Some of the articles incorporating these terms actually might not have applied HLM methods. 
However, a perusal of the abstracts suggests that the vast majority did fit HLM regressions. 
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STATISTICAL METHODS 
 
In this section, standard mathematical notation and statistical assumptions are introduced, so 
that analysts can understand applications in the literature and apply the statistical software used 
to fit these models. These models are compared to other regression methods. 
 
In HLM, each level corresponds to a distinct population from which the sample of units at that 
level are drawn. As an example, the NIS is a sample of about 1,000 hospitals from the 
population of about 5,000 hospitals nationwide. Although the NIS contains 100 percent of that 
year’s discharges from each sampled hospital, each hospital’s patients can be viewed as a 
sample from a larger population of potential patients. Their outcomes can be viewed as a 
random sample of outcomes from a population of “similar” patients. Many illnesses strike at 
random, causing people to be hospitalized at random times. If a patient obtained care on a 
Wednesday, the treatment and outcome could well have been different if care had been 
rendered on a Saturday, or even if it had occurred an hour earlier or later than it did, because of 
the way medical staff are assigned to cases, especially emergencies. Therefore, the collection 
of patient outcomes during a given year for a specific facility can easily be considered a random 
sample, even for that specific “population” of patients. 
 
HLM for Continuous Outcomes 
 
The hierarchical linear model is an extension of the general linear model in which the probability 
model for the errors, or residuals, has a structure reflecting the hierarchical structure of the data. 
In this section, models for hierarchies with two levels are constructed and explained. However, 
the extension to more levels is straightforward. Throughout this section, level-1 units are nested 
within level-2 units, such as patients nested within hospitals. The notation used in this section of 
the report is commonly used in texts, journal articles, and specialized computer software for 
HLM. 
 
General Two-Level Setup 
 
The model for a two-level hierarchy can be built up as follows. First, specify the level-1 
regression of a response yij (e.g., hospital charges for patient i in hospital j) on a single level-1 
predictor x1 (e.g., age): 
 

),0(~ 2
110 eijijijjjij Niideexy σββ ++=

Residual error 
for unit i in 
group j

Group j slopeGroup j intercept

Observed response 
for unit i in group j

Level 1 predictor x1
for unit i in group j

2  
Level-1 units are indexed by i and level-2 units are indexed by j. In the equations above, and 
throughout this report, the term “group” is synonymous with the term “level-2 unit.” This is a 
linear regression model, in which the intercepts and the slopes can depend on the level-2 units 
(groups or clusters) and therefore are indicated with the subscript j. The level-1 residuals, eij, are 
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assumed to be independent and identically distributed (iid) as normal, with a mean of zero and a 
variance of σ2.  
 
Next, the intercepts and slopes in the level-1 equation can be modeled as a function of level-2 
predictors through the following level-2 regressions, which can involve a level-2 predictor, z1 
(e.g., hospital teaching status): 
 

Unique effect of group j 
on mean response 
holding z1 constant

Mean change in 
response for a 1-
unit change in z1

Mean response 
for groups 
(population)

Level 2 predictor z1
for group j

intercept)j(group0101000 jjj uz ++= γγβ

slope)j(group1111101 jjj uz ++= γγβ

Unique effect of 
group j on slope 
holding z1 constant

Mean change in 
slopes for a 1-unit 
change in z1

Mean slope for 
groups 
(population)  

 
In the level-2 equations, the group j intercept is equal to the sum of: 
 

1. the “fixed” population mean, γ00, for the level-2 intercepts, 
2. a “fixed” multiple of a level-2 variable, z1, and 
3. a random error u0j for level-2 unit j, also called the level-2 residual. 

 
Similarly, the group j slope is the sum of three elements analogous to those for the group j 
intercept. The fact that the level-2 units are regarded as a random sample from a population is 
reflected by the presence of the random errors u0j and u1j. 
 
In the literature, whenever at least one group variable, z, is included in both equations, the 
equation for the intercept is called an “intercepts-as-outcomes” model, and the equation for the 
slope is called a “slopes-as-outcomes” model (Snijders and Bosker, 1999; Raudenbush and 
Bryk, 2002). 
 
The standard statistical assumptions for the error terms in the level-2 equations are as follows: 
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That is, the error terms for the intercepts and slopes are assumed to be distributed as bivariate 
normal, with possibly positive or negative covariance (Figures 7(c) and 7(d), respectively). This 
assumption allows the parameters to be estimated by maximum likelihood and allows for 
statistical tests of the regression coefficients. 
 
Finally, substitute the level-2 equations into the level-1 equation to formulate a single, combined 
equation: 
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Random partFixed part
 

 
The first line shows the level-1 equation. The second line substitutes the level-2 equations for 
the level-1 regression coefficients, β0j and β1j. The third line rearranges the terms in the second 
line into a “fixed” part and a “random” part. The fixed part contains the “fixed” (constant or 
deterministic) coefficients and the random (or stochastic) part contains the random error terms. 
 
The fixed part of this combined model looks like an ordinary regression, with one level-2 
variable (z), one level-1 variable (x), and an interaction between the two variables (z*x). The 
random part is what distinguishes it as a hierarchical model. It has the usual random error (e) 
corresponding to level-1 residuals, but it also has two other error terms (u0 and u1) associated 
with the level-2 residuals. This combined model is commonly called a “mixed model” because it 
includes a mixture of fixed and random effects. 
 
It is important to understand how to construct both the level-1 and the level-2 regressions, as 
well as how to construct the combined equation, because some computer programs for HLM 
require that regressions be specified at each level individually, while others require that the 
combined equation be specified. 
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The discussion now turns to some special cases of the two-level model. 
 
Random Intercepts (Empty Model or Variance Components Model) 
 
The simplest non-trivial specification for the random part of a two-level model is a model in 
which only the intercept varies between Level-2 units and no predictor variables are entered, 
either for level-1 units or for level-2 units. This model is variously called the empty, random 
intercept, or variance component model: 
 

ijjij ey += 0β

ju000 +γ ),0(~ 000 τNiidu j

ijjij euy ++= 000γ

),0(~ 2
eij Niide σ

0),( 0 =jij ueCov
fixed 
effect

random 
effects

level 1 
variance

level 2 
variance

 
 
 
An important statistic from the empty model is the intraclass correlation coefficient (ICC): 

2
00

00

e
ICC

στ
τ
+

=  

which is the proportion of total variance that is accounted for at the group level. If there is no 
between-group variance, then the ICC is zero and a hierarchical model is unnecessary, 
assuming that the model is correct. The ICC can also be interpreted as the correlation between 
level-1 units randomly paired within groups (Snijders and Bosker, 1999). 
 
As an example, this empty model is fit to the logarithm of total charges (log(charges)) for the 
subset of diabetes patients in the 2003 NIS using SAS PROC MIXED. The program code is 
contained in the chapter on statistical software later in this report. The results are as follows: 
 
Fixed Effect Coefficient S.E t-value Probability

Intercept (log $)  γ00 = 9.0569 0.0205 441.52 .000

Random Effect Variance Component S.E z-value Probability

Level 1 residual eij 
σ2 = 0.6838 0.0031 221.13 .000

Level 2 residual u0j 
τ00 = 0.3735 0.0187 19.97 .000
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The overall hospital average of log(charges) is 9.06. The level-1 (patient) error variance is 
estimated as 0.6838 and the level-2 (hospital) variance is estimated to be 0.3735, which is 
statistically significant (z-value = 19.97, prob. < .001). The estimated intraclass correlation 
coefficient is 0.35 = 0.3735 / (0.3735 + 0.6838), indicating that over one-third of the total 
variance in log(charges) is between hospitals. Of course, the ICC might be reduced by adding 
explanatory variables to explain more of the patient-level variation. 
 
From this model, the average log(charge) for hospital j can be estimated by an empirical Bayes 
“shrinkage estimator,” which is a weighted average of the hospital’s observed mean, jy , and the 
estimated overall hospital mean, 00γ̂ : 
 
 
 
 
 
 
 
 
Here, nj is the sample size (number of discharges) for hospital j. The weight, which lies between 
zero and one, is also an estimate of the reliability of the hospital’s observed mean (Snijders and 
Bosker, 1999). As the reliability approaches zero, the hospital’s estimate “shrinks” toward the 
overall mean. For this reason, it is an example of a “shrinkage estimator.”  Intuitively, the 
reliability is near zero if the variance of the hospital’s mean (second term in the denominator) is 
large or if the between-hospital variance is large (indicating evidence of wide variation among 
hospitals). 
 
Although the empirical Baye’s estimate is biased, it is (on average) closer than the observed 
mean to the hospital’s true mean,5 and it is often a preferred basis for ranking hospitals because 
it tends to draw small hospitals with unreliable estimates closer to the overall mean. Keep in 
mind that the null model assumes that each true hospital average is drawn from a population of 
hospital averages described by the normal distribution with mean γ00 and variance τ00. The 
shrinkage estimate takes advantage of this assumption to sharpen each hospital’s estimate. 
This is sometimes called “borrowing strength” from the whole (of all hospital means). 
 
As an example, suppose a hospital’s average observed log(charge) was 8.67 based on a 
sample of 10 discharges. Then based on the above results the reliability would be: 
 
 
 
 
 
and the empirical Bayes estimate for the hospital would be: 
 

8.73 = .85 * 8.67 + (1 - .85) * 9.06. 
 

The hospital’s observed mean of 8.67 is pulled 15% of the way toward the overall hospital mean 
of 9.06, for an empirical Bayes estimate of 8.73. If the hospital’s mean was based on n = 10,000 

                                                 
5Under standard assumptions, the empirical Bayes estimate has a lower mean squared error (MSE). 
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discharges, then the reliability would be nearly equal to 1, and the empirical Bayes estimate 
would be virtually the same as the hospital’s observed mean of 8.67. 
 
Random Intercepts, Fixed (Constant) Slopes 
 
This model, graphically exemplified by Figure 7(b), adds a “fixed” explanatory variable, x1, to the 
empty model. 
 

ijijjjij exy ++= 110 ββ

ju000 +γ

ijjijij euxy +++= 011000 γγ

fixed 
effects

random 
effects

10γ

Level 1

Level 2

Combined

 
 
In the combined model, the regression coefficient β1j is simply renamed γ10 to preserve the 
general notation for the combined models. The coefficient just as easily could have been 
renamed β1. In this particular model, the subscript j is unnecessary because the slope is 
constant across level-2 units. The ICC can still be calculated for this model, and it is called the 
“residual” ICC controlling for the effect of x1. It represents the group variance that remains after 
accounting for the effect of x1. The addition of more level-1 explanatory variables is 
straightforward. 
 
Continuing the example for NIS diabetes patients in the 2003 NIS, age is added as a patient-
level variable, with the following results: 
 
Fixed Effect Coefficient S.E t-value Probability

Intercept (log $)  γ00 = 8.9481 0.0207 433.43 < .0001

Age (decades over the 
mean) 
 

 γ01 = 0.0713 0.0014 52.99 < .0001

Random Effect Variance Component S.E z-value Probability

Level 1 residual, eij σ2 = 0.6647 0.0030 221.05 < .0001

Level 2 residual, u0j τ00 = 0.3754 0.0188 19.98 < .0001

The age coefficient, which is a “fixed” effect, is statistically significant. Age was constructed to 
be centered at the overall mean age, divided by 10, so age is measured in decades. The 
average of log(charges) is estimated to increase by about 7 percent for every decade increase 
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in age. Notice that the estimates of variance components changed very little compared with the 
empty model. The patient-level variance decreased slightly, from 0.68 to .66, with the addition of 
age to the model. Although the hospital-level variance did not decline, it could have declined if 
considerable hospital-to-hospital variation existed in the patient age distribution. There are more 
patient-level variables, such as severity of diabetes, that could be added to explain more 
variation. However, this example is only meant to illustrate the methodology rather than provide 
a comprehensive analysis. 
 
Random Intercepts, Random Slopes 
 
This model allows both the intercept and the slope to vary across level-2 units, as shown 
graphically in Figures 7(c) through 7(f).  
 

ijijjjijij exuuxy ++++= 11011000 γγ
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fixed 
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random 
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Similar to the intercept, the slope is modeled by a fixed effect, γ10, representing the overall 
average slope across level-2 units, and a random effect, u1j, representing the group-specific 
slope residual for each level-2 unit. Notice that the level-2 slope residual, u1j, is multiplied by x1, 
resulting in a total error that varies according to the value of x1. This is a strong assumption that 
should be confirmed in practice. 
 
For the 2003 NIS diabetes subset, the following results were obtained by specifying age as a 
random effect: 
 
Fixed Effect Coefficient S.E t-value Probability

Intercept,  γ00 = 8.9617 0.0207 433.84 < .0001

Age (decades over 
the mean)  
 

γ01 = 0.0636 0.0021 30.37 < .0001

Random Effect Variance Component S.E z-value Probability

Level 1 residual eij σ2 = 0.6589 0.0030 220.42 < .0001

Level 2 residual u0j 
 

τ00 = 0.3729 0.0191 19.51 < .0001
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Level 2 age effect 
(decades over the 
mean), u1j 
 

τ11 = 0.0014 0.00015 9.58 < .0001

Cov(u0 , u1) τ01 = -0.0004 0.0014 -0.30  .7666

 
The estimated coefficient for age, .0636, now represents the average increase in log(charges) 
across hospitals per decade of patient age. Notice that this coefficient (.0636) is different from 
the fixed coefficient for age in the previous model (.0713). The component of variance for age is 
significant, indicating that the age coefficient does vary from hospital to hospital. The other 
variance components are very slightly smaller as a result. Although the variance of the age 
coefficient seems small, the standard deviation (the square root of the variance) is about .04, 
which is fairly large relative to the mean coefficient of .06. Based on the assumption that the 
coefficients are normally distributed, one would expect about 95 percent of the hospital-specific 
age coefficients to fall in the range -.02 to .10. Finally, the covariance between the random 
intercepts and slopes is -.0004, which is not significantly different from zero (p-value = .77). 
Therefore, one would infer that there is no correlation between the hospital-specific intercepts 
and slopes, based on this model. 
 
Intercept- and Slope-As-Outcomes 
 
The intercept as outcomes model allows the intercept to vary as a function of one or more level-
2 variables. For example, the intercept for teaching hospitals might differ from the intercept for 
non-teaching hospitals. In the example below, the variable z1 would be teaching status (1 for 
teaching hospitals and 0 for non-teaching hospitals), and the average outcome for teaching 
hospitals would differ by an amount γ01 compared with non-teaching hospitals. The hospital-level 
residual, u0j, is conditional on teaching status. In general, z1 could be any discrete or continuous 
level-2 variable. 
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10γ

ijijjjij exy ++= 110 ββ

 
 
This model merely adds a fixed hospital effect, so it is not very different from the random 
intercept, fixed slope model discussed in the previous section. Nevertheless, the addition of a 
group variable can reduce the hospital-level residual variance. Again, β1 could have been 
substituted for β1j. However, γ10, is substituted to preserve the general notation in the combined 
model. 
 
If both the intercept and the slope are a function of a group variable, then the intercept- and 
slopes-as-outcomes model results (Raudenbush and Bryk, 2002): 
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This model was fit to the diabetes patients in the 2003 NIS, using age as the patient-level 
variable and teaching status as the hospital-level variable. The results are as follows: 
 
Fixed Effect Coefficient S.E t-value Probability

Intercept (log $) γ00 = 8.8802 0.0219 405.37 < .0001

Age (decades over the 
mean)  
 

γ10 = 0.0590 0.0025 23.94 < .0001

Teaching hospital γ01 = 0.4684 0.0506 9.26 < .0001

Age * Teaching hospital γ11 = 0.0169 0.0046 3.71 < .0001

Random Effect Variance Component S.E z-value Probability

Level 1 residual eij σ2 = 0.6589 0.0029 220.43 < .0001

Level 2 residual u0j τ00 = 0.3374 0.0171 19.74 < .0001

Level 2 age effect 
(decades over the mean), 
u1j 
 

τ11 = 0.0014 0.0001 9.41 < .0001

Cov(u0 , u1) τ01 = 0.6589 0.0029 220.43 < .0001

 
The variance components for both the intercept and age are statistically significant, indicating 
significant hospital-to-hospital variation in those coefficients. The estimated log(charges) for 
teaching hospitals are higher by 0.47 compared with non-teaching hospitals. Also, the estimated 
age coefficient for teaching hospitals is 0.076, calculated as the sum of 0.017 and 0.059. Notice 
that, in the regression results shown in the previous section, the overall mean age coefficient is 
.063, which falls between the non-teaching age coefficient of .059 and the teaching age 
coefficient of .076 in the present regression. Notice, too, that the addition of the teaching 
variable slightly reduced the hospital-level residual variance for the intercepts, as compared with 
that estimated for the random intercept and random slope model in the previous section. It is 
possible that the addition of more hospital-level variables would further reduce the hospital-level 
variance. 
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HLM for Binary Outcomes (logistic regression) 
 
This section describes only the most general version of the two-level HLM with one level-1 
predictor and one level-2 predictor. Special cases of this model, such as the null model, the 
random intercept model, the random slope model, and so on, are completely analogous to those 
cases for the continuous HLM. 
 
Binary outcomes—those taking on only two values—are commonplace in health services 
research. Examples include in-hospital mortality, the occurrence of a medical error, admission 
through the ER (versus treat-and-release), surgical treatment (versus non-surgical treatment), 
and whether a patient is readmitted to the hospital within 30 days of a prior discharge. These 
examples also demonstrate the potential importance of analyzing the sources of variation for 
these kinds of outcomes. If analysts can learn which patient and institutional factors distinguish 
between successes and failures, then those factors might lead to policy instruments that benefit 
patients in the future. 
 
Binary outcomes are often analyzed using logistic regression, in which the predicted log-odds of 
an event is a linear model. The hierarchical logistic model asserts a logistic regression as the 
level-1 model: 
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In this case, the “link function” is the called the logit. The Bernoulli distribution is a special case 
of the binomial distribution that takes on only the values 0 and 1. The variance of the Bernoulli 
distribution, πij (1 – πij), is a function of the mean, πij. Consequently, the specification of a level-1 
“residual” error term is unnecessary. 
 
The general setup for the two-level hierarchical logistic model parallels that for the continuous 
model. Importantly, the statistical models and assumptions for the second-level regressions are 
precisely the same as those described above for the continuous model. The second-level 
random effects (group-level residuals) are assumed to be normally distributed, and the second-
level residuals are assumed to be independent of the first-level residuals. However, in the first-
level models, the residuals are assumed to be distributed as Bernoulli. Consequently, the 
combined model is: 
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Maximum likelihood is the method used to estimate the coefficients for this model. It should be 
noted that this model can be re-written in terms of the expected odds-ratio: 
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which illustrates the multiplicative form of the model. 
 
HLM for Count Outcomes 
 
Again, this section describes only the most general version of the two-level HLM with one level-
1 predictor and one level-2 predictor. Special cases of this model, such as the null model, the 
random intercept model, the random slope model, and so on, are completely analogous to those 
cases for the continuous HLM. 
 
Hierarchical models for count outcomes are often based either on the Poisson distribution or the 
negative binomial distribution, leading to Poisson regression or negative binomial regression 
models, respectively. The range of outcomes for both distributions is the set of natural numbers 
0, 1, 2, 3, 4,.... The Poisson distribution is commonly used for modeling rates of low-frequency 
events, such as mortality counts for low-mortality diseases. A fundamental assumption for the 
Poisson model is that the mean is equal to the variance. This assumption is often untenable. 
Consequently, the negative binomial distribution is the preferred model for count outcomes for 
which the variance exceeds the mean. In fact, the Poisson distribution is a special case of the 
negative binomial distribution, enabling analysts to decide between the two models based on 
the value of an estimated parameter. 
 
Again, the general setup for the two-level hierarchical count model parallels that for the 
continuous model. The statistical models and assumptions for the second-level regressions are 
the same as those for the continuous model. However, in the first-level models, the residuals 
are assumed to be distributed as Poisson or negative binomial. 
 
Poisson Regression 
 
For Poisson regression, the dependent variable is the logarithm of the population mean count, 
θij, given that level-1 unit i is contained in level-2 unit j, and given the value of any explanatory 
variables. In this context, the logarithm is called the “link function” because it links the mean 
count to the level-1 linear equation: 
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The assumption that the observed counts, yij, are distributed as Poisson with mean θij, 
emphasizes the difference between this level-1 equation and the level-1 equation for the 
continuous (normally-distributed) outcome. This level-1 equation is written in terms of the 
population mean (expected value) of the response, which requires no error term. Whereas, the 
continuous version is written in terms of the observed response, which includes a normally-
distributed residual error term to explain the difference between the observed and expected 
response. 
 
The assumption that the observed counts yij are distributed as Poisson with mean θij is used to 
estimate the regression coefficients and other parameters by the method of maximum 
likelihood. For the Poisson distribution, the mean and the variance are equal. Therefore, the 
level-1 error variance is not constant for each observation, as it is in the continuous case. 
Instead, it fluctuates with the value of the mean. 
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The level-2 equations and the statistical assumptions for the level-2 equations are precisely the 
same as those given above for the continuous case. Therefore, the combined model becomes: 
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The “fixed” effects are γ00 (average intercept), γ01 (coefficient on the group variable z1), and γ10 
(average coefficient on the level-1 variable x1).  The random effects are u0j and u1j, 
corresponding to the random intercepts and random slopes, respectively. 
 
Because the dependent variable is the logarithm of the expected count, each regression 
coefficient can be exponentiated to estimate the multiplicative effect on the mean of the 
corresponding predictor variable. For example, an age coefficient of .05 would translate into a 
multiplicative effect of approximately 1.05 (= e.05), meaning that the average count increases by 
about 5 percent for each year of age. 
 
Negative Binomial Regression 
 
Most HLM computer programs optionally allow the user to specify the negative binomial 
distribution for the response. The main difference between the Poisson model and the negative 
binomial model is the assumption concerning the distribution of counts. The second-level 
models and assumptions are the same. However, the counts yik are assumed to be distributed 
as a negative binomial with mean θij and dispersion parameter k: 
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Again, the link function is the logarithm, which implies multiplicative effects. The negative 
binomial distribution is often used in situations where the counts have a larger variance than 
that implied by the Poisson distribution.6 
 
The level-2 models are the same as those specified for the continuous outcome. Therefore, the 
combined model is: 
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The coefficients are estimated by the method of maximum likelihood. 
 
HLM for Longitudinal Data 
 

                                                 
6In particular, if the counts are distributed as Poisson conditional on means that are distributed as 
gamma, then the resulting counts are unconditionally distributed as negative binomial. Fully Bayesian 
HLM sometimes uses this derivation directly in specifying the hierarchical model for counts. 



 

HCUP (01/10/2007) 15 HLM Report 

A special case of a hierarchical model is one in which the level-1 units are repeated measures 
taken on each level-2 unit. For example, suppose the data consisted of visits to the emergency 
department for asthma treatment, and researchers were interested in the probability that each 
visit resulted in a hospital admission (versus treat and release). Some patients would have 
multiple asthma ED visits, and these would comprise repeated measures for those patients. 
Further, suppose that time is thought to be an important factor. These data could be modeled 
using a hierarchical model with asthma ED visits at level 1 and patients at level 2. 
 
Importantly, an HLM could be fit using all of the asthma ED visits for all of the patients, even 
though patients have different numbers of ED visits (occasions) that occur at irregular times. 
There are few opportunities for these types of models using HCUP data. Therefore, readers are 
referred to the excellent text on the subject by Singer and Willett (2003) and to Singer’s Website 
(http://gseweb.harvard.edu/%7Efaculty/singer/) for more information.  
 
HLM for Cross Classifications 
 
As illustrated earlier in Figure 3, the group structure might not be strictly hierarchical, and cross-
classifications are an example of a more complicated structure. Figure 3 shows an example of 
patients nested within hospitals and physicians, but physicians are not nested within hospitals. 
Both physicians and hospitals can have an effect on patient outcomes, so it remains important 
to estimate their effects. It also remains important to account for the potential correlation among 
patients treated by the same physician and treated in the same hospital. 
 
Cross-classifications, also called crossed random coefficients, can be fit in the HLM framework 
with a properly-specified model. The simplest specification for the patient/physician/hospital 
structure is as follows: 

)()( jkikjjki ey +++= μμα  

 
where the outcome yi(jk) for patient i treated by physician/hospital combination jk is modeled by 
an overall mean α with random departures (residuals) μj and μk for physician j and hospital k, 
respectively, and a patient-level random departure ei(jk). Other terms involving patient, physician, 
and hospital factors can be added to this basic model. 
 
Readers interested in these models should consult the references provided at the end of this 
report. In particular, Hox (2002), Snijders and Bosker (1999), and Rasbash et al. (2005) all have 
informative chapters on this topic. 
 
HLM for Multiple Membership 
 
Multiple membership, as illustrated earlier in Figure 4, is also an example of a more complicated 
grouping structure. In that example, some patients are treated by more than one physician. 
Patients are clustered or grouped by physician. Therefore, some patients belong to multiple 
groups and they are said to have multiple memberships. More generally, multiple memberships 
exist whenever lower-level units belong to two or more higher-level units. 
 
An interesting aspect of these models is that for each level-1 unit, the analyst must specify 
weights for the level-2 units. The choice of weights might or might not be straightforward. As an 
example, for a patient with multiple physicians, the weight for each physician could be the 
proportion of the patient’s visits to that physician. Alternatively, the weight could be the 
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proportion of the patient’s total treatment costs associated with that physician, or the proportion 
of the year that physician served as the patient’s primary care provider. 
 
Readers interested in pursuing these models can check the references and Websites given later 
in this report. Rasbash et al. (2005) provide a nice introductory chapter in the MLwiN User’s 
Guide. 
 
Other Methods 
 
Generalized Estimating Equations (GEE) 
 
The Generalized Estimating Equation (GEE) approach is one method that accounts for within-
cluster correlations by modelling the correlations rather than by modelling random effects, as 
hierarchical models do. Different correlation structures can be specified for GEE models. HLM 
models the outcome conditional on the random effects (or random coefficients), while GEE 
methods model the marginal expectation of the outcome “averaged” over the population.  

Consequently, the interpretation of regression coefficients are slightly different between HLM 
and GEE models. In HLM, the regression coefficient is an estimate of how the outcome changes 
as a function of predictors conditional on the random effects. In GEE, the coefficient is an 
estimate of how the outcome changes as a function of predictors “averaged” over the group 
random effects. For continuous outcomes, the predictor coefficients are mathematically 
equivalent, but for count and binary variables, the GEE estimates will usually be smaller than 
the corresponding HLM estimates (in absolute value). 
 
Bayesian Methods 
 
Fully Bayesian hierarchical models specify probability distributions, called prior distributions, for 
the population parameters, such as the population intercept, γ00. The prior distribution is 
combined with the observed data to produce a posterior distribution, which forms the basis for 
inferences. By contrast, the “frequentist” or “classical” approach explained in this report 
considers the population parameters to be fixed, unknown constants. 
 
Bayesian methods are usually more demanding, both analytically and computationally. 
However, correctly specified Bayesian models provide more precision and better estimates of 
variances in exchange for a small amount of bias (Hox, 2002). Using a Bayesian model, it is not 
possible to estimate negative variances, which is possible with standard hierarchical models. 
Further, when the number of higher-level units is small, estimates and statistical inferences from 
frequentist hierarchical models may be unreliable because the underlying methods rely on 
large-sample theory. In those cases, especially when the group sample sizes are highly 
variable, Bayesian methods provide an especially attractive alternative. A brief, readable 
introduction to Bayesian hierarchical models is contained in Raudenbush and Bryk (2002, 
Chapter 13). Browne and Draper (2005) compare Bayesian and likelihood-based methods. 
These models require special software, such as WinBUGS, which is briefly described later in 
this report.  
 
Using Sampling Weights in HLM 
 
For complex sample survey data, methods for incorporating sampling weights in hierarchical 
models is a subject of active research in the literature. Although HCUP data are not derived 
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from survey data, the NIS and the KID are the results of sampling procedures. Therefore, these 
methods could be applied to the NIS and the KID. 
 
That said, the authors of this report do not recommend these methods for HCUP data. One 
reason is philosophical. It seems incongruous to incorporate finite population weights into 
models that specifically consider these same populations to be conceptually infinite. Another 
reason stems from practicality. It complicates an already-complicated estimation procedure, 
possibly for little or no gain. For example, when sampling weights were incorporated into an 
analysis of NIS data, the results with and without the weights were virtually indistinguishable 
from one another. 
 
For analysts who are concerned about the potential effects of sample stratification, one 
approach is to include the stratifiers as predictors in the model. For example, when using the 
NIS, hospital-level variables like teaching status and bed size can be incorporated into the 
model, and their effects can be estimated. 
 
A good reference for sampling weights in HLM is the article by Rabe-Hesketh and Skrondal 
(2005b). Also, more information and other references can be obtained at the following Websites: 
http://www.cpc.unc.edu/restools/data_analysis/ml_sampling_weights 
http://www.statmodel.com/download/asparouhovgmms.pdf. 
 
HLM Compared to Conventional Regression: An Example Using HCUP Data 
 
This section is loosely based on an analysis by Joshi, D’Souza, and Madhavan (2004) of 
hospital charges, mortality, and length of stay for congestive heart failure (CHF) patients, which 
used a 10 percent sample of the 1997 Nationwide Inpatient Sample (NIS). The authors used 
conventional regression models in their analyses, which included both patient-level and 
hospital-level predictors. This example does not assess the fit, check the assumptions, or 
question the specifications of the models. For this example, similar (but not identical) models 
are fit for total charges and in-hospital mortality using the complete 2004 NIS. These models are 
fit once using a conventional regression model (disaggregated analysis) and once using a 
random-intercept model with discharges at level 1 and hospitals at level 2. It is intended only to 
demonstrate how estimates and subsequent inferences can differ between the two approaches.  
 
Data 
 
For this analysis, all CHF discharges (principal diagnosis of 428.xx) were selected from the 
2004 NIS. This resulted in a total of 222,200 discharges from 978 hospitals. Hospital-level 
variables were merged onto this file from the 2004 NIS hospital file that accompanies the 2004 
NIS. Patient severity measures were also merged onto this file from the 2004 Severity file that 
accompanies the 2004 NIS. 
 
The logarithm of total charges is the dependent variable for the charge regressions. The 
distribution of log(charges) is shown in Figure 8, below. The distribution is nearly symmetrical, 
but very slightly skewed to the right, with a mean of 9.64 and a standard deviation of 0.94. 
 
One of the patient-level predictors is age. The age distribution is shown in Figure 9, which is 
highly skewed, as one would expect for a sample of CHF patients. The average age is 72.5 with 
a standard deviation of 14.3. 
 



 

HCUP (01/10/2007) 18 HLM Report 

Figure 8:  Distribution of Logarithm of Total Charges for CHF Patients, 2004 NIS 

 
 
Figure 9:  Distribution of Age for CHF Patients, 2004 NIS 
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Other predictor variables are as follows: 
 
Log(Resource Demand Scale) – This is the logarithm of the Disease Staging Resource Demand 
Scale, which will be used in the model for total charges. This is an inpatient severity measure 
that predicts hospital charges as a function of patient characteristics including age, sex, 
diagnosis related group (DRG), the patient’s principal disease, the severity of the principal 
disease, the patient’s comorbidities, the severity of comorbidities, the admission source, and the 
urgency of admission. This scale predicts the charge for an admission as a percentage of the 
average charge for all admissions to the hospital. A scale value of 100 corresponds to the cost 
of an average admission. The average scale value for CHF patients is 129.31 with a standard 
deviation of 135.60. The average value log(scale) value for CHF patients is 4.66 with a standard 
deviation of 0.54. 
 
Log(Mortality Scale) – This is the logarithm of the Disease Staging Mortality Scale, which will be 
used in the model for in-hospital mortality. This inpatient severity measure predicts hospital 
mortality as a function of patient characteristics including age, sex, diagnosis related group 
(DRG) for surgical cases (not used for non-surgical cases), the patient’s principal disease, the 
severity of the principal disease, the patient’s comorbidities, the severity of comorbidities, the 
admission source, and the urgency of admission. This scale predicts the mortality risk for an 
admission as a percentage of the average mortality risk for all admissions. A scale value of 100 
corresponds to the mortality rate of an average admission. The average mortality scale value for 
CHF patients is 287.21 with a standard deviation of 444.61. The average value of the 
log(mortality scale) value for CHF patients is 4.87 with a standard deviation of 1.30. 
 
Age – 70 (decades) – This is calculated as (age – 70) / 10, so that age is centered at 70 and 
measured in decades. 
 
Female – This is an indicator for gender. Female = 1 for females and = 0 for males. 
 
Median ZIP Income – This is a four-category variable designating the median income for the 
patient’s ZIP Code. The categories are 1) under $36,000, 2) $36,000 - $44,999, 3) $45,000 – 
$59,999, and 4) $60,000 and up. The income group frequencies are as follows: 
 

ZIP Income Quartile Frequency Percent
Cumulative
Frequency

Cumulative 
Percent 

Missing 4,482 2.02 4,482 2.02 

Q1: < $ 36,000 74,565 33.56 79,047 35.57 

Q2: $36,000 - 44,999 58,740 26.44 137,787 62.01 

Q3: $45,000 - 59,999 44,931 20.22 182,718 82.23 

Q4: $60,000 + 39,482 17.77 222,200 100.00 
 
Expected Primary Payer – This is a categorical variable with frequencies as follows. Medicare is 
the omitted category in the regressions. 
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Primary Payer Frequency Percent
Cumulative
Frequency

Cumulative 
Percent 

Missing/Invalid 185 0.08 185 0.08 

1: Medicare 168,359 75.77 168,544 75.85 

2: Medicaid 15,899 7.16 184,443 83.01 

3: Private insurance 27,400 12.33 211,843 95.34 

4: Self-pay 6,289 2.83 218,132 98.17 

5: No charge 761 0.34 218,893 98.51 

6: Other 3,307 1.49 222,200 100.00 
 
Hospital Region – This is a four-category variable with frequencies as follows. West is the 
omitted category in the regressions. 
 

Region Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Northeast 44,230 19.91 44,230 19.91

Midwest 51,623 23.23 95,853 43.14

South 96,196 43.29 192,049 86.43

West 30,151 13.57 222,200 100.00
 
 
Hospital Bed Size and Location/Teaching Status – Hospitals in the NIS are classified as small, 
medium, or large bed sizes separately for rural, urban teaching, and urban non-teaching 
hospitals. This combination is treated as a nine-category variable. Large teaching hospital is the 
omitted category in the regressions. 
 

Bed Size Location/Teaching Frequency Percent
Cumulative 
Frequency 

Cumulative
Percent

1: Small 1: Rural 7,027 3.16 7,027 3.16

1: Small 2: Urban non-teaching 14,843 6.68 21,870 9.84

1: Small 3: Urban teaching 11,122 5.01 32,992 14.85

2: Medium 1: Rural 8,627 3.88 41,619 18.73

2: Medium 2: Urban non-teaching 28,790 12.96 70,409 31.69

2: Medium 3: Urban teaching 19,789 8.91 90,198 40.59

3: Large 1: Rural 22,445 10.10 112,643 50.69

3: Large 2: Urban non-teaching 61,257 27.57 173,900 78.26

3: Large 3: Urban teaching 48,300 21.74 222,200 100.00
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Regressions for Log(Charges) 
 
Both a conventional regression, labeled “OLS,” and a hierarchical regression, labeled “HLM,” 
are fit to the CHF sample. For the HLM, discharges are at level 1, hospitals are at level 2, and a 
random-intercept model is fit using SAS PROC MIXED to produce restricted maximum 
likelihood estimates (the default in SAS). For the OLS model, the R-square value was 40 
percent. For an empty HLM model (not shown), the random intercepts variance was 0.4012, 
while the residual variance was 0.5982, resulting in an intra-class correlation of 0.40, indicating 
that 40 percent of the total variance is between hospitals. For the HLM model with covariates, 
the intercept variance fell to 0.1849 and the residual variance fell to 0.3589, indicating that the 
predictor variables explained a large fraction of the variance at both the patient and hospital 
levels. 
 
The results for the “fixed” effects are shown in Table 1. The shaded rows correspond to effects 
that are statistically significant at the 5 percent level using conventional regression, but not 
significant at the 5 percent level using HLM. The estimated coefficients and their standard errors 
are in close agreement between the two estimation methods for severity, patient age, and 
female gender. However, based on the OLS results, there are several instances where one 
would infer that the average log(charges) differ significantly between types of patients or types 
of hospitals. For example, under OLS, large urban teaching hospitals (the omitted category) 
differ significantly from other types of hospitals. However, based on the HLM results, large 
urban teaching hospitals are not significantly different from hospitals in four of the five other 
categories: small urban teaching, medium urban teaching, medium urban non-teaching, and 
large urban non-teaching. Even when the effects are significant under both models, the sign of 
the coefficient is sometimes different. For example, the OLS coefficient has a different sign than 
the HLM coefficient for patients in ZIP Codes with a median income of $36,000 - $45,999 
(versus $60,000 and higher). 
  
 

Table 1: OLS vs. HLM Estimates for Log(Total Charges) 

Parameter Model

Fixed 

Effects

Standard 

 Error t Value Pr > |t|

OLS 5.6042 0.016019 349.85 <.0001Intercept 

HLM 5.4654 0.065191 83.84 <.0001

OLS 0.9577 0.002992 320.14 <.0001Log(Resource Demand Scale) 

HLM 0.9595 0.002555 375.51 <.0001

OLS -0.0255 0.001368 -18.66 <.0001Age – 70 (decades) 

HLM -0.0271 0.001159 -23.42 <.0001

OLS 0.0101 0.003211 3.16 0.0016Female 

HLM 0.0122 0.002656 4.58 <.0001

OLS -0.0054 0.005009 -1.07 0.2831Median ZIP Income < $ 36,000 (vs. $60,000+) 

HLM 0.0007 0.005229 0.13 0.8981

OLS -0.0775 0.004991 -15.54 <.0001Median ZIP Income $36,000 - 44,999 (vs. $60,000+) 

HLM 0.0121 0.004999 2.42 0.0155
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Table 1: OLS vs. HLM Estimates for Log(Total Charges) 

Parameter Model

Fixed 

Effects

Standard 

 Error t Value Pr > |t|

Median ZIP Income $45,000 - 59,999 (vs. $60,000+) OLS -0.0544 0.005160 -10.54 <.0001

 HLM 0.0009 0.004758 0.19 0.8531

Medicaid (vs. Medicare) OLS 0.0321 0.006897 4.65 <.0001

 HLM -0.0054 0.005794 -0.94 0.3471

OLS -0.0200 0.005266 -3.79 0.0001Private insurance (vs. Medicare) 

HLM -0.0292 0.004450 -6.56 <.0001

Self-pay (vs. Medicare) OLS 0.0480 0.010014 4.79 <.0001

 HLM -0.0070 0.008618 -0.81 0.4171

OLS 0.0720 0.027656 2.60 0.0092No charge (vs. Medicare) 

HLM 0.0082 0.024085 0.34 0.7321

OLS 0.0330 0.013183 2.50 0.0123Other payer (vs. Medicare) 

HLM -0.0922 0.011693 -7.88 <.0001

OLS -0.0630 0.005787 -10.89 <.0001Northeast (vs. West) 

HLM -0.1120 0.051248 -2.19 0.0288

OLS -0.3691 0.005634 -65.51 <.0001Midwest (vs. West) 

HLM -0.3346 0.043531 -7.69 <.0001

OLS -0.3148 0.005173 -60.86 <.0001South (vs. West) 

HLM -0.1751 0.040590 -4.31 <.0001

OLS -0.7138 0.009667 -73.84 <.0001Small rural hospital (vs. large urban teaching) 

 HLM -0.7747 0.065131 -11.89 <.0001

OLS -0.2256 0.007093 -31.81 <.0001Small urban non-teaching hospital (vs. large urban teaching) 

 HLM -0.2829 0.066161 -4.28 <.0001

OLS -0.1655 0.007795 -21.23 <.0001Small urban teaching hospital (vs. large urban teaching) 

 HLM -0.1068 0.085301 -1.25 0.2106

OLS -0.5349 0.008926 -59.92 <.0001Medium rural hospital (vs. large urban teaching) 

 HLM -0.6149 0.071147 -8.64 <.0001

OLS -0.1231 0.005641 -21.83 <.0001Medium urban non-teaching hospital (vs. large urban teaching)

HLM -0.0737 0.067978 -1.08 0.2783

OLS -0.1839 0.006350 -28.97 <.0001Medium urban teaching hospital (vs. large urban teaching) 

 HLM -0.0707 0.082670 -0.86 0.3921

OLS -0.3691 0.006233 -59.21 <.0001Large rural hospital (vs. large urban teaching) 

 HLM -0.4217 0.067686 -6.23 <.0001
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Table 1: OLS vs. HLM Estimates for Log(Total Charges) 

Parameter Model

Fixed 

Effects

Standard 

 Error t Value Pr > |t|

OLS -0.0406 0.004649 -8.74 <.0001Large urban non-teaching hospital (vs. large urban teaching) 

 HLM 0.0024 0.067378 0.04 0.9710

 
 
Logistic Regressions for In-hospital Mortality 
 
The overall mortality rate for CHF patients was 4.0 percent. Both a conventional logistic 
regression, labeled “CONV,” and a hierarchical logistic regression, labeled “HLM,” were fit to the 
CHF sample. For the HLM, discharges are at level 1, hospitals are at level 2, and a random-
intercept model was fit using SAS PROC GLIMMIX to produce restricted maximum likelihood 
estimates (the default in SAS). 
 
For the conventional logistic model, the c-statistic has a value of 0.78 and the Hosmer-
Lemeshow goodness of fit statistic has a value of 14.73 with a p-value of .065, indicating no 
significant lack of fit at the 5 percent significance level. 
 
By using GLIMMIX to fit an empty model (not shown), the random intercept variance was 
estimated as 0.1083 with a standard error of 0.0116, indicating significant hospital-to-hospital 
variation for the intercept. The intercept variance for the model with predictors was estimated as 
0.1311 with a standard error of 0.01394. Consequently, the predictors did not reduce the 
hospital-to-hospital intercept variance for in-hospital mortality. 
 
The results for the “fixed” effects are shown in Table 2. The shaded rows correspond to effects 
that are statistically significant at the 5 percent level using conventional logistic regression, but 
not significant at the 5 percent level using HLM. As was the case for log(charges), the estimated 
coefficients and their standard errors are in close agreement between the two methods for 
severity, patient age, and female gender. Also, the estimated standard errors are similar for ZIP 
income and primary payer. However, the estimated standard errors for the conventional logistic 
model are quite different from the hierarchical model for the hospital regions and the hospital 
bed size / location / teaching categories. For example, based on the conventional logistic 
results, one would infer that the average in-hospital mortality differs significantly between large 
urban teaching hospitals (the omitted category) and both large urban non-teaching hospitals 
and small urban teaching hospitals. However, based on the HLM results, the average mortality 
is not significantly different between those hospital types. Conversely, the estimate for medium 
rural hospitals is significant at the 5 percent level under HLM, but not under conventional logistic 
regression. 
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Table 2: Conventional vs. HLM Logistic Regression Estimates for In-Hospital Mortality 

Parameter Model
Fixed 

Effects
Standard 

 Error χ2 Value Pr >  χ2

CONV -5.4805 0.198899 759.2462 <.0001Intercept 

HLM -5.5483 0.208146 710.5394 <.0001

CONV -0.1285 0.067740 3.5986 0.0578Log(Mortality Scale) 

HLM -0.1153 0.068168 2.8615 0.0907

CONV 0.0889 0.005816 233.5033 <.0001Log(Mortality Scale) Squared 

HLM 0.0893 0.005859 232.3854 <.0001

CONV 0.0918 0.011177 67.4949 <.0001Age – 70 (decades) 

HLM 0.0855 0.011316 57.1161 <.0001

CONV 0.0442 0.023232 3.6232 0.0570Female 

HLM 0.0382 0.023405 2.6648 0.1026

CONV 0.0222 0.035548 0.3912 0.5316Median ZIP Income < $ 36,000 (vs. $60,000+) 

HLM -0.0445 0.041263 1.1639 0.2807

CONV 0.0542 0.034749 2.4291 0.1191Median ZIP Income $36,000 - 44,999 (vs. $60,000+) 

HLM -0.0018 0.039512 0.0021 0.9635

CONV -0.0279 0.035802 0.6070 0.4359Median ZIP Income $45,000 - 59,999 (vs. $60,000+) 

HLM -0.0623 0.038790 2.5801 0.1082

CONV 0.2137 0.060835 12.3410 0.0004Medicaid (vs. Medicare) 

HLM 0.2042 0.061833 10.9044 0.0010

CONV 0.2495 0.039742 39.3984 <.0001Private insurance (vs. Medicare) 

HLM 0.2296 0.040925 31.4751 <.0001

CONV 0.4206 0.084777 24.6100 <.0001Self-pay (vs. Medicare) 

HLM 0.3888 0.087378 19.7961 <.0001

CONV 0.3598 0.242096 2.2094 0.1372No charge (vs. Medicare) 

HLM 0.4241 0.250776 2.8602 0.0908

CONV 0.7136 0.084127 71.9454 <.0001Other payer (vs. Medicare) 

HLM 0.7503 0.088699 71.5631 <.0001

CONV 0.1752 0.039752 19.4188 <.0001Northeast (vs. West) 

HLM 0.1742 0.064550 7.2810 0.0070

CONV -0.0613 0.040323 2.3144 0.1282Midwest (vs. West) 

HLM 0.0010 0.061912 0.0002 0.9874

CONV 0.1188 0.036350 10.6765 0.0011South (vs. West) 

HLM 0.1183 0.056302 4.4165 0.0356
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Table 2: Conventional vs. HLM Logistic Regression Estimates for In-Hospital Mortality 

Parameter Model
Fixed 

Effects
Standard 

 Error χ2 Value Pr >  χ2

CONV 0.4283 0.066855 41.0386 <.0001Small rural hospital (vs. large urban teaching) 

 HLM 0.4616 0.088850 26.9867 <.0001

CONV -0.0318 0.051938 0.3750 0.5403Small urban non-teaching hospital (vs. large urban teaching) 

 HLM 0.0476 0.079297 0.3607 0.5481

CONV -0.2116 0.059595 12.6077 0.0004Small urban teaching hospital (vs. large urban teaching) 

 HLM -0.1855 0.097393 3.6260 0.0569

CONV 0.1026 0.065105 2.4854 0.1149Medium rural hospital (vs. large urban teaching) 

 HLM 0.2020 0.091674 4.8569 0.0275

CONV -0.0091 0.039717 0.0523 0.8191Medium urban non-teaching hospital (vs. large urban teaching)

 HLM 0.0024 0.071497 0.0011 0.9732

CONV -0.2059 0.046124 19.9265 <.0001Medium urban teaching hospital (vs. large urban teaching) 

 HLM -0.1771 0.085671 4.2735 0.0387

CONV 0.1322 0.044575 8.7975 0.0030Large rural hospital (vs. large urban teaching) 

 HLM 0.1649 0.074881 4.8475 0.0277

CONV -0.1479 0.033348 19.6630 <.0001Large urban non-teaching hospital (vs. large urban teaching) 

 HLM -0.1308 0.066816 3.8340 0.0502

 
 
 
Summary 
 
The analyses in this section demonstrate that different inferences can result when conventional 
methods are applied to hierarchical data in which large group effects (large ICC values) are 
apparent. As it turns out, the differences between the conventional model and the HLM model 
were greater for the regression on log(charges) than they were for the regression on mortality. 
The important message is that substantial differences are possible, and that the analyst cannot 
foresee what those differences will be. Austin et al. (2003) similarly demonstrate these points in 
an analysis of patients hospitalized with acute myocardial infarction.  
 
These analyses bypassed the usual model-building steps that include checking for influential 
observations, checking modeling assumptions, and so forth, which are beyond the scope of this 
report. Analysts are encouraged to consult the references for further guidance. 
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STATISTICAL SOFTWARE 
 
The most common hierarchical models can be fit using either of two general statistical software 
packages, SAS or Stata, and the program code for several models is provided in this chapter. 
There are also a number of specialized HLM software packages available. Here is a brief 
description of three special programs and some references for their use. 
 
HLM was written by Bryk, Raudenbush, and Congdon (1996). The book by Raudenbush and 
Bryk (2002) provides the theory for the models supported by the software, and it is also a good 
general reference on hierarchical models. HLM is an interactive program in which the user 
specifies the variables for the model at each level. It requires separate files for each level in the 
hierarchy. For example, if the hierarchy consists of patients nested in hospitals, then it expects 
one file with patient-level data and a separate file with hospital-level data. Once the models are 
specified for each level, the software will optionally display the combined model. Details can be 
found at the Website: http://www.ssicentral.com/hlm/. 
 
MLwiN was written by researchers at the London Institute of Education. The User Manual 
includes examples of several HLM models, including cross-classifications and multiple 
memberships (Rasbash et al., 2005). MLwiN is an interactive program that operates on a single, 
integrated database in which users specify random effects at each level. Information can be 
obtained from the Website: http://www.cmm.bristol.ac.uk/ . 
 
WinBUGS is an interactive program for Bayesian analysis of complex statistical models using 
Markov Chain Monte Carlo (MCMC) techniques. Researchers who want to fit Bayesian 
hierarchical models should acquire this program, which is constantly evolving and improving. 
Information is available at the Website: http://www.mrc-bsu.cam.ac.uk/bugs. Also of potential 
interest to SAS users are some SAS macros to convert SAS data for input to WinBUGS (and 
vice-versa) available at the following Website: http://www.mcw.edu/pcor/bugs/. 
 
Finally, OpenBUGS (the open source version of WinBUGS) is directly accessible through the 
statistical software R (downloadable at http://cran.r-project.org/). This software provides two 
potential advantages over the standalone WinBUGS package. First, no key code is necessary 
to unlock R/OpenBUGS. Second, it has all of the power of R directly interfacing with BUGS.  
Also, for the Linux user, JAGS (Just Another Gibbs Sampler: downloadable at http://www-
fis.iarc.fr/~martyn/software/jags/) can be directly interfaced with R. 
 
The remainder of this chapter offers program code for SAS and Stata that can be used to fit 
hierarchical models with those software packages. 
 
In SAS, continuous (normal) outcomes are modeled using PROC MIXED, which is a SAS STAT 
procedure. Count and binary outcomes are modeled using PROC NLMIXED or PROC 
GLIMMIX. PROC GLIMMIX is not incorporated as a standard SAS procedure. It must be 
downloaded from the SAS Institute Website: 
http://www.sas.com/apps/demosdownloads/setupcat.jsp;jsessionid=4540306B9B52B3ADF5E46
2E35138F29C.tomcat1?cat=SAS%2FSTAT+Software. 
The GLIMMIX User’s Manual is also available for download. The book by Littell, et al. (2006) is 
an excellent reference for fitting hierarchical models using SAS. 
 
In Stata, continuous outcomes are modeled using the XTMIXED command. Count and binary 
outcomes are modeled using the GLLAMM (Generalized Linear and Latent Mixed Models) 
command, which was written by Sophia Rabe-Hesketh, and is available for download from the 
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Website: www.gllamm.org. In addition Rabe-Hesketh and Skrondal have written a useful book 
that covers hierarchical modeling using XTMIXED and GLLAMM (Rabe-Hesketh and Skrondal, 
2005a). Their text contains many examples and details concerning the use of XTMIXED and 
GLLAMM in Stata. 
 
In addition to the Websites mentioned that are specific to these packages, the UCLA Academic 
Technology Service Website has program code for textbook examples using several software 
packages: http://www.ats.ucla.edu/stat/. 
 
The discussion now turns to the SAS and Stata program code that can be used to fit the models 
presented earlier in this report. These programs suppose that an analyst is interested in 
analyzing a subset of discharges with a diagnosis of diabetes. To create the analysis file, all 
discharges were selected from the 2003 NIS 10 percent “A” sample (there is also a different 10 
percent “B” sample available) with a principal diagnosis of diabetes as classified by the Clinical 
Classification System (NIS data element CCSDX1 = 50). The analysis file is named 
“nis_diabetes” in the program code that follows. The reader should be able to reproduce the 
output in this section of the report using the programs given below. 
 
Note that the results on the logarithm of charges for diabetes patients in this section, based on a 
10 percent NIS sample, differ from the results presented in the main body of the report, based 
on the full NIS sample. The 10 percent sample is used here to make it easier to replicate the 
results, for those wishing to do so. 
 
Programming Code for Continuous Outcomes 
 
The continuous outcome for these examples is “logtotchg” which is the logarithm of total 
charges for each hospital stay. The patient-level predictor variable is “CAge,” which is age 
centered at 40 and measured in decades = (age-40)/10. The hospital-level predictor is “Teach,” 
which is equal to 1 for teaching hospitals and 0 for non-teaching hospitals. 
 
The SAS and the Stata programs are given for each of the following models: 1) the empty 
model, 2) the random intercepts, fixed slopes model, 3) the random intercepts and random 
slopes model, and 4) the intercepts-as-outcomes model. These correspond to the theoretical 
models discussed earlier in this report. The program code and output described in this section 
of the report are solely for the purpose of establishing some basic sample programs. 
Consequently, these models are very simple. SAS and Stata offer several estimation options. 
The default estimation option for SAS is Restricted Maximum Likelihood (REML), which is used 
in the examples that follow. The estimation method used for Stata is Maximum Likelihood 
Estimation (MLE), which tends to produce virtually the same estimates as REML does. The 
reader should consult the documentation for each procedure for alternative specifications and 
for other estimation options. 
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SAS Programs 
 
Random Intercepts, Empty Model 
 
The SAS code for the empty model is as follows: 

 
 
The CLASS statement designates the hospital identifier, hospid, as a categorical variable. The 
NOCLPRINT option prevents the printing of the CLASS level information while the NOITPRINT 
option suppresses the display of the “Iteration History” table. The COVTEST option invokes 
hypothesis tests for the variance and covariance components. The option SCORING=8 
requests that Fisher scoring be used for the first eight iterations.  
 
The MODEL statement gives the outcome variable on the left side of the equal sign and the 
predictor variable(s) on the right side. In this case, no predictor variables are specified because 
the intercept term is included by default. The SOLUTION option in the MODEL statement 
requests estimates for the fixed effect(s). 
 
The RANDOM statement specifies random effects, which in this model is just the intercept term 
(intercept is a reserved keyword in the RANDOM statement). The SUBJECT option on the 
RANDOM statement indicates the hierarchical structure. In this case, discharges are grouped 
into hospitals. Consequently, the “subject” is the hospital identifier, which is designated as a 
CLASS variable to indicate that it should be treated as a classification variable with discrete 
values. 
 
Results 
 
The key output is as follows: 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error
Z 

Value Pr Z

UN(1,1) HOSPID 0.3079 0.02061 14.94 <.0001

Residual  0.6882 0.01027 67.03 <.0001
 

Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 9.1814 0.02288 833 401.32 <.0001
 

proc mixed data=in.nis_diabetes noitprint noclprint covtest scoring=8 ; 
  class hospid ; 
  model logtotchg = / solution ; 
  random intercept / subject=hospid ; 
  title 'Empty model for Log of total charges'; 
run; 
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Interpretation 
 
By default, SAS PROC MIXED produces restricted maximum likelihood (REML) parameter 
estimates. The first row of the “Covariance Parameter Estimates,” labeled “UN(1,1),” gives the 
hospital-to-hospital intercept variance as 0.3079 with an estimated standard error of 0.02061, 
producing a Z-value of 14.94, corresponding to a p-value of less than .0001. This suggests that 
hospitals differ significantly in their average log(charges) for diabetes patients. The estimate of 
the level-1 random error, the patient residual variance, is 0.6882, which is also statistically 
significant. The estimated intraclass correlation coefficient is  
 

ICC = 0.31 = 0.3079 / (0.3079 + 0.6882), 
 

indicating that approximately one-third of the total variance in log(charges) is between hospitals. 
This value is higher than that found in many applications, and it indicates a substantial level of 
between-hospital variation. 
 
The “Solution for Fixed Effects” table displays parameter estimates for the fixed effects. In the 
empty model there is only one fixed effect, the average intercept, estimated as 9.1814.  
 
Random Intercepts, Fixed Slopes 
 
The SAS code for the random intercepts, fixed slopes model is as follows: 

 
 
The only change compared with the empty model occurs in the Model statement, which now 
includes the additional fixed effect for CAge = (Age – 40) / 10, which is age, centered at 40 
years, and measured in decades. 
 
Results 
 
The key output is as follows: 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error Z Value Pr Z

UN(1,1) HOSPID 0.3036 0.02025 14.99 <.0001

Residual  0.6661 0.009943 66.99 <.0001
 

proc mixed data=in.nis_diabetes noitprint noclprint covtest scoring=8 ; 
  class hospid ; 
  model logtotchg = CAge / solution ; 
  random intercept / subject=hospid; 
  title 'Random intercepts, fixed slope for Log of total charges'; 
run; 
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Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 9.0676 0.02356 833 384.86 <.0001

CAge 0.07717 0.004366 8913 17.68 <.0001
 
Interpretation 
 
The “Covariance Parameter Estimates” table shows that the hospital-to-hospital intercept 
variance is 0.3036, which is only slightly lower than the value of .03079 that was estimated from 
the empty model presented in the last section. The estimate of the level-1 residual error is 
0.6661, compared with 0.6882 in the empty model. Consequently, the addition of CAge to the 
model slightly reduced the variance at both the hospital level and the patient level. The 
estimated intraclass correlation coefficient can be estimated as 0.31 = 0.3036 / (0.3036 + 
0.6661). 
 
The “Solution for Fixed Effects” table contains REML estimates for the fixed effects. The 
average intercept is estimated as 9.0676, controlling for CAge. The estimated coefficient of 
CAge is 0.07717, indicating that log(charges) increase by an average of about 0.077 for each 
decade increase in patient age. An alternative interpretation is that total charges are multiplied 
by the anti-log of the CAge coefficient, 1.08 = exp(0.07717), so that average charges increase 
by approximately 8 percent for every decade increase in age. The standard errors for these 
fixed effects are relatively small, resulting in large t-statistics and low p-values.  
 
Random Intercepts, Random Slopes 
 
The SAS code for the random intercepts, random slopes model is as follows: 

 
 
As indicated in the random statement, this model has two random effects: one for the intercept 
and one for the CAge slope. The G option in the Random statement requests that the G matrix 
be printed. In SAS, the G matrix is the variance-covariance matrix for the random effects. The 
Gcorr option asks for the correlation between the random intercepts and random slopes. The 
covariance structure option, UN, requests an unstructured covariance matrix, which implies 
three components for the G matrix: 1) the random intercept variance, 2) the random slope 
variance, and 3) the covariance between the random intercepts and random slopes.  
 
Results 
 
The key output is as follows: 
 

proc mixed data=in.nis_diabetes noitprint noclprint covtest scoring=8 ; 
  class hospid ; 
  model logtotchg = CAge / solution ; 
  random intercept CAge / type=un subject=hospid G Gcorr ; 
  title 'Random intercepts, random slopes model for log of total charges'; 
run; 
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Estimated G Matrix 

Row Effect HOSPID Col1 Col2

1 Intercept 04001 0.2835 0.006002

2 CAge 04001 0.006002 0.001011
 

Estimated G Correlation Matrix 

Row Effect HOSPID Col1 Col2

1 Intercept 04001 1.0000 0.3546

2 CAge 04001 0.3546 1.0000
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error Z Value Pr Z

UN(1,1) HOSPID 0.2835 0.02043 13.87 <.0001

UN(2,1) HOSPID 0.006002 0.002672 2.25 0.0247

UN(2,2) HOSPID 0.001011 0.000598 1.69 0.0454

Residual  0.6624 0.01007 65.75 <.0001
 

Fit Statistics 

-2 Res Log Likelihood 24965.5

AIC (smaller is better) 24973.5

AICC (smaller is better) 24973.5

BIC (smaller is better) 24992.4
 

Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 9.0753 0.02296 833 395.18 <.0001

CAge 0.07183 0.004651 732 15.45 <.0001
 
Interpretation 
 
The REML estimates of the variances and covariances are contained in the “Estimated G 
Matrix” and in the “Covariance Parameter Estimates” tables. The value of UN(1,1), 0.2835, is 
the estimated intercept variance; the value of UN(2,2), 0.001011, is the estimated slope (of 
CAge) variance. The value of UN(2,1), 0.006002, is the estimated covariance between hospital 
intercepts and hospital slopes. The corresponding t-values and p-values are small, suggesting 
that hospital intercepts and slopes vary significantly and that the correlation is significant 
between intercepts and slopes. The G-correlation matrix contains the estimated correlation 
between intercepts and slopes, 0.35. This implies that hospitals with higher intercepts also tend 
to have higher slopes on CAge—older patients tend to cost more than younger patients by a 
larger factor at hospitals with higher intercepts compared to hospitals with lower intercepts. 
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The “Fit Statistics” table contains a series of statistics that can be used to compare alternative 
covariance structures. Models that fit better have smaller values on the Akaike’s Information 
Criteria (AIC), the AIC Corrected (AICC), or the Bayesian Information Criterion (BIC). The 
reader is referred to Little et al. (2006) for a discussion of these statistics and their use in 
selecting covariance structures. 
 
The “Solution for Fixed Effects” table displays parameter estimates for the fixed effects. The 
average intercept is estimated as 9.0753, controlling for CAge. The estimated average slope of 
CAge is 0.07183, indicating an increase in total charges of about 7.4 percent for every decade 
increase in patient age. The standard errors for these fixed effects are very small, resulting in 
large t-statistics and low p-values. 
 
Intercept- and Slopes-As-Outcomes 
 
The SAS code for the intercept- and slopes-as-outcomes model is as follows: 

  
 
This model adds a hospital-level predictor, Teach, equal to 1 for teaching hospitals and equal to 
0 for non-teaching hospitals. The term, CAge*Teach, adds the interaction between CAge and 
Teach, implying that the random slopes of CAge could differ between teaching hospitals and 
non-teaching hospitals. 
 
Results 
 
The key output is as follows: 
 

Estimated G Matrix 

Row Effect HOSPID Col1 Col2

1 Intercept 04001 0.2648 0.004886

2 CAge 04001 0.004886 0.000958
 

Estimated G Correlation Matrix 

Row Effect HOSPID Col1 Col2

1 Intercept 04001 1.0000 0.3068

2 CAge 04001 0.3068 1.0000
 

proc mixed data=in.nis_diabetes noitprint noclprint covtest scoring=8 ; 
  class hospid ; 
  model logtotchg = CAge Teach CAge*Teach / solution ; 
  random intercept CAge / type=un subject=hospid G Gcorr ; 
  Title 'Intercepts and slopes as outcomes model for Total Charges'; 
run; 
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Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error
Z 

Value Pr Z

UN(1,1) HOSPID 0.2648 0.01944 13.62 <.0001

UN(2,1) HOSPID 0.004886 0.002599 1.88 0.0602

UN(2,2) HOSPID 0.000958 0.000595 1.61 0.0536

Residual  0.6617 0.01006 65.76 <.0001
 

Fit Statistics 

-2 Res Log Likelihood 24921.1

AIC (smaller is better) 24929.1

AICC (smaller is better) 24929.1

BIC (smaller is better) 24948.0
 

Solution for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 8.9969 0.02609 832 344.81 <.0001

CAge 0.06708 0.006049 731 11.09 <.0001

Teach 0.3659 0.05247 8181 6.97 <.0001

CAge*Teach 0.01890 0.009451 8181 2.00 0.0456
 
Interpretation 
 
The random intercept variance is estimated to be 0.2648 and it is significant. However, the 
estimates of the other random effects—the random effect of CAge and the covariance between 
intercepts and slopes—are not statistically significant at the 5 percent level. Notice also that the 
random intercept variance, 0.2648, is smaller in this model than it was in the previous model 
(0.3036), as a result of adding the hospital-level predictor, Teach, and its interaction with CAge. 
 
The fixed effects are all statistically significant. The estimated effect of Teach implies that 
log(charges) average 0.3659 higher for teaching hospitals than for non-teaching hospitals, for 
40-year-old patients (when CAge = 0). The interaction between CAge and TEACH is significant 
at the 5 percent level. It implies that the average slope for CAge is 0.0189 higher for teaching 
hospitals compared with non-teaching hospitals, for 40-year-old patients. 
 
As an aside, the estimates in the main body of the text for this model, based on the full 2003 
NIS, are close to those shown here, except that the full sample standard errors are smaller. The 
full sample estimates of the random effects are all statistically significant. 
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Stata Programs 
 
Random Intercepts, Empty Model 
 
The Stata command for the empty model is: 

 
 
The Stata command is XTMIXED and logtotchg is the dependent variable. Random effects are 
specified after the double-bar ||. In this case, the term “hospid: “ after the || indicates random 
intercepts (included by default), which vary by hospid. The variance option calculates variances 
and the mle option requests maximum likelihood estimation. 
 
Results 
 
The key output is as follows: 
 
------------------------------------------------------------------------------ 
   logtotchg |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |    9.18145   .0228634   401.58   0.000     9.136639    9.226261 
---------------------------------------------------------------------- 
 
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.   [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
hospid: Identity             | 
                  var(_cons) |   .3073635   .0208819      .2690436    .3511413 
-----------------------------+------------------------------------------------ 
               var(Residual) |   .6882129     .01028      .6683566    .7086591 
------------------------------------------------------------------------------ 
 
Interpretation 
 
The _cons coefficient is the estimate of the fixed effect, the average intercept. The “Random-
effects Parameters” table contains the estimated variances of the random effects and their 
standard errors. The hospital-level random intercept variance is 0.3074 and the patient-level 
residual variance is 0.6882. With this information, the ICC = 0.3074 / (0.3074 + 0.6882) = 0.31.  
 
Random Intercepts, Fixed Slopes 
 
The Stata command for the random intercept, fixed slope model is: 

 
 
As with the empty model, the Stata command is XTMIXED and logtotchg is the dependent 
variable, while cage is added as a discharge-level predictor. The specification “hospid: “ after 
the || indicates random intercepts, which vary by hospid.  
 

xtmixed logtotchg cage || hospid: , variance mle 

xtmixed logtotchg || hospid: , variance mle 
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Results 
 
The key output is as follows: 
 
------------------------------------------------------------------------------ 
   logtotchg |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .0771748   .0043658    17.68   0.000     .0686179    .0857316 
       _cons |    9.06769    .023547   385.09   0.000     9.021538    9.113841 
------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.   [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
hospid: Identity             | 
                  var(_cons) |   .3031478   .0205646      .2654066    .3462559 
-----------------------------+------------------------------------------------ 
               var(Residual) |   .6660383   .0099562      .6468076    .6858408 
------------------------------------------------------------------------------ 
 
Interpretation 
 
The estimated coefficient of cage is 0.0772 and the average hospital intercept is 9.0677. The 
variance of the random intercepts is estimated as 0.3031, and the patient-level residual variance 
is estimated to be 0.6660. All estimates are statistically significant. 
 
Random Intercepts, Random Slopes 
 
The Stata commands for the random intercepts, random slope model are: 

 
For this model, cage is added as a random effect, listed after the double-bar ||. The random 
intercept is included by default. An unstructured covariance matrix is specified by the option 
cov(unstr) and maximum likelihood estimates are requested.  
 
Results 
 
The key output is as follows: 
 
------------------------------------------------------------------------------ 
   logtotchg |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .0718641   .0046444    15.47   0.000     .0627613    .0809669 
       _cons |   9.075364   .0229475   395.48   0.000     9.030388     9.12034 
------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.   [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
hospid: Unstructured         | 

xtmixed logtotchg cage || hospid: cage , cov(unstr) mle 



 

HCUP (01/10/2007) 36 HLM Report 

                    sd(cage) |    .031461   .0091529      .0177883     .055643 
                   sd(_cons) |   .5319018   .0197335      .4945976    .5720196 
            corr(cage,_cons) |   .3594371   .1973968     -.0679466    .6753583 
-----------------------------+------------------------------------------------ 
                sd(Residual) |   .8138795   .0061971      .8018236    .8261167 
------------------------------------------------------------------------------ 
LR test vs. linear regression:       chi2(3) =  2187.80   Prob > chi2 = 0.0000 
 
Note: LR test is conservative and provided only for reference. 
 
Interpretation 
 
The average cage coefficient is estimated to be 0.0719 and the average intercept is estimated 
to be 0.0754. The standard deviation of the random slopes, sd(cage), is estimated as 0.0315. 
The standard deviation of the random intercepts, sd(_cons), is estimated as 0.5319. The 
correlation between the random intercepts and random slopes, corr(cage, _cons), is estimated 
as 0.3594. The 95 percent confidence interval for the correlation is (-0.0679, 0.6754), which 
includes zero. Consequently, the correlation between intercepts and slopes is not significantly 
different from zero at the 5 percent significance level. 
 
Intercept- and Slopes-As-Outcomes 
 
The Stata commands are: 

 
The Stata command is XTMIXED, logtotchg is the dependent variable, cage is a discharge-level 
predictor, and teach is a hospital-level predictor. The newly added term, teachXcage, is the 
interaction between cage and teach, which must be constructed as a new variable in Stata. 
Random effects are specified after the double-bar ||. The intercept and CAge vary with the value 
of hospid. Maximum likelihood estimates are requested along with variance estimates 
corresponding to an unstructured covariance matrix. 
 
Results 
 
The key output is as follows: 
 
------------------------------------------------------------------------------ 
   logtotchg |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .0671278   .0060379    11.12   0.000     .0552937     .078962 
       teach |   .3656849   .0523762     6.98   0.000     .2630293    .4683404 
  teachXcage |   .0189177   .0094195     2.01   0.045     .0004558    .0373796 
       _cons |   8.996938   .0260543   345.32   0.000     8.945873    9.048003 
------------------------------------------------------------------------------ 
 
------------------------------------------------------------------------------ 
  Random-effects Parameters  |   Estimate   Std. Err.   [95% Conf. Interval] 
-----------------------------+------------------------------------------------ 
hospid: Unstructured         | 
                   var(cage) |    .000914   .0005684      .0002701    .0030927 

xtmixed logtotchg cage teach teachXcage || hospid: cage, variance cov(un) mle 
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                  var(_cons) |   .2636992   .0197212      .2277457    .3053285 
             cov(cage,_cons) |   .0049209   .0026008     -.0001766    .0100184 
-----------------------------+------------------------------------------------ 
               var(Residual) |   .6617481    .010063      .6423159    .6817681 
------------------------------------------------------------------------------ 
LR test vs. linear regression:       chi2(3) =  2093.34   Prob > chi2 = 0.0000 
 
Note: LR test is conservative and provided only for reference. 
 
Interpretation 
 
The average hospital cage slope indicates an increase in log(charges) equal to 0.0671 for every 
decade increase in age. Teaching hospitals average 0.3657 higher than non-teaching hospitals, 
when age = 40. The age slope is 0.0189 higher for teaching hospitals compared with non-
teaching hospitals, when age = 40. The average hospital intercept is estimated to be 8.997, 
when age = 40. 
 
Programming Code for Binary Outcomes 
 
SAS can fit binary or binomial outcomes using either PROC NLMIXED or PROC GLIMMIX. 
Although NLMIXED has a lot of flexibility, it requires special programming to fit hierarchical 
models. On the other hand, GLIMMIX was especially developed as a SAS procedure with 
syntax similar to that for PROC MIXED, described in the previous section of this report. Stata 
can fit binary or binomial outcomes using the GLLAMM command. Both PROC GLIMMIX and 
GLLAMM must be downloaded as described earlier. 
 
The probability of in-hospital mortality for patients with diabetes is modeled using the same 
subset of data that was used to model the logarithm of charges in the previous section. The 
patient-level predictor variable is “CAge,” which is age, centered at 40, and measured in 
decades = (age-40)/10. The hospital-level predictor is “Teach,” which is equal to 1 for teaching 
hospitals and 0 for non-teaching hospitals. 
 
Both the SAS and the Stata program code are given for each of the following models: 1) the 
empty model, 2) the random intercepts, fixed slopes model, 3) the random intercepts and 
random slopes model, and 4) the intercepts-as-outcomes model. These correspond to the 
theoretical models discussed earlier in this report. The program code and output described in 
this section of the report are solely for the purpose of establishing some basic sample programs. 
SAS and Stata offer several estimation options. The default estimation option for SAS is 
Restricted Maximum Likelihood (REML), which is used in the examples that follow. The 
estimation method used for Stata is Maximum Likelihood Estimation (MLE), which usually 
produces estimates similar to REML. The reader should consult the documentation for each 
procedure for alternative specifications and for other estimation options. 
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SAS Programs 
 
Random Intercepts, Empty Model 
 
The SAS code for the empty model is as follows: 

 
 
The PROC GLIMMIX code for modeling binary outcomes is similar to that used by the PROC 
MIXED procedure for modeling continuous outcomes. The GLIMMIX procedure can fit 
continuous, binary, or count outcomes, but it is primarily for non-continuous outcomes. The 
objective here is to model the probability of in-hospital mortality. Therefore, a logistic model is fit.  
  
The NOCLPRINT option prevents the printing of the CLASS level information, while the 
NOITPRINT option suppresses the display of the “Iteration History” table. The CLASS statement 
designates the hospital identifier, hospid, as a categorical variable. 
 
The MODEL statement gives the outcome variable, died, on the left side of the equal sign and 
the predictor variable(s) on the right side. The “descending” option is specified to model the 
probability that died = 1, instead of the probability that died = 0. No predictor variables are 
specified because the intercept term is included by default. The SOLUTION option specifies that 
the estimates for fixed effects should be printed. DIST=BINOMIAL specifies the binomial for the 
patient-level mortality distribution. The default “link” function, linking the dependent variable to 
the linear predictor, is the logit or log-odds. 
 
The RANDOM statement identifies random effects, which in this model is one term, the 
intercept. The SUB option on the random statement indicates the hierarchical structure. In this 
case, discharges are grouped into hospitals (e.g., subject = hospid).  
 
Results 
 
The key output is as follows: 
 

Model Information 

Data Set IN.NIS_DIABETES 

Response Variable DIED 

Response Distribution Binomial 

Link Function Logit 

Variance Function Default 

Variance Matrix Blocked By HOSPID 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model died (descending) = / dist=binomial solution ; 
  random intercept / sub=hospid ; 
  title 'One-way ANOVA with random effects for Mortality'; 
run; 
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Model Information 

Estimation Technique Residual PL 

Degrees of Freedom Method Containment 
 

Dimensions 

G-side Cov. Parameters 1 

Columns in X 1 

Columns in Z per Subject 1 

Subjects (Blocks in V) 842 

Max Obs per Subject 141 
 

Fit Statistics 

-2 Res Log Pseudo-Likelihood 69661.38

Generalized Chi-Square 7208.58

Gener. Chi-Square / DF 0.73
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

Intercept HOSPID 0.3582 0.2045
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF
t Valu

e Pr > |t|

Intercept -4.4720 0.09943 840 -44.98 <.0001
 
Interpretation 
 
The “Model Information” table provides basic model information, including the method of 
estimation. The “Dimensions” table shows how many columns exist in the fixed effects matrix 
(X) and in the random effects matrix (Z) parts of the model. In this case, there is only one fixed 
effect, the average intercept, and one random effect, the intercept. In PROC GLIMMIX, the 
covariance matrix for the fixed effects is labeled “R” and the covariance matrix for the random 
effects is labeled “G.”  There is one G-side covariance parameter. 
 
In the “Fit Statistics” table, PROC GLIMMIX produces log-likelihood and chi-square statistics, 
which can be compared to other models that include more terms in addition to the intercept. The 
“Covariance Parameter Estimates” table contains the variance of the random intercept, which is 
0.3582, with a standard error of 0.2045, indicating that the hospital-to-hospital intercept variance 
is not significantly different from 0. The “Solutions for Fixed Effects” table contains the estimate 
of the overall intercept, -0.4720, which is the log-odds of mortality for the average hospital. 
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Random Intercepts, Fixed Slopes 
 
The SAS code for the random intercepts, fixed slopes model is as follows: 

 
 
The only syntax change from the empty model, described above, is in the model statement, 
which now includes CAge as a “fixed” effect. 
 
Results  
 
The key output is as follows: 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

Intercept HOSPID 0.2883 0.2012
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept -5.6528 0.2140 840 -26.42 <.0001

CAge 0.5150 0.06240 9006 8.25 <.0001
 

Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 

DF F Value Pr > F

CAge 1 9006 68.10 <.0001
 
Interpretation 
 
The REML estimate of the hospital intercept variance, 0.2883, is contained in the “Covariance 
Parameter Estimates” table. The relatively large standard error for this estimate, .2012, 
suggests that hospitals do not differ statistically in their average diabetes mortality, after 
accounting for age. 
 
The “Solution for Fixed Effects” table displays parameter estimates for the fixed effects. The 
estimate of -5.6528 for the intercept is the log-odds of mortality for the average hospital, when 
age is equal to 40 (CAge is equal to 0). The estimated coefficient of CAge is 0.5150, which 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model died (descending) = CAge / dist=binomial solution ; 
  random intercept / sub=hospid ; 
  title 'One-way ANCOVA with random effects for Mortality'; 
run; 
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indicates that the log-odds of mortality increases by 0.515 for every decade increase in age. 
The standard errors for these fixed effects are very small, resulting in large t-statistics and low 
p-values. 
 
Random Intercepts, Random Slopes 
 
The SAS code for the random intercepts, random slopes model is as follows: 

 
 
Compared with the random intercept constant slope model, the random statement is changed to 
request random slopes for CAge. This model has two random effects, one for the intercept and 
one for the slope of CAge. The covariance structure option, type = un, requests an unstructured 
covariance matrix with three components: the intercept variance, the CAge slope variance, and 
the covariance between the random slopes and random intercepts. GLIMMIX offers a host of 
possible specifications for the covariance structure. The user should consult the GLIMMIX 
User’s Guide for an explanation of other structures.  
 
Results 
 
The key output is as follows: 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

UN(1,1) HOSPID 0.002395 0.9290

UN(2,1) HOSPID 0.000482 0.2304

UN(2,2) HOSPID 0.003430 0.06338
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept -5.6367 0.2117 840 -26.63 <.0001

CAge 0.5157 0.06224 739 8.29 <.0001
 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model died (descending) = CAge / dist=binomial solution ; 
  random intercept CAge / type=un sub=hospid ; 
  parms / noiter ; 
  title 'Random intercepts, random slopes model for Mortality'; 
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Type III Tests of Fixed Effects 

Effect 
Num 

DF 
Den 

DF F Value Pr > F 

CAge 1 739 68.66 <.0001 
 
Interpretation 
 
The variance-covariance estimates are shown in the table “Covariance Parameter Estimates.”  
The row labeled “UN(1,1)” is for the random intercept variance, the row labeled “UN(2,2)” is for 
the random slope variance, and the row labeled “UN(2,1)” is for the covariance between the 
two. All of these estimates are small and statistically insignificant.  
 
The estimates of the fixed effects are -5.6367 for the average intercept and 0.5157 for the 
coefficient of CAge, which are similar to the coefficients estimated for the previous model.  
 
Intercept- and Slopes-As-Outcomes 
 
The SAS code for the intercept- and slopes-as-outcomes model is as follows:  

 
 
Compared with the random intercepts and random slopes model, two terms are added to the 
model statement: Teach and CAge*Teach. Teach is a hospital-level variable equal to 1 for 
teaching hospitals and equal to 0 for non-teaching hospitals. CAge*Teach is an interaction term 
between CAge and TEACH. The random slopes of CAge are assumed to depend on hospital 
teaching status. 
 
Results 
 
The key output is as follows: 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standar
d Error

UN(1,1) HOSPID 0.002497 0.8779

UN(2,1) HOSPID 0.000540 0.2238

UN(2,2) HOSPID 0.003318 0.06359
 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model died (descending) = CAge Teach CAge*Teach / dist=binomial solution; 
  random intercept CAge / type=un sub=hospid ; 
  parms / noiter ; 
  Title 'Intercepts and slopes as outcomes model for Mortality'; 
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Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept -5.8830 0.3040 839 -19.35 <.0001

CAge 0.5988 0.08494 738 7.05 <.0001

Teach 0.5307 0.4177 8267 1.27 0.2040

CAge*Teach -0.1981 0.1252 8267 -1.58 0.1136
 
Interpretation 
 
The variance and covariance parameters are all very small and statistically insignificant, 
implying that the intercepts and slopes do not vary with hospital teaching status. 
 
For the fixed effects, the coefficient of CAge is significantly different from 0 whereas the main 
effect of Teach is not, indicating that the intercept for the average teaching hospital is not 
different from the average intercept for non-teaching hospitals. The interaction between CAge 
and Teach is not significant, indicating that the average age effect does not differ significantly by 
teaching status.  
 
Stata Programs 
 
Random Intercepts, Empty Model 
 
The Stata command is: 

 
The Stata command is GLLAMM and died is the dependent variable. The binomial distribution is 
specified along with the logit link. The option i() lists the hierarchical nested clusters from 
smallest to largest. For example, if the patients were nested within physicians and physicians 
were nested in hospitals, then the option would be i(physician hospital). In the present 
application, hospid is listed as the group or cluster identifier. The adapt option requests that 
adaptive quadrature be used in maximizing the likelihood. Adaptive quadrature is generally 
considered superior to other methods, especially for large cluster sizes and large intraclass 
correlations. However, it is more demanding computationally (Rabe-Hesketh et al., 2002). 
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -619.71704 
 
------------------------------------------------------------------------------ 
        died |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |  -4.658136   .1591222   -29.27   0.000     -4.97001   -4.346263 
------------------------------------------------------------------------------ 

gllamm died, i(hospid) link(logit) family(binom) adapt 
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Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .41705228 (.25297922) 
------------------------------------------------------------------------------ 
 
Interpretation 
 
The estimates using GLLAMM are different from those using GLIMMIX primarily due to the 
adaptive quadrature estimation used by GLLAMM (as an option). For example, the GLLAMM 
estimate of the overall intercept is -4.658, as compared with -4.472 using GLIMMIX. The 
GLLAMM estimate for the hospital-to-hospital intercept variance is 0.417, with a standard 
deviation of 0.253. 
 
Random Intercepts, Fixed Slopes 
 
The Stata commands are: 

 
The only change from the empty model for the GLLAMM statement, described earlier, is that 
CAge is added as a discharge-level predictor.  
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -575.94527 
  
------------------------------------------------------------------------------ 
        died |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .5178015   .0627319     8.25   0.000     .3948492    .6407537 
       _cons |  -5.809921   .2486373   -23.37   0.000    -6.297242   -5.322601 
------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 ***level 2 (hospid) 
  
    var(1): .33347854 (.24481664) 
------------------------------------------------------------------------------ 
 

gllamm died cage, i(hospid) link(logit) family(binom) adapt 
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Interpretation 
 
The estimate of the random intercept using GLLAMM with adaptive quadrature differs from the 
GLIMMIX estimate. The GLLAMM variance estimate of the random intercepts is 0.3335 while its 
estimation using GLIMMIX is 0.2883, although it is not statistically significant in either case. In 
addition, the estimates of the fixed effects are 0.5178 for the Cage slope and -5.8099 for the 
average hospital intercept. 
 
Random Intercepts, Random Slopes 
 
The Stata commands are: 

 
The first statement generates a vector ones and places it in the variable “cons.”  The second 
statement and third statement create “equations” for the random effects. The nrf option specifies 
the number of random effects, which is 2. The other options were explained earlier for models 
previously discussed. 
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -575.42525 
  
------------------------------------------------------------------------------ 
        died |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .4731404   .1135109     4.17   0.000     .2506632    .6956176 
       _cons |  -5.678198   .4056365   -14.00   0.000    -6.473231   -4.883165 
------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .02956028 (.04297933) 
    cov(2,1): -.0234992 (.15374653) cor(2,1): -.36208346 
    var(2): .14248858 (.73567786) 
------------------------------------------------------------------------------ 
 

gen cons = 1 
eq cons: cons 
eq cage: cage 
gllamm died cage, i(hospid) link(logit) family(binom) nrf(2) eqs(cage cons) 
adapt 
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Interpretation 
 
The estimates of the fixed effects are 0.47 for the average age slope and -5.68 for the average 
intercept. The slope and intercept variances are labeled “var(1)” and “var(2),” respectively, 
because that is the order in which they are listed in the eqs() option. The covariance estimate is 
labeled “cov(2,1).” The estimated slope variance is 0.0296 with a standard error of 0.0430. The 
estimated intercept variance is 0.1425 with a standard error of 0.7357. The estimated 
covariance is 0.0235 with a standard error of 0.1537. The estimated correlation, labeled 
“cor(2,1),” is -0.36 between the random slopes and random intercepts. 
 
Intercept- and Slopes-As-Outcomes 
 
The Stata commands are: 

 
The only difference between this program and the previous program is the specification of the 
interaction term teachXcage as a “fixed” effect.  
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -574.47715 
  
------------------------------------------------------------------------------ 
        died |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .5568866   .1256532     4.43   0.000     .3106109    .8031624 
       teach |   .5251542   .4335477     1.21   0.226    -.3245836    1.374892 
  teachXcage |  -.1792738   .1307934    -1.37   0.170    -.4356241    .0770766 
       _cons |   -5.93533   .4528876   -13.11   0.000    -6.822973   -5.047686 
------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
  
***level 2 (hospid) 
  
    var(1): .01573126 (.04290265) 
    cov(2,1): .0009305 (.14929964) cor(2,1): .02014846 
    var(2): .13557539 (.69979177) 
------------------------------------------------------------------------------ 

gen cons = 1 
gen teachXcage = teach * cage 
eq cage = cage 
eq cons = cons  
gllamm died cage teach teachXcage, i(hospid) link(logit) family(binom) 
nrf(2) eqs(cage cons) adapt 
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Interpretation 
 
The average slope on cage is .5569 and the average intercept is -5.9353, controlling for the 
value of age. Neither the teaching effect nor the crossed age/teaching effect is statistically 
significant. The hospital-to-hospital variance of the CAge slopes is given by var(1), while the 
variance of the intercepts (conditional on age) is given by var(2)—var(1) and var(2) correspond 
to variables in the same order as they are listed in the eqs() option. The covariance between the 
random intercepts and random slopes is given by var(2,1) and the correlation between them is 
given by cor(2,1). However, none of the variances are statistically different from zero, as they 
have relatively large estimated standard errors (in parentheses). 
 
Programming Code for Count Outcomes 
 
SAS can fit count outcomes using either PROC NLMIXED or PROC GLIMMIX. Although 
NLMIXED has a lot of flexibility, it requires special programming to fit hierarchical models. On 
the other hand, GLIMMIX was especially developed as a SAS procedure with syntax similar to 
that for PROC MIXED, used for continuous outcomes. Stata can fit count outcomes using the 
GLLAMM command. Both PROC GLIMMIX and GLLAMM must be downloaded, as described 
earlier. 
 
The patient length of stay (LOS) for patients with diabetes is modeled using the same subset of 
data that was used to model the logarithm of charges and in-hospital mortality in the previous 
sections. The dependent variable, measured in days, is redefined by subtracting 1 to create a 
variable with integer values starting at zero, just as the Poisson distribution does. The patient-
level predictor variable is “CAge,” which is age, centered at 40, and measured in decades = 
(age-40)/10. The hospital-level predictor is “Teach,” which is equal to 1 for teaching hospitals 
and 0 for non-teaching hospitals. 
 
Both the SAS and the Stata program code are given for each of the following models: 1) the 
empty model, 2) the random intercepts, fixed slopes model, 3) the random intercepts and 
random slopes model, and 4) the intercepts-as-outcomes model. These correspond to the 
theoretical models discussed earlier in this report. The program code and output described in 
this section of the report are solely for the purpose of establishing some basic sample programs. 
SAS and Stata offer several estimation options. The default estimation option for SAS is 
Restricted Maximum Likelihood (REML), which is used in the examples that follow. The 
estimation method used for Stata is Maximum Likelihood Estimation (MLE), which usually 
produces estimates similar to REML. The reader should consult the documentation for each 
procedure for alternative specifications and for other estimation options. 
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SAS Programs 
 
Random Intercepts, Empty Model 
 
The SAS code for the empty model is as follows: 

The SAS code for count outcomes is similar to the PROC GLIMMIX code that was described for 
binary outcomes. The CLASS statement designates the hospital identifier, hospid, as a 
categorical variable. The NOCLPRINT option prevents the printing of the CLASS level 
information while the NOITPRINT option suppresses the display of the “Iteration History” table.  
 
The dependent variable in the MODEL statement is los_1 (LOS minus 1). The DIST = 
POISSON option specifies the Poisson distribution. The default link function for the Poisson 
distribution is the log link. No predictor variables are entered on the right side of the equal sign 
because the intercept term is included by default. The SOLUTION option requests the printing 
of estimates for fixed effects. 
 
The RANDOM statement instructs the procedure to fit random intercepts that vary at the 
hospital level (sub=hospid). 
 
For this particular data set, the procedure failed to converge without the PARMS statement. This 
can happen for any number of reasons. GLIMMIX provides many estimation options that can be 
employed to solve convergence problems. In this case, the PARMS statement, which is usually 
used to set initial values for the covariance or scale parameters, is used with the “noiter” option 
to solve for minimum variance quadratic unbiased estimates. Other options could have been 
employed in an attempt to solve the convergence problem. This is just one example. 
 
Results 
 
The key output is as follows: 
 

Model Information 

Data Set IN.NIS_DIABETES 

Response Variable Los_1 

Response Distribution Poisson 

Link Function Log 

Variance Function Default 

Variance Matrix Blocked By HOSPID 

Estimation Technique Residual PL 

Degrees of Freedom Method Containment 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model los_1 = / dist=poisson solution ; 
  random intercept / sub=hospid ; 
  parms / noiter ;  * This statement not generally necessary ; 
  Title 'One-way ANOVA with random effects for LOS-1'; 
run; 
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Dimensions 

G-side Cov. Parameters 1 

Columns in X 1 

Columns in Z per Subject 1 

Subjects (Blocks in V) 842 

Max Obs per Subject 141 
 

Fit Statistics 

-2 Res Log Pseudo-Likelihood 66834.19

Generalized Chi-Square 60829.02

Gener. Chi-Square / DF 6.14
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

UN(1,1) HOSPID 0.2183 0.01175
 
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 1.2606 0.01831 840 68.84 <.0001
 
Interpretation 
 
The “Model Information” table provides information about how the GLIMMIX procedure 
proceeds with the model and the methods of estimation. The “Dimensions” table shows how 
many columns are in the fixed effects matrix (X) and in the random effects matrix (Z) parts of the 
model. In this case, there is only one fixed and one random effect, the intercept. The number of 
hospitals (subjects) is 842, and the maximum number of patients in a hospital (max obs per 
subject) is 141. 
 
The “Fit Statistics” table presents statistics that can be used to compare the fit with other model 
specifications. 
 
The “Covariance Parameter Estimates” table contains the estimate of the random intercept 
variance, 0.2183, and its standard error, 0.01175. The “Solutions for Fixed Effects” table 
contains the estimate of the overall average hospital intercept, 1.2606, which represents the 
hospital average for log(LOS-1), because the link function is the logarithm. This null model is 
useful for estimating the magnitude and significance of the between-hospital variance, and not 
much else. 
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Random Intercepts, Fixed Slopes 
 
The SAS code for the random intercepts, fixed slopes model is as follows: 

 
Notice that nothing has changed except for the Model statement, which now includes the 
additional fixed effect for CAge. 
 
Results 
 
The key output is as follows: 
 

Fit Statistics 

-2 Res Log Pseudo-Likelihood 63856.68

Generalized Chi-Square 57610.09

Gener. Chi-Square / DF 5.83
 
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

UN(1,1) HOSPID 0.2110 0.01181
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 1.0554 0.01874 840 56.32 <.0001

CAge 0.1231 0.002675 9048 46.02 <.0001
 
Interpretation 
 
Notice that the estimate of the ratio of the Generalized Chi-Square statistic has diminished from 
6.14 to 5.83, indicating that the current model, which includes age, is a better fit than the null 
model. The intercept variance is slightly smaller in this model, 0.2110, compared with 0.2183 in 
the null model. The estimated coefficient of CAge is 0.1231. Recall that this Poisson regression 
models the average of log(LOS-1). Consequently, the exponentiated coefficient, 1.13 = 
exp(0.1231), indicates that the average patient LOS increases about 13 percent for every 
decade increase in patient age. 
 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model los_1 = CAge / dist=poisson link=log solution ; 
  random intercept / sub=hospid ; 
  parms / noiter ;  * This statement not generally necessary ; 
  Title 'One-way ANCOVA with random effects for LOS-1'; 
run; 



 

HCUP (01/10/2007) 51 HLM Report 

Random Intercepts, Random Slopes 
 
The SAS code for the random intercepts, random slopes model is as follows: 

 
Compared with the model in the previous section, the RANDOM statement includes two random 
effects, one for the INTERCEPT and one for the CAge slopes, both of which will vary by hospid 
(sub=hospid). An unstructured covariance option is selected (type=un) for the variance of the 
random intercepts, random slopes, and their covariance. The remaining parameters are 
explained in the previous two sections. 
 
Results 
 
The key output is as follows: 
 

Fit Statistics 

-2 Res Log Pseudo-Likelihood 59477.84

Generalized Chi-Square 52045.03

Gener. Chi-Square / DF 5.26
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

UN(1,1) HOSPID 0.2743 0.01955

UN(2,1) HOSPID -0.04368 0.005683

UN(2,2) HOSPID 0.02562 0.002439
 

Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF t Value Pr > |t|

Intercept 1.0664 0.02211 840 48.23 <.0001

CAge 0.1173 0.007223 740 16.23 <.0001
 
 
Interpretation 
 
In the table “Covariance Parameter Estimates,” the value of UN(1,1), 0.2743, is the estimated 
intercept variance; the value of UN(2,2), 0.02562, is the estimated slope (of CAge) variance; 
and the value of UN(2,1), -0.04368, is the estimated covariance between hospital intercepts and 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model los_1 = CAge / dist=poisson solution ; 
  random intercept CAge / type=un sub=hospid ; 
  parms / noiter ;  * This statement not generally necessary ; 
  Title 'Random intercepts, random slopes model for LOS-1'; 
run; 
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hospital slopes. The corresponding standard errors are small, suggesting that hospital 
intercepts and slopes vary significantly and that the correlation between them is negative (see 
figure 7(d). The estimated intercept/slope correlation is -0.52 = -0.04368 / 
sqrt[(0.2743)(0.02562)]. Therefore, hospitals with higher intercept values tend to have smaller 
slopes. 
 
The average coefficient for CAge is estimated as 0.1173. Therefore, the average LOS increases 
by an estimated 12 percent for every decade increase in age at the average hospital (the 
multiple of CAge is 1.1245 = exp(0.1173)). 
 
Intercept- and Slopes-As-Outcomes 
 
The SAS code for the intercept- and slopes-as-outcomes model is as follows:  

 
The only change from the random-intercepts, random-slopes model described in the previous 
section is the addition of the interaction term, CAge*Teach. 
 
Results 
 
The key output is as follows: 
 

Fit Statistics 

-2 Res Log Pseudo-Likelihood 59407.34

Generalized Chi-Square 51960.03

Gener. Chi-Square / DF 5.26
 

Covariance Parameter Estimates 

Cov Parm Subject Estimate 
Standard 

Error

UN(1,1) HOSPID 0.2767 0.01993

UN(2,1) HOSPID -0.04336 0.005640

UN(2,2) HOSPID 0.02528 0.002378
 

proc glimmix data=in.nis_diabetes noitprint noclprint ;  
  class hospid ; 
  model los_1 = CAge Teach CAge*Teach / dist=Poisson solution  ; 
  random intercept CAge / type=un sub=hospid ; 
  parms / noiter ;  * This statement not generally necessary ; 
  Title 'Intercepts and slopes as outcomes model for LOS-1'; 
run; 
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Solutions for Fixed Effects 

Effect Estimate 
Standard 

Error DF
t Valu

e Pr > |t|

Intercept 1.0125 0.02562 839 39.52 <.0001

CAge 0.1166 0.008400 739 13.88 <.0001

Teach 0.2280 0.05154 8308 4.42 <.0001

CAge*Teach 0.005448 0.01630 8308 0.33 0.7382
 
Interpretation 
 
The estimate for the random intercept variance is 0.2767, the random slope variance estimate is 
0.02528, and the estimate for the covariance between the intercepts and slopes is -0.04336. 
These estimates are very close to the estimates from the previous model. 
 
The estimates of “fixed” effects, patient age and hospital teaching status, are both statistically 
significant. On average, the LOS is about 25 percent higher at teaching hospitals than it is at 
non-teaching hospitals (the multiple is 1.256 = exp(0.2280)). Of course, this difference might be 
explained by differences in case-mix severity between teaching and non-teaching hospitals, 
which could be tested by adding patient severity measures to the regression. The interaction 
between age and teaching status is not statistically significant. Consequently, the effect of age 
on patient LOS does not differ appreciably between teaching and non-teaching hospitals. 
 
Stata Programs 
 
Random Intercepts, Empty Model 
 
The Stata command is: 

 
The Stata command GLLAMM is used to obtain maximum likelihood estimates for the empty 
model. The dependent variable is los_1 and no predictor variables are entered. The options 
family(poisson) and link(log) are specified to model the outcome. The option i(hospid) indicates 
that patients are grouped by hospital. The “adapt” option requests that adaptive quadrature be 
used for numerical integration in maximizing the likelihood function. This method often results in 
better estimates than those produced by other methods (Rabe-Hesketh et al., 2002). 
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -36907.51 
  
------------------------------------------------------------------------------ 
       los_1 |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |    1.21957   .0213992    56.99   0.000     1.177629    1.261512 

gllamm los_1, i(hospid) link(log) family(poisson) adapt 
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------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .29732598 (.01917026) 
------------------------------------------------------------------------------ 
 
Interpretation 
 
The estimate of the random intercept for the average hospital is 1.2196, which is the average of 
the log(LOS-1) for the average hospital. The hospital-to-hospital intercept variance is estimated 
to be 0.2973, with a standard error of 0.0192. 
 
Random Intercepts, Fixed Slopes 
 
The Stata command is: 

 
Here, cage is added as a “fixed” predictor to the null model described in the previous section.  
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -35785.412 
  
------------------------------------------------------------------------------ 
       los_1 |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .1231055   .0026815    45.91   0.000     .1178498    .1283612 
       _cons |   1.017756   .0213553    47.66   0.000     .9759006    1.059612 
------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .27581157 (.01802368) 
------------------------------------------------------------------------------ 
 

gllamm los_1 cage, i(hospid) link(log) family(poisson) adapt 
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Interpretation 
 
The estimate of the average intercept is 1.0178, conditional on patient age. The estimated age 
coefficient is 0.1231, indicating that LOS increases by about 13 percent for every decade 
increase in age (the multiple is 1.1310 = exp(0.1231)). The estimated variance of the random 
intercepts is 0.2758, with a standard error of 0.0180. 
 
Random Intercepts, Random Slopes 
 
The Stata commands are: 

 
For random slope models, gllamm requires all random effects to be specified using the eqs() 
option. Its arguments are “equations” defined by “eq” commands. Consequently, the first 
command in the Stata program, “gen” creates (the intercept variable) cons, which is assigned a 
value of 1 for every case. The second and third (eq) commands create “equations” for age and 
the intercept. Compared with the previous model, with cage as a fixed effect, the gllamm 
command includes the option eqs(cage cons). It is important to pay attention to the order of the 
arguments in the eqs() option because the variances for random effects are labeled in the same 
order. 
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -35104.891 
  
------------------------------------------------------------------------------ 
       los_1 |      Coef. Std. Err.    z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .1193281   .0071251    16.75   0.000     .1053632     .133293 
       _cons |   1.015129   .0244502    41.52   0.000     .9672074     1.06305 
------------------------------------------------------------------------------ 
  
  
Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .02109545 (.00179995) 
    cov(2,1): -.03559773 (.00521775) cor(2,1): -.42943507 
    var(2): .32573232 (.02440816) 
 

gen cons = 1 
eq cage = cage 
eq cons = cons  
gllamm los_1 cage, i(hospid) link(log) family(poisson) nrf(2) eqs(cage 
cons) adapt  
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Interpretation 
 
The estimates of the fixed effects are 0.1193 for the average age coefficient, and 1.0151 for the 
average intercept. Exponentiating the average age coefficient gives a multiple of 1.127 for the 
effect of each decade of age on ALOS at the average hospital. That is, ALOS increases an 
average of 12.7 percent for every additional decade of patient age at the average hospital. 
 
The estimate of the variance for the random age coefficients is 0.0211 and the estimate for the 
random intercept variance is 0.3257. Remember that these variances, var(1) and var(2), are 
numbered in the same order as they are listed in the eqs() option. The estimated covariance 
between the random intercepts and random slopes is -0.0356, yielding an estimated correlation 
of -0.43. This implies that hospitals with larger intercepts tend to have smaller slopes (as in 
figure 7(d)). 
 
Intercept- and Slopes-As-Outcomes 
 
The Stata commands are: 

 
This model contains commands and options identical to the model in the previous section, with 
the addition that a new variable, teachXcage, is created as the product of cage and teach, which 
is entered as an additional predictor. Teach is a hospital-level variable equal to 1 for teaching 
hospitals and equal to 0 for non-teaching hospitals. 
 
Results 
 
The key output is as follows: 
 
gllamm model 
  
log likelihood = -35089.15 
  
------------------------------------------------------------------------------ 
       los_1 |      Coef.  Std. Err.     z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        cage |   .1188993   .0083335    14.27   0.000     .1025661    .1352326 
       teach |   .2636844   .0548162     4.81   0.000     .1562466    .3711222 
  teachXcage |   .0039677   .0153416     0.26   0.796    -.0261013    .0340367 
       _cons |   .9579603   .0277979    34.46   0.000     .9034774    1.012443 
------------------------------------------------------------------------------ 
  
  

gen cons = 1 
gen teachXcage = teach * cage 
eq cage = cage 
eq cons = cons  
gllamm los_1 cage teach teachXcage, i(hospid) link(log) family(poisson) 
nrf(2) eqs(cage cons) adapt 
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Variances and covariances of random effects 
------------------------------------------------------------------------------ 
 
  
***level 2 (hospid) 
  
    var(1): .02119057 (.00180921) 
    cov(2,1): -.03581881 (.00515187) cor(2,1): -.43708377 
  
    var(2): .31692054 (.02372454) 
------------------------------------------------------------------------------ 
 
Interpretation 
 
The fixed effects are all significant except for the interaction between patient age and hospital 
teaching status. The estimated coefficient for Teach is 0.2637, indicating that the ALOS for 
teaching hospitals is about 30 percent higher for teaching hospitals than that it is for non-
teaching hospitals (note: exp(0.2637) = 1.3017). Of course, this difference might be explained 
by different case-mix severity between teaching and non-teaching hospitals, which could be 
tested by adding a measure of patient severity as a predictor variable. The average coefficient 
for cage is 0.1189, implying that ALOS increases (at the average hospital) by about 12.6 
percent for every decade increase in patient age. 
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RECOMMENDATIONS 
 
Hierarchical models should be one of many statistical techniques in every HCUP analyst’s 
toolkit. It is a useful regression methodology for nested data: discharges within hospitals, visits 
within patients, patients within physicians, and so on. When properly specified, these models 
can lead to better inferences and yield more information than is available from traditional, 
standard regression models. 
 
Hierarchical data structures almost always induce within-group correlation that should not be 
ignored. Statistical packages like Stata, SUDAAN, and SAS provide procedures for survey data 
that explicitly account for sampling designs involving probability samples with stratification and 
clustering, such as the designs employed for some HCUP databases. Also, the Generalized 
Estimating Equations method properly accounts for clustering and grouping for the purpose of 
estimating regression coefficients and their standard errors. However, analysts who want more 
flexibility in their models or who want to analyze the variances and covariances at each level of 
their data structure should employ HLM. 
 
The analyst should begin with the most basic models, starting with the (empty) components of 
variance model and estimating the intraclass correlation coefficient (ICC) to determine the 
relative magnitude of the within-group and between-group variance. Then, assuming that the 
ICC is positive, predictors should be added to the random-intercepts model, based on 
substantive theory, while monitoring the reduction in variance at each level of the hierarchy. 
Complexity should be added only if the model is found to be deficient. Random slopes might be 
suggested either by the data or by theory. However, the analyst should be wary of making the 
model overly-complicated because it makes estimation and interpretation more difficult.  
 
There are numerous other resources available to aid further study and to help researchers fit 
these models to their data. The introductory texts listed in the bibliography are a good place to 
start. In addition, the recent book by Twisk (2006), which is available in paperback, provides a 
very readable introduction to HLM written especially for non-statistician researchers. There are 
several good Websites containing downloadable data, programs, papers, presentations, and 
links to other HLM Websites. Two especially comprehensive sites are the Centre for Multilevel 
Modelling Website: http://www.cmm.bristol.ac.uk/ and the UCLA Academic Services Website: 
http://www.ats.ucla.edu/stat/. 
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Widely-used software for hierarchical modeling (not complete!):  
 
BUGS (General-purpose Bayesian modeling software, well adapted to development of fully Bayesian 
nonstandard models.) http://www.mrc-bsu.cam.ac.uk/bugs/  

HLM (Standalone package for hierarchical models.) http://www.ssicentral.com/hlm/hlm.htm  

MLwiN (Another standalone package, with Windows and command line interface. Both maximum 
likelihood and Bayesian approaches to inference.) http://multilevel.ioe.ac.uk/features/index.html  
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functionality for older versions) for generalized (logistic, Poisson, etc.) mixed models. http://www.sas.com/  

See article by Judith Singer at http://gseweb.harvard.edu/~faculty/singer/sasprocmixed.pdf (also included 
in handouts for this tutorial).  

MIXOR/MIXREG: Free standalone package by Hedeker and Gibbons) 
http://www.uic.edu/~hedeker/mix.html  

Stata: gllamm procedure. (Fairly general function operating within this general-purpose statistical 
package.) http://www.Stata.com, http://www.gllamm.org 


	CaseforPOAIndicator_final_060806 citation.pdf
	contact.pdf
	EXECUTIVE SUMMARY
	INTRODUCTION
	SOURCES OF AMBULATORY SURGERY DATA
	Visit Level Data
	2001 HCUP State Ambulatory Surgery Databases (SASD)

	Facility Level Data
	American Hospital Association Annual Survey of Hospitals
	Centers for Medicare and Medicaid Services Provider of Services File
	SMG Freestanding Outpatient Surgery Center Data


	COMPARISONS OF AMBULATORY SURGERY DATA
	SASD versus AHA

	CONCLUSION
	APPENDIX 1. NUMBER OF SURGERIES BY STATE AND BODY SYSTEM, 2001 SASD

	contact.pdf
	EXECUTIVE SUMMARY
	INTRODUCTION
	SOURCES OF AMBULATORY SURGERY DATA
	Visit Level Data
	2001 HCUP State Ambulatory Surgery Databases (SASD)

	Facility Level Data
	American Hospital Association Annual Survey of Hospitals
	Centers for Medicare and Medicaid Services Provider of Services File
	SMG Freestanding Outpatient Surgery Center Data


	COMPARISONS OF AMBULATORY SURGERY DATA
	SASD versus AHA

	CONCLUSION
	APPENDIX 1. NUMBER OF SURGERIES BY STATE AND BODY SYSTEM, 2001 SASD



	Subhead: Hierarchical Modeling using HCUP DataReport# 2007-01


