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2D finite element modeling
Required by project specifications

600 psf construction , _
Linear elastic beam
surcharge
element for wall (l,)
] Linear elastic braces,
NARAVAVEVavae.virY: prestressed at installation

Mohr-Coulomb
constitutive model
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SOE performance

Maximum theoretical (Mohr-Coulomb) vs. measured deformation

Parcel/Excavation: M1/North M2/South

Theoretical Measured Theoretical Measured

A (mm) (mm) (mm) (mm)
Tieback 58 69 51 43
Internally-braced* 58 23 66 23

Center cross-section of tunnel 58 94 56 33

Limiting performance
criteria by specification:

89 mm [3.5in.]
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SOE performance
Maximum theoretical vs. measured deformation

Prediction was

Parcel/Excavation: M1/North
, within 10-15% of
Section Theoretical Measured t
(mm) (mm) measuremen
Typical tieback 58 69 51 43 1
Typical internally-braced* 58 23 66 23

Center cross-section of tunnel 58

Limiting performance
criteria by specification:

89 mm [3.5in.]
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SOE performance
Maximum theoretical vs. measured deformation
M1/North M2/South

Parcel/Excavation:

. Theoretical Measured Theogeatica
Section =
(mm) (mm) Prediction was
Typical tieback 58 69 { within 60-65% of
. . measurement
Typical internally-braced* 58 23
rCenter cross-section of tunnel 58 94 56 33 1
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Max. tunnel movement:

38 mm [1.5in.]
MEASURED:

6.6 mm [0.26 in.]
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SOE performance
Maximum theoretical vs. measured deformation

Parcel/Excavation: M1/North

Theoretical Measured Prediction was

Section (mm) (mm) within 35-40% of
measurement
Typical tieback 58 69
1 Typical internally-braced* 58 23 66 23 |
Center cross-section of tunnel 58 94 56 33

Limiting performance
Criteria by specification:

89 mm [3.5in.]
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Performance: (3) Different stages

MOHR-COULOMB

20

did a poor job of capturing

wall movements.
(rigid body translation)

INCLINOMETER

Showed much less
movement at the toe
than predicted

CALIBRATION

Not perfect, but
Hardening Soil model
got a lot closer to
measured response
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Hardening Soil model: Secant modulus, E,

Secant Modulus, E50 (MPa)

E., for the clay deposits
had a major influence on
lateral wall movements in
later (deeper) excavation
stages
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Back-calculated moment

Slurry Wall Moment (kNm)
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Conclusions & takeaways

* Adjusting stiffness parameters of the
Marine Clay layer had the biggest
influence on wall movements

— Secant modulus E., in later stages of excavation

 Mohr-Coulomb (MC) model was not
good at estimating movements

— Hardening Soil (HS) takes into account stress-
dependent stiffness

* Initial MC model was OK for
structural design

— Calibrated HS model was too rigid — could not
capture the curvature of the real wall
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Cone Penetrometer test

Undrained Shear Strength, SUI (kPa)

Elevatin (ft, BCB)
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