Design and performance of a temporary concrete diaphragm wall excavation support system

South Boston, Massachusetts

Wystan Carswell, Ph.D., P.E.

Presentation overview

- Project description and site conditions
- Finite element model used for design

- Temporary Support of Excavation (SOE) performance
- Back modeling based on performance
- Conclusions and takeaways

1

2

3

4

5

Support of Excavation plan

EAST SERVICE ROAD

5

Site conditions

SOE performance

Maximum theoretical (Mohr-Coulomb) vs. measured deformation

Parcel/Excavation:	M1/North		M2/South	
Section	Theoretical (mm)	Measured (mm)	Theoretical (mm)	Measured (mm)
Tieback	58	69	51	43
Internally-braced*	58	23	66	23
Center cross-section of tunnel	58	94	56	33

Limiting performance criteria by specification:

89 mm [3.5 in.]

SOE performance Maximum theoretical vs. measured deformation

SOE performance Maximum theoretical vs. measured deformation

Parcel/Excavation:	M1/North		M2/South	
Section	Theoretical (mm)	Measured (mm)	Theo (n	retical Measured Prediction was
Typical tieback	58	69	5	within 60-65% of
Typical internally-braced*	58	23	e	measurement
Center cross-section of tunnel	58	94	5	6 33

Limiting performance criteria by specification:

89 mm [3.5 in.]

Max. tunnel movement:

38 mm [1.5 in.]

MEASURED:

6.6 mm [0.26 in.]

SOE performance Maximum theoretical vs. measured deformation

Limiting performance Criteria by specification:

89 mm [3.5 in.]

Performance: (3) Different stages

Hardening Soil model: Secant modulus, E₅₀

Back-calculated moment

MOHR-COULOMB

Did a better job at estimating design loading HS model

Conclusions & takeaways

- Adjusting stiffness parameters of the Marine Clay layer had the biggest influence on wall movements
 - Secant modulus E₅₀ in later stages of excavation
- Mohr-Coulomb (MC) model was not good at estimating movements
 - Hardening Soil (HS) takes into account stressdependent stiffness
- Initial MC model was OK for structural design
 - Calibrated HS model was too rigid could not capture the curvature of the real wall

Thank you! Questions?

HALEY ALDRICH

STI MANTE

Allen

Aprov

Cone Penetrometer test

