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A Public & Private Events Framework 
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• An Active Object with a process is 

• doing things asynchronously and 

• generating (producing) associated data 

• One or more processes needs to 

• make synchronous calls into the active object 

• know when an event happens, and 

• get (consume) the associated event data. 

The Scenario (Use Case) 

Presentation Focus 



PUSHING THE  

LIMITS OF LABVIEW 5 

A Solution Based on 

User Events 
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Let’s Get This Straight 

• User Events are a very easy-to-use feature with a lot of 

cool functionality. 

• They form the basis of JKI’s primary application 

frameworks & templates. 

• If we could get a couple things fixed/added to LabVIEW, 

we could do even better. 

• Things keep getting better. 
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Let’s see some code! 
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A “Typical” Module VI Tree 
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Get Public Events 

Get Public Events.vi Public Events.ctl 
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Using public events is easy! 
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Using Public Events 

Spawn 

Process 

Fires 

Events 

Get 

Public 

Events Register 

for Events 

Handle Events 

Close 

Process 
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Code maintenance is easy! 
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Easy for Users: New Events 

New Events Added to the Event Cluster… 

…Immediately Available in Edit Events Dialog 
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Easy for Users: Event Data Changes 

New Event Data Added (or type changed) 

Available on Event 

Data Unbundle 
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One to Many 

(multiple consumers) 
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Multiple Consumers 

Fires 

Events 



PUSHING THE  

LIMITS OF LABVIEW 17 

Don’t Fork the Event Registration! 

This does not 

create another 

subscriber 

You need to 

call Reg Events 

for each Event 

Structure 
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Multiple Subscribers 

That’s better  
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Can Get Public Events Where Registering 

Seems redundant, 

but is more modular 
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Use in a state machine 
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First, some gotchas 

(les pièges) 
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Event Type Propagation Gotchas 

Don’t wire input to 

Register for Events 
Don’t typedef (or in other ways “constrain”) 

type propagation on this wire* 

*Type must flow freely from Reg Events node 

to Event Structure’s Dynamic Events terminal. 
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Initialize and Register for Events 
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Run, Wait for Events, and Handle Them 
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Destroy User Event Registration and Close 
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Two State Machine Subscribers 

Outside 

Loop 
Outside 

Loop 
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Remember the gotchas? 
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Don’t Wire the Event Registration Input 
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Don’t Wire the Event Registration Input 
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Put Event Reg in Separate Shift Register 

Do give Event Registration it’s own shift register 

Don’t 

bundle it 

with state 

data 
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Don’t Wire the Event Reg Through Event Struct 
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Don’t Wire the Event Reg Through Event Struct 
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Oh, and one more gotcha. 

(That just got me!) 
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Wire Event Reg Straight Through 

Wire 

Straight 

Through 

Not from 

Event Reg 

Terminal 
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• Saves time (lightweight & easy to use) 

• for module developer 

• for module users 

• Improves performance 

• by avoiding polling for data 

• Improves design 

• by loosely coupling producers from consumers 

• Extensible 

• by being compatible with by-ref and by-value architectures 

Benefits of this Approach 
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• Incorporate into your module template (by-val, by-
ref, actors) 

• Starting and stopping asynchronous process 

• Private/Protected/Community Events 

• Sending message into the asynchronous process 
and getting a synchronous response 

Extensions and Tweaks 
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• Most annoying bug ever (Event Struct. Frame Remapping). 

Fixed in LV2011! 

• Event Structure timeout gets reset whenever unhandled 

events fired. 

Fixed in LV2012! 

• No Event queue management or introspection. 

Maybe fixed in LV2013? 

• No Notifier-like behavior (“ignore previous”). 

Maybe fixed in LV2013? 

 

Things That Suck(ed) 
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Take Home Point 

• User Events are a very easy-to-use feature  

with a lot of cool functionality. 

• They form the basis of JKI’s primary application 

frameworks & templates. 

• If we could get a couple things fixed/added to LabVIEW, 

we could do even better. 

• Things keep getting better, and we’re very thankful! 
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One More Thing 

Join Our Team 
Help us build the next generation of instrumentation. 

 

Talk to a JKI engineer or visit  jki.net/careers. 


