
PUSHING THE LIMITS OF LABVIEW

Public Events for “Modules”
A form of Interprocess Communication in LabVIEW

Jim Kring, JKI

at the European CLA Summit 2013

PUSHING THE

LIMITS OF LABVIEW 2
 | JKI CONFIDENTIAL

A Public & Private Events Framework

PUSHING THE

LIMITS OF LABVIEW 3 3
PUSHING THE

LIMITS OF LABVIEW
 | JKI CONFIDENTIAL

Public Events for Modules

PUSHING THE

LIMITS OF LABVIEW 4

• An Active Object with a process is

• doing things asynchronously and

• generating (producing) associated data

• One or more processes needs to

• make synchronous calls into the active object

• know when an event happens, and

• get (consume) the associated event data.

The Scenario (Use Case)

Presentation Focus

PUSHING THE

LIMITS OF LABVIEW 5

A Solution Based on

User Events

PUSHING THE

LIMITS OF LABVIEW 6

Let’s Get This Straight

• User Events are a very easy-to-use feature with a lot of

cool functionality.

• They form the basis of JKI’s primary application

frameworks & templates.

• If we could get a couple things fixed/added to LabVIEW,

we could do even better.

• Things keep getting better.

PUSHING THE

LIMITS OF LABVIEW 7

Let’s see some code!

PUSHING THE

LIMITS OF LABVIEW 8

A “Typical” Module VI Tree

PUSHING THE

LIMITS OF LABVIEW 9

Get Public Events

Get Public Events.vi Public Events.ctl

PUSHING THE

LIMITS OF LABVIEW 10

Using public events is easy!

PUSHING THE

LIMITS OF LABVIEW 11

Using Public Events

Spawn

Process

Fires

Events

Get

Public

Events Register

for Events

Handle Events

Close

Process

PUSHING THE

LIMITS OF LABVIEW 12

Code maintenance is easy!

PUSHING THE

LIMITS OF LABVIEW 13

Easy for Users: New Events

New Events Added to the Event Cluster…

…Immediately Available in Edit Events Dialog

PUSHING THE

LIMITS OF LABVIEW 14

Easy for Users: Event Data Changes

New Event Data Added (or type changed)

Available on Event

Data Unbundle

PUSHING THE

LIMITS OF LABVIEW 15

One to Many

(multiple consumers)

PUSHING THE

LIMITS OF LABVIEW 16

Multiple Consumers

Fires

Events

PUSHING THE

LIMITS OF LABVIEW 17

Don’t Fork the Event Registration!

This does not

create another

subscriber

You need to

call Reg Events

for each Event

Structure

PUSHING THE

LIMITS OF LABVIEW 18

Multiple Subscribers

That’s better

PUSHING THE

LIMITS OF LABVIEW 19

Can Get Public Events Where Registering

Seems redundant,

but is more modular

PUSHING THE

LIMITS OF LABVIEW 20

Use in a state machine

PUSHING THE

LIMITS OF LABVIEW 21

First, some gotchas

(les pièges)

PUSHING THE

LIMITS OF LABVIEW 22

Event Type Propagation Gotchas

Don’t wire input to

Register for Events
Don’t typedef (or in other ways “constrain”)

type propagation on this wire*

*Type must flow freely from Reg Events node

to Event Structure’s Dynamic Events terminal.

PUSHING THE

LIMITS OF LABVIEW 23

Initialize and Register for Events

PUSHING THE

LIMITS OF LABVIEW 24

Run, Wait for Events, and Handle Them

PUSHING THE

LIMITS OF LABVIEW 25

Destroy User Event Registration and Close

PUSHING THE

LIMITS OF LABVIEW 26

Two State Machine Subscribers

Outside

Loop
Outside

Loop

PUSHING THE

LIMITS OF LABVIEW 27

Remember the gotchas?

PUSHING THE

LIMITS OF LABVIEW 28

Don’t Wire the Event Registration Input

PUSHING THE

LIMITS OF LABVIEW 29

Don’t Wire the Event Registration Input

PUSHING THE

LIMITS OF LABVIEW 30

Put Event Reg in Separate Shift Register

Do give Event Registration it’s own shift register

Don’t

bundle it

with state

data

PUSHING THE

LIMITS OF LABVIEW 31

Don’t Wire the Event Reg Through Event Struct

PUSHING THE

LIMITS OF LABVIEW 32

Don’t Wire the Event Reg Through Event Struct

PUSHING THE

LIMITS OF LABVIEW 33

Oh, and one more gotcha.

(That just got me!)

PUSHING THE

LIMITS OF LABVIEW 34

Wire Event Reg Straight Through

Wire

Straight

Through

Not from

Event Reg

Terminal

PUSHING THE

LIMITS OF LABVIEW 35

• Saves time (lightweight & easy to use)

• for module developer

• for module users

• Improves performance

• by avoiding polling for data

• Improves design

• by loosely coupling producers from consumers

• Extensible

• by being compatible with by-ref and by-value architectures

Benefits of this Approach

PUSHING THE

LIMITS OF LABVIEW 36

• Incorporate into your module template (by-val, by-
ref, actors)

• Starting and stopping asynchronous process

• Private/Protected/Community Events

• Sending message into the asynchronous process
and getting a synchronous response

Extensions and Tweaks

PUSHING THE

LIMITS OF LABVIEW 37

• Most annoying bug ever (Event Struct. Frame Remapping).

Fixed in LV2011!

• Event Structure timeout gets reset whenever unhandled

events fired.

Fixed in LV2012!

• No Event queue management or introspection.

Maybe fixed in LV2013?

• No Notifier-like behavior (“ignore previous”).

Maybe fixed in LV2013?

Things That Suck(ed)

PUSHING THE

LIMITS OF LABVIEW 38

Take Home Point

• User Events are a very easy-to-use feature

with a lot of cool functionality.

• They form the basis of JKI’s primary application

frameworks & templates.

• If we could get a couple things fixed/added to LabVIEW,

we could do even better.

• Things keep getting better, and we’re very thankful!

PUSHING THE

LIMITS OF LABVIEW 39

One More Thing

Join Our Team
Help us build the next generation of instrumentation.

Talk to a JKI engineer or visit jki.net/careers.

