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Abstract

Molecular networks governing responses to targeted therapies
in cancer cells are complex dynamic systems that demonstrate
nonintuitive behaviors. We applied a novel computational strat-
egy to infer probabilistic causal relationships between network
components based on gene expression. We constructed a model
comprised of an ensemble of networks using multidimensional
data from cell linemodels of cell-cycle arrest caused by inhibition
of MEK1/2. Through simulation of a reverse-engineered Bayesian
network model, we generated predictions of G1–S transition. The
model identified known components of the cell-cycle machinery,
such as CCND1, CCNE2, and CDC25A, as well as revealed novel

regulators of G1–S transition, IER2, TRIB1, TRIM27. Experimental
validation of model predictions confirmed 10 of 12 predicted
genes to have a role in G1–S progression. Further analysis showed
that TRIB1 regulated the cyclin D1 promoter via NFkB and AP-1
sites and sensitized cells to TRAIL-induced apoptosis. In clinical
specimens of breast cancer, TRIB1 levels correlated with expres-
sion of NFkB and its target genes (IL8, CSF2), and TRIB1 copy
number and expression were predictive of clinical outcome.
Together, our results establish a critical role of TRIB1 in cell cycle
and survival that is mediated via the modulation of NFkB sig-
naling. Cancer Res; 77(7); 1–11. �2017 AACR.

Introduction
The RAF–MEK–ERK signaling network is a key module of

cellular signal integration and transcriptional regulation. Extra-
cellular stimuli (i.e., growth factors, cytokines, chemokines,
integrins, etc.) lead to the activation of this network bringing
on changes in the global gene expression and cellular out-
comes, such as cell growth, proliferation, migration, and sur-
vival. Much research has been focused on the role of MAPK
pathway in cancer progression and multiple MEK1/2 inhibitors
have been developed and tested in the clinic with limited
success as single agents (1, 2). It has been well documented
by others and our previous work that in cell line models of
breast cancer, inhibition of MEK results in cell-cycle arrest but
not cell death (3, 4). We have previously reported the activation

of a feedback-loop leading to EGFR-dependent upregulation of
PI3K signaling in response to MEK1/2 inhibition (3). This
feedback mechanism contributes to resistance to MEK inhibi-
tor–induced apoptosis in these cells.

The MEK–PI3K feedback mechanism highlights the complex-
ities of signal transduction networks that govern nonintuitive
responses of cellular systems to pharmacologic inhibitors.
Reliable network models would be important to make predic-
tions about network responses to signal transduction inhibi-
tors. This would allow to efficiently identify key network nodes
that could be targeted therapeutically, in particular, as part of
combination therapies. Various modeling technologies have
emerged that capture network complexities in different ways
(5). Among those, Bayesian network inference models are
particularly promising as they are not only capable of predict-
ing complex network structures but also suggest directionality
of interactions between network nodes, which leads to in silico
hypotheses generation (6, 7).

To build a model of transcriptional and cellular responses to
MEK inhibition, we assessed time-dependent changes in mRNA
expression profiles and cell-cycle distribution following MEK
inhibition in breast cancer cells. Using a novel Bayesian network
inference computational engine (6), ensembles of networks were
calculated that revealed novel MEK-dependent regulators of the
cell cycle and suggested so far unknown mechanisms of pathway
cross-talk with the NFkB network. These model predictions were
experimentally validated in cell culturemodels anddemonstrate a
role of one of theMEK-regulated genes, TRIB1, inmediating cross-
talk with the NFkB network. Further analyses in a large cohort of
human breast cancers provided evidence for the existence of a
TRIB1–NFkBnetwork in tumors and revealed TRIB1 as a predictor
of breast cancer–free survival.
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Materials and Methods
Reagents

The following reagents were used: U0126 (Promega), EGF
(Millipore), mimosine (Sigma), rhTRAIL (Millipore), rhTNFa
(Life Technologies), TriplePrep Kit (GEHealthcare). ON-TARGET
plus SMARTpools siRNAs, NC (noncoding-negative control oli-
gos) and individual oligos constituting the pools were purchased
from Dharmacon. RNAiMax and Lipofectamine LTX transfection
reagents were from Invitrogen. The following antibodies were
used: aR-TRIB1 (Millipore), aR-CCND1, aM-CCNA2, aR-
CDC25A, aR-IER2, aR-pCDK2, aR-pIKKa (Santa Cruz Biotech-
nology),aM-FLIP (EnzoLife Sciences),aM-BID (BDBiosciences),
aM-DR5 (R&D Systems), all other antibodies were from Cell
Signaling Technology.

DNA constructs
The TRIB1–EGFP construct was a generous gift from Dr. Kiss-

Toth (University of Sheffield, Sheffield, United Kingdom). The
cyclin D1 promoter–containing construct pD1luc WT and mutant
promoter constructs D1-kB1/2m, harboring two point mutations
in theD1-kB1 (CGCGACCCCC) and theD1-kB2 (CGCGAGTTTT)
binding site (introduced point mutations are underlined), were a
gift from Dr. Hinz (Max-Delbr€uck-Center for Molecular Medicine,
Berlin, Germany). AP-1–mutant (AP1m) and EtsA/EtsB–double
mutant (EtsA/Bm) CCND1 promoter constructs were generated by
site-directedmutagenesis of pD1LucWTconstruct.NFkB-Luc, pMe-
tLuc-C vector, SEAP vector reporter constructs were from Clontech.

NFkB promoter reporter assay
Cells were cotransfected with 500 ng of NFkB -Luc and 250 ng

of SEAP transfection-control vectors for 18 hours and then treated
with 10 ng/mL TNFa. Activation of NFkB promoter was assayed
using Ready-To-GlowDual Secreted Reporter Assay system (Clon-
tech) according to the manufacturer's instructions 24 hours after
TNFa treatment.

Cell culture
MDA-MB-231, SUM149PT, MDA-MB-436, MDA-MB-468 tri-

ple-negative basal breast cancer cell lines were obtained from
ATCC and authenticated before experimental work began by
single tandem repeat analysis at 15 different gene loci and
amelogenin (Genetica). Cell line authentication was per-
formed by J.W. Gray and colleagues. Information about cell
culture conditions as well as the source, authentication, clin-
ical, and pathologic features of tumors used to derive the breast
cancer cell lines used in this study was described in detail
previously (8).

siRNA treatment and synchronization
The cellswere transfectedwith 50nmol/L specified siRNApools

or noncoding control, according to the manufacturer's instruc-
tions using RNAiMax (Invitrogen) transfection reagent. Four
hours after transfection, the medium was replaced to the one
containing 0.4 mmol/L mimosine for 16 hours. Cells were
released from blocking and allowed to progress through the cell
cycle for 12 hours, after which the cells were reblocked with
mimosine for 12 hours. Cells were collected at 10 hours post-
mimosine release for cell-cycle analysis. Cell lysates for RNA and
protein extraction were collected at 0 and 10 hours postrelease
from mimosine block.

Cell cycle, apoptosis analysis, and immunoblots
Cell cycle and apoptosis analysis were performed by FACS as

well as standard immunoblots were generated as described pre-
viously (3).

Real-time quantitative RT-PCR
Total RNA was extracted from cells at 24 and 72 hours post-

siRNA transfection using RNeasy Micro Kit (Qiagen). It was
reverse transcribed to cDNA and quantitative RT-PCR analysis
using the TaqMan assay (Applied Biosystems) was performed at
Genome Analysis Core Facility of Helen Diller Family Compre-
hensive Cancer Center (UCSF, San Francisco, CA). PCR primers
and TaqMan probes forCCND1, TRIB1, IER2, CDKN2C, NUAK1,
C14ORF133, CCNE2, TBK1, EGR1, NPC1, SPRED2, KIAA0649,
DR5, and YY1 were purchased from Applied Biosystems. hGUS
was used as a normalization control. The details of qPCR are
described in Supplementary Methods.

Transcriptional assessment of MEK inhibition
We assessed the temporal changes in gene expression profiles

induced by EGF and UO126 in the MDAMB231 cell line by RNA
expression array technology as described in Supplementary
Methods.

TaqMan low-density array
Quantitative PCRs were performed using custom-made Taq-

Man low-density array (TLDA) focused on 42 cell-cycle–related
genes (Applied Biosystems; Supplementary Table S3). Normali-
zation of cDNA levels in the different wells was done using the
GAPDH and hGUS RNA as a reference. The amplification protocol
and data analysis were carried out as described previously (9).
Initial data analysis was performed using Qbase-plus software
from Biogazelle (http://www.biogazelle.com/). Each sample set
was analyzed using the standardization procedure as described
previously (10).

Microarray RNA expression analysis
Cell line and treatment preparation. Twenty-four hours prior
to treatment, cells were transferred to low serum conditions
(0.1% FBS), and then they were subjected to the following
course of treatment. First, we pretreated the cells with U0126
(10 mmol/L) or DMSO (vehicle control) for 30 minutes (time
�0.5 hour). At time 0 hours, the cells were stimulated with EGF
(10 ng/mL). Cells were harvested at 8 timepoints: 0, 0.5, 1, 4, 8,
12, 24, and 48 hours after EGF stimulation (two biological
replicates). Total RNA was extracted using the RNeasy Mini
kit (Qiagen). Microarray data were generated at the LBNL
Molecular Profiling Laboratory using a high-throughput, auto-
mated GeneChip HT System (Affymetrix). HT_HG-U133A array
plates consisting of 96 arrays were used. An Affymetrix liquid
handling system (GCAS) was used to process the one-cycle
IVT target preparation, array plate hybridization setup, washing,
and staining. Plate scanning was performed using a CCD-based
high-throughput scanner (Affymetrix). Expression data have
been deposited in the NIH Gene Expression Omnibus (http://
www.ncbi.nlm.nih.gov/geo/; accession number: GSE61364).

Processing of microarray data, gene selection, and data frame
construction

The quality of the microarray data was assessed using the
Simpleaffy package from R/Bioconductor. Microarray data were
then normalized using the Robust Multi-array (RMA) method. A
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subset of genes was then selected to construct the gene regulatory
network based on analysis of covariance model to evaluate the
significance of each gene in explaining cell-cycle progression. The
149 top-ranked genes were identified for inclusion. This list was
further supplemented by 20 known cell-cycle genes, whose
expression was inhibited by treatment with U0126. To learn
relationships between drug treatment, mRNA expression profiles,
and cell-cycle distribution, gene expression measurements at 0,
0.5, and24hourswerematchedwith cell-cycle distributiondata at
0, 24, and 48 hours post-treatment.

Learning an ensemble of probabilistic models from data
An ensemble of Bayesian network models including drug

treatment, gene expression, and endpoint readouts was learned
from the data. Bayesian networks provide a convenient frame-
work to represent the global joint probability distribution of
P(X1. . .. . ..Xn: Q), where X1, . . . Xn are variables in the model and
Q are parameters. As described previously (11), the first phase of
learning proceeds by considering all possible combinations of
drug, transcripts, and phenotypic data to obtain a collection of
highly likely network fragments. Network fragments representing
quantitative relationships among all possible sets of two and three
measured variables were considered. Each fragment was assigned
a Bayesian probabilistic score indicative of how likely the given
fragment was given the data, penalized for its mathematical
complexity. Here, the Laplace approximation (11) was used to
integrate over posterior parameter distributions to compute the
Bayesian scores for each fragment. In the second phase of learning
(6), the network fragments were combined to form an ensemble
of models. An ensemble is defined as a statistical sample from the
distribution P (Model|Data), the probability distribution over all
models given the observed data. A network's score was computed
as the sum over the scores of all network component fragments. A
parallel global optimization procedure employing simulated
annealing (the Metropolis–Hastings algorithm) was used to con-
struct an ensemble of 1,024 networks that correctly sampled the
probability distribution given the data (6, 12).

Model interventional simulations and statistical analysis
Stochastic simulations of the models were used to generate

predictions on the distribution of a variable under different
conditions (11). Simulations were performed on the ensembles
to predict the distribution of model variables under different
perturbations. Then, the predicted distribution of networks in
response to the perturbation was compared with the predicted
distribution under baseline expression level of the perturbed
transcript. A Student t test was used to compute the significance
of a transcript's influence on the phenotype and the transcripts
were ranked by their P values.

Identification of drivers of cell-cycle progression
To identify genes that were drivers of cell-cycle progression, a

systematic perturbation procedure was employed. Genes in the
model were set to baseline as well as 10-fold below baseline, and
cell-cycle distribution (%G1) was predicted. All genes were eval-
uated with this procedure and the significance of each gene was
evaluated via a Student t test. The geneswere then ranked basedon
their P values, which correspond to their likeliness to be causal
drivers of cell-cycle progression. The P value was derived on the
basis of 30 random samples from the posterior distribution under
each simulation condition.

Gene expression, copy number, and survival analysis of
primary tumors

To evaluate the association between TRIB1-related signaling
and clinical characteristics, we exploited a large, clinically anno-
tated breast cancer cohort for which paired Illumina HT-12
expression data and Affymetrix SNP 6.0 copy number data were
available (13). Here, we report on a subset of 1,980 cases to
evaluate the correlation between TRIB1 and NFkB/TRAIL signal-
ing as well as clinical outcome associations. In particular, we
computed the Pearson correlation between a panel of 38 genes
highlighted by functional analyses of breast cancer cell lines and
Bayesian network analysis, and reported to be associated with
NFkB/TRAIL signaling. Details of this analysis are provided in
Supplementary Methods.

Results
A Bayesian network inference model identifies genes involved
in G1 arrest in response to MEK inhibition

To assess the effects of MEK inhibition on global gene
expression profiles and cell-cycle distribution, we treated
MDA-MB-231 breast cancer cells with U0126, a small-molecule
inhibitor of MEK1/2, (Supplementary Fig. S1). To infer rela-
tionships between drug treatment, mRNA expression profiles,
and cell-cycle distribution, gene expression measurements at 0,
0.5, and 24 hours were matched with cell-cycle distribution
data at 0, 24, and 48 hours post-treatment. Initial statistical
analysis of the data identified 149 genes that were significantly
correlated with cell-cycle arrest following drug treatment (Sup-
plementary Table S1). An additional 20 known cell-cycle genes,
whose expression levels were significantly changed by U0126,
were also included in the analysis (Supplementary Table S1).
These data were used to reverse-engineer an ensemble of 1,024
Bayesian networks (Fig. 1). The inclusion of the 20 known cell-
cycle genes impacted by U0126 served as a positive control for
testing the models as we expected the model predictions to
recover some of the known biology. The ensemble of networks
was reverse-engineered from the data in two steps (6, 7, 14, 15).
First, a Bayesian score, which takes into account the uncertainty
in the parameters and penalizes for complexity, was computed
for all possible two- and three-element sub-networks. Second,
Metropolis Monte Carlo global optimization was used to
infer a statistical sample, or ensemble, of network structures
from these sub-networks that was consistent with the data (6).
Variance in the ensemble reflected uncertainty in network
structure given the information available in the data (6). In
this analysis, we retained both the network topology structures
as well as the parameterization of the sub-networks to generate
quantitative predictions on the effect of gene interventions that
account for uncertainty in network topologies (6). Next, sys-
tematic in silico simulations of 10-fold knockdown of each of
the 169 transcripts were completed to predict their effect
on G1–S transition. This was accomplished by setting the value
of a gene expression variable to 10% of its original value, and
then propagating the effects of the intervention through the
network structure, and generating out-of-sample simulated
values for the G1 fraction under the knockdown condition
(Supplementary Fig. S2). As all networks in the ensemble of
models are likely given the data, the entire distribution of
predictions generated from the ensemble of networks was
analyzed for statistical differences between the knockdown and
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no-knockdown simulation conditions using a paired t test that
samples from the distribution 30 times.

Using this approach, we identified 12 genes as candidate
regulators of G1–S transition, based on a significance level of P
< 0.01 (Supplementary Table S1). These genes included known
regulators of G1–S transition [CCND1 (16, 17), CCNE2 (18),
CDC25A (19), CDKN2C (20), NUAK1 (21)] as well as novel
candidates (TRIB1, IER2, C14ORF133, TAF11, EBAG9, COQ9,
and TRIM27).

Experimental validation of model predictions
To validate the model predictions, we assessed cell-cycle

distribution in cells treated with pools of siRNAs (Fig. 2A).
We utilized pools of siRNA as they have been demonstrated to
result in greater phenotypic penetrance and reduced off-target
effects compared with single siRNAs (22). Cells were treated
with pools of siRNAs directed against the 12 candidate genes
and 5 genes (NPC1, EGR1, SPRED2, BTG3, and KIAA0649) that
were predicted to have no effect on G1–S phase transition as
negative controls, as well as noncoding control siRNAs (Sup-
plementary Table S2). Target knockdown was confirmed by
mRNA analysis and protein levels (where antibodies were
available; Supplementary Fig. S3). FACS analysis of cell-cycle
distribution confirmed the established role of CCND1,
CDC25a, and CCNE2 in G1–S progression, and validated
model predictions for novel candidate regulators such as IER2,
TRIB1, NUAK1, C14ORF133, TRIM27, TAF11, and EBAG9
(Fig. 2A). However, we saw no effect on G1–S transition with
siRNAs directed against CDKN2C and COQ9, while knock-
down of KIAA0649, a negative control, resulted in G1 arrest.

Effect of individual siRNA duplexes against TRIB1 on cell cycle
was also analyzed (Supplementary Fig. S4). Overall, the model
predicted the effect of interventions with 82% accuracy, 91%
sensitivity, and 67% specificity. To understand the mechanism
of G1 arrest, we analyzed the status of proteins known to
promote G1–S transition (CCND1, CCNA2, CCNE2, phos-
pho-CDK2, ppRB), as well as inhibitors (p27, p18; Fig. 2B
and C). We found that knockdown of genes leading to G1 arrest
resulted in at least a 2-fold increase in protein levels of p27,
p18, or both, with the exception of TRIM27 and KIAA0649.
Simultaneously, knockdown of these genes resulted in inhibi-
tion of at least three promoters of G1–S transition (Fig. 2C).
Analysis of mRNA expression of 46 genes associated with G1–S
progression showed distinct patterns of gene expression after
siRNA treatment that confirmed the protein findings for
CCND1, CCNA2, and CCNE2 (Supplementary Fig. S5).

TRIB1 regulates CCND1 expression via kB and AP1 sites
TRIB1 was predicted by the model to regulate G1–S phase

transition with the highest significance score (P ¼ 2.49E�10). Its
siRNA-mediated knockdown resulted in inhibition of cyclin D1
RNA and protein levels (Fig. 2B; Supplementary Fig. S5). To
investigate themechanismof TRIB1 knockdown effect onCCND1
expression, we evaluated its effect on the activity of CCND1
promoter using constructs containing mutations in AP1, NFkB,
and Ets transcription factor-binding sites (Fig. 3A and B). In cells
treated with NC siRNA, inactivation of either both NFkB
(D1-kB1/2M) sites or AP1 site led to the inhibition of CCND1
promoter activity, while inactivation of the two Ets sites had no
effect. TRIB1 knockdown resulted in 2-fold downregulation of

Figure 1.

Schematic of Bayesian network
reverse-engineering and forward-
simulation. A, Drug treatment (as an
icon of drug pill), gene expression
(blue hexagon), and phenotypic data
(orange square) are prepared for
modeling via procedures outlined in
the Supplementary Data section. B,
Likely fragments for network
reconstruction were identified by
scoring all 2- and 3-variable
combinations with the constraint that
drug treatment is upstreamof all other
nodes. C, Parallel global network
sampling results in an ensemble of
1,024 network structures that explain
the data. The probabilistic
directionality computed by the
Bayesian framework allows inferences
to be made about what lies upstream
and downstream of a particular
variable of interest. D, Diversity of
network structures captures
uncertainty in the model. Hypotheses
can be extracted from the network
ensemble by completing Monte Carlo
simulations of "what-if" scenarios.
Downregulating a transcript indicated
by red arrow would be expected to
impact the phenotype (the orange
square next to dark blue arrow).
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wild-type CCND1 (D1-WT) promoter activity with further reduc-
tion in activity of D1-kB1/2M and AP1 promoter constructs,
indicating that TRIB1 signals upstream of both ERK1/2 and NFkB
(Fig. 3B).

TRIB1 mediates NFkB-responsive promoter activity and
expression of CXCL1, CSF2, and IL8

To confirm the role of TRIB1 in regulation of NFkB activity,
we analyzed the effect of TRIB1 knockdown and overexpres-
sion on an NFkB-responsive promoter construct. This analysis

showed that TRIB1 knockdown inhibited the activity of an
NFkB-responsive promoter, while TRIB1 overexpression led
to a 3-fold increase in promoter activity (Fig. 3C; Supplementary
Fig. S6). The expression of siRNA-resistant TRIB1 rescued
the phenotype induced by siRNA-mediated TRIB1 knockdown
(Supplementary Fig. S7). Furthermore, evaluation of the expres-
sion of NFkB target genes involved in metastasis formation
(CSF2, CXCL1) and tumor inflammation (IL8) showed
that inhibition of TRIB1 with siRNA resulted in the down-
regulation of these genes on RNA and protein levels (Fig. 3D;

Figure 2.

Model validation. A, Cell-cycle analysis of MDA-MB-231 cells treated with siRNA against 17 genes and NC siRNA. Cells were grown in DMEM-10% FBS,
treated with designated siRNA pools, and synchronized in G1 with mimosine. Cells were released from G1-block and cell-cycle distribution was
assessed by FACS at 10 hours postrelease. Data are shown as mean � SD for three independent experiments. Statistical significance was determined
by Student t test; � , P < 0.05; ��, P < 0.005; ���, P < 0.0005; "þ" designates genes predicted by the model to affect G1–S transition. B and C,
Molecular inhibition of G1–S progression by KD. Cells were treated as in A and protein and phospho-protein levels were measured by immunoblotting
(IB; n/s, nonspecific band). Bands were normalized by total protein and plotted as fraction of NC-siRNA treatment.
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Supplementary Fig. S8). Activation of NFkB is mediated by the
inactivation of its inhibitors IkBa, p100, and p105 (23) by
several upstream kinases, including IKKa. We reasoned that
TRIB1 may act upstream of NFkB. TRIB1 knockdown inhibited
phosphorylation and degradation of IkBa as well as production
of p50 from its precursor p105 (Fig. 3E; Supplementary Fig. S9).
In addition, we found that phosphorylation of IKKa/b (Ser176/
180), of IKKa (Thr 23), as well as expression of p100 and its
processing with generation of p52 were significantly inhibited
by downregulation of TRIB1, possibly indicating regulation of
p100 expression by TRIB1 (Fig. 3E; Supplementary Fig. S9).
These findings provide mechanistic evidence for regulation of
NFkB by TRIB1. No changes in RalA phosphorylation at serine
536 were observed. While IKKa and AKT have been shown to
phosphorylate RelA, multiple additional kinases are known to
phosphorylate RelA at the same site and might maintain phos-
phorylation following knockdown of TRIB1 (24, 25).

TRIB1 regulates the activity of PI3K–AKT pathway
One of the potential mechanisms of the cytostatic rather than

cytotoxic effect of MEK inhibition is the activation of a feedback

loop leading to upregulation of AKT signaling (3). In contrast,
TRIB1 knockdown leads to simultaneous inhibition of phosphor-
ylation of ERK1/2 and AKT1 on both T308 and S473 (Fig. 4A).
Assessment of downstream targets of AKT kinase revealed that
TRIB1 knockdown led to an inhibition of phosphorylation of
BCL2, GSK3a/b, and FOXO1A/3A (Fig. 4A). In addition, we
observed inhibition of phosphorylation of IKKa-T23, an AKT-
specific site, providing further evidence for a putative mechanism
of NFkB regulation by TRIB1 through its role as a mediator of
PI3K–AKT signaling (Fig. 3E).

TRIB1 inhibition upregulates DR5 levels and sensitizes
breast cancer cells to TRAIL-induced apoptosis

We postulated that inhibition of antiapoptotic and induction
of proapoptotic signals results in increased cell death upon TRIB1
knockdown alone or in combination with the death receptor
agonist TRAIL. Treatment of cells with TRIB1 siRNA alone resulted
in an increase in apoptosis in all cell lines tested (Fig. 4B). We also
observed a 2- to 3-fold increase in apoptosis in cells treated with
TRIB1 siRNA in combination with TRAIL treatment (Fig. 4C).
These observations were in accord with the induction of PARP

Figure 3.

TRIB1 mediates the expression of CCND1 via regulation of NFkB and AP1. A, Schematic representation of -1080-Cyclin D1 (D1) pGL3 basic luciferase
reporter constructs and deletion mutants. AP1, EtsA/B (both Ets A and B were deleted), and both NFkB sites (kB1 and kB2) were eliminated as shown. B,
Cells were treated with NC or TRIB1 siRNA pools for 24 hours, followed by transfection with 1 mg of CCND1-WT, AP1-mutant, EtsA/B-mutant, or kB1/2–mutant
promoter-reporter constructs. Luciferase activity was measured and standardized by cotransfection with SEAP expression vectors. Results represent
the means and SDs from three independent experiments. RLU, relative light units. C, TRIB1 regulates NFkB-responsive promoter activity. Cells were treated as
in B and transfected with NFkB-responsive reporter vector and SEAP expression control vector, and treated with TNFa for 4 hours. Cells were cotransfected
with 1 mg vector-EGFP or TRIB1-EGFP and with NFkB promoter vector/SEAP and stimulated with TNFa for 4 hours. D, TRIB1 knockdown leads
to downregulation of NFkB target genes. Levels of CXCL1, CSF2, and IL8 proteins were measured using Luminex assay for secreted cytokines. E, TRIB1
knockdown inhibits NFkB signaling via activation of IkBa and inhibition of p50 and pIKKa. Immunoblot analysis of cells treated with NC or TRIB1
siRNA pools with indicated antibodies.
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cleavage (Fig. 4D). TRAIL-induced apoptosis occurs through an
extrinsic mechanism of direct activation of executioner caspases
by receptor-activated caspase-8 (26). In addition, apoptosis can
be amplified via recruitment of the intrinsic mitochondrial path-
way. Activated caspase-8 cleaves proapoptotic protein BID, lead-
ing to its translocation to the mitochondria and resulting in
mitochondrial apoptosis activation (26). TRIB1 knockdown
resulted in increased caspase-8 cleavage (Supplementary
Fig. S10), as well as decreased levels of FLIP and BID, indicating
increased cleavage of these proteins and the involvement of
both pathways (Fig. 4D). To explain how TRIB1 inhibition leads
to the upregulation of TRAIL-induced apoptosis, we assayed both
mRNA and protein levels of TRAIL Receptor 2 (DR5). DR5
expression is negatively regulated by NFkB via induction of the
transcriptional inhibitor YY1 (27). Here we show that knockdown
of TRIB1 leads to a significant upregulation of both, DR5 mRNA
and protein levels, as well as downregulation of YY1 mRNA
(Fig. 4E and F; Supplementary Fig. S11). These data suggest that
TRIB1 knockdown sensitizes cells to TRAIL-induced apoptosis
by inhibition of NFkB signaling and upregulation of DR5, as
well as by inhibition of AKT prosurvival signaling.

Association between TRIB1/TRAIL/NFkB signaling
components in human breast cancer

To establish the significance of TRIB1/TRAIL/NFkB signaling in
the context of human disease and to perform exploratory tests of
clinical outcome associations, we exploited a large cohort (n ¼
1,980) of primary breast tumors, with long-term clinical follow-
up and which have been profiled at the genomic and transcrip-
tomic levels (13). Given our finding that TRIB1 mediates cyclin
D1 expression via the regulation of NFkB and AP1, with TRIB1
knockdown resulting in the downregulation of NFkB targets in
vitro, we first sought to examine these relationships in the human
system. In agreement with our earlier findings, TRIB1 andNFKB1
(p105) expression levels were significantly correlated (r¼ 0.102,
P < 0.0001), and TRIB1 was correlated with the expression of the
NFkB target genes IL8 (r¼ 0.05, P < 0.05) andCSF2 (r¼ 0.05, P <
0.005). We also comprehensively examined the relationships
between TRIB1, TRAIL, and NFkB signaling using this tumor
cohort to compare the correlations between a panel of 38 genes
believed to be associated with these pathways based on the
literature (Fig. 5A). In addition to those listed above, we found
that the following gene sets were significantly (P < 0.05) positively

Figure 4.

TRIB1 knockdown induces apoptosis and sensitizes cells to TRAIL-induced apoptosis in breast cancer cells. A, TRIB1 knockdown inhibits ERK1/2 and
AKT phosphorylation and activation of downstream signaling. Immunoblot analysis of cells treated with siRNA pools against NC or TRIB1 with indicated
antibodies. B, MDA-MB-231, HS578T, SUM159, MDA-MB-468, MDA-MB-436, and T47D cells were transfected with NC (gray bars) or TRIB1 (black bars) siRNA
pools; cells were stained with Annexin-V/PI and analyzed by FACS. Data shown as mean � SD of three independent experiments. C, TRIB1 knockdown
sensitizes cells to TRAIL at nonlethal concentrations. Cells were treated as in B and followed by stimulation with TRAIL and analyzed as in B. D, TRAIL-induced
apoptosis occurs through inactivation of BCL2 and cleavage of BID. Immunoblot analysis of cells treated with NC or TRIB1 siRNA �/þ TRAIL with
indicated antibodies. E, Changes in YY1 and DR5 mRNA levels in response to TRIB1 siRNA. F, TRIB1 knockdown results in upregulation of DR5 protein.
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correlated with TRIB1: proliferation-associated genes (CCND1,
TOP2A, MCM2, MKI67), the antiapoptotic genes (BCL2L1,
BCL2L11, CFLAR), the proapoptotic genes (BIK, HRK), compo-
nents of the death receptor complex (TRAF2, TRAF6), as well as
TNFRSF10A/DR4 and IL6. A small number of genes in each of
these categories were negatively correlated with TRIB1, including
PCNA (proliferation), BCL2LA1 (antiapoptotic) and BAD (proa-
poptotic), TRADD and MPRIP (death receptor complex), and
CASP3 (caspase activity; Fig. 5A). These findings are in agreement
with our observation that TRIB1 knockdown sensitizes cells to
TRAIL-induced apoptosis, resulting in increased cleavage of both
BID and CFLAR in breast cancer cells and supports the role of
TRIB1 in cell-cycle progression and survival.

Association between TRIB1/TRAIL/NFkB–associated gene
expression profiles and TRIB1 copy number with clinical
outcome

We next sought to explore the correlation between TRIB1/
TRAIL/NFkB–associated genes and patient survival in a human
breast tumor cohort. A comparison of Kaplan–Meier curves
for TRIB1 copy number amplified versus neutral cases suggests
an association with both breast cancer–specific (BCSS; log-rank
P < 0.01) and overall survival (OS; log-rank P < 0.01; Fig. 5B;
Supplementary Table S4). To visualize the association between
TRIB1 or other single gene expression models and outcome in
an exploratory analysis, continuous expression levels were
stratified into tertiles, and the predicted survival curves for
individuals in the upper (66.66%) and lower (33.33%) groups
were compared using Kaplan–Meier plots and the log-rank test.
These comparisons suggest an association between both TRIB1
and IL8 expression and outcome, as assessed by both BCSS
(log-rank P < 0.01) and OS (log-rank P < 0.05; Supplementary
Fig. S12A–S12D).

To investigate these relationships further, while adjusting for
clinically relevant covariates, we examined survival as a function
of continuous gene expression data for single and multiple gene
models based on the panel of 38 TRIB1/TRAIL/NFkB–associated
genes using Cox regression. In particular, multivariable analysis
was performed by building Cox proportional hazards models,
which included the most relevant clinical variables as covariates,
namely, age, number of lymph nodes positive, tumor size, and
grade, stratifiedbyER status, and tumorbank to test for differences
in BCSS and OS associated with these genes, as described in
Materials and Methods. After adjusting for these variables, only
BIK,MPRIP, IL8, and TOP2Awere significant (Wald test, P < 0.05)
in the full cohort, where BCSS was the outcome (Supplementary
Fig. S13; Supplementary Table S5). For OS, BIK, MPRIP, and
TOP2A were again significant, as were HRK and CASP3, whereas
IL8 was not associated with this outcome (Supplementary Fig.
S14; Supplementary Table S6).

Discussion
MEK-dependent signaling is a highly complex process as

highlighted by our previously described finding of an EGFR-
dependent feedback loop resulting in activation of the PI3K
pathway following MEK inhibition (3). Studies broadly assessing
protein expression changes following MEK inhibitor treatment
corroborate these findings (28).

Among the best documented cellular consequences of MEK
inhibition is induction of cell-cycle arrest, predominantly at the

G1–S phase transition (3, 29, 30). This cytostatic effect is
mediated by a variety of mechanisms (reviewed in ref. 31)
including repression of cyclin D1 (32). The work presented here
sheds new light onto the intermediary steps downstream of
MEK and upstream of CCND1. We utilized an advanced Bayes-
ian network inference engine to deepen our understanding of
the molecular networks driving responses of cancer cells to
MEK inhibition.

Bayesian network inference models allow for reconstruction of
molecular networks and for making causal predictions about the
relationships of individual network components. While the
Bayesian approach has been applied to the reconstruction of
small signal transduction networks before (33, 34), our study
involves automated construction of large ensembles of networks
and extensive experimental validation. Our model predictions
correctly identify the established role of CCND1, CCNE2,
CDC25a, and ARK5/NUAK1 in the regulation of G1–S progres-
sion. Moreover, we identified and experimentally validated
TRIB1, IER2, C14ORF133, TAF11, EBAG9, and TRIM27 as novel
regulators of G1–S transition. The high rate of validated predic-
tions underscores the power of simulatable Bayesian models.

In the model, TRIB1 was the highest ranked gene (P ¼
2.49E�10) in our list of genes predicted to affect cell-cycle distri-
bution. During Drosophila development, Tribbles has been dem-
onstrated to regulate G2–M transition during anlage formation
through a cdc25-dependent mechanism (35, 36). TRIB1 has
recently been shown to control differentiation of M2-like macro-
phages in C/EBPa-dependent manner (37), and it has been
implicated in the proliferation and chemotaxis of vascular
smooth muscle cells via regulation of MAPK activity (38). Most
importantly, in the context of the current study, TRIB1 and TRIB2
have been demonstrated to be sufficient to induce leukemia in
mice when overexpressed (39). However, the role of TRIB1 in
regulation of the mammalian cell cycle remains unknown. In
this study, we present evidence that TRIB1 is involved in the
regulation of G1–S progression by modulating CCND1 expres-
sion in human breast cancer cells. CCND1 is highly overexpressed
and is a pivotal driver of G1–S progression in these cells (40).
The CCND1 promoter contains binding sites for multiple tran-
scription factors including four Ets, two NFkB, and one AP1 site
(41–43). We found that TRIB1 regulates NFkB and AP1-depen-
dent transactivation of the CCND1 gene. These findings support
our observation that TRIB1 knockdown leads to the downregula-
tion of CCND1 protein and RNA levels. Indeed, TRIB1 was found
to act upstream of the MAPKK SEK1 in C. elegans (44) and it has
been shown to physically interact with MEK1 and p65 subunit of
NFkB in mammalian cells and to promote the induction of
proinflammatory cytokines in lipocytes (45). Moreover, NFkB
has been demonstrated to enhance AP-1–dependent transactiva-
tion in lymphocytes (46). Thus, our data illuminate a role for
TRIB1 in regulating MAPK-dependent signals, and, in a broader
sense, in oncogenesis and inflammation. Interestingly, our data
demonstrate that TRIB1 RNA expression might be regulated
through the MAPK pathway, suggesting a feed-forward mecha-
nism bywhich signals through theMAPK pathway increase TRIB1
expressionwhich, in turn, further stimulates signaling through the
pathway. This possibility is subject of ongoing investigation.
Other TRIB family members, in particular TRIB3, have been
shown to interact with MAPK and Notch signaling in breast
cancer, highlight these pseudo-kinases as modulators of key
oncogenic signaling pathways (47).
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Figure 5.

Expression and survival analysis in primary tumors. A, Heatmap illustrating Pearson correlation between the expression levels of a panel of 38 TRIB1,
TRAIL, and NFkB-associated genes in a cohort of primary breast tumors (n ¼ 1,980). Genes that were significantly (P < 0.05) associated with
TRIB1 expression are indicated in the accompanying table with their respective correlation coefficients. B, Kaplan–Meier and HR plots and log-rank
P values comparing breast cancer–specific survival (BCSS) and overall survival (OS) distributions between individuals with TRIB1 amplification in the
upper (66.66%) versus lower (33.33%) tertiles.
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Recent studies revealed the upregulation of TRIB1 during acute
and chronic inflammation inwhite adipose tissue ofmice (48). In
agreement with these findings, we observed inhibition of CXCL1,
CSF2, and IL8 expression in response to treatment with TRIB1
siRNA, as well as upregulation of these genes in cells overexpres-
sing TRIB1 construct. It remains to be determined whether TRIB1
serves as a nuclear coactivator of p65 subunit in mammary
epithelial cells. However, we found that knockdown of TRIB1
leads to the inhibition of pIKKa, pIkBa, and subsequent pIkBa
degradation. These findings point to a cytoplasmic role of TRIB1
in regulation of NFkB-dependent transcription. Phosphorylation
of IKKa on Tyrosine-23 has been shown to be strongly dependent
on AKT (49). In addition, we observed inhibition of multiple
components of the PI3K pathway in response to the knockdown
of TRIB1, providing evidence that TRIB1 influences signal trans-
duction of the PI3K–NFkB pathways beyond the nucleus. TRIB1
functions, at least in part, as a scaffold protein (50), suggesting
that TRIB1 might mediate protein–protein interactions of key
regulators of the PI3K and NFkB pathways, resulting in their
activation. This possibility is currently under investigation.

Regulation of apoptosis represents one of themain functions of
the NFkB pathway. In solid tumors, the pathway predominantly
suppresses apoptosis induction through a multitude of mechan-
isms (reviewed in ref. 51) and has been shown to be a major
contributor to resistance to chemotherapeutic agents (52). Sup-
pression of death receptor signaling byNFkB has been implicated
as one possible mechanism (53). Our work demonstrates that
knockdown of TRIB1 induces death receptor signaling by down-
regulation of DR5 transcriptional repressor, YY1, resulting in a
significant increase in DR5 levels. Regulation of YY1 by NFkB is
well documented (54). Despite promising preclinical results,
initial clinical experience with death receptor agonists for solid
tumor indications have been disappointing (55). On the basis of
our findings, we speculate that high expression levels of TRIB1
contribute to the resistance to this class of drugs, and inhibitors of
TRIB1 activity could overcome therapeutic resistance.

Discovery of involvement of TRIB1 in regulating proliferation,
apoptosis, and cytokine production suggests that high levels of
TRIB1 expression might result in a clinically more aggressive
tumor phenotype. In agreement with this hypothesis, we found
that increased DNA copy numbers of the TRIB1 gene as well as
high level of TRIB1 mRNA expression are associated with poor
breast cancer survival in a large cohort of breast cancers (13).
TRIB1 is located on chromosome 8q24 in immediate vicinity of
the oncogene cMyc, which is often amplified in cancer. Further-
more, we found TRIB1 expression to be associated with elements
of the NFkB network (e.g., NFKB1, IL8) that we had identified to
be downstream of TRIB1 in our in vitro studies. On the basis of the

association of TRIB1 with a key survival endpoint in breast cancer
and its biological functions, we are currently pursuing studies to
evaluate its potential as a target for therapeutic intervention.

In summary, our study highlights that linear signal transduc-
tion cascades, such as the RAS–RAF–MEK–ERK module, are
embedded in complex molecular networks. We show that the
combination of Bayesian network inference models, in silico
simulation, and in vitro validation represents a powerful new
approach for discerning nonintuitive relationships and genera-
tion of testable hypotheses about signaling networks from a large,
multidimensional dataset. By applying this strategy, we identified
TRIB1 as an important mediator of key signal transduction path-
ways and a candidate therapeutic target in breast cancer.
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