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Abstract: N-glycosylation profoundly affects the biological stability and function of therapeutic
proteins, which explains the recent interest in glycoengineering technologies as methods to develop
biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and
remains difficult to control in a production environment that changes with scale and production
batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro
chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined
protein glycoforms, but needs to be combined with a cost-effective and scalable production
method. An efficient chemoenzymatic glycan remodeling technology using a plant expression
system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is
described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform
Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose
or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan®,
the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20
antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression
system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan
heterogeneity and provide affordable customization of therapeutics’ glycosylation for maximal and
targeted biological activity. This feature can reduce cost and provide an affordable platform to
manufacture biobetter antibodies.

Keywords: glycan remodeling; therapeutic proteins; recombinant glycoproteins; Nicotiana benthamiana;
N-glycosylation

1. Introduction

Therapeutic glycoproteins represent a predominant disease treatment category among
biopharmaceuticals approved or in clinical development. N-linked glycosylation is a very important
post-translational modification that can profoundly affect the stability and biological activities of
proteins [1]. While the amino acid sequence of a recombinant protein is pre-defined, the structure
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of the N-linked oligosaccharide decorating proteins varies depending on host species, host cell type,
and environmental growth conditions [2]. All non-engineered eukaryotic cells share a common
N-glycosylation core, while terminal and lateral oligosaccharide residues are specific to each expression
system. The processing of protein N-glycosylation within the cell endomembrane system is complex
and often results in the production of a heterogeneous population of glycoforms [3]. Control over
the complexity and variability of protein N-glycosylation, although desired in therapeutic protein
manufacturing, remains a challenge. Design of a manufacturing process allowing for precise regulation
of protein N-glycosylation is highly advantageous and urgently needed, as N-glycosylation often
profoundly affects biological efficacy and pharmacokinetic properties of the manufactured drug
substance [4–7]. Indeed, numerous preclinical studies have supported the strong relationship between
the glycosylation structure decorating therapeutic proteins and their clinical properties, including
protein stability, solubility, circulatory half-life, and efficacy [8–16]. A well-characterized example of an
N-glycosylation pattern affecting therapeutic efficacy was shown with the removal of the α-1,6-fucose
residue attached to the innermost N-acetylglucosamine (GlcNAc) of the N-glycosylation core present
on some anticancer antibodies such as rituximab and trastuzumab. Afucosylated or low-fucose content
antibodies exhibited enhanced antibody-dependent-cell-cytotoxicity (ADCC) in vivo when compared
to their fucosylated counterparts [9,14,16–19]. As further proof of the importance of N-glycosylation
pattern affecting therapeutic activity, the first glycoengineered products, afucosylated anti-CCR4
mogamulizumab (POTELIGIO®, Kyowa Hakko Kirin) and anti-CD20 obinutuzumab (Gazyva®, Roche)
were approved for human use in Japan and in the United-States in 2012 and 2013 respectively.

Several manufacturing approaches have been considered to modify the host N-glycosylation
machinery, with the goal of exploiting the benefit of specific glycosylation profiles and generating
therapeutics with targeted biological functions. These included modulation of cell growth conditions [2],
silencing or overexpression of glycan processing enzymes [20–22], complete or partial removal of
glycans [23–25], and in vitro glycosylation remodeling [26,27]. While glycan engineering technologies
using a α-1,6-fucosyltransferase (FUT8) knockout Chinese hamster ovary (CHO) cell line [28] or
plant α-1,3-fucosyltransferase/β-1,2-xylosyltransferase (∆FT/XT) knockdown lines [29–32] significantly
reduced glycosylation heterogeneity, there remained a significant degree of non-uniformity in the final
product. Likewise, modulation of cell growth conditions remains prone to batch-to-batch product
variability [33,34]. In addition, knock-in strategies have been employed to introduce or modify the
sialylation pathway and provide recombinant proteins with human-type sialylation; offering higher
circulatory half-life and reduced product immunogenicity [35–37]. This type of approach generally
enhanced human-type protein sialylation, but also increased glycoform heterogeneity.

Consequently, in vitro glycan remodeling was developed to offer the advantage of adding
customized oligosaccharides on recombinant proteins to produce a single uniform glycoform [26,38,39].
In particular, using the endoglycosidase-catalyzed glycan remodeling approach, N-linked
glycoproteins are enzymatically deglycosylated such that the innermost GlcNAc or Fucα-1,6GlcNAc
remains on the asparagine residue of the protein [40–43]. This approach allows for an N-glycan
oxazoline substrate to be transferred en bloc onto that remaining GlcNAc of recombinant proteins to
reconstitute homogeneous glycoproteins. In vitro glycan remodeling technology offers the benefit of
producing uniform and customized glycoproteins. Recently the glycan remodeling approach has been
applied to produce homogeneous antibody glycoforms for structural and functional studies [44–49].
Although the concept of glycan remodeling has been demonstrated in vitro, it has not yet been applied
to any recombinant protein manufacturing platform.

A simplified glycan remodeling strategy is presented, where the initial in vitro deglycosylation
step has been incorporated into the host expression system, thereby opening potential to the affordable
manufacturing of glycoengineered therapeutic proteins. Rituximab was chosen to remodel, as a model
monoclonal antibody, and an afucosylated antibody glycoform with two terminal galactose residues
(A2G2 glycoform, oxford glycan nomenclature [50]) was generated. The resulting antibody displayed
enhanced ADCC activity using a transient expression protocol developed for large-scale therapeutics
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manufacturing in the well-characterized Nicotiana benthamiana plant system. Incorporating protein
glycan moiety remodeling into this plant expression system demonstrates the production of a single
glycoform rituximab harboring human-like N-glycosylation and no plant-specific sugar residues.
This novel approach simplifies an expensive glycan remodeling procedure facilitating a cost-effective
and scalable process.

2. Results

2.1. Rituximab Is Deglycosylated In Vivo

Rituximab was transiently expressed in Nicotiana benthamiana plants using vacuum infiltration.
Proteins were fused to a signal peptide to allow for post-translational modification (i.e., N-glycosylation)
in the plant endomembrane system and secretion to the apoplast (Option A, Figure 1A). To produce
deglycosylated antibody retaining a single N-acetylglucosamine (GlcNAc), rituximab was co-expressed
in plants with the endoglycosidase H (EndoH). EndoH was targeted to the plant cell endoplasmic
reticulum (ER) using the ER-retrieval sequence SEKDEL to ensure that its activity remains in the ER
where high-mannose glycans (the EndoH target) are processed (Option B, Figure 1A). Rituximab, when
expressed alone (NbRTX), accumulated at 379 mg/kg of plant biomass. When co-expressed with EndoH
(NbRTXGlcNAc), the antibody accumulated at 394 mg/kg of plant biomass (Figure 1B), which indicated
that the accumulation of rituximab was not impeded by the co-expression with the endoglycosidase
(p = 0.99). Rituximab was purified from plant host cell proteins by protein A affinity chromatography.
The efficiency of in vivo deglycosylation was first assessed at this stage by SDS-PAGE in reducing
conditions (Figure 1C). Rituximab heavy chain co-expressed with EndoH (lane EndoH+, Figure 1C)
migrated at a lower molecular weight than rituximab heavy chain expressed alone (lane EndoH−,
Figure 1C), suggesting efficient removal of core oligosaccharides from the antibody. Subsequent cation
exchange chromatography was then employed to separate NbRTXGlcNAc from remaining non-hydrolyzed
rituximab forms, yielding fractions exceedingly enriched for NbRTXGlcNAc.
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HC) from plants coexpressing EndoH underwent an increased mobility relative to the rituximab 
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oxidation, were observed. In reducing conditions, the MS analysis of NbRTXGlcNAc depicted the 
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Figure 1. (A) Schematic representation of in vivo N-glycan processing of recombinant proteins
in standard plant expression systems (Option A) and when co-expressed with EndoH (Option B).
The Option B pathway illustrates the in vivo deglycosylation strategy employed for rituximab custom
glycosylation where high-mannose glycans attached to the protein of interest are cleaved off by EndoH,
leaving a deglycosylated substrate for in vitro transglycosylation; (B) plots of rituximab expression
levels in mg/kg of plant biomass. Protein was harvested from plants expressing rituximab alone (black
bar) or coexpressing rituximab with EndoH (grey bar) (Values are means ± SEM, n = 4); (C) SDS-PAGE
showing rituximab under reduced conditions, with or without EndoH coexpression. The light chain
(RTX LC) species for both samples migrated similarly, while the heavy chain (RTX HC) from plants
coexpressing EndoH underwent an increased mobility relative to the rituximab alone, indicating a
decrease in molecular weight.

The profiles of NbRTX and NbRTXGlcNAc glycoforms were further characterized by NanoLC-QTOF
mass spectrometry (MS) to confirm the mass-shift observed by SDS-PAGE. The MS analysis of purified

NbRTX revealed the presence of hemiglycosylated rituximab species (at about 145,818 Da) besides fully
glycosylated rituximab (at about 147,396 Da; Figure 2A). The same analysis performed on rituximab
co-expressed with Endo-H (NbRTXGlcNAc) revealed a shift of molecular weight to about 144,912 Da
(Figure 2B) corresponding to the calculated mass of the non-glycosylated antibody plus the mass of
two N-acetylglucosamine residues (calculated mass of 144,910.4 Da; Tables S1–S3 and Figure S1). Note
that the calculated mass of plant-made rituximab differs slightly from Rituxan®. Indeed, plant-made
rituximab also exhibits N-terminal pyroglutamate residues (Figure S1) as for Rituxan®, but does
contain the C-terminal lysine contrary to Rituxan® (Table S1). Also, Rituxan® holds an alanine residue
at position 219 while the plant-made rituximab has a valine residue (as in the original human IgG1).
However, no other modifications, such as hydroxyproline or methionine oxidation, were observed.
In reducing conditions, the MS analysis of NbRTXGlcNAc depicted the isolation of non-glycosylated
heavy chain (NbRTX0 heavy chain; 49,215 Da; Figure 2C) and deglycosylated heavy chain (NbRTXGlcNAc

heavy chain; 49,416 Da; Figure 2C). The presence of NbRTX0 heavy chain offered a direct comparison
with NbRTXGlcNAc heavy chain as the mass of NbRTXGlcNAc heavy chain was approximately 203 Da
(molecular weight of one GlcNAc residue) greater than that of NbRTX0 heavy chain, confirming the
complete removal of N-linked glycans at the predicted Endo-H cleavage site (Figure 2C) and the
absence of α-1,3 fucose residue. It is recognized that non-glycosylated heavy chain was originated
from hemiglycosylated rituximab and appeared to exhibit similar chromatographic properties as
deglycosylated rituximab. Rituximab heavy chain species with intact N-glycan structures were
not detected, indicating efficient chromatographic separation of NbRTXGlcNAc from non-hydrolyzed
rituximab forms. The extraction and purification of a deglycosylated product lacking the fucose residue
attached to the innermost GlcNAc was accomplished by designing the in vivo deglycosylation step to
occur early during the plant glycosylation maturation.
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Figure 2. Nano liquid chromatography-electrospray ionization-quadrupole time of flight-mass
spectrometry (NanoLC-QTOF-MS) analysis of plant-made rituximab. (A) Deconvoluted electrospray
ionization (ESI)-mass spectrum of purified NbRTX analyzed under non-reducing conditions showing
fully glycosylated and hemiglycosylated rituximab; (B) Deconvoluted ESI-mass spectrum of purified

NbRTXGlcNAc analyzed under non-reducing conditions showing a decrease in molecular weight;
(C) Deconvoluted ESI-mass spectrum of in vivo deglycosylated plant-made rituximab analyzed under
reducing conditions. Note the mass shift between non-glycosylated rituximab heavy chain NbRTX0

(calculated m/z 49,217) and deglycosylated rituximab heavy chain NbRTXGlcNAc (calculated m/z 49,420).
As comparison, the NanoLC-QTOF-MS analysis of Rituxan® is provided in Figure S2.

2.2. Complete Chemoenzymatic Transfer of Complex-Type Glycan Oxazoline onto Plant-Made Rituximab

An endoglycosidase S mutant (EndoS D233Q) has been previously selected for the specific activity
of rapid and robust transglycosylation of oxazoline glycans onto a single core GlcNAc attached to
the protein asparagine residue [40]. Oxazoline glycans were prepared from pure sialylglycopeptide
(SGP) isolated from chicken egg yolk, following the previously reported method [51,52]. In addition,
a scalable acetone-water solution-based extraction has also been published capable of producing
gram quantities of oxazoline glycan reagents [53]. Plant-derived NbRTXGlcNAc was used as the
acceptor in the EndoS D233Q mediated transglycosylation reaction which enables the transfer of
a complex N-glycan to the exposed GlcNAc residue to produce a A2G2 glycoform (Figure 3A). Liquid
chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS) analysis confirmed
the completion of the reaction showing the formation of a rituximab glycoform of 50,832 Da which
corresponds to the A2G2 glycoform of the heavy chain of the IgG. Mass spectrometry analysis also
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revealed the specificity of the transglycosylation for the NbRTXGlcNAc species, as the non-glycosylated
heavy chain fraction, which does not carry GlcNAc acceptor at position Asn297, remained unprocessed
(Figure 3B).
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2.3. Cell Surface CD20 Binding of NbRTXA2G2

Rituximab mechanism of action relies on binding to the lymphoma cell marker CD20 before
triggering cell cytotoxicity. Prior to performing CD20 binding assays, the percentage of CD20 antigen
on cell surface of Wil2-S and Daudi lymphoma cells, standard lymphoma cell lines used for CD20
binding assays in oncology research, was first quantitated by flow cytometry using FITC-labeled mouse
anti-human CD20 antibodies. It was found that 98.7% of Wil2-S and 99.4% of Daudi cells were CD20
positive under culture conditions (Figure S3). Since cells retained high expression of CD20, they were
used for binding and cytotoxicity assays. The binding assay was carried out with 10 nM of NbRTXA2G2

and Rituxan® using flow cytometry. NbRTXA2G2 revealed similar binding affinity to Rituxan® when
both Wil2-S and Daudi cells were used (Figure 4). Similar binding profiles were observed when 50 nM
and 100 nM of rituximab samples were used. This demonstrated that the A2G2 glycoform status and
the reglycosylation procedure did not impede the antibody binding capacity to target cells.
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Figure 4. Binding of Rituxan® (A,B) and NbRTXA2G2 (C,D) to Wil2-S and Daudi cells analyzed by flow
cytometry. Rituxan® and NbRTXA2G2 were used at a concentration of 10 nM. All rituximab samples
were measured in triplicates (red, green and blue lines). FITC-labeled mouse IgG2a (black line) and
unstained cells (grey line) were used as controls. The X-axis represents the fluorescent signals of FITC
whereas the Y-axis presents % of cell count.

2.4. Enhanced ADCC Response by NbRTXA2G2

Antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action of
anti-cancer antibodies. ADCC assays are commonly performed using peripheral blood mononuclear
cells (PBMCs), natural killer (NK) cells or engineered cell lines as effector cells. Analysis of ADCC
efficacy of plant-made NbRTXA2G2 was carried out using the ADCC reporter bioassay with Wil2-S
and Daudi target cells along with engineered Jurkat cells expressing FcγRIIIa receptor. Engineered
effector cell lines provide more consistent results in ADCC assays with less variability compared to
primary effector cells and PBMC [54]. The impact of effector cells expressing different CD16a allotypes
(FcγRIIIa receptor) on the ADCC activity of NbRTXA2G2 and Rituxan® was evaluated. The presence
of a valine (V) versus a phenylaniline (F) at position 158 of FcγRIIIa/CD16a improves the affinity
for IgG and is associated with higher ADCC efficacy. Both high affinity V/V 158 variant and low
affinity F/F 158 variant effector cells were used. As shown in Figure 5, EC50 values of plant-made

NbRTXA2G2 were substantially higher than Rituxan®, regardless of the phenotype of the effector cells
(V/V 158 or F/F 158 variant) used. Dose response curves of NbRTXA2G2 exhibited a leftward shift and
significantly higher upper asymptote from those of Rituxan®, which indicated improved cytotoxic
activity of NbRTXA2G2 over Rituxan®. When V/V 158 variant effector cells were used, NbRTXA2G2

triggered a 5.8-fold increase in ADCC response when using Wil2-S cells (EC50 2.7 ng/mL) and a
4-fold increase using Daudi cells (EC50 2.9 ng/mL) over Rituxan® (EC50 15.7 ng/mL and 12 ng/mL
respectively). Similarly, when F/F 158 variant effector cells were used, the ADCC response triggered
by NbRTXA2G2 was stronger than Rituxan® whether Wil2-S cells (EC50 of 4.4 ng/mL and 18 ng/mL
respectively) or Daudi cells (EC50 7 ng/mL and 22 ng/mL respectively) were used (Figure 5). A second
ADCC assay was performed using Wil2-S cells (F/F 158 and V/V 158 variants) where NbRTXA2G2 and
Rituxan® were compared to NbRTX and NbRTXGlcNAc. The resulting EC50 values are summarized in
Figure 6. The superior ADCC potency of NbRTXA2G2 over Rituxan® or the non-engineered plant-made
rituximab (NbRTX) was confirmed.
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3. Discussion

The cost of monoclonal antibody production remains high despite higher yields in CHO-based
manufacture. With antibodies targeted to smaller patient populations and smaller batch sizes, the
complexity of facilities, even with single-use technology does not offer substantive economies of scale.
CHO glyco-engineering is even more difficult. In some cases, the capital and cost of goods constraints
prevent the establishment of antibody manufacturing facilities in developing countries where it is
badly needed. The plant transient expression platform using N. benthamiana was chosen as it offers
a potential cost-effective alternative to other recombinant protein manufacturing techniques [55,56]
to counterbalance the downstream process cost associated with the transglycosylation technology.
Successful antibody transglycosylation was described earlier using purified antibodies derived
from mammalian cell culture [40,41,57]. However, introducing glycan remodeling into a scalable
manufacturing process remained challenging because of the additional cost associated with in vitro de-
and re-glycosylation, and the introduction of in-process enzymes. An alternative to the in vitro
deglycosylation step of the glycan remodeling technology was designed. A combined glycan
remodeling process was developed that produced deglycosylated antibody acceptors in vivo, followed
by in vitro chemoenzymatic transglycosylation using oxazoline glycans as donors to generate single
antibody glycoforms harboring the human afucosylated A2G2 glycan. Furthermore, introducing the
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deglycosylation step in plant reduces process steps and time, which will significantly reduce cost at
scale. To further control cost, oxazoline glycans were chosen as they are derived from raw material
available in large quantities (chicken egg yolk powder) and can be prepared at a rather low cost.
The large-scale preparation of the sialoglycopeptide (SGP) and the glycan oxazoline derivative was
exemplified by two recent reports [53,58].

Most therapeutic products on the market are well characterized at the amino acid level, but still
consist of a pool of several glycoforms and therefore their manufacturing remains under constant
regulatory pressure to provide a truly well-characterized protein. The nature of oligosaccharides
decorating therapeutic proteins is critical for determining pharmacokinetic properties, as previously
described for afucosylated anti-cancer antibodies [9,14,16–18]. In fact, when the N-glycosylation and the
clinical performance of the corresponding therapeutic protein are linked, the N-glycosylation structure is
considered as a Critical Quality Attribute (CQA) [6] and must be controlled and characterized during
the therapeutic manufacturing process to assure product consistency for maximum efficacy and safety.
Developing a scalable and more affordable method to produce therapeutics with defined preselected
N-glycosylation will address important therapeutic, manufacturing and regulatory considerations
including: (i) reduction of immunogenic reactions caused by non-human sugar residues; (ii) targeting of
specific protein activities through customized N-glycosylation; (iii) control and maintenance of therapeutic
quality attributes during manufacturing processes; (iv) development of biosimilar and biobetter products;
and (v) easier regulatory approval process.

A co-expression strategy was implemented where antibodies were expressed with the enzyme
endoglycosidase-H (EndoH) from Streptomyces plicatus. EndoH was targeted to the endoplasmic
reticulum (ER) by fusing the ER retrieval signal (SEKDEL) to the C-terminus of the enzyme.
Thus, ER-retained EndoH would hydrolyze high-mannose glycans from newly formed glycoprotein
as they mature along the plant endomembrane system and before the addition of the plant-specific
α-1,3 fucose residue to the protein glycosylation core. Rituximab expressed either alone or with
EndoH accumulated at similar levels in the plant and high levels (>300 mg/kg plant biomass) of
recombinant antibodies, purified as deglycosylated substrates containing a single GlcNAc competent
for in vitro transglycosylation, were obtained. Deglycosylated antibodies were recovered by protein A
chromatography followed by cation exchange chromatography to separate further the deglycosylated
antibody from non-hydrolyzed forms. Although this process was designed for scale-up, further
optimization of the in planta deglycosylation would allow for an increase in deglycosylated antibody
recovery and simpler downstream process. Similarly, a certain degree of hemiglycosylation was
observed on rituximab produced in plants, which at the current stage of the method development
need further characterization. For comparison, Rituxan® only exhibit fully glycosylated species
(Figure S2) as expected for an optimized and approved product [48,59–61]. The biology affecting
the degree of antibody hemiglycosylation in plants has not been studied and remains unknown.
However, it is likely that plant growth conditions, light chain/heavy chain expression kinetics and
other environmental conditions influence this phenomenon as well as glycosylation site occupancy
and in planta deglycosylation efficiency. To that end, expression optimization has been initiated to
improve deglycosylation of the target protein in planta and initiate a scale-up strategy for the method.
Data resulting from upstream and downstream process optimization will help unravel the complexity
behind glycosylation of recombinant protein produced in plants and will be reported when a
systematic analysis will be completed. A recent study showed that the human granulocyte-macrophage
colony-stimulating factor (GM-CSF) and the GA101 antibody processed in vivo by the GlycoDelete
technology were efficiently secreted [25], supporting the assumption that NbRTXGlcNAc would be
secreted as well. The final glycan remodeled rituximab (NbRTXA2G2) bound to CD20 as well as
the commercial Rituxan® and elicited a much stronger ADCC response in standard therapeutic
activity/efficacy assays; criteria for establishing NbRTXA2G2 as a bona fide biobetter. This is consistent
with other reports demonstrating ADCC enhancement by modulating the glycosylation profile of the
monoclonal antibody [9,16,17,62–64]. It also supports the fact that in planta deglycosylation is not
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likely to affect antibody folding as the final reglycosylated product demonstrated similar or better
binding to CD20 and FcγRIIIa receptor as the innovator protein.

Moving beyond afucosylated monoclonal antibodies, other therapeutics may benefit from
customizing their glycosylation status to include recombinant lysosomal enzyme for better cellular
uptake during enzyme replacement therapies [65–67], anti-viral neutralizing antibody [12,68], and
sialylated recombinant proteins (with terminal N-acetylneuraminic acid residues) to provide additional
anti-inflammatory activity [40,69], or increased protein half-life [70,71].

4. Materials and Methods

4.1. Construction of Expression Vectors

The genetic sequences of antibodies’ heavy and light chains and Endoglycosidase H (GenBank:
AAA26738.1) were each fused to the barley α-amylase signal peptide sequence (GenBank: CAX51374.1).
For rituximab sequences, the DrugBank accession DB00073 was used where a valine residue at position
219 (original to human IgG1) was described while in the original patent (US patent No. 5736137),
Rituxan® has an alanine residue substitution at position 219. Antibodies’ heavy and light chain
genes were cloned into magnICON® TMV- and PVX plant expression vectors (Icon Genetics GmbH,
Halle, Germany) [72], respectively. The Endoglycosidase H gene was fused to genetic sequences of
the endoplasmic reticulum (ER) retrieval peptide SEKDEL and the epitope Flag tag at the 3’ end
before being cloned into the binary vector pGREENII (John Innes Center, Norwich, UK; GenBank:
EF590266.1) [73]. All DNA sequences were codon optimized for expression in Nicotiana benthamiana
and synthesized by ATUM (Newark, CA, USA) for the antibody genes and Eurofins MWG operon
(Louisville, KY, USA) for the Endoglycosidase H gene. All expression vectors were then mobilized
separately into Agrobacterium tumefaciens strain GV3101 by electroporation. The vector pGREENII
containing the Endo-H gene was mobilized in Agrobacteria together with the helper vector pSOUP
(John Innes Center, Norwich, UK) [73].

4.2. Protein Expression

To express deglycosylated antibody acceptors in planta, the antibody’s light and heavy chains
were co-expressed with the EndoH enzyme as follow. Individual Agrobacetrium cultures carrying plant
expression vectors were grown in LB media (AMRESCO, Solon, OH, USA) at 28 ◦C, 225 rpm for 2 days.
Agrobacterium cultures were then mixed together in 5 mM MES buffer, pH 5.5 and diluted to a final
OD600nm of 0.01 for the antibodies’ light and heavy chain Agrobacterium clones and to a final OD600nm

of 0.07 for the Endo-H Agrobacterium clone. Five-week-old plants (grown in growth chambers at ~26 ◦C
with an 18 h light/6 h dark photoperiod under LED lighting (Illumitex, Austin, TX, USA)) were then
immersed into the solution of diluted Agrobacteria and infiltrated by applying a vacuum of 23 inHg
for 3 min. Agro-infiltrated plants were incubated under constant LED light at ~22 ◦C with relative
humidity of ~50% for recombinant protein production. Antibody accumulation was measured in crude
extract and in process samples by BioLayer Interferometry (BLI) using protein A sensors on a BLItz
instrument (Pall ForteBio, Fremont, CA, USA).

4.3. Protein Purification

After 6 days of post infiltration, plants (leaves and stems) were harvested and total soluble proteins
were extracted in 2 volumes (w:v) of extraction buffer (50 mM sodium phosphate, 60 mM ascorbic
acid, 5 mM EDTA, 1mM PMSF, pH 8.0), centrifuged at 14,000× g for 20 min at 4 ◦C, and clarified by
1.2/0.2 µm filtration. Clarified extracts were loaded onto MabSelect SuRe resin (GE Healthcare Life
Sciences, Piscataway, NJ, USA) to collect total plant-produced antibodies. Antibodies were washed
with 10 CV of 25 mM Tris, 0.2 M NaCl, 1 mM EDTA, 0.01% PS80; pH 7.5 and eluted with 4 CV of
100 mM NaOAc, 50 mM NaCl; pH 3.3. Elution fractions were pooled and then subjected to cation
exchange chromatography using Fractogel EMD SO3

− resin. Antibodies were washed with 30 mM
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NaOAc, pH 6.0 and eluted with a linear salt (0 to 1 M NaCl) gradient over 20 CV. Pure antibody
samples were analyzed by SDS-PAGE using a 4–10% Bis-Tris gradient NuPAGE® gel (Life Technologies,
Carlsbad, CA, USA) under reducing conditions.

4.4. NanoLC-QTOF Mass Spectrometry

Samples were dialyzed against purified water for 1 h at room temperature using a 10,000 Da
MWCO membrane. Following dialysis, samples were diluted to a concentration of 0.5 mg/mL with
0.1% formic acid in water. For reduced analysis, dithiothreitol was added to the samples to a final
concentration of 25 mM and incubated for 30 min at 37 ◦C. Samples were allowed to cool to room
temperature before injecting 2–5 µL on to a 100 mm × 0.3 mm, 3.5 µm C8 column (Waters, Milford, MA,
USA). Reversed phase chromatography was performed with a gradient of 95% water: 5% acetonitrile:
0.1% formic acid as mobile phase A and 95% acetonitrile: 5% water: 0.1% formic acid as mobile phase
B. The column was held at 10% B for 5 min, then programmed to 90% B over 20 min and held at 90% B
for 2 min with a constant flow rate of 10 µL/min on a Waters CapLC HPLC. Pre-column splitting was
employed to achieve acceptable nanoLC flowrates (~600 nL/min) for interface with a nano-electrospray
ionization (ESI) source. Mass spectrometry was performed on a Micromass Q-TOF Micro (quadrupole
time-of-flight mass spectrometer) operating in the full scan positive-ion mode. Continuum mass
spectra were acquired over the mass range of 500–4000 amu with a scan time of 1.8 s and an inter-scan
delay of 1 s. The capillary, sample cone and extraction cone voltage were 3654; 30 and 2.5 V, respectively.
The source temperature was held at 120 ◦C, the cone N2 gas flow rate was 50 L/h and the collision
energy was held constant at 10 V with a collision gas pressure of 10.2 PSI. The LC-MS analysis of
transglycosylation product was performed on an LXQ Linear Ion Trap (Thermo Scientific, Waltham,
MA, USA) with an Agilent Poroshell 300SB-C8 column (5 µm, 75 × 1 mm). The IgG antibody samples
were treated with 50 mM TCEP (tris(2-carboxyethyl)phosphine) at room temperature for 20 min then
subjected to LC-MS analysis. The analysis was performed at 60 ◦C eluting with a linear gradient of
25–35% MeCN containing 0.1% formic acid within 10 min at a flow rate of 0.40 mL/min. The LC-MS
analysis of IdeS protease [74] treated antibody glycoforms was performed in the same manner but
included a 1-hr incubation with IdeS at 37 ◦C prior to TCEP (tris(2-carboxyethyl)phosphine) treatment.

4.5. Peptide Mapping/Post-Translational Modification Analysis by LC-MS

The purified Rituximab samples were adjusted to 0.1 mg/mL by 50 mM Tris, pH = 8.0 and
denatured by 50 mM ammonium bicarbonate containing 8 M Urea, pH = 8. The denatured samples
were reduced by adding freshly prepared dithiothreitol (DTT) to a final concentration of 20 mM for
reduction and incubated at 60 ◦C for 1 h. The reduced samples were alkylated by adding freshly
prepared Iodoacetamide to a final concentration of 40 mM and incubated for 30 mins in dark at room
temperature. The alkylation reaction was then quenched by adding DTT to 20 mM. The alkylated
samples were then diluted 8 times with 50 mM ammonium bicarbonate. The diluted samples were
digested by adding 5 µg trypsin protease followed by overnight incubation at 37 ◦C. The digestion
reaction solution was exchanged with 50 mM ammonium bicarbonate buffer. The subsequent analysis
by mass spectrometry was performed using a SCIEX tripleTOF 5600 instrument within the same
day of sample preparation. The peptic digests of rituximab samples were applied to a 2.1 mm × 50
Synergi 4 µm fusion RF 80 Å LC Column (Phenomenex Corporate, Torrence, CA, USA) using 0.1%
(v/v) formic acid in water at a flow rate of 200 µL/min. The peptides were eluted using a gradient of
2–85% acetonitrile over the course of 30 min. A blank solution using acetonitrile was utilized between
each sample to avoid peak carry-over between runs. The mass spectrometer was calibrated using PPG
positive ion calibration solution from SCIEX (SCIEX, Framingham, MA, USA). The eluted peptides
were introduced into the mass spectrometer and analyzed using the mass spectrometer in positive ion
mode with the following settings: High sensitivity mode, scan range 300–3000 m/z, Accumulation
Time 250 ms, GS1 = 45, GS2 = 50, CUR = 30, source temperature = 500 ◦C and ISVF = 4800. Charge states
from 2 to 5 were accepted, and targeting ions were excluded for 3 s. MS/MS data were obtained using
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the CID with rolling collision energy. The peptides were identified using the software PEAKS studio
(Bioinformatics Solutions Inc., Waterloo, ON, Canada) with a mass tolerance of 20 ppm for parent
masses and 0.1 Da for fragment masses. Carbamidomethylation was set as a permanent modification
while deamidation of asparagine and glutamine, N-terminal oxidation of methionine, N-terminal
pyroglutamate, C-terminal Lysine loss and proline hydroxylation were set as possible modifications.

4.6. EndoS-Mediated Transglycosylation

The transglycosylation reaction was performed by adding 400 µg of plant-made antibody acceptor,
17.5 µg of EndoS D233Q and 40 molar equivalent of complex type (A2G2 as per the Oxford glycan
nomenclature, Table S4) N-glycan oxazoline in a 100 mM Tris HCl buffer, pH 7.4. The reaction was
incubated at 37 ◦C for 2 h. Progress of reaction was monitored by LC-ESI-MS analysis of aliquots taken
from reaction mixture. Another 40 molar equivalent of oxazoline might be added to reaction mixture
for extended incubation if LC-MS monitoring indicated transfer was not complete after 2 h reaction.

4.7. Cell Lines and Cell-Based Assay Reagents

A hereditary Spherocytosis cell line Wil2-S (ATCC® CRL-8885) and the Burkitt’s lymphoma cell
line Daudi (ATCC® CCL213) were obtained from the American Type Culture Collection (Manassas,
VA, USA). Both cell lines were maintained in Gibco® RPMI 1640 medium, supplemented with
10% heat-inactivated fetal bovine serum, penicillin (100 U/mL), streptomycin (100 µg/mL) and
non-essential amino acids (Life Technologies, Carlsbad, CA, USA). Cells were maintained with seeding
density of 1 × 105 cells/mL and cultured at 37 ◦C with 5% CO2. Cells were subcultured when cell
density reached 2 × 106/mL.

4.8. Lymphoma B-Cell Lines Characterization

The percentage of CD20 antigen present on cultured Wil2-S and Daudi lymphoma cells was
assessed by FACS Calibur flow cytometry (BD Biosciences, San Jose, CA, USA). Daudi and Wil2-S
cells at 1 × 106 cells/mL were labeled with FITC Mouse Anti-Human CD20 (BD Biosciences, San Jose,
CA, USA). After incubating 100 µL of cells with 5 µL of FITC Mouse Anti-Human CD20 for 30 min at
4 ◦C, cells were washed and resuspended in stain buffer (Phosphate Buffered Saline (PBS) containing
2% fetal bovine serum) for flow cytometry analysis. The nucleic acid dye 7-Amino-Actinomycin D
(7-AAD) (BD Biosciences, San Jose, CA, USA) was used as 0.5 µL/500 µL for the exclusion of nonviable
cells in flow cytometry analysis. The relative FITC fluorescence was determined with 488 nm excitation,
and emission detected with 530/30 nm using a 530/30 bandpass filter. Percentage of cells with specific
CD20-FITC staining was determined with FACS plots using FlowJo FACS analysis software (FlowJo,
Ashland, OR, USA).

4.9. Antigen Binding Assay

Flow cytometry analysis was performed to determine and compare the binding of NbRTXA2G2

and Rituxan® (Genentech, South San Francisco, CA, USA) antibodies to target cells (Wil2-S and Daudi)
using a FACS Calibur (BD Biosciences, San Jose, CA, USA). Briefly, 100 µL cells at 1 × 106 cells/mL
were incubated with different concentrations of Rituxan® standard and NbRTXA2G2 for 30 min at 4 ◦C.
Cells were then washed and incubated with 5 µL of FITC anti-human IgG Fc (BioLegend, San Diego,
CA, USA). FITC Mouse IgG2a, k Isotype Ctrl (FC) (BioLegend, San Diego, CA, USA) was used as
isotype control. Cells were washed with stain buffer and analyzed by flow cytometry. Nucleic acid dye
7-AAD was used for the quantification of dead cells in each sample as 25 ng/500 µL. Cell Quest data
acquisition software (BD Biosciences, San Jose, CA, USA) and Flowjo FACS analysis software (FlowJo,
Ashland, OR, USA) were used to derive data plots.
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4.10. Antibody-Dependent Cell Mediated Cytotoxicity (ADCC) Assay

ADCC was determined using the ADCC Reporter Bioassay Core kit (Promega, Madison, WI,
USA) as per manufacturer’s specifications. Wil2-S and Daudi target cells were used along with
engineered Jurkat cells stably expressing the FcγRIIIα receptor, V158 (high affinity) and F158 (low
affinity) variants. ADCC assays were performed with effector and target cell ratio of 10:1 respectively.
In brief, Wil2-S and Daudi target cells were washed with PBS, resuspended in Gibco® RPMI 1640
media supplemented with 2% low IgG serum (Life Technologies, Carlsbad, CA, USA) and seeded at a
cell density of 5 × 103 cells/well in white, flat-bottom 96-well assay plates. Experimental wells were
set up by combining 25 µL of target cell suspension, 25 µL of effector cell suspension, and 25 µL of
the appropriate antibody dilution. Reactions were set up in triplicates and plates were incubated at
37 ◦C with 5% CO2 for 6 h. The Bio-Glo™ Luciferase Assay System was used as detection reagent and
luminescence was measured using the Synergy H1 plate reader (Biotek, Winooski, VT, USA). Plate
background was determined by calculating the average relative luminescence units (RLU) from wells
with media only. GraphPad prism software (GraphPad, La Jolla, CA, USA) was used to plot Relative
Luminescence Units (RLU) or Fold of Induction [Fold of Induction = RLU (induced-background)/RLU
(no antibody control-background)] vs. Log10.

5. Patents

Patent US 9,689,016 resulted from the work reported in this manuscript.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/2/421/s1.
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