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Abstract—In typical load shape analysis, many different 

clustering methods have been used to segment customers, 
interpret behavior and inform marketing reach out strategies.  
Due to memory requirements and computational efficiency, many 
clustering algorithms do not have the capabilities to perform 
analysis at the urban-scale.  In this paper, a scalable data-driven 
BIRCH clustering algorithm is used to extract the typical load 
shapes of a neighborhood.  The BIRCH radius threshold is 
determined by solving an optimization problem.  For global 
clustering, a metric is created that can rank the best possible 
options for the agglomerative phase of the BIRCH algorithm.  The 
developed method allows large time series data at the urban-scale 
to be quickly analyzed 
 

Index Terms—Clustering, BIRCH, smart meter data, typical 
load shapes, load profile. 

I.  INTRODUCTION 
HE current deployment of advanced metering 
infrastructures (AMI), and the consequent availability of 

large electricity consumption datasets, at hourly and sub-hourly 
resolution, allows for hidden trends in local electricity 
generation and consumption to be more intelligible. These 
readings can be analyzed and grouped together into typical load 
shapes, that can uncover hidden behavior, and segment 
customers.  The load shapes can determine the timing of peak 
demand for a population, and support other forecasting tools for 
power distribution planning engineers that aim to model and 
forecast the and other parts of the distribution system [1], [2].  
The results of the analysis have been used to inform better 
policy and tariff design in deregulated markets [3]. By 
understanding the typical behavior of the residences being 
metered [4], [5], each residence can be evaluated as potential 
candidates for demand response (DR) or energy efficiency (EE) 
programs [6], [7]. 
 Many different methods have been used to cluster load 
shapes together and extract meaningful features in periods of 
peak demand [6] and energy use [8]. Some of these methods 
include, exclusive (k-means/k-medoids) [2], [6]–[8], 
overlapping (fuzzy C-means) [1], hierarchical (divisive or 
agglomerative) [6], neural networks [8], and others.  However, 
in today’s rich databases of historical consumption timeseries, 
the current challenge is to find robust highly scalable data-
driven methods for clustering load shapes at the urban-scale.   
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The clustering methods should be both scalable in the number 
of samples and the number of clusters, be memory efficient, and 
naturally self-organize into a set of clusters.  In the methods 
listed above, most of the algorithms do not scale very well to 
large number of samples [9] or the number of clusters needs to 
be known a priori. 
 To overcome the scalability challenges, the balanced 
iterative reducing and clustering using hierarchies (BIRCH) 
algorithm has been applied [10]. Advantages of the BIRCH 
algorithm includes that the method, a) clusters incrementally in 
a single sweep of the data; b) the whole data does not need to 
fit into memory; and c) the structure of the algorithm allows for 
merging and splitting of sub-clusters incrementally and 
consistently.  The BIRCH algorithm creates a tree based on two 
inputs a radius threshold and a branching factor. The threshold 
parameter is often determined by heuristics, but other 
techniques exist: for example, some authors have recently use 
the gap-statistic to choose the threshold [11].  In their work, 
they mention that the gap-statistic is not easy and have 
developed an alternative approach to calculate the gap-statistic. 
If the branching factor is included in the optimization then the 
formulation moves away from a continuous optimization 
problem to a constrained integer optimization problem, which 
is NP-hard. Other authors have thus  proposed to use a genetic 
algorithm to determine both input parameters [12]. However, 
the technique shows that for a small branching factor the 
number of clusters increases exponentially. 
  The purpose of this paper is to showcase the use of a 
scalable data-driven BIRCH clustering algorithm for automatic 
load shape extraction. The inputs are either chosen to the 
algorithm structure free or are formulated as an optimization 
problem.  A set of cost functions for the optimization routine 
are examined for both load shape interpretability and 
contextualization for a set of quantities of interest (QOI).  A 
salable clustering method is implemented and extracts load 
shapes for high, intermediate, and low consumption days.  
Using this clustering method allows for extremely large 
samples to be clustered efficiently and effectively and can be 
used for online learning and modification to the typical load 
shapes overtime. 
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II.  METHODOLOGY 

A.  Smart Meter Data 
The electrical consumption time series data was collected 

smart meters in Los Alamos, NM.  The period of the study is 
between August 1st, 2013 and January 20th, 2016.  During this 
period, there are 902 total days.  There is a total of 1641 unique 
smart meters.  Therefore, there are approximately 1.48 million 
daily consumption realizations to be clustered. The resolution 
of the consumption data used in this study is sampled hourly.   

B.  Mathematical Preliminaries 
The electrical consumption of a smart meter, 𝑝, can be 

described by a discrete time series, 𝑠# 𝑡 : 𝑡 = 1: 𝑛#, with 𝑛# 
uniformly sampled realizations.  In vector form the time series 
becomes Eq. 1. 

𝑆# = 𝑠# 1 , 𝑠# 2 , … , 𝑠# 𝑛#  (1) 

This time series can be collected into a matrix, 𝒍# ∈ 	ℝ12×45 
where 𝑁# = 𝑛#/24, of daily load shapes where the entries of 
the matrix are calculated in, Eq. 2. 

𝑙# 𝑖, 𝑗 = 𝑠 24 𝑖 − 1 + 𝑗 , 𝑖 = 1: 𝑁#	, 𝑗 = 1: 24 (2) 

The total number of load shapes is then 𝑁>?> = 𝑁@
#
@AB .  Then 

the load shapes for all the smart meters can be collected into a 
complete load shape matrix 𝑳 ∈ ℝ1DED×45, Eq. 3. Where the 
rows indicate the load shape sample realization and the columns 
the hourly features of the daily load shape. 

𝑳 = 𝒍B, 𝒍4, … , 𝒍#
F

 (3) 

C.  Preprocessing Data 
From the raw data, the data is preprocessed in three steps 

before the clustering is performed Fig. 1.   Following aspects of 
previous work of S. Xu et al. [7], the authors point out that many 
analysis of typical load shapes neglect overall consumption of 
the load shape, peak time and peak overlap.  In their analysis, 
the load shapes were separated into three groups a high 
consumption days, intermediate (Inter.) consumption days, and 
low consumption days.  In this study, these same groups are 
created by using the 25th percentile (9.53 kWh) and 75th 
percentile (25.18 kWh) daily consumption values. The authors 
also make a case for smoothing the consumption data to 
compensate for noise [7].  This study uses SSA [13] to filter the 
time series and the corresponding load shapes, 𝑳 = 𝑓 𝑳 , Fig. 
2.  The number of components to reconstruct the time series was 
determined by the Kaiser rule [4], [5].  After filtering, the load 
shapes are normalized [6], [7], Eq. 4. 

𝑳 = 𝐿 𝑖, 𝑗 =
𝐿 𝑖, 𝑗
𝐿 𝑖, 𝑗45

IAB
	 , 𝑖 = 1: 𝑁>?>	, 𝑗 = 1: 24	 

 
(4) 

 
Fig. 1:  The intermediate steps in the preprocessing procedure from the raw data 
load shapes to the clustering algorithm. 

 
Fig. 2:  An example of the result of the SSA filtering over a two-day period. 
The “Full” represents all components being reconstructed.  The “Filtered” is 
based on the Kaiser rule to choose the number of reconstructed components. 

D.  Clustering Metrics 
Before clustering the load shapes, a set of metrics are needed 

to be in place for determining the input parameters of the 
BIRCH algorithm and evaluating the clustering performance.  
The goal of the clustering algorithm is to create a set of 𝑘 
clusters, 𝑪L with 𝑞 = 1: 𝑘 and where points in the cluster are 
load shapes from 𝑳.  Each cluster has a centroid, 𝑐L. The 
standard notion of a cluster is that the within cluster distance be 
small (dense cluster) while the between cluster dispersion be 
large (well separated clusters), Eq. 5 and Eq. 6.   

𝑊P =
1
𝑁>?>

𝑙 𝑖 − 𝑐L 𝑖
445

@AB

	

Q∈𝑪R

P

LAB
	 (5) 

𝐵P =
1
𝑘

𝑐L 𝑖 − 𝑐 𝑖
445

@AB

P

LAB
	 (6) 

In Eq. 5, 𝑐 is the centroid of  𝑳. These two metrics have been 
used in a few previous studies [3], [14] and are used to 
determine the input parameters of the BIRCH algorithm in this 
work.  To evaluate the clustering performance this study looked 
at using the silhouette coefficient, SMI indicator, entropy, the 
cluster size standard deviation, and the mean estimated 
threshold from Kwac. et al. [6].  Of these indicators, the 
measures of entropy, the cluster size standard deviation, and the 
estimated threshold showed some promise for determining the 
cluster performance, Eq. 7 – Eq. 9 respectively. 

𝐸P = −
1
𝑁>?>

𝑝 𝑐L
P

LAB
log 𝑝 𝑐L  (7) 

𝜎P =
card 𝑪L − 1

𝑘 card 𝑪@ 	P
@AB

P
LAB

𝑛 − 1
	 (8) 

𝜃P =
1
𝑁>?>

𝑙 𝑖 − 𝑐L 𝑖
4

45
@AB

	
Q∈𝑪R

𝑐L 𝑖 445
@AB

P

LAB
	 (9) 

The card ∙  operator is the cardinality of the cluster set. 

E.  BIRCH Clustering Algorithm 
The BIRCH algorithm has been developed specifically for 

large datasets, especially when the entire data cannot be loaded 
into memory.  The BIRH algorithm has four phases. 
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1. Load data into memory by building a CF tree 
2. Condense the data (optional) 
3. Global clustering 
4. Cluster refining (optional) 

  Given a set of	𝑘 clusters of load shapes from 𝑳, the BIRCH 
algorithm creates a set of 𝑘 clustering features (𝐶𝐹)s and a 
dendrogram called a 𝐶𝐹-tree, Fig. 3.  The 𝐶𝐹 for cluster 𝑖	is 
defined as 𝐶𝐹@ = 𝑚@, 𝐿𝑆@, 𝑆𝑆@ , where 𝑚@ is the number of load 
shapes in the cluster, 𝐿𝑆@	is the linear sum of the load shapes in 
the cluster, and 𝑆𝑆@ is the squared sum of the load shapes in the 
cluster.  For the 𝐶𝐹-tree, there are two parameters: 1) a 
branching factor	𝐵 and 2) a radius threshold 𝑇.   

The tree is created serially by following the closest 𝐶𝐹 down 
to the leaf nodes.  Every sample in the leaf nodes must satisfy 
𝑇, otherwise create a new leaf node.  A maximum size of the 
leaf node can be included, but is not necessary since the radius 
is bounded by 𝑇. If the sample can be inserted with the threshold 
and size requirements then update the 𝐶𝐹.  If the sample cannot 
be inserted due to the size requirement, split the leaf node and 
reassign the samples1.  Then update all the 𝐶𝐹s for the leaf 
nodes and non-leaf nodes traversed to the root. 

 
Fig. 3:  Graphical depiction of the BIRCH CF tree, with each CF representing 
a subcluster or a cluster of subclusters.  If the number of non-leaf nodes are 
larger than the branching factor, another layer of non-leaf nodes will be in the 
CF-tree. 

F.  Optimization of the BIRCH input parameters 
In the creating of the BIRCH CF-tree (Phase 1), two main 

inputs drives the tree structure 1) the branching factor and 2) 
the threshold.  The smaller the branching factor, the larger the 
number of clusters.  Since interpretability is normally a 
requirement, the value of B should be sufficiently large.  In this 
work, a minimum of 2 clusters are required, so the value of the 
branching factor is 𝐵 = 𝑁>?>/2.  In this work, the problem of 
determining the threshold is posed as a simple optimization 
problem, Eq. 10.  

min
Ffg

𝑔 𝑊P 𝑇 , 𝐵P 𝑇 : (10) 

The cost function, 𝑔 ∙ , takes in the threshold input 
parameter and the resulting within and between distances from 
the BIRCH algorithm.  The form of this cost function problem 
has some flexibility, and therefore a couple choices are tested.  
These functions are based on a linear combination (LC), Eq. 11, 
the Euclidean distance (EU), Eq. 12, the squared Euclidean 
distance (SQEU), Eq. 13, the Bray-Curtis dissimilarity (BC), 
                                                             

1 This may result in further splitting at the parent level based on the number of entries in the non-leaf nodes. 

Eq. 14, and the inverse of the cluster dispersion index (I-CDI), 
Eq. 15. 

𝑔 𝑊P, 𝐵P = 𝑊P + 1 − 𝐵P /2 (11) 

𝑔 𝑊P, 𝐵P = 𝑊P
4 + 1 − 𝐵P 4 (12) 

𝑔 𝑊P, 𝐵P = 𝑊P
4 + 1 − 𝐵P 4 (13) 

𝑔(𝑊_𝑘, 𝐵_𝑘	) = |𝑊P − 𝐵P	|/(𝑊P + 𝐵P) (14) 

𝑔 𝑊P, 𝐵P = 𝐵P/𝑊P − 1  (15) 

The optimization problem is solved using Brent’s method to a 
tolerance of 1e-5. 

G.  BIRCH: Global Clustering Phase 
In this study, only phase 1 and phase 3 are used in the BIRCH 

algorithm.  On a single pass, the BIRCH algorithm has been 
known to produce more clusters than necessary partially due to 
the algorithms sensitivity to input order.  For this reason, a 
global agglomerative clustering of the BIRCH CF-tree is often 
performed.  During the agglomerative processes if a small 
cluster is combined with either a large of or small cluster the 
evaluation measures (𝐸P, 𝜎P, 𝜃P)  will only change a small 
amount.  However, if two large clusters are combined a large 
increase can be expected in 𝜎P and	𝜃P and a large decrease can 
be expected in 𝐸P.  To determine when these large changes 
occur a combined metric equation has been developed to 
determine the number of clusters, Eq. 16. 

ℎ@ 𝐸@, 𝜎@, 𝜃@ =
𝐸@nB − 𝐸@
2max 𝐸

+
𝜎@ − 𝜎@nB
4	max 𝜎

+
𝜃@ − 𝜃@nB
4max 𝜃

	,			𝑖 = 1: 𝑘 
(16) 

The maximum of 𝐸 is when 𝑖 = 𝑘.  The maximum of both 𝜎 
and 𝜃 is when 𝑖 = 2.  The weighting is mainly due to entropy 
expecting to decrease while 𝜎 and 𝜃 are expected to increase 
and the weights bounds ℎ@ ∙  from [0-1]. 

III.  RESULTS 

A.  Choosing a cost function 
For each consumption group and for each cost function, the 

BIRCH threshold parameter was optimized.  For each scenario, 
the resulting number of clusters, standard deviation of the 
cluster size, the normalized entropy, and estimated threshold 
were calculated, Table 1.  It is clear for the high and low 
consumption groups that the BC and I-CDI cost function result 
in the smallest number of clusters.  If interpretability of the load 
shapes is a goal of the analysis, BC and I-CDI are the better 
metrics.  However, the normalized entropy score or the amount 
of information contained in the load shapes is much lower for 
the BC and I-CDI metrics.  If a finer resolution of load shapes 
is needed for providing context behind the load shapes, then the 
LC, EU, and SQEU would be better choices.  The number of 
clusters for these metrics could be reduced further using the 
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global clustering phase of the algorithm.  A possible 
explanation for the small number of clusters produced by the 
BC and I-CDI cost functions is that for densely populated 
datasets 𝑊P is bounded by 𝐵P.  Therefore, by minimizing Eq. 
14 and Eq. 15 would support large equally spaced clusters. 

As for the low consumption group, the cost functions 
perform in a similar manner based on the evaluation metrics 
chosen in this analysis.  This may be due to very small 
consumption days having very irregular normalized load 
shapes.  Global clustering could be used to further reduce the 
number of clusters. Based on the results of Table 1, the BC cost 
function is used in the rest of the paper.   The BC cost function 
showed to have the smallest number of clusters for the high and 
low consumption groups.  With the small number of clusters, 
this cost function (at least for this dataset) allows for the cluster 
load shapes to be easily interpreted.   

TABLE I 
Performance of the cost functions for the different 

consumption groups. 
Group Metric k σr Er θr T 
High LC 3271 799 0.430 0.0071 0.032 
High EU 1963 1118 0.400 0.0085 0.037 
High SQEU 2004 1093 0.403 0.0084 0.036 
High BC 9 57870 0.110 0.0446 0.087 
High I-CDI 9 45310 0.137 0.0379 0.079 
Inter. LC 5156 1058 0.444 0.0082 0.034 
Inter. EU 2860 1655 0.410 0.0097 0.039 
Inter. SQEU 3463 1343 0.421 0.0093 0.037 
Inter. BC 4 90100 0.092 0.0624 0.087 
Inter I-CDI 4 90100 0.092 0.0624 0.087 
Low LC 660 5947 0.257 0.0182 0.066 
Low EU 605 6115 0.258 0.0186 0.067 
Low SQEU 543 6518 0.251 0.0194 0.068 
Low BC 519 6402 0.255 0.0188 0.068 
Low I-CDI 496 6670 0.252 0.0196 0.070 
 

 

B.  Global Clustering for large number of clusters 
Global clustering is used to reduce the number of clusters, by 

agglomerating the smaller clusters into larger clusters.  The 
metric ℎ, Eq. 16, is used to determine the optimal number of 
clusters for the low consumption group.  Each term of the 
combined metric can be seen in Fig. 4.  When two large clusters 
are combined, these metrics see large increase or decrease.  This 
results in very large spikes in the combined metric, Fig. 5.  The 
largest peaks in order occur at 8, 3, 319, 68, and 10.  Since 8 
has the largest peak, 8 clusters will be used for the rest of the 
paper for the low consumption group.  For visual display only 
two smallest clusters considered only have a single day in the 
cluster and are not shown or discussed. 

 
Fig. 4:  The individual metrics from Eq. 7 – Eq. 9 during the agglomerative 
step of the BIRCH algorithm for the low consumption group. 

 
Fig. 5:  The combined metric from Eq. 16 showing which possible number of 
clusters are good candidates (large peaks) during the agglomerative step of the 
BUIRCH algorithm for the low consumption group. 

C.  The typical load shapes from the clustering 
From the previous section 9 clusters emerged from the high 

consumption group, 4 clusters from the intermediate group, and 
6 clusters in the low consumption group.  Each of these typical 
load shapes, average daily consumption, and the number of 
days as a percentage for their respective group are shown in Fig. 
6.  From inner quartile range and the inner 90% range, the high 
consumption group has the smallest range, followed by the 
intermediate consumption group and then the low consumption 
group.  Each group has a baseline (flat) curve as its largest 
cluster (cluster 0, 9, and 13).  For the high, intermediate, and 
low consumption groups the cluster with the largest average 
consumption (cluster 7, 11, and 13, respectively) seems to be 
representative of large night, afternoon, and baseline 
consumption, respectively.  The low consumption group load 
shapes seem to be mostly large peaks during the early morning 
and late evening, while the high and intermediate groups have 
a mix of single and double peak load shapes. 

D.  Scalability of the implemented algorithm 
To ensure that the algorithm can perform well for large data 

sets, the rate at which the algorithm scales with the number of 
samples is important.  The BIRCH algorithm scales 𝑂(𝑁>?>), 
Fig. 7a.  For the smaller thresholds, the computational time 
BIRCH algorithm starts to increase for large number of 
samples.  This is mainly due to the number of clusters 
increasing, Fig. 7b, and the larger CF-tree needs to be traversed.  
If the number of load shapes is sufficiently compressed into 
relatively small number of clusters the algorithm scales very 
well. 

IV.  CONCLUSIONS 
BIRCH clustering algorithm can quickly and efficiently 

extract load shapes from large databases that cannot fit into 
memory A set of cost functions based on cluster compactness 
and separation were used to cluster high, intermediate, and low 
consumption load shapes.  The cost functions were evaluated 
for their suitability to producing larger and smaller clusters for 
contextualization and interpretability.  A combined metric 
based on the estimated threshold, entropy, and average cluster 
size standard was used to determine appropriate number of 
clusters during the global clustering phase of the BIRCH 
algorithm.  The implementation was shown to scale with 
𝑂 𝑁>?>  samples.  Using this algorithm, the typical load 
analysis can be performed at the urban-scale and potentially for 
continual real-time online learning and classification by utilities 
companies. 
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Fig. 6:  The clusters extracted from the clustering algorithm with their centroid, 
inner quartile range, and inner 90th percent range.  Each cluster corresponds to 
a group (H-High, I-Intermediate, and L-Low consumption), the percentage of 
the days that the cluster represents in their respective group, and the average 
daily consumption. 

 
Fig 7: a) Computational time in seconds of the BIRCH algorithm for different 
thresholds on an Intel i5-2540M 2.60GHz processor. b) The corresponding 
number of clusters for the BIRCH algorithm for different thresholds. 
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