
 1

Abstract—In typical load shape analysis, many different

clustering methods have been used to segment customers,
interpret behavior and inform marketing reach out strategies.
Due to memory requirements and computational efficiency, many
clustering algorithms do not have the capabilities to perform
analysis at the urban-scale. In this paper, a scalable data-driven
BIRCH clustering algorithm is used to extract the typical load
shapes of a neighborhood. The BIRCH radius threshold is
determined by solving an optimization problem. For global
clustering, a metric is created that can rank the best possible
options for the agglomerative phase of the BIRCH algorithm. The
developed method allows large time series data at the urban-scale
to be quickly analyzed

Index Terms—Clustering, BIRCH, smart meter data, typical
load shapes, load profile.

I. INTRODUCTION
HE current deployment of advanced metering
infrastructures (AMI), and the consequent availability of

large electricity consumption datasets, at hourly and sub-hourly
resolution, allows for hidden trends in local electricity
generation and consumption to be more intelligible. These
readings can be analyzed and grouped together into typical load
shapes, that can uncover hidden behavior, and segment
customers. The load shapes can determine the timing of peak
demand for a population, and support other forecasting tools for
power distribution planning engineers that aim to model and
forecast the and other parts of the distribution system [1], [2].
The results of the analysis have been used to inform better
policy and tariff design in deregulated markets [3]. By
understanding the typical behavior of the residences being
metered [4], [5], each residence can be evaluated as potential
candidates for demand response (DR) or energy efficiency (EE)
programs [6], [7].
 Many different methods have been used to cluster load
shapes together and extract meaningful features in periods of
peak demand [6] and energy use [8]. Some of these methods
include, exclusive (k-means/k-medoids) [2], [6]–[8],
overlapping (fuzzy C-means) [1], hierarchical (divisive or
agglomerative) [6], neural networks [8], and others. However,
in today’s rich databases of historical consumption timeseries,
the current challenge is to find robust highly scalable data-
driven methods for clustering load shapes at the urban-scale.

This work was supported in part by the U.S. Department of Commerce under Grant BS123.
A. D. Fontanini is a Mechanical Engineer in the Building Enclosures Group at Fraunhofer CSE, Boston, MA 02210 USA (e-mail: afontanini@cse.fraunhofer.org).
J. Abreu is a Behavior Scientist, with the Building Energy Systems Group at Fraunhofer CSE, Boston, MA, 02210 USA (e-mail: jabreu@cse.fraunhofer.org).

The clustering methods should be both scalable in the number
of samples and the number of clusters, be memory efficient, and
naturally self-organize into a set of clusters. In the methods
listed above, most of the algorithms do not scale very well to
large number of samples [9] or the number of clusters needs to
be known a priori.
 To overcome the scalability challenges, the balanced
iterative reducing and clustering using hierarchies (BIRCH)
algorithm has been applied [10]. Advantages of the BIRCH
algorithm includes that the method, a) clusters incrementally in
a single sweep of the data; b) the whole data does not need to
fit into memory; and c) the structure of the algorithm allows for
merging and splitting of sub-clusters incrementally and
consistently. The BIRCH algorithm creates a tree based on two
inputs a radius threshold and a branching factor. The threshold
parameter is often determined by heuristics, but other
techniques exist: for example, some authors have recently use
the gap-statistic to choose the threshold [11]. In their work,
they mention that the gap-statistic is not easy and have
developed an alternative approach to calculate the gap-statistic.
If the branching factor is included in the optimization then the
formulation moves away from a continuous optimization
problem to a constrained integer optimization problem, which
is NP-hard. Other authors have thus proposed to use a genetic
algorithm to determine both input parameters [12]. However,
the technique shows that for a small branching factor the
number of clusters increases exponentially.
 The purpose of this paper is to showcase the use of a
scalable data-driven BIRCH clustering algorithm for automatic
load shape extraction. The inputs are either chosen to the
algorithm structure free or are formulated as an optimization
problem. A set of cost functions for the optimization routine
are examined for both load shape interpretability and
contextualization for a set of quantities of interest (QOI). A
salable clustering method is implemented and extracts load
shapes for high, intermediate, and low consumption days.
Using this clustering method allows for extremely large
samples to be clustered efficiently and effectively and can be
used for online learning and modification to the typical load
shapes overtime.

A Data-Driven BIRCH Clustering Method for
Extracting Typical Load Profiles for Big Data

Anthony D. Fontanini and Joana Abreu

T

 2

II. METHODOLOGY

A. Smart Meter Data
The electrical consumption time series data was collected

smart meters in Los Alamos, NM. The period of the study is
between August 1st, 2013 and January 20th, 2016. During this
period, there are 902 total days. There is a total of 1641 unique
smart meters. Therefore, there are approximately 1.48 million
daily consumption realizations to be clustered. The resolution
of the consumption data used in this study is sampled hourly.

B. Mathematical Preliminaries
The electrical consumption of a smart meter, 𝑝, can be

described by a discrete time series, 𝑠# 𝑡 : 𝑡 = 1: 𝑛#, with 𝑛#
uniformly sampled realizations. In vector form the time series
becomes Eq. 1.

𝑆# = 𝑠# 1 , 𝑠# 2 , … , 𝑠# 𝑛# (1)

This time series can be collected into a matrix, 𝒍# ∈ 	ℝ12×45
where 𝑁# = 𝑛#/24, of daily load shapes where the entries of
the matrix are calculated in, Eq. 2.

𝑙# 𝑖, 𝑗 = 𝑠 24 𝑖 − 1 + 𝑗 , 𝑖 = 1: 𝑁#	, 𝑗 = 1: 24 (2)

The total number of load shapes is then 𝑁>?> = 𝑁@
#
@AB . Then

the load shapes for all the smart meters can be collected into a
complete load shape matrix 𝑳 ∈ ℝ1DED×45, Eq. 3. Where the
rows indicate the load shape sample realization and the columns
the hourly features of the daily load shape.

𝑳 = 𝒍B, 𝒍4, … , 𝒍#
F

 (3)

C. Preprocessing Data
From the raw data, the data is preprocessed in three steps

before the clustering is performed Fig. 1. Following aspects of
previous work of S. Xu et al. [7], the authors point out that many
analysis of typical load shapes neglect overall consumption of
the load shape, peak time and peak overlap. In their analysis,
the load shapes were separated into three groups a high
consumption days, intermediate (Inter.) consumption days, and
low consumption days. In this study, these same groups are
created by using the 25th percentile (9.53 kWh) and 75th
percentile (25.18 kWh) daily consumption values. The authors
also make a case for smoothing the consumption data to
compensate for noise [7]. This study uses SSA [13] to filter the
time series and the corresponding load shapes, 𝑳 = 𝑓 𝑳 , Fig.
2. The number of components to reconstruct the time series was
determined by the Kaiser rule [4], [5]. After filtering, the load
shapes are normalized [6], [7], Eq. 4.

𝑳 = 𝐿 𝑖, 𝑗 =
𝐿 𝑖, 𝑗
𝐿 𝑖, 𝑗45

IAB
	 , 𝑖 = 1: 𝑁>?>	, 𝑗 = 1: 24	

(4)

Fig. 1: The intermediate steps in the preprocessing procedure from the raw data
load shapes to the clustering algorithm.

Fig. 2: An example of the result of the SSA filtering over a two-day period.
The “Full” represents all components being reconstructed. The “Filtered” is
based on the Kaiser rule to choose the number of reconstructed components.

D. Clustering Metrics
Before clustering the load shapes, a set of metrics are needed

to be in place for determining the input parameters of the
BIRCH algorithm and evaluating the clustering performance.
The goal of the clustering algorithm is to create a set of 𝑘
clusters, 𝑪L with 𝑞 = 1: 𝑘 and where points in the cluster are
load shapes from 𝑳. Each cluster has a centroid, 𝑐L. The
standard notion of a cluster is that the within cluster distance be
small (dense cluster) while the between cluster dispersion be
large (well separated clusters), Eq. 5 and Eq. 6.

𝑊P =
1
𝑁>?>

𝑙 𝑖 − 𝑐L 𝑖
445

@AB

	

Q∈𝑪R

P

LAB
	 (5)

𝐵P =
1
𝑘

𝑐L 𝑖 − 𝑐 𝑖
445

@AB

P

LAB
	 (6)

In Eq. 5, 𝑐 is the centroid of 𝑳. These two metrics have been
used in a few previous studies [3], [14] and are used to
determine the input parameters of the BIRCH algorithm in this
work. To evaluate the clustering performance this study looked
at using the silhouette coefficient, SMI indicator, entropy, the
cluster size standard deviation, and the mean estimated
threshold from Kwac. et al. [6]. Of these indicators, the
measures of entropy, the cluster size standard deviation, and the
estimated threshold showed some promise for determining the
cluster performance, Eq. 7 – Eq. 9 respectively.

𝐸P = −
1
𝑁>?>

𝑝 𝑐L
P

LAB
log 𝑝 𝑐L (7)

𝜎P =
card 𝑪L − 1

𝑘 card 𝑪@ 	P
@AB

P
LAB

𝑛 − 1
	 (8)

𝜃P =
1
𝑁>?>

𝑙 𝑖 − 𝑐L 𝑖
4

45
@AB

	
Q∈𝑪R

𝑐L 𝑖 445
@AB

P

LAB
	 (9)

The card ∙ operator is the cardinality of the cluster set.

E. BIRCH Clustering Algorithm
The BIRCH algorithm has been developed specifically for

large datasets, especially when the entire data cannot be loaded
into memory. The BIRH algorithm has four phases.

 3

1. Load data into memory by building a CF tree
2. Condense the data (optional)
3. Global clustering
4. Cluster refining (optional)

 Given a set of	𝑘 clusters of load shapes from 𝑳, the BIRCH
algorithm creates a set of 𝑘 clustering features (𝐶𝐹)s and a
dendrogram called a 𝐶𝐹-tree, Fig. 3. The 𝐶𝐹 for cluster 𝑖	is
defined as 𝐶𝐹@ = 𝑚@, 𝐿𝑆@, 𝑆𝑆@ , where 𝑚@ is the number of load
shapes in the cluster, 𝐿𝑆@	is the linear sum of the load shapes in
the cluster, and 𝑆𝑆@ is the squared sum of the load shapes in the
cluster. For the 𝐶𝐹-tree, there are two parameters: 1) a
branching factor	𝐵 and 2) a radius threshold 𝑇.

The tree is created serially by following the closest 𝐶𝐹 down
to the leaf nodes. Every sample in the leaf nodes must satisfy
𝑇, otherwise create a new leaf node. A maximum size of the
leaf node can be included, but is not necessary since the radius
is bounded by 𝑇. If the sample can be inserted with the threshold
and size requirements then update the 𝐶𝐹. If the sample cannot
be inserted due to the size requirement, split the leaf node and
reassign the samples1. Then update all the 𝐶𝐹s for the leaf
nodes and non-leaf nodes traversed to the root.

Fig. 3: Graphical depiction of the BIRCH CF tree, with each CF representing
a subcluster or a cluster of subclusters. If the number of non-leaf nodes are
larger than the branching factor, another layer of non-leaf nodes will be in the
CF-tree.

F. Optimization of the BIRCH input parameters
In the creating of the BIRCH CF-tree (Phase 1), two main

inputs drives the tree structure 1) the branching factor and 2)
the threshold. The smaller the branching factor, the larger the
number of clusters. Since interpretability is normally a
requirement, the value of B should be sufficiently large. In this
work, a minimum of 2 clusters are required, so the value of the
branching factor is 𝐵 = 𝑁>?>/2. In this work, the problem of
determining the threshold is posed as a simple optimization
problem, Eq. 10.

min
Ffg

𝑔 𝑊P 𝑇 , 𝐵P 𝑇 : (10)

The cost function, 𝑔 ∙ , takes in the threshold input
parameter and the resulting within and between distances from
the BIRCH algorithm. The form of this cost function problem
has some flexibility, and therefore a couple choices are tested.
These functions are based on a linear combination (LC), Eq. 11,
the Euclidean distance (EU), Eq. 12, the squared Euclidean
distance (SQEU), Eq. 13, the Bray-Curtis dissimilarity (BC),

1 This may result in further splitting at the parent level based on the number of entries in the non-leaf nodes.

Eq. 14, and the inverse of the cluster dispersion index (I-CDI),
Eq. 15.

𝑔 𝑊P, 𝐵P = 𝑊P + 1 − 𝐵P /2 (11)

𝑔 𝑊P, 𝐵P = 𝑊P
4 + 1 − 𝐵P 4 (12)

𝑔 𝑊P, 𝐵P = 𝑊P
4 + 1 − 𝐵P 4 (13)

𝑔(𝑊_𝑘, 𝐵_𝑘) = |𝑊P − 𝐵P	|/(𝑊P + 𝐵P) (14)

𝑔 𝑊P, 𝐵P = 𝐵P/𝑊P − 1 (15)

The optimization problem is solved using Brent’s method to a
tolerance of 1e-5.

G. BIRCH: Global Clustering Phase
In this study, only phase 1 and phase 3 are used in the BIRCH

algorithm. On a single pass, the BIRCH algorithm has been
known to produce more clusters than necessary partially due to
the algorithms sensitivity to input order. For this reason, a
global agglomerative clustering of the BIRCH CF-tree is often
performed. During the agglomerative processes if a small
cluster is combined with either a large of or small cluster the
evaluation measures (𝐸P, 𝜎P, 𝜃P) will only change a small
amount. However, if two large clusters are combined a large
increase can be expected in 𝜎P and	𝜃P and a large decrease can
be expected in 𝐸P. To determine when these large changes
occur a combined metric equation has been developed to
determine the number of clusters, Eq. 16.

ℎ@ 𝐸@, 𝜎@, 𝜃@ =
𝐸@nB − 𝐸@
2max 𝐸

+
𝜎@ − 𝜎@nB
4	max 𝜎

+
𝜃@ − 𝜃@nB
4max 𝜃

	,			𝑖 = 1: 𝑘
(16)

The maximum of 𝐸 is when 𝑖 = 𝑘. The maximum of both 𝜎
and 𝜃 is when 𝑖 = 2. The weighting is mainly due to entropy
expecting to decrease while 𝜎 and 𝜃 are expected to increase
and the weights bounds ℎ@ ∙ from [0-1].

III. RESULTS

A. Choosing a cost function
For each consumption group and for each cost function, the

BIRCH threshold parameter was optimized. For each scenario,
the resulting number of clusters, standard deviation of the
cluster size, the normalized entropy, and estimated threshold
were calculated, Table 1. It is clear for the high and low
consumption groups that the BC and I-CDI cost function result
in the smallest number of clusters. If interpretability of the load
shapes is a goal of the analysis, BC and I-CDI are the better
metrics. However, the normalized entropy score or the amount
of information contained in the load shapes is much lower for
the BC and I-CDI metrics. If a finer resolution of load shapes
is needed for providing context behind the load shapes, then the
LC, EU, and SQEU would be better choices. The number of
clusters for these metrics could be reduced further using the

 4

global clustering phase of the algorithm. A possible
explanation for the small number of clusters produced by the
BC and I-CDI cost functions is that for densely populated
datasets 𝑊P is bounded by 𝐵P. Therefore, by minimizing Eq.
14 and Eq. 15 would support large equally spaced clusters.

As for the low consumption group, the cost functions
perform in a similar manner based on the evaluation metrics
chosen in this analysis. This may be due to very small
consumption days having very irregular normalized load
shapes. Global clustering could be used to further reduce the
number of clusters. Based on the results of Table 1, the BC cost
function is used in the rest of the paper. The BC cost function
showed to have the smallest number of clusters for the high and
low consumption groups. With the small number of clusters,
this cost function (at least for this dataset) allows for the cluster
load shapes to be easily interpreted.

TABLE I
Performance of the cost functions for the different

consumption groups.
Group Metric k σr Er θr T
High LC 3271 799 0.430 0.0071 0.032
High EU 1963 1118 0.400 0.0085 0.037
High SQEU 2004 1093 0.403 0.0084 0.036
High BC 9 57870 0.110 0.0446 0.087
High I-CDI 9 45310 0.137 0.0379 0.079
Inter. LC 5156 1058 0.444 0.0082 0.034
Inter. EU 2860 1655 0.410 0.0097 0.039
Inter. SQEU 3463 1343 0.421 0.0093 0.037
Inter. BC 4 90100 0.092 0.0624 0.087
Inter I-CDI 4 90100 0.092 0.0624 0.087
Low LC 660 5947 0.257 0.0182 0.066
Low EU 605 6115 0.258 0.0186 0.067
Low SQEU 543 6518 0.251 0.0194 0.068
Low BC 519 6402 0.255 0.0188 0.068
Low I-CDI 496 6670 0.252 0.0196 0.070

B. Global Clustering for large number of clusters
Global clustering is used to reduce the number of clusters, by

agglomerating the smaller clusters into larger clusters. The
metric ℎ, Eq. 16, is used to determine the optimal number of
clusters for the low consumption group. Each term of the
combined metric can be seen in Fig. 4. When two large clusters
are combined, these metrics see large increase or decrease. This
results in very large spikes in the combined metric, Fig. 5. The
largest peaks in order occur at 8, 3, 319, 68, and 10. Since 8
has the largest peak, 8 clusters will be used for the rest of the
paper for the low consumption group. For visual display only
two smallest clusters considered only have a single day in the
cluster and are not shown or discussed.

Fig. 4: The individual metrics from Eq. 7 – Eq. 9 during the agglomerative
step of the BIRCH algorithm for the low consumption group.

Fig. 5: The combined metric from Eq. 16 showing which possible number of
clusters are good candidates (large peaks) during the agglomerative step of the
BUIRCH algorithm for the low consumption group.

C. The typical load shapes from the clustering
From the previous section 9 clusters emerged from the high

consumption group, 4 clusters from the intermediate group, and
6 clusters in the low consumption group. Each of these typical
load shapes, average daily consumption, and the number of
days as a percentage for their respective group are shown in Fig.
6. From inner quartile range and the inner 90% range, the high
consumption group has the smallest range, followed by the
intermediate consumption group and then the low consumption
group. Each group has a baseline (flat) curve as its largest
cluster (cluster 0, 9, and 13). For the high, intermediate, and
low consumption groups the cluster with the largest average
consumption (cluster 7, 11, and 13, respectively) seems to be
representative of large night, afternoon, and baseline
consumption, respectively. The low consumption group load
shapes seem to be mostly large peaks during the early morning
and late evening, while the high and intermediate groups have
a mix of single and double peak load shapes.

D. Scalability of the implemented algorithm
To ensure that the algorithm can perform well for large data

sets, the rate at which the algorithm scales with the number of
samples is important. The BIRCH algorithm scales 𝑂(𝑁>?>),
Fig. 7a. For the smaller thresholds, the computational time
BIRCH algorithm starts to increase for large number of
samples. This is mainly due to the number of clusters
increasing, Fig. 7b, and the larger CF-tree needs to be traversed.
If the number of load shapes is sufficiently compressed into
relatively small number of clusters the algorithm scales very
well.

IV. CONCLUSIONS
BIRCH clustering algorithm can quickly and efficiently

extract load shapes from large databases that cannot fit into
memory A set of cost functions based on cluster compactness
and separation were used to cluster high, intermediate, and low
consumption load shapes. The cost functions were evaluated
for their suitability to producing larger and smaller clusters for
contextualization and interpretability. A combined metric
based on the estimated threshold, entropy, and average cluster
size standard was used to determine appropriate number of
clusters during the global clustering phase of the BIRCH
algorithm. The implementation was shown to scale with
𝑂 𝑁>?> samples. Using this algorithm, the typical load
analysis can be performed at the urban-scale and potentially for
continual real-time online learning and classification by utilities
companies.

 5

Fig. 6: The clusters extracted from the clustering algorithm with their centroid,
inner quartile range, and inner 90th percent range. Each cluster corresponds to
a group (H-High, I-Intermediate, and L-Low consumption), the percentage of
the days that the cluster represents in their respective group, and the average
daily consumption.

Fig 7: a) Computational time in seconds of the BIRCH algorithm for different
thresholds on an Intel i5-2540M 2.60GHz processor. b) The corresponding
number of clusters for the BIRCH algorithm for different thresholds.

V. REFERENCES
[1] J. Nazarko and Z. A. Styczynski, “Applications of statistical and neural

approaches to the daily load profiles modelling in power distribution
systems,” in IEEE Transmission and Distribution Conference, 1999, vol.

1, pp. 320–325.
[2] H. L. Willis, A. E. Schauer, J. E. D. Northcote-Green, and T. D. Vismor,

“Forecasting Distribution System Loads Using Curve Shape Clustering,”
IEEE Power Eng. Rev., vol. PER-3, no. 4, pp. 891–901, 1983.

[3] I. P. Panapakidis, M. C. Alexiadis, and G. K. Papagiannis, “Load
profiling in the deregulated electricity markets: A review of the
applications,” 2012 9th Int. Conf. Eur. Energy Mark., pp. 1–8, 2012.

[4] J. Abreu, F. C. Pereira, J. Vasconcelos, and P. Ferrão, “An approach to
discover the potential for demand response in the domestic sector,” in
IEEE CITRES 2010, 2010, pp. 240–245.

[5] J. M. Abreu, F. Câmara Pereira, and P. Ferrão, “Using pattern
recognition to identify habitual behavior in residential electricity
consumption,” Energy Build., vol. 49, no. October, pp. 479–487, 2012.

[6] J. Kwac, J. Flora, and R. Rajagopal, “Household energy consumption
segmentation using hourly data,” IEEE Trans. Smart Grid, vol. 5, no. 1,
pp. 420–430, 2014.

[7] S. Xu, E. Barbour, and M. C. Gonzalez, “Household Segmentation by
Load Shape and Daily Consumption,” Proc. ACM SigKDD 2017 Conf.
Halifax, Nov. Scotia, Canada, August 2017, 2017.

[8] F. McLoughlin, A. Duffy, and M. Conlon, “A clustering approach to
domestic electricity load profile characterisation using smart metering
data,” Appl. Energy, vol. 141, pp. 190–199, 2015.

[9] F. Farnstrom, J. Lewis, and C. Elkan, “Scalability for clustering
algorithms revisited,” ACM SIGKDD Explor. Newsl., vol. 2, no. 1, pp.
51–57, 2000.

[10] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data
Clustering Databases Method for Very Large,” ACM SIGMOD Int.
Conf. Manag. Data, vol. 1, pp. 103–114, 1996.

[11] B. Lorbeer, A. Kosareva, B. Deva, and A. Küpper, “A-BIRCH:
Automatic Threshold Estimation for the BIRCH Clustering Algorithm,”
in Advances in Intelligent Systems and Computing, 2017, pp. 169–178.

[12] J. Vahidi and S. Mirpour, “Introduce a New Algorithm for Data
Clustering by Genetic Algorithm,” J. Math. Comput. Sci., vol. 10, pp.
144–156, 2014.

[13] N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time
Series. New York, NY, USA: Springer, 2013.

[14] S. Ramos, J. M. Duarte, F. J. Duarte, Z. Vale, and P. Faria, “A data
mining framework for electric load profiling,” IEEE PES Conf. Innov.
Smart Grid Technol. Lat. Am. (ISGT LA), pp. 1–6, 2013.

VI. BIOGRAPHIES

Anthony D. Fontanini (Ph.D.) received his B.S. degree in mechanical
engineering from the University of Wisconsin-Platteville, Platteville, WI, USA

in 2009 and his Ph.D. degree in mechanical
engineering at Iowa State University, Ames, IA, USA
in 2016.

He is a Member of Technical Staff at the
Fraunhofer Center for Sustainable Energy Systems
(CSE) in the Building Enclosures and Materials
Group. His research spans many areas of numerical
analysis, machine learning and software development
for building energy efficiency, performance of air
distribution systems, and indoor air quality. These

areas include uncertainty quantification, analyzing characteristics of
contaminant transport in indoor environments, placement of sensors,
developing and implementing energy models and algorithms for building
energy analysis. The different software platforms developed for these
applications are implemented for high performance computing (HPC) and high
throughput computing (HTC) environments.

Joana Abreu (Ph.D.) leads behavioral research for Fraunhofer CSE’s Building
Energy Management Group. At Fraunhofer CSE, she works with a team
comprising engineers, building scientists and psychologists to apply

experimental psychology methods to complex
systems-level research in both field and laboratory
research projects. She developed an externally-funded
interdisciplinary research program that includes such
diverse subjects as energy efficiency, social science,
data analytics, environmental engineering and
geographical information systems. She holds a
Doctoral Degree in Sustainable Energy Systems from
the MIT Portugal Program studying habitual behavior
and feedback in the residential sector.

