Using Communicating Thermostat Data to Automate and Scale Home Energy Performance Evaluations

EPRI Smart Thermostats and Customer Connected Devices Workshop

Session 3: Data Analytics from Connected Devices—Are the Benefits Worth the Cost?

Kurt Roth July 12, 2018

© Fraunhofer USA 2018

Motivation

- Space heating is the largest end use for homes in cold/very-cold climates
- Homes with poor/no insulation and/or high air leakage have higher heating energy consumption
- Programs face high customer acquisition costs
 - Pending LED "cliff" for home energy assessments
- Slower market uptake of these proven measures
 - Approximately <1% of households/year in Massachusetts

Sources: DeMark Home Ontario, DOE/PNNL, Mass RASS, DOE/EIA.

Project Objectives

Develop a tool for utility EE programs that analyzes communicating thermostat (CT) data to automatically identify and quantify the benefit of targeted outreach identifying customer-specific retrofit opportunities.

Customer and Utility Benefits:

- Increase uptake of insulation and air sealing retrofits
- Decrease the cost of EE programs via targeting
- Reduce retrofit performance risks using remote EM&V
- Increase customer engagement

Ultimate Vision: CTs deployed in most homes identify high-impact opportunities to reduce HVAC energy consumption *and* ensure retrofit performance

Technical Approach: Fitting CT data to a second-order grey-box model to estimate building physical parameters

$$C_{r} \frac{dT_{r}}{dt} = Q_{HVAC} + q_{int} + A_{w}/(R_{w}/2)(T_{w} - T_{r}) + q_{inf}$$
(indoor energy balance)

$$C_{w} \frac{dT_{w}}{dt} = A_{w}/(R_{w}/2)(T_{r} - T_{w}) + A_{w}/(R_{w}/2)(T_{a} - T_{w}) + q_{ext}$$
(enclosure energy balance)

$$q_{inf} = -\rho_{air}c_{p,air}(C_{1}W^{2.6} + C_{2}|T_{a} - T_{r}|^{1.3})^{0.5}(T_{r} - T_{a})$$
(from I. Walker)

known, prediction needed for home assessment

- **T_{\mathbf{r}}**, T_{w} , T_{a} = indoor, wall and outdoor temperatures
- R_{w} and A_{w} = overall R-value and area of building envelope
- C_w and C_r = overall heat capacitance of the walls/internal space (=external/internal thermal mass)
- Q_{HVAC} = HVAC heat supply
- q_{int}/q_{ext}/q_{inf} = internal/external heat gains /infiltration heat loss
- W = wind speed

We fit CT data to a model for each home's thermal response – this can be challenging!

- Ill-posed problem, i.e., different physical parameters can create similar building thermal responses
 - Separating conduction and infiltration
- Different HVAC systems have different response times and characteristics
- CT = point measurement of one zone
- Many homes have multiple CTs
- Thermal response "noise" from internal heat gains
- Varying CT data among vendors

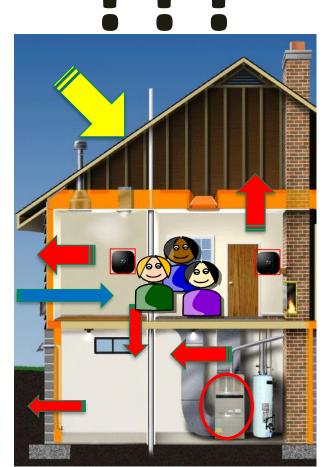
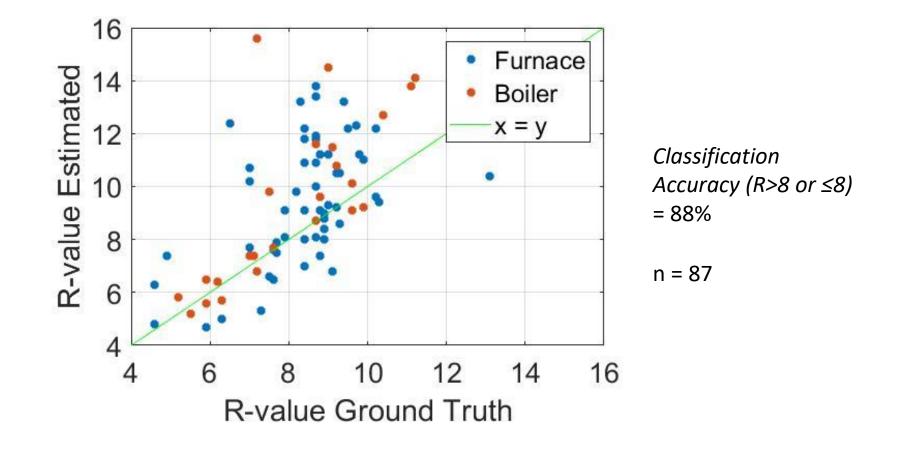


Image Source: DOE, ecobee.

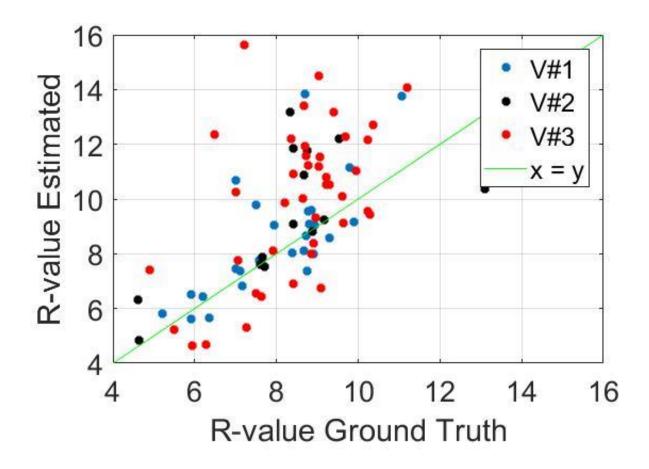
Field Data Collection

- Received complete data sets for >600 homes
 - Model Inputs:
 - CT data for at least one winter season
 - Gas bill data for 1+ year (coincides w/ CT data)
 - Home floorspace and number of stories
 - ZIP code
 - Ground Truth:
 - Home energy assessment data
 - Measures implemented (if any)

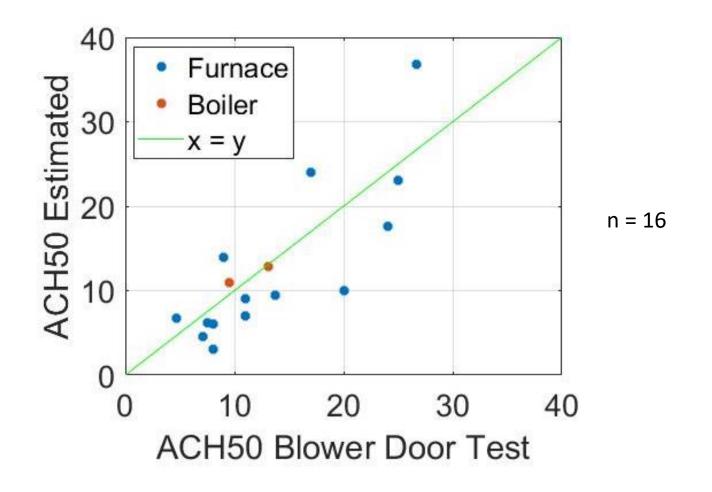
nationalgrid


CT Provider	# Homes	Furnaces	Boilers
		(Condensing)	(Condensing)
#1	366	125 (53)	192 (14)
#2	41	27 (12)	10 (1)
#3	232	148 (77)	53 (4)

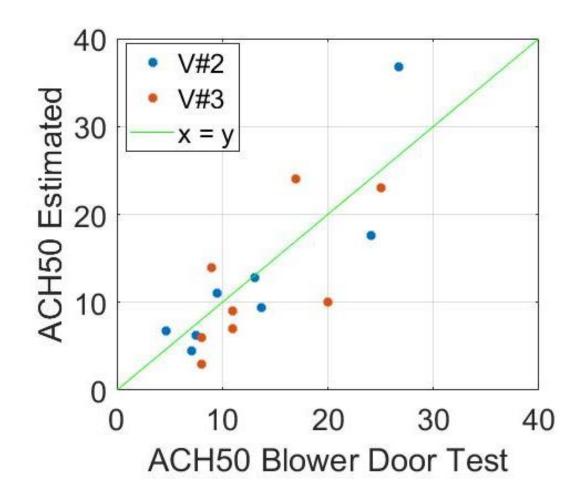
Results for homes with one CT:



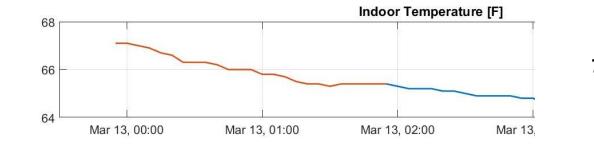
The algorithms effectively identify homes with insulation retrofit opportunities, for both furnaces and boilers.



Classification accuracy does not appear to vary with CT vendor.


Fraunhofer

The algorithm accurately classifies ACH₅₀.

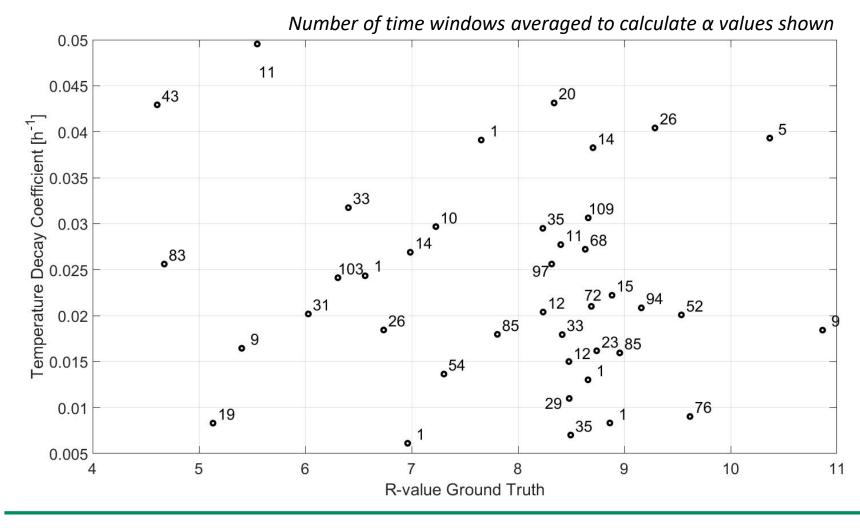


ACH₅₀ accuracy does not appear to vary with CT vendor.

Time Constant Approach proposed by VEIC, Cornell

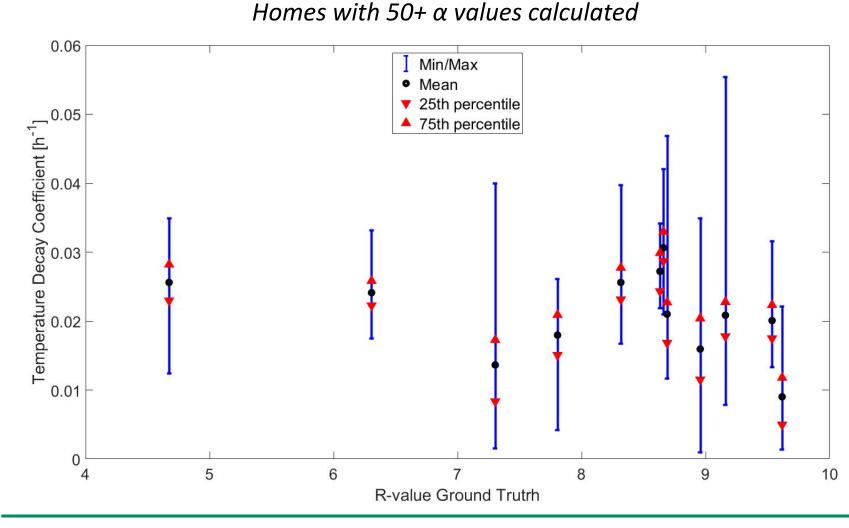
 $T_a = 14-16^{\circ}F$

$$\alpha = \frac{1}{\tau} = \frac{-\log\left(\frac{(T_r(2) - T_{a,mean})}{(T_r(0) - T_{a,mean})}\right)}{2 hours}$$


Calculated from midnight to 2AM time window

- No heating for 1+hour before midnight and during time window
- T_a varies by <2°C</p>
- T_r does not increase by >0.2°F
- Mean T_a <40°F</p>
- CT resolution = 0.1°F

References: Goldman et al. (2014), Chong and George (2016)



Time Constant Approach: We did not find a meaningful correlation between Tau and the whole-home R-values

α

Time Constant Approach: α/τ can show appreciable variability.

α

CT Data – Lessons Learned

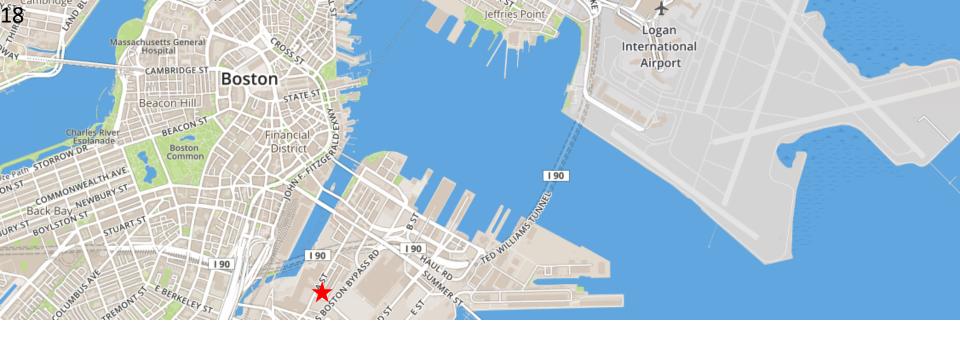
- Ease of obtaining CT data varies among vendors
- Data field vary among CT vendors
 - Developing CT Data Specification
- Missing or unreported heating system runtime data not uncommon
 - Noted in prior work

Sources: Building36, ecobee, Honeywell.

Conclusions and Looking Forward

- For homes with 1 CT, we can accurately:
 - Estimate ACH₅₀
 - Classify whole-home R-value
 - Separate insulation from air sealing opportunities
- Next:
 - Extend algorithms to homes with multiple CTs
 - Evaluate ability to predict energy savings from target retrofits
 - Perform Randomized Controlled Trial (RCT) to test hypothesis: Does targeted, customized outreach increase rate of HEAs conducted and ECM implementation?
 - Finalize recommendations for scale-up: CT Data Specification, Best Practices Guide for Utility Program Integration

Acknowledgements


- Fraunhofer Team:
 - Co-PI Michael Zeifman, Ph.D.
 - Amine Lazrak, Ph.D.
 - Duncan Howes
- Eversource:
 - Brian Greenfield
 - Peter Klint
 - Peter Kuhn
 - Residential program team
- National Grid:
 - Brenda Pike
 - Cassandra Vickers
 - Rick Wester

nationalgrid

Contact

Kurt Roth, PhD kroth@cse.fraunhofer.org

+ 1 617 575-7256

5 Channel Center Street Boston, MA 02210 https://www.cse.fraunhofer.org/

© Fraunhofer USA 2018