

CENTER FOR SUSTAINABLE **ENERGY SYSTEMS CSE**

A STANDARDIZED TEST PROTOCOL FOR EVALUATING RESIDENTIAL

ENERGY STORAGE SYSTEMS

Tsz Yip¹, Matthew Kromer¹, Yexuan Lu¹

1. Fraunhofer Center for Sustainable Energy Systems, 5 Channel Center St, Boston, MA 02210

INTRODUCTION

Deployment of Residential Energy Storage Systems (R-ESS) are expected to grow to 600MW by 2022

FRAUNHOFER STANDARDIZED ESS TEST PROTOCOL

Fraunhofer's Standarized ESS Test (SET) protocol for assessing residential energy storage systems is intended to supplement traditional NRTL testing by addressing a subset of the gaps that coincide with Fraunhofer's core competencies

- Number of R-ESS systems on offer in the US market doubled in past 12-18mo
- No commonly accepted method to characterize real world performance
- The more mature R-ESS market in Germany indicates the lack of transparency can result in a wide variance in quality, reliability, safety, and overall value proposition

LOOKING BEYOND THE SPEC SHEET

- Characterizes R-ESS across a number of dimensions that extends beyond traditional standards:
 - Application-specific testing over anticipated conditions
 - Assessment of device control and communication
 - Characterization of balance-of-system and soft costs
 - Estimates of initial and lifetime costs of ownership. safety, and overall value proposition

Торіс	Assessment Scope	Performance Indicators
Safety	Assessment of applicable standards, verification of compliance with applicable standards through inspection	Documentation of NRTL Compliance
Device Specifications	Verification of nameplate characteristics using normalized reporting format and scope through inspection	Specific and absolute size, weight, and cost. Topology, supported applications, cycle life. Packaging, environmental ratings, thermal requirements
Reference Performance	Evaluation of nameplate ESS performance through laboratory test consistent with IEEE 1679	Rated power, RTE at rated power, energy capacity, response time, ramp rate, standby power use
Duty-Cycle Performance	Application-specific test over representative duty cycle specific to the intended application and use. Follows PNNL methodology, optionally supplemented with characterization of ESS device components (per BVES), and with introduction of representative environmental conditions	RTE, SOC excursion, capacity stability, and reference signal tracking
Communication and Control	 Assessment of: Local device-to-device communication and control , Local Human-Machine Interface, Remote communications and control through inspection, test, and analysis 	Level of access to data and control functions, reliability, interoperability, efficacy of control functions, response to loss of signal, performance of data acquisition, security
Installation and Commissioning	Analysis of installation materials, process, and labor requirements; Evaluation of regulatory process Demonstration of install under typical conditions, Optional field trial / time & motion analysis of installation	Installation and commissioning time, labor qualification, part count, design flexibility
Techno-Economic	Analysis of initial investment, O&M, and potential value streams	Normalized lifetime operating costs and benefits
Assessment	fer SFT Protocol Overview	Denenits

Figure 1: A taxonomy for characterizing Residential Energy Storage System Topologies

IDENTIFYING GAPS

Category	Gap
Safety	Lack of transparency with respect to standards compliance,
	confusion as to applicability of standards.
AHJ Acceptance	Training of inspectors, fire code officials. Harmonization of
	requirements across jurisdictions. Maturation of NEC and ESS
	standards.
System Specifications and	Lack of consistency in defining ESS specifications and nameplate
Reference Performance	performance
Application Performance	No widely accepted method and no information available with
	respect to application-specific performance under real-world

Table 1: Fraunhofer SET Protocol Overview

ENERGY STORAGE INTEGRATION LAB

Fraunhofer CSE's Energy Storage Integration (ESI) Lab was built to test various performance indicators of the SET Protocol

It is an isolated grid environment in which devices such as Energy Storage, Inverters, Micro-grid controllers, and other Distributed Energy Resource (DER) assets can be tested in a real-world environment

FUTURE

Collaboration with various Energy Storage System providers is under way to undergo evaluation using SET Protocol

respect to application-specific performance under real-world
operating conditions

Communication and Control Widely varying degrees of methods and availability for access to data and control throughout the interoperability stack. No framework for categorizing these distinctions, lack of clarity as capability of specific products, and lack of data related to efficacy of advertised functions. Lack of transparency as to the impact of system architecture, Installation and Commissioning concept of operations, and implementation on the installation and commissioning process. Value Proposition Availability of accessible data and/or toolsets to evaluate the combined impact of equipment cost, installation cost, performance, and value-add on context-specific value proposition.

Table 1: Summary of Gaps in R-ESS Standards Landscape

- Several R-ESS units are currently being evaluated
- Currently in collaboration with utilities and other stakeholders to identify additional gaps
- Summary report on the initial findings in the first round of testing to exhibit the real world variances between systems
- Build the path towards a standardized protocol to allow for a label for Energy Storage Systems similar to Energy Star Labels or EPA Fuel Economy Labels