Residential retrofits at scale: opportunity identification, saving estimation and personalized messaging based on communicating thermostat data

ACEEE Summer Study on Energy Efficiency in Buildings

Panel 12: Smart Buildings, Smart Grid, and the Internet of Things Michael Zeifman, Amine Lazrak, and Kurt Roth August 16, 2018

Motivation

- Utilities: Energy saving opportunities?
 - Space heating is the largest end use for homes in cold/very-cold climates
 - Which buildings to select?
 - How to save energy?

Contours of Solution

- Let's do building retrofits
 - No need to change people's behavior
 - Envelope insulation (walls, attic)
 - Air sealing
- Cannot retrofit all homes
 - Need to remotely ID homes with largest retrofit saving opportunities
 - Need to "sell" to the home owner (ROI)

Source of data: communicating thermostats (CTs)

- Ubiquitous
- Utility rebates → utility gets CT data
- Data: Indoor temperature and RH, HVAC on/off, ...,

Sources: www.achrnews.com/articles/132710-number-of-homes-with-smart-thermostats-grew-rapidly-in-2015.

Project Objectives

- Develop a tool for targeted customer outreach in utility EE programs that analyzes CT data to automatically
 - identify homes with largest retrofit opportunities
 - quantify expected savings
- Customer and Utility Benefits:
 - Increase uptake of insulation and air sealing retrofits
 - Decrease the cost of EE programs via targeting
 - Reduce retrofit performance risks using remote EM&V
 - Increase customer engagement
- Ultimate Vision: CTs deployed in most homes identify high-impact opportunities to reduce HVAC energy consumption and ensure retrofit performance

Technical Approach

• Estimate physical parameters in grey-box model by fitting to CT data:

 $C_{r} \frac{dT_{r}}{dt} = Q_{HVAC} + q_{int} + A_{w}/(R_{w}/2)(T_{w} - T_{r}) + q_{inf}$ (indoor energy balance) $C_{w} \frac{dT_{w}}{dt} = A_{w}/(R_{w}/2)(T_{r} - T_{w}) + A_{w}/(R_{w}/2)(T_{a} - T_{w}) + q_{ext}$ (enclosure energy balance) $q_{inf} = -\rho_{air}c_{p,air}(C_{1}W^{2.6} + C_{2}|T_{a} - T_{r}|^{1.3})^{0.5}(T_{r} - T_{a})$ (from I. Walker)

- = known, = prediction needed for home assessment
- **T_{r}**, T_{w} , T_{a} = indoor, wall and outdoor temperatures
- **R**_w and A_w = overall R-value and area of building envelope
- C_w and C_r = overall heat capacitance of the walls/internal space (=external/internal thermal mass)
- $Q_{HVAC} = HVAC$ heat supply
- q_{int}/q_{ext}/q_{inf} = internal/external heat gains /infiltration heat loss
- W = wind speed, C_1 , C_2 coefficients
- Outputs: R_w, ACH₅₀
 - R-value: "the capacity of an insulating material to resist heat flow. The higher the R-value, the greater the insulating power."
 - ACH₅₀: "number of time the air volume in a building changes per hour at 50 pascals of pressure"

We fit CT data to a model for each home's thermal response – this can be challenging!

- Ill-posed problem, i.e., different physical parameters can create similar building thermal responses
 - Need for "excitation"
 - Separating conduction and infiltration
- Zip-code based weather
- Different HVAC systems have different response times and characteristics
- Many homes have multiple CTs
- Thermal response "noise" from internal heat gains
- Varying CT data among vendors

???

Image Source: DOE, ecobee.

Solution: overall correlations (PRISM on steroids)

Field Data Collection

- Received complete data sets for >600 homes (~150 with 1 CT)
 - Model Inputs:
 - CT data for at least one winter season
 - Gas bill data for 1+ year (coincident with CT data)
 - Envelop area (~Home floorspace and number of stories)
 - ZIP code (for weather)
 - Ground Truth:
 - Home energy assessment (HEA) data (walls, attic, windows)
 - Blowerdoor test data (few homes)
 - Measures implemented (if any)
- Vendors
 - 3 CT Vendors (1: every 5 min, 2-3: event-based)
 - 1 HEA vendor

The algorithms effectively identify homes with insulation retrofit opportunities, for both furnaces and boilers.

Classification accuracy does not appear to vary with CT vendor.

The algorithm accurately classifies ACH₅₀.

ACH₅₀ accuracy does not appear to vary with CT vendor.

Significance of results: The blowerdoor test

Source: Holtkamp Heating & A/C, Inc.

Saving estimations

- Retrofits \rightarrow new R_w and/or air leakage coefficients
- Predict how correlations will change
- Calculate savings
- Easy to incorporate: thermal comfort, different weather

"Time Constant" Approach

- Simple exponential decay with rate $\frac{1}{\tau} \cong \frac{A_W}{C_r R_W}$ when $Q_{HVAC} = 0$, assuming:
 - 1st order model (no building envelope): $C_r \frac{dT_r}{dt} = Q_{HVAC} + q_{int} + A_w / R_w (T_a T_r) + q_{inf}$
 - Infiltration: neglected totally or only wind effect present (no thermal stack effect)
- Let's attempt this approach under mild conditions:
 - Calculated from midnight to 2AM time windows
 - No heating for 1+hour before midnight and during time window
 - T_a varies by <2°C</p>
 - T_r does not increase by >0.2°F
 - Mean T_a <40°F</p>

References: Chong and George (2016), Goldman et al. (2014)

Time Constant Approach: correlation $1/\tau$ vs. R-value?

Conclusions and Looking Forward

- For homes with 1 CT, we can accurately:
 - Estimate ACH₅₀
 - Classify whole-home R-value
 - Separate insulation from air sealing opportunities
- Next:
 - Extend algorithms to homes with multiple CTs
 - Evaluate ability to predict energy savings from target retrofits
 - Perform Randomized Controlled Trial (RCT) to test hypothesis: Does targeted, customized outreach increase rate of HEAs conducted and ECM implementation?
 - Finalize recommendations for scale-up: CT Data Specification, Best Practices Guide for Utility Program Integration

Acknowledgements

- Funding:
 - US DOE Building America Program
 - Eric Werling
 - Lena Burkett
- Eversource:
 - Brian Greenfield
 - Peter Klint
 - Peter Kuhn
 - Residential program team
- National Grid:
 - Brenda Pike
 - Cassandra Vickers
 - Rick Wester

nationalgrid

