BLACKFIRE

& KITCHENRESTOCK

ANTICIPATING PROBLEMS BE FORE THEY OCCUR

| 74

ECOMMERCE

0 blackfire.io



| INTRODUCTION

121IECOMMERCE AND KITCHENRESTOCK - ENSURING
A SEAMLESS BUYER EXPERIENCE

For nearly a decade, 121leCommerce has helped hundreds of businesses flourish in
eCommerce. Our focus is to provide Magento expertise coupled with constant
communication and transparent reporting that has earned us a stellar reputation
and proven track record.

This case study will cover how our developers used Blackfire while working with one
of our clients — KitchenRestock. With customer satisfaction as the end goal of their
operation, KitchenRestock has solidified its leadership position in providing quality
restaurant equipment across North America.

In a market where 75% of consumers abandon their cart before completing
checkout, creating a seamless buying experience is paramount. If a web page takes
more than 3 seconds to load, it will lose more than 50% of its traffic. What's more,
malfunctions in the shopping cart account for 27% of cart abandonment rates.

To keep page load times in check and the shopping cart operational, our
development team uses Blackfire in tandem with New Relic. With New Relic, our
team already had an efficient way to detect performance issues. However, they
required more concrete information in emergency cases. They knew where the
performance issue came from, but needed to answer why.

That's where Blackfire came in.

| WHY BLACKFIRE?

Blackfire is a Performance Management Solution geared towards optimizing an
application's performance at every step of its life cycle: Development, QA, staging,
and production. Blackfire helps our team identify performance bottlenecks in our
codebase and why they happened.

Blackfire suits our development team for the following reasons:

O Hassle-free testing and benchmarking using YAML. Blackfire helps our
development team define performance expectations for how our code should
behave. Configuration is simple using the YAML syntax, and supports a variety of

assertions such as load speed, memory consumption, and network output.

O Clear Ul. With Blackfire, our team can easily visualize a profile either in graph
mode or list mode. The call graph view affords the team high-level oversight of
the interrelations between processes, while the sidebar view allows for thorough

analysis of each function call.

O View resource consumption at every step of execution. A key part of reducing
page load times is reducing resource consumption. Blackfire.io provides a
breakdown of all resources utilized by every instruction in the codebase,

including memory, network, IO and database resources.

O No extra overhead. We use New Relic to monitor client applications in real-time.
To do this, it has to keep instrumentation at a bare minimum, which compromises
data breadth. By focusing exclusively on profiling requests, Blackfire offers more
specific information without compromising the production environment.



I INTEGRATING BLACKFIRE INTO OUR WORKFLOW

SETUP

For our needs, a default setup of Blackfire was sufficient. In our development environment server, the team installed and configured
the blackfire-agent file with the minimum required parameters such as Server |IDs, user tokens and Log Files.

The blackfire.yaml fire is configured with the team'’s desired performance benchmarks, which mainly relate to a client site's catalog
and checkout page. We can then see these assertions enforced in the blackfire.io interface:

tests: ® #630 Apex Staging Flsatut Sis :
Pages should be fast enough: £ 8recommandslions ara common to sl pofies ()
path: /.x 8 Uniitled scenario
assertions: e
- i s ESPPLE < o
main.wall_time < 85@ms m:‘“
f - main,ie = 500ms 2=
- main.cpu_time = 5@8@ms Fecommendations @
. Pages should not consume too much memory: s il L
'. path: /.% ——
ig assertions: ) Pagen shost be st i S <
11 - main.memory < 50M o . 53 <300
— main.peak_memory < 75M RS SU e Y i g
i3 Homepage should not do too many SOL queries: & : o,
4 path: /
15 assertions:
Cart § B Py
15 - metrics.sql.queries.count <= 12 e S
1 e zerencaton
17 Checkout pages should be light:
18 path: /checkout/.* Fgcommenditions &
_ 1 Ths W 3 byt ciache ikl b o () Wrhar s s gt " ther
19 assertions: T e o
20 — metrics.output.network_out < 100KB Constraints ®
> B Pagen shas oo it eotegn B
22 scenarios: SERe
Home: TE) Poaged Bhoskl 0ol 38Tt M) Fash TR :::ww:uﬁx"w
- f e p———— EE—— . pp—
Cart: 5
27 - /checkout/cart/ S

Our development team is geographically distributed between the Americas and Europe, collaborating using Git and GitHub
repositories. When they need to deploy, they use a variety of unix-based (Debian, Ubuntu) servers that cater to different
environments -- staging, development, and production. Our team adheres to TDD principles, and all code is first approved by the
lead developer before it passes into production.

Our team uses New Relic as an APM to monitor performance in real-time. Although New Relic is sufficient for them to resolve most
performance bottlenecks, some issues necessitate a more thorough examination. These are issues with a client’'s shopping cart
slowing down dramatically, which impacts user experience. In these emergency situations, Blackfire comes into play.

While New Relic does an excellent job at pinpointing where a bottleneck happened, Blackfire helps our team answer why the
bottleneck occurred in the first place. Using Blackfire, our developers can navigate to the exact point where New Relic detected an
issue, and see the processes that happened before and afterwards.

What's more, the exact consumption of computing resources for each process is shown. This allows our team to quickly diagnose
whether the bottleneck is due to a network or database issue. This determines where to start resolving the bottleneck, which helps
our team better estimate solution requirements.

Our team can easily share profile graphs with anyone. When a new developer joins our team, they're sent the URL of the Blackfire
profile, which is enough for them to get started working.



I DETECTING ISSUES BEFORE THEY BECOME PROBLEMS

MANAGING CHANGING REQUIREMENTS USING BLACKFIRE

---ootienagetFacionACampliod::
ereaielljact

51.60%:

There are many stakeholders involved in our business,

both from our side and our clients’ side. Multiple

stakeholder involvement means the requirements for a e | e
. ) . . . x|, odehConligData:petTatis | | FOOCOOGO0000ME . Cla
client's project can change over time. Blackfire helps Sl miarcaptorgelTablahams | P i

the development team implement requested project e escrBomiPrary read |

changes without impacting production code. Utilizing

Blackfire's Call Graph view, our developers can detect l”"
and isolate performance issues in our development
servers, which mitigates problems in production-level erge
26.42%
code. L+70x . nfighDom=_mergaNode
lwl
mmmmm-
_mengeNoded
25.00%

KitchenRestock requested our team to extend the number of
shopping cart checkout steps from 2 to 5. KitchenRestock has
a catalog of more than 250,000 products and handles
thousands of daily transactions. For such a large operation, a
performance issue in the buyer experience could spell
significant financial losses.

While implementing the requested changes, the team used
Blackfire to establish expected performance thresholds for
each new step by making changes to the blackfire.yaml file.
They then began developing each new functionality while
simultaneously testing/profiling -- all in an isolated
development server and without impacting the production
servers. As a result, the team was able to comply with
KitchenRestock's request without impacting the user

experience.




EASING THE MIGRATION TO MAGENTO 2

For our clients, the pressures to migrate from Magento 1to Magento 2 are twofold. On
the one hand, support for Magento 1 will end in June of 2020. This will leave Magento 1
patchless, bringing a swathe of security vulnerabilities. On the other hand, Magento 2
introduces a series of optimizations — such as streamlined checkout and elastic search

—that will increase ease of purchase and overall site speed.

However, migrations are as complex as they are lengthy. Migrating to Magento 2
requires our development team to rewrite all custom modules from Magento 1.
During this process, our team frequently uses Blackfire to screen for possible
performance issues. They specifically look for suspicious, albeit not erroneous, misuse
of computing resources for every new custom module built.

In this case, Blackfire's sidebar view and resource breakdown functionality proves
critical. The sidebar view allows our team to detect function calls that are consuming
more resources than normal. By using the breakdown functionality, developers can
see whether the excess resource consumption was in memory, network, 1O or

database.

s
:

“ Propagation 0rq [N @ A

Function calls %% Excl.

DOMXPath: query .
CompossdutoloactinciudeFie J
.eFactonCompiled: createCbject
fie_get_contents I
. akGanfigiDom:_geiMatchadNode |
acioryCompliad: creatsObject 1 |
CompaserAutoinadinciudaFile i 1 I
compile: metadatafrontend pho I
...odeNConfig\Placeholder:_getvalus |
..m_Gare_GhaCha20:quartsrFiound |
...nfigiPlacehokder:_processData @2 |
WidgetMocleh Template\Fiter: fiter |
compile::matadataigiobal pho |
Tile_exisls |
odsiDefauliModel: generatelmage |
.temiDirectony FeadFactaryscraste |
...eptor::_loadFilaLayoutUpdatesXml E

...eptionfinterceptor.phpf104-181 &
o workiConfigiDom::_margeNode &1 E
- \View\TemplateEngine\Php:rander |

... ModuleDependency scompareFies |
< workKADENAd aptenPdotMysal- query |

% Incl.

1482
202
3774
2167

12678

27215
22 560
20 680

11189

4081
5
g6
147

In the event of a performance issue reaching production code, using Blackfire
has cut down on bug diagnosing time by 50%. When a performance issue
arises, 70% of the time is dedicated to diagnosing the cause, and 30% to
resolving the issue. A 50% drop in diagnosing not only saves our clients’
money, it also allows our developers to focus on more productive endeavors

for our business.

AUTOMATING PROFILE GENERATION

-50%

DECREASE BUG
DIAGNOSING TIME

Our team doesn't make use of any custom metrics or integrations. However, they've leveraged the Blackfire REST API to help

generate automatic profiles after each code deploy.

sh "curl -X POST --user \"adbb6d6aaSccefee:5da2£99bc306a025\" https://blackfire.io/api/v2/builds/env/979£80c6-752a-445d-83a1-33525£d98411/webhook -d \"endpoint=${CHECK URL}\" -d \"title=${JOB_NAME}\" |

python -c \"import json,sys;obj=json.load(sys.stdin);print obj['_links']['report']['href'];\" > build/logs/blackfire.log"

Every time code is deployed to one of the development servers, a cURL command accesses the Blackfire API by passing the URL and

user tokens as parameters. In this specific commmand, a blackfire.log file is automatically created which contains the full profile for

that particular deployment.




| CONCLUSIONS

In summary, Blackfire allows our development team to:

O Detect performance issues before they make it to production.

O Effectively respond to changing project requirements and increased complexity.

O Visualize resource consumption at the function call level to determine an issue’s root cause.

| NEXT STEPS

Our team could definitely see themselves making use of the Blackfire/New Relic integration in the future. The core of application
monitoring is done by New Relic, which is sufficient for now. However, as our team becomes increasingly reliant on Blackfire to
provide critical information under critical situations, having a more coupled Blackfire integration would be a logical next step.

il

Ry

i -




