Validation of the EGFR Uncommon Variants Multiplex ddPCR Assay for Blood-Based Testing in NSCLC

Jordan M. Reese PhD, Victoria Edwards, Cherie Tschida, Amanda Weaver, Brett Dunn, Hilary Huizenga, Hestia Mellert PhD, Gary Pestano PhD
Biosides, Inc. 2970 Wilderness Place, Boulder, CO 80301

Poster: TT029 | Abstract: 16872

Background

Lung cancer is the leading cause of cancer-related deaths in the United States with the majority of diagnoses falling under the subtype of non-small cell lung cancer (NSCLC). Surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapies – alone or in combination – are used to treat NSCLC. 10-15% of NSCLC patients express a somatic mutation in the epidermal growth factor receptor (EGFR) which is a main pathogenic driver and therapeutic target. While most of the EGFR-mutated NSCLC cases present with common mutations, either deletions in exon 19 (del19) or a point mutation in exon 21 (L858R), up to 10% of patients with EGFR alterations present with uncommon mutations such as G719X, S758I, and L861Q. To enhance the GeneStrat® droplet digital PCR (ddPCR™) test service at Biosides, which has covered the sensitizing EGFR mutations (del19 and L858R) as well as the 7990M resistance mutation in patient blood, a new ddPCR assay for the EGFR uncommon variants (UCV) has been validated, approved and commercialized. The inclusion of these additional EGFR variants expands its clinical relevance.

Methods

While most of the EGFR-mutated NSCLC cases present with common mutations, either deletions in exon 19 (del19) or a point mutation in exon 21 (L858R), up to 10% of patients with EGFR alterations present with uncommon mutations such as G719X, S758I, and L861Q. To enhance the GeneStrat® droplet digital PCR (ddPCR™) test service at Biosides, which has covered the sensitizing EGFR mutations (del19 and L858R) as well as the 7990M resistance mutation in patient blood, a new ddPCR assay for the EGFR uncommon variants (UCV) has been validated, approved and commercialized. The inclusion of these additional EGFR variants expands its clinical relevance.

Analytical Results

Figure 2. Results of analytical sensitivity and specificity experiments using the EGFR UCV assay. (A-C) Each EGFR UCV gBlock was diluted into a background of normal human gDNA to achieve six different percent minor variant frequencies (%MVF). %MVF detected by the EGFR UCV assay (y-axis) is plotted relative to input %MVF ranging from 0.02% to 25% (x-axis). (C) G719X variants are overlaid: G719A (blue), G719C (green), G719S (red). R²=0.99 for all targets. (D) Analytical specificity was tested with gBlocks of four common EGFR variants. There was no off-target detection.

Clinical Results

Figure 3. Results of validation using clinical specimens. QuantaSoft 2D plot examples for (A) EGFR UCV positive clinical specimens (CLIN01 & CLIN02), a representative EGFR UCV negative clinical specimen (CLIN03), a representative normal healthy donor (NHD01), and the positive and negative controls are shown. (B) All validation specimen results. Positive call cutoff is 2 or more copies.

Figure 4. 21 Day Robustness Data. The %MVF over the 21 days of the study. The limits are shown as ± 3 standard deviations with the average %MVF of 9.8% ± 4.2% (mean ± 3 Standard Deviations).

Figure 5. Graphical Representation of Precision. EGFR UCV (orange) and EGFR WT (blue) copies detected for positive control specimens at high, medium and low mutant copy number as well as the NTC are shown. Data represent average ± standard error of the mean for (A) intra-day, (B) inter-day, and (C) inter-operator precision studies.

Conclusions

- The EGFR UCV assay has demonstrated:
 - High sensitivity and specificity with an analytic LOD of 0.02%.
 - Within Lab Precision over multiple days with multiple operators.
 - 100% clinical sensitivity, clinical specificity, and concordance.
- The additional EGFR UCV are NYS CLEP approved as part of the GeneStrat® test and are available to ordering physicians and Pharmaceutical companies for trial use.

References

Acknowledgements

We would like to thank Bio-Rad for support of assay design and the Biosides Team Members for assistance.

Contact: Hestia.Mellert@Biodesix.com
©2019 Biodesix, Inc. All rights reserved.

Figure 1. Overview of the GeneStrat® Test Sample Processing for cfDNA in the Biosides Laboratory. Sample testing is initiated when whole blood is drawn and shipped to the Biosides Laboratory. Samples for testing are accessioned into the Laboratory Information Management System (LIMS). Following nucleic acid extraction, samples are processed using the Bio-Rad QX200™ Droplet Digital PCR (ddPCR™) system. Numbers of mutant and wild-type copies are assessed using QuantaSoft™ Software, and Test Result Reports (TRRs) are generated from the secure LIMS.

Figure 3. Results of validation using clinical specimens. QuantaSoft 2D plot examples for (A) EGFR UCV positive clinical specimens (CLIN01 & CLIN02), a representative EGFR UCV negative clinical specimen (CLIN03), a representative normal healthy donor (NHD01), and the positive and negative controls are shown. (B) All validation specimen results. Positive call cutoff is 2 or more copies.

Figure 4. 21 Day Robustness Data. The %MVF over the 21 days of the study. The limits are shown as ± 3 standard deviations with the average %MVF of 9.8% ± 4.2% (Mean ± 3 Standard Deviations).

Figure 5. Graphical Representation of Precision. EGFR UCV (orange) and EGFR WT (blue) copies detected for positive control specimens at high, medium and low mutant copy number as well as the NTC are shown. Data represent average ± standard error of the mean for (A) intra-day, (B) inter-day, and (C) inter-operator precision studies.

Conclusions

- The EGFR UCV assay has demonstrated:
 - High sensitivity and specificity with an analytic LOD of 0.02%.
 - Within Lab Precision over multiple days with multiple operators.
 - 100% clinical sensitivity, clinical specificity, and concordance.
- The additional EGFR UCV are NYS CLEP approved as part of the GeneStrat® test and are available to ordering physicians and Pharmaceutical companies for trial use.

References

Acknowledgements

We would like to thank Bio-Rad for support of assay design and the Biosides Team Members for assistance.

Contact: Hestia.Mellert@Biodesix.com
©2019 Biodesix, Inc. All rights reserved.