[image:]

[image:]

Chart Programmer’s Guide

[image:]

© 2009 Quest Software, Inc.
ALL RIGHTS RESERVED.
This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest Software, Inc.

If you have any questions regarding your potential use of this material, contact:
Quest Software World Headquarters
LEGAL Dept
5 Polaris Way
Aliso Viejo, CA 92656
Email: legal@quest.com
Refer to our Web site (www.quest.com) for regional and international office information.

Trademarks
Quest, Quest Software, the Quest Software logo, Aelita, Akonix, AppAssure, Benchmark Factory, Big Brother, ChangeAuditor, DataFactory, DeployDirector, ERDisk, Foglight, Funnel Web, GPOAdmin, iToken, I/Watch, Imceda, InLook, IntelliProfile, InTrust, Invertus, IT Dad, I/Watch, JClass, Jint, JProbe, LeccoTech, LiteSpeed, LiveReorg, MessageStats, NBSpool, NetBase, Npulse, NetPro, PassGo, PerformaSure, Quest Central, SharePlex, Sitraka, SmartAlarm, Spotlight, SQL LiteSpeed, SQL Navigator, SQL Watch, SQLab, Stat, StealthCollect, Tag and Follow, Toad, T.O.A.D., Toad World, vAnalyzer, vAutomator, vControl, vConverter, vDupe, vEssentials, vFoglight, vMigrator, vOptimizer Pro, VPackager, vRanger, vRanger Pro, vReplicator, vSpotlight, vToad, Vintela, Virtual DBA, VizionCore, Vizioncore vAutomation Suite, Vizioncore vEssentials, Xaffire, and XRT are trademarks and registered trademarks of Quest Software, Inc in the United States of America and other countries. Other trademarks and registered trademarks used in this guide are property of their respective owners.

Disclaimer
The information in this document is provided in connection with Quest products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest products. EXCEPT AS SET FORTH IN QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Quest does not make any commitment to update the information contained in this document.

Third Party Contributions
See Third_Party_Contributions.htm in your Quest Software License Server installation directory.

Chart 3D Programmer’s Guide
January 2009
Version 6.4.2
 		1
		1
Table of Contents
Preface	11
Introducing JClass Chart	11
Assumptions	12
Typographical Conventions	12
Overview of this Guide	13
API Documentation (Javadoc)	14
Licensing	14
Related Documents	14
About Quest Software, Inc.	15
JClass Community	15
JClass Chart Basics	17
1.1 	Chart Areas	17
1.2 	Chart Types	18
1.3 	Supported Development Environments	21
1.4 	Adding Data	21
1.5 	Setting and Getting Object Properties	22
1.6 	Other Programming Basics	23
1.7 	JClass Chart Inheritance Hierarchy	24
1.8 	JClass Chart Object Containment	25
1.9 	JClass Chart Customizer	26
1.10	Internationalization	27
Chart Programming Tutorial	29
2.1 	Introduction	29
2.2 	A Basic Plot Chart	29
2.3 	Loading Data from a File	31
2.4 	Adding Header, Footer, and Labels	32
2.5 	Changing to a Bar Chart	35
2.6 	Inverting Chart Orientation	35
2.7 	Bar3d and 3d Effect	36
2.8 	End-User Interaction	37
2.9 	Get Started Programming with JClass Chart	37
Selecting a Chart Type	39
3.1 	Plot and Scatter Plot Charts	39
3.2 	Area and Stacking Area Charts	40
3.3 	Bar and Stacking Bar Charts	41
3.4 	Financial Charts	43
3.5 	Pie Charts	45
3.6 	Polar Charts	48
3.7 	Radar Charts	52
3.8 	Area Radar Charts	53
Adding Data with the Underlying Data Model	55
4.1 	Understanding the Underlying Data Model	55
4.2 	Pre-Built Chart DataSources	56
4.3 	Loading Data from a File	56
4.4 	Loading Data from a URL	57
4.5 	Loading Data from an Applet	57
4.6 	Loading Data from a Swing TableModel	58
4.7 	Loading Data from an XML Source	58
4.8 	Text Data Formats	61
4.9 	Making Your Own Chart Data Source	64
4.10 	Making an Updating Chart Data Source	68
Adding Data with the Targetd Data Model	71
5.1 	Overview of the Targeted Data Model	71
5.2 	Review of JDBC Result Sets	72
5.3 	Adding Data from a Result Set to a Chart	73
5.4 	Result Set Data Set Implementations by Chart Type	76
5.5 	Advanced Topics	93
5.6 	Creating a Custom Data Set Implementation	97
Defining Axis Controls	106
6.1 	Axis Labelling and Annotation Methods	106
6.2 	Positioning Axes	114
6.3 	Chart Orientation and Axis Direction	115
6.4 	Setting Axis Bounds	115
6.5 	Customizing Origins	116
6.6 	Logarithmic Axes	116
6.7 	Titling Axes and Rotating Axis Elements	117
6.8 	Gridlines	118
6.9 	Adding a Second Y-Axis	119
Defining Text and Style Elements	121
7.1 	Header and Footer Titles	121
7.2 	Legends	121
7.3 	Chart Labels	132
7.4 	Chart Styles	135
7.5 	Outline Style	137
7.6 	Hole Styles	137
7.7 	Borders	140
7.8 	Fonts	140
7.9 	Colors	141
7.10 	Positioning Elements on the Chart Object	142
7.11 	3D Effect	142
7.12 	Anti-Aliasing	143
Defining Markers and Thresholds	144
8.1 	Markers	144
8.2 	Thresholds	153
Advanced Chart Programming	160
9.1 	Outputting JClass Charts	160
9.2 	Batching Chart Updates	162
9.3 	FastAction	162
9.4 	FastUpdate	162
9.5 	Programming End-User Interaction	163
9.6 	Map and Unmap	164
9.7 	 Pick	165
9.8 	 Unpick	166
9.9 	 Using Pick and Unpick	166
9.10 	Coordinate Conversion Methods	171
9.11 	Image-Filled Bar Charts	172
Using JCChartFactor	175
10.1 	Overview of the JCChartFactory Class	175
10.2 	Overview of the LoadProperties Class	176
10.3 	Saving Data: The OutputDataProperties Class	178
10.4 	Saving Image Information: The OutputProperties Class	179
10.4.1 	Constructing an OutputProperties Object	179
10.4.2 	Setting Output Properties on an Image	180
Loading and Saving Charts Using HTML	181
11.1 	Overview of HTML for JClass Chart	181
11.2 	Creating a Chart from HTML	182
11.2.1 	Specifying JClass Chart Properties Using HTML Tags	182
11.2.2 	Creating the Chart and Loading HTML-based Properties	184
11.3 	Updating a Chart Using HTML	185
11.3.1 	Updating a Chart with New Chart Properties	185
11.3.2 	Updating a Chart with a New Data Set	185
11.4 	Saving a Chart to HTML	186
11.4.1 	Saving Data When a Chart is Saved to HTML	187
11.4.2 	Saving Image Information to HTML	187
Loading and Saving Charts Using XML	189
12.1 	Background XML Information	189
12.2 	Overview of XML for JClass Chart	190
12.3 	Creating a Chart Using XML	190
12.3.1 	Specifying JClass Chart Properties Using XML Elements	191
12.3.2 	Creating the Chart and Loading XML-based Properties	193
12.4 	Updating a Chart Using XML	194
12.4.1 	Updating a Chart with New Chart Properties	194
12.4.2 	Updating a Chart with a New Data Set	195
12.5 	Saving a Chart to XML	196
12.5.1 	Saving Data When a Chart is Saved to XML	197
12.5.2 	Saving Image Information to XML	197
12.6 	Internationalizing Your XML-based Chart	198
12.6.1 	Using Variables	198
12.6.2 	Creating a Resource Bundle	198
12.6.3 	Using Resource Bundles	198
JClass Chart Beans	200
13.1 	Choosing the Right Bean	200
13.1.1 	JClass Chart Beans	201
13.1.2 	JClass Chart Beans and JCChart	201
13.2 	Standard Bean Properties	201
13.2.1 	Axis Properties	201
13.2.2 	Chart Types	204
13.2.3 	Display Properties	205
13.2.4 	Headers and Footers	206
13.2.5 	Legends	206
13.3 	Data-Loading Methods	207
13.3.1 	SimpleChart: Loading Data from a File	207
13.3.2 	SimpleChart: Using Swing TableModel Data Objects	209
SimpleChart Bean Tutorial	210
14.1 	Introduction to JavaBeans	210
14.1.1 	Properties	210
14.2 	SimpleChart Bean Tutorial	211
14.2.1 	Steps in this Tutorial	211
MultiChart Bean	216
15.1 	Introduction to MultiChart	216
15.1.1 	Multiple Axes	216
15.1.2 	Multiple Data Views	217
15.1.3 	Intelligent Defaults	217
15.2 	Getting Started with MultiChart	217
15.3 	MultiChart Property Reference	218
15.3.1 	Axis Controls	218
15.3.2 	Headers, Footers, and Legends	224
15.3.3 	Data Source and Data View Controls	227
15.3.4 	Appearance Controls	230
15.3.5 	View3D	232
15.3.6 	Event Controls	233
Summary of Properties for JClass Chart Object	236
A.1 	ChartDataView	236
A.2 	ChartDataViewSeries	239
A.3 	ChartText	240
A.4 	JCAnno	241
A.5 	JCAreaChartFormat	242
A.6 	JCAxis	243
A.7 	JCAxisFormula	248
A.8 	JCAxisTitle	249
A.9 	JCBarChartFormat	250
A.10 	JCCandleChartFormat	251
A.11 	JCChart	251
A.12 	JCChartArea	253
A.13 	JCChartLabel	254
A.14 	JCChartLabelManager	255
A.15 	JCChartStyle	255
A.16 	JCFillStyle	257
A.17 	JCGrid	257
A.18 	JCGridLegend	258
A.19 	JCHiloChartFormat	259
A.20 	JCHLOCChartFormat	259
A.21 	JCLegend	260
A.22 	JCLineStyle	261
A.23 	JCMarker	262
A.24 	JCMultiColLegend	263
A.25 	JCPieChartFormat	264
A.26 	JCPolarRadarchartFormat	265
A.27 	JCSymbolStyle	266
A.28 	JCThreshold	266
A.29 	JCValueLabel	267
A.30 	PlotArea	267
A.31 	SimpleChart	268
HTML Syntax	272
B.1 	ChartDataView Properties	273
B.2 	ChartDataViewSeries Properties	274
B.3 	Header and Footer Properties	275
B.4 	JCAreaChartFormat Properties	276
B.5 	JCAnnoProperties	276
B.6 	JCAxis X-Axes and Y-Axes Properties	277
B.7	JCBarChartFormat Properties	279
B.8	JCCandleChartFormat Properties	279
B.9	JCChart Properties	279
B.10	JCChartArea Properties	281
B.11	JCChartLabel Properties	282
B.12	JCDataIndex Properties	283
B.13	JCGrid Properties	283
B.14	JCHiLoChartFormat Properties	284
B.15	JCHLOCChartFormat Properties	284
B.16	JCLegend Properties	284
B.17	JCMarker Properties	285
B.18	JCMultiColLegend Properties	287
B.19	JCPieChartFormat Properties	287
B.20	JCPolarRadarChartFormat Properties	288
B.21	JCThreshold Properties	288
XML DTD	290
C.1 	Chart.dtd	291
C.2	JCChartData.dtd	331
Distributing Applets and Applications	335
Golssary	336

Contents		2
Contents		1

		2
[bookmark: _Toc534826579]Preface
Introducing JClass Chart ■ Assumptions ■ Typographical Conventions
Overview of this Guide ■ API Documentation (Javadoc) ■ Licensing
Related Documents ■ About Quest Software, Inc

[bookmark: _Toc534826580]Introducing JClass Chart
JClass Chart is a charting/graphing component written entirely in Java. The chart component displays data graphically in a window and can interact with a user.

The chart component can be used easily by all types of Java programmers:
· Component users, setting JClass Chart properties programmatically.
· OO developers, instantiating and extending JClass Chart objects.
· JavaBean developers, setting JClass Chart properties using a third-party Integrated Development Environment (IDE).

You can freely distribute Java applets and applications containing JClass components according to the terms of the License Agreement that appears during the installation.

Feature Overview
You can set the properties of JClass Chart objects to determine how the chart will look and behave. You can control:
· Chart type (plot, scatter plot, area, stacking area, bar, stacking bar, pie, Hi-Lo, Hi-Lo-Open-Close, candle, polar, radar, and area radar)
· Header and footer positioning, border style, text, font, and color
· Number of data views, each having its own data, chart type, axes, and chart styles
· Flexible data loading from applets, files, URLs, input streams, and databases
· Chart styles: line color, fill color, point size, point style, and point color
· Legend positioning, orientation, border style, anchor, font, and color
· Chart positioning, border style, color, width, height, and 3D effect (bar, stacking bar, and pie charts only)
· Axis labelling using Point labels, Series labels, Value labels, or Time labels
· Number of x- or y-axes, each having its own minimum and maximum, axis numbering method, numbering and ticking increment, grid increment, font, origin, axis direction, and precision
· Control of user interaction with components including picking, mapping, Chart Customizer, rotation, scaling, and translation
· Chart labels that can appear anywhere on the chart, including automatic dwell labels for each point on the cart
· Marker lines and threshold areas
JClass Chart is compatible with JDK 1.4. If you are using JDK 1.4 and experience drawing problems, you may want to upgrade to the latest drivers for your video card from your video card vender.

[bookmark: _Toc534826581]Assumptions
This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and Java programming concepts such as classes, methods, and packages before proceeding with this manual. See Related Documents later in this section of the manual for additional sources of Java-related information.

[bookmark: _Toc534826582]Typographical Conventions
	Typewriter Font
	· Java language source code and examples of file contents.
· JClass Chart 3D and Java classes, objects, methods, properties, constants, and events.
· HTML documents, tags, and attributes.
· Commands that you enter on the screen.

	Italic Text
	· Pathnames, filenames, URLSs, programs, and method parameters.
· New terms as they are introduced, and to emphasize important words.
· Figure and table titels.
· The names of other documents referenced in this manual, such as Java in a Nutshell.

	Bold
	· Keyboard key neames and menu references.

[bookmark: _Toc531006357]

[bookmark: _Toc534826583]Overview of this Guide
						Part I – Using JClass Chart

Chapter 1, JClass Chart Basics, provides a programmer’s overview of JClass Chart. It covers class hierarchy, object containment, terminology, programming basics, and specific issues to be aware of before using JClass Chart.

Chapter 2, Chart Programming Tutorial, introduces you to JClass Chart programming by compiling and running an example program. It includes examples of common chart programming tasks.

Chapter 3, Selecting a Chart Type, outlines the special features of the JClass Chart chart types.

Chapter 4, Adding Data with the Underlying Data Model, how to use different prebuilt data sources and outlines how to use the data source toolkit to create your own.

Chapter 5, Adding Data with the Targeted Data Model, describes how to use the targeted data model to add data in a JDBC result set to a chart.

Chapter 6, Defining Axis Controls, covers JClass Chart properties used when first setting up your chart, concentrating on axis properties.

Chapter 7, Defining Text and Style Elements, covers JClass Chart properties used to customize the appearance of a chart, including header/footer, legend, and chart styles.

Chapter 8, Defining Markers and Thresholds, describes how to use markers and thresholds to highlight data values in your chart.

Chapter 9, Advanced Chart Programming, looks at programming more advanced aspects of the chart.

Part II — Supported Technologies.

Chapter 10, Using JCChartFactory, introduces the factory that is used when creating, updating, and saving charts using HTML or XML.

Chapter 11, Loading and Saving Charts Using HTML, describes how to create a chart using HTML syntax, how to update the chart, and how to save it.

Chapter 12, Loading and Saving Charts Using XML, describes how to create a chart from XML, how to update it, and how to save it. It also contains procedures to internationalize your chart.

Chapter 13, JClass Chart Beans, is a guide to the different JClass Chart Beans. It illustrates all of the properties available, including the different data loading methods.

Chapter 14, SimpleChart Bean Tutorial, introduces basic Bean concepts, and guides you through developing a chart application in an IDE.

Chapter 15, MultiChart Bean, is a user’s guide for MultiChart, an advanced charting Bean.

Part III — Reference Appendices

Appendix A, Summary of Properties for JClass Chart Objects, summarizes the properties contained in all of the JClass Chart objects.

Appendix B, HTML Syntax, lists the HTML syntax to use to define JClass Chart properties in HTML.

Appendix C, XML DTD, lists the XML elements to use to define JClass Chart properties in XML.

Appendix D, Distributing Applets and Applications, is an overview of how to deploy applets and applications.

[bookmark: _Toc534826584]API Documentation (Javadoc)
The JClass DesktopViews API Documentation (Javadoc) is installed automatically when you install JClass PageLayout and is found in the JCLASS_HOME/docs/api/ directory.

[bookmark: _Toc534826585]Licensing
In order to use JClass Chart 3D, you need a valid license. Complete details about licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically installed when you install JClass Chart 3D.

[bookmark: _Toc534826586]Related Documents
The following is a sample of useful references to Java and JavaBeans programming:
· “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems
· For an introduction to creating enhanced user interfaces, see “Creating a GUI with JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html
· Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java Resource Center at http://java.oreilly.com
· Resources for using JavaBeans are at http://java.sun.com/beans/resources.html
· For a comprehensive introduction to VRML97, MPEG-4/BIFS, and X3D, see Core Web3D from Prentice Hall. See the publisher’s Web site at http://vig.prenhall.com/ or the book’s Web page at http://www.CoreWeb3D.com
· Learn about the Web3D Consortium (provides a forum for the creation of open standards for Web3D specifications) at http://www.web3d.org/
These documents are not required to develop applications using JClass Chart 3D, but they can provide useful background information on various aspects of the Java programming language.

[bookmark: _Toc534826587]About Quest Software, Inc.
Quest Software, Inc. delivers innovative products that help organizations get more performance and productivity from their applications, databases and Windows infrastructure. Through a deep expertise in IT operations and a continued focus on what works best, Quest helps more than 18,000 customers worldwide meet higher expectations for enterprise IT. Quest Software can be found in offices around the globe and at www.quest.com.

Contacting Quest Software

	Email
	info@quest.com

	Mail
	Quest Software, Inc
World headquarters
5 Plaris Way
Aliso Viejo, CA 92656
USA

	Web site
	www.quest.com

	Refer to our web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product or who have purchased a commercial version and have a valid maintenance contract. Quest Support provides around the clock coverage with SupportLink, our web self-service. Visit SupportLink at: http://support.quest.com

From SupportLink, you can do the following:
· Quickly find thousands of solutions (Knowledgebase articles/documents).
· Download patches and upgrades.
· Seek help from a Support engineer.
· Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs, online services, contact information, and policy and procedures. The guide is available at: http://support.quest.com/pdfs/Global Support Guide.pdf

Please note that many of the initial questions you may have will concern basic installation or configuration issues. Consult this product’s readme file and the JClass DesktopViews Installation Guide (available in HTML and PDF formats) for help with these types of problems.

[bookmark: _Toc534826588]JClass Community
For the latest product information, helpful resources, and discussions with the JClass
Quest team and other community members, join the JClass community at http://jclass.inside.quest.com/.
Preface		2
Preface		 2

Using
JClass Chart
Part
I

		2
Ch 1 JClass Chart 3D Basics		2

1
[bookmark: _Toc534826589]JClass Chart Basics
Chart Areas ■ Chart Types ■ Supported Development Environements ■ Adding Data
Setting and Getting Object Properties ■ Other Programming Basics
JClass Chart Inheritance Hierarchy ■ JClass Chart Object Containment
JClass Chart Customizer ■ Internationalization

This chapter covers concepts and vocabulary used in JClass Chart programming, and provides an overview of the JClass Chart class hierarchy.

[bookmark: _Toc534826590]1.1 	Chart Areas
The following illustration shows the terms used to describe chart areas:

[image:]
Figure 1 Elements contained in a typical chart.

[bookmark: _Toc534826591]1.2 	Chart Types
JClass Chart can display data in the following basic chart types: plot, scatter plot, area, stacking area, bar, stacking bar, pie, Hi-Lo, Hi-Lo-Open-Close, candle, polar, radar, and area radar. You can also create more specialized charts by building on one of the basic types.

Use the ChartType property to set the chart type for one ChartDataView. Each data view managed by the chart has its own chart type. The following table lists basic information about each chart type, including the enumeration that sets that type and the data layouts it can display (see the next section for an introduction to data).

	Chart Type
	Single
X-series
	Multipl
X-Series
	Notes

	[image:]
	[image:]
	[image:]
	Plot
Draws each series as connected points of data.
· Series appearance determined by chart style line color, symbol shape, size, and color properties.

	[image:]
	[image:]
	[image:]
	Scatter Plot
Draws each series as unconnected points of data.
· Series appearance determined by chart style symbol shape, size, and color properties.

	[image:]
	[image:]
	
	Bar
Draws each series as a bar in a cluster. The number of
clusters is the number of points in the data. Each cluster
displays the nth point in each series.
· x-axis generally annotated using Point labels.
· Series appearance determined by chart style fill color and image properties.
· 3D effect available using depth, elevation, and rotation properties.

	[bookmark: _Hlk531451777]Chart Type
	Single
X-series
	Multipl
X-Series
	Notes

	[image:]
	[image:]
	
	Stacking Bar
Draws each series as a portion of a stacked bar cluster, the number of clusters being the number of data points. Each cluster displays the nth point in each series. Negative y-values are stacked below the x-axis.
· x-axis generally annotated using Point labels.
· Series appearance determined by chart style fill color property.
· 3D effect available using depth, elevation, and rotation properties.

	[image:]
	[image:]
	
	Area
Draws each series as connected points of data, filled below the points. Each series is layerd over the preceding series.
· Series appearance determined by chart style fill color property.

	[image:]
	[image:]
	
	 Stacking Area
Draws each series as connected points of data, filled below the points. Places each y-series on top of the last one to show the area relationships between each series and the total.
· Series appearance determined by chart style fill color property.

	[image:]
	[image:]
	
	Pie
Draws each series as a slice of pie. The number of pies is the number of points in the data (values below a certain threshold can be grouped into an other slice). Each pie displays the nth point in each series.
· Pies are annotated with Point labels only.
· Series appearance determined by chart style fill color property.
· 3D effect available using depth and elevation properties.

	[bookmark: _Hlk531452240]Chart Type
	Single
X-series
	Multipl
X-Series
	Notes

	[image:]
	[image:]
	
	Hi-Lo
Draws two series together as a “high-low” bar. The points in each series define one portion of the bar:
1st series – points are the “high” value
2nd series – points are the “low” value
· Appearance determined by chart style line color property in the first series of each pair.

	[image:]
	[image:]
	
	Hi-Lo-Open-Close
Similar to Hi-Lo, but draws four series together as a “high-low-open-close” bar. The additional series’ points make up the other components of the bar:
3rd series – points are the “open” value
4th series – points are the “close” value
· Appearance determined by chart style line color and symbol size properties in the first series of each set.

	[image:]
	[image:]
	
	Candle
A special type of Hi-Lo-Open-close chart; draws four series together as a “calde” bar.
· Simple candle appearance determined by chart style line color, fill color, and symbol size properties in the first series of each set.
· Complex candle appearance determined by different chart style properties from each series of each set.

	[image:]
	[image:]
	[image:]
	Polar
Draws each series as connected points of data on a polar coordinate system (theta,r). x-values represent the amount of rotation and y-values are the distance from the origin.
· When using Array data, x-values are shared across series.
· x-axis bounds cannot be set; y-axis bounds cannot be set inside the data extents.
· Appearance determined by ChartStyles’ line and symbol properties.

	Chart Type
	Single
X-series
	Multipl
X-Series
	Notes

	[image:]
	[image:]
	
	Radar
Draws each series as connected points along radar “sticks” spaced equally apart. The nth stick charts the y-value of the nth point in each series.
· x-axis annotated with Point-labels or integer values.
· Appearance determined by ChartStyles’ line and symbol properties of each series.

	[image:]
	[image:]
	
	Area Radar
Draws each series as connected points of data, filled inside the points. The points are the same as they would be for a Radar chart. Each series is drawn “on top” of the preceding series.
· x-axis annotated with Point-labels or integer values.
· Appearance determined by ChartStyles’ fill and line properties.

[bookmark: _Toc534826592]1.3 	Supported Development Environments
Part I of this guide shows you how to create and customize a JClass Chart programmatically. You can, however, also add JClass Chart components to applications developed for the following environments:
· applets
· HTML
· XML
· JavaBeans
These environments are touched upon throughout this guide, but Part II concentrates on using JClass Chart with supported technologies:
· Using JCChartFactory, in Chapter 10
· Loading and Saving Charts Using HTML, in Chapter 11
· Loading and Saving Charts Using XML, in Chapter 12
· JClass Chart Beans, in Chapter 13
· SimpleChart Bean Tutorial, in Chapter 14
· MultiChart Bean, in Chapter 15

[bookmark: _Toc534826593]1.4 	Adding Data
You add data to a chart using one of two data models: the underlying data model or the targeted data model. The underlying data model is universal, while the targeted data model can be used only for certain types of applications. The following sections summarize the data models.

Tip: If your data is stored as a JDBC result set and you are creating your chart programmatically, review the Targeted Data Model section first.
				1.4.1	Underlying Data Model
The underlying data model is data-format dependent and chart-type independent. This data model requires that your data be stored as an array of doubles, which means that you may need to create a compliant data source. The chart type, however, can be changed by resetting a single property.

The underlying data model can be used to add data to any JClass Chart application. It is also the preferred model if your data is dynamic and needs to be updated frequently. For more information, see Chapter 4, Adding Data with the Underlying Data Model.

1.4.2	Targeted Data Model
The targeted data model is data-format independent and chart-type dependent. This means that your data can be stored in any format and, as you match the data in your data source to chart elements, you do so with properties that are meaningful for the type of chart that you selected. Behind the scenes, JClass Chart transforms your data into an array of doubles and calls the underlying data model to do the actual work of creating the chart.

While the targeted data model is data-format independent, the implementation of the data model that ships with JClass Chart is designed specifically for JDBC result sets. The implementation includes pre-built result set data set classes; you instantiate the data set class designed for the chart type that you selected. For more information, see Chapter 5, Adding Data with the Targeted Data Model.

The targeted data model is supported for applets and any other application where you have programmatic access to the chart. You may want to review the JClass Chart examples that implement the targeted data model to see how easy it is to add data to a chart using the chart-type specific interfaces.

Note: The targeted data model is not supported for JavaBeans and XML. You need to use the underlying data model.

[bookmark: _Toc534826594]1.5 	Setting and Getting Object Properties
You can set and retrieve JClass Chart properties in the following ways:
· Calling property set and get methods in a Java program
· Using the JClass Chart Customizer at run-time
· Using a Java IDE with the JClass Chart beans
· Specifying properties using a markup language (HTML or XML)
Each method changes the same chart property. This manual therefore uses properties to discuss how features work, rather than referring to the method, JClass Chart Customizer tab, or HTML parameter you might use to set that property.

Note: In most cases, you need to understand the chart’s object containment hierarchy to access its properties. Use the Objects contained in a chart – traverse contained objects to access properties. diagram to determine how to access the properties of an object.

1.5.1	Setting Properties with Java Code
Every JClass Chart property has a set and get method associated with it. For example, to retrieve the value of the AnnotationMethod property of the first x-axis, the getAnnotationMethod() method is called:

method = c.getChartArea().getXAxis(0).getAnnotationMethod();
	
To set the AnnotationMethod property of the same axis:
c.getChartArea().getXAxis(0).setAnnotationMethod(
JCAxis.POINT_LABELS);

These statements navigate the objects contained in the chart by retrieving the values of successive properties, which are contained objects. In the code above, the value of the ChartArea property is a JCChartArea object. The chart area has an XAxis property, the value of which is a collection of JCAxis objects. The axis also has the desired AnnotationMethod property.

For detailed information on the properties available for each object, consult the online API reference documentation. The API is automatically installed when you install JClass and is found in the JCLASS_HOME/docs/api/ directory.

1.5.2	Setting Properties Interactively at Run-Time
If enabled by the developer, end-users can manipulate property values on a chart running in your application. Clicking a mouse button launches the JClass Chart Customizer. The user can navigate through the tabbed dialogs and edit the properties displayed. For details on enabling and using JClass Chart Customizer, see Section 1.9, JClass Chart Customizer.

1.5.3	Setting Properties with a Java IDE at Design-Time
A JClass Chart bean can be used with a Java Integrated Development Environment (IDE), and its properties can be manipulated at design-time. Consult your IDE’s documentation for details on how to load third-party bean components into the IDE. You can also refer to the JClass and Your IDE chapter in the Installation Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the property you want to set in this list and edit its value. Again, consult your IDE’s documentation for complete details.

1.5.4	Setting Properties with HTML or XML
You can use HTML or XML to set and save chart properties. This has the following benefits:
· Speed — You can see the effects of a set of property values quickly.
· Flexibility — You can use a single class to create many different kinds of charts simply by varying HTML/XML properties; end-users can modify properties to suit their own needs.
· Repeatability — You can save the values of chart properties to a file, which can serve as a useful testing and debugging tool.
To create or update a chart from HTML or XML, and to save a chart to HTML or XML, you use the JCChartFactory class. For more information, see Chapter 10, Using JCChartFactory.

[bookmark: _Toc534826595]1.6 	Other Programming Basics
Working with Object Collections
Many chart objects are organized into collections. For example, the chart axes are organized into the XAxis collection and the YAxis collection. In JavaBean terminology, these objects are held in indexed properties.

To access a particular element of a collection, specify the index that uniquely identifies this element. For example, the following code changes the maximum value of the first xaxis to 25.1:

c.getChartArea().getAxis(0).setMax(25.1);

The index zero refers to the first element of a collection. By default, JCChartArea contains one element in XAxis and one in YAxis. For a polar, radar, and area radar chart, there can be only one y-axis and one x-axis.

Calling Methods
To call a JClass Chart method, access the object that defines the method. For example, the following statement uses the coordToDataCoord() method, defined by the ChartDataView collection, to convert the location of a mouse click event in pixels to their equivalent in data coordinates:

JCDataCoord dc = c.getDataView(0).coordToDataCoord(10,15);

Details on each method can be found in the API documentation for each class.

[bookmark: _Toc534826596]1.7 	JClass Chart Inheritance Hierarchy
The following diagram provides an overview of class inheritance of JClass Chart.
[image:]
Figure 2 Class hierarchy of the com.klg.jclass.chart package.

[bookmark: _Toc534826597]1.8 	JClass Chart Object Containment
When you create (or instantiate) a new chart, several other objects are also created. These objects are contained in and are part of the chart. Chart programmers need to traverse these objects to access the properties of a contained object. The following diagram shows the object containment for JClass Chart.

[image:]
Figure 3 Objects contained in a chart – traverse contained objects to access properties.

JCChart (the top-level object) manages header and footer JComponent objects, a legend (JCLegend), and the chart area (JCChartArea). The chart also contains a collection of dataview (ChartDataView) objects and can contain the ChartLabelManager (JCChartLabelManager) which manages a collection of chart label (JCChartLabel) objects.

The chart area contains most of the chart’s actual properties because it is responsible for charting the data. It also contains and manages a collection of x-axis (JCAxis) objects and y-axis (JCAxis) objects (one of each by default).

The data view collection contains objects and properties (like the chart type) that are tied to the data being charted. Each data view contains a collection of series (ChartDataViewSeries) objects, one for each series of data points, used to store the visual display style of each series (JCChartStyle).

Note that chart does not own the data itself, but instead merely views on the data. Each data view also contains a data source (ChartDataModel) object. The data is owned by the DataSource object. This is an object that your application creates and manages separately from the chart. For more information on JClass Chart’s data source model, see Data Sources.

[bookmark: _Toc534826598]1.9 	JClass Chart Customizer
JClass Chart Customizer enables developers (or end-users if enabled by your program) to view and customize the properties of the chart as it runs.

[image:]
Figure 4 The JClass Chart Customizer.

JClass Chart Customizer can save developers a lot of time. Charts can be prototyped and shown to potential end-users without having to write any code. Developers can experiment with combinations of property settings, seeing results immediately in the context of a running application, greatly aiding chart debugging.

1.9.1 	Displaying JClass Chart Customizer at Run-Time
By default, JClass Chart Customizer is disabled at run-time. To enable it, you need to set the chart’s AllowUserChanges and Trigger properties, for example:

chart.setAllowUserChanges(true);
chart.setTrigger(0, new EventTrigger(InputEvent.META_MASK,
EventTrigger.CUSTOMIZE);

To display JClass Chart Customizer once it has been enabled, move the mouse over the chart and click the secondary mouse button; that is, the button on your system that displays popup menus. (On Windows, the secondary button is usually the right mouse button, while on UNIX systems this can be the middle mouse button.)

1.9.2 	Editing and Viewing Properties
1. Select the tab that corresponds to the chart element that you want to edit. Tabs contain one or more inner tabs that group related properties together. Select inner tabs to narrow down the type of property you want to edit.
2. If you are editing an indexed property, select the specific object to edit from the lists displayed in the tabs. The fields in the tab update to display the current values.
3. Select a property and edit its value.
[image:]
Figure 5 Editing a sample chart.

As you change property values, the changes are immediately applied to the chart and displayed. You can make further changes without leaving JClass Chart Customizer. However, once you have changed a property the only way to “undo” the change is to manually change the property back to its previous value.

1.9.3 	Saving Chart Properties to a File
When you have finished designing your chart, you can choose to save the chart properties to an HTML file or XML file. You can then use that file to update your chart. For more information, see Chapter 10, Using JCChartFactory, Chapter 11, Loading and Saving Charts Using HTML, and Chapter 12, Loading and Saving Charts Using XML.

To save chart properties to a file, select File > Save As HTML or File > Save As XML.

1.9.4 	Closing JClass Chart Customizer
To close JClass Chart Customizer, close its window.

[bookmark: _Toc534826599]1.10	Internationalization
Internationalization is the process of making software that is ready for adaptation to various languages and regions without engineering changes. JClass DesktopViews products have been internationalized.

Localization is the process of making internationalized software run appropriately in a particular environment.

In JClass DesktopViews, all Strings that may be seen by a typical user have been internationalized and are ready for localization. These Strings are in resource bundles in every package that requires them. You need to create additional resource bundles for each of the locales that you want to support.

Note: Localizations that are built into the Java platform – such as number and date formatting – are handled by JClass Chart 3D, without the need for you to do any extra work.

To localize your JClass Chart 3D, you need the JClass Chart 3D source code (requires a source code license). The packages that require localization have a resources subdirectory that contains the resource bundles, called LocaleInfo (or some similar variation, such as LocaleBeanInfo). You may want to perform an automated search of the package structure to find all the resource bundles.

To create a new resource bundle, copy the LocaleInfo.java file (staying within the same resources directory) and change its name to include standard language and country identifiers for the locale that you want to support. For example, if you want to support French as spoken in France, rename the copy of LocaleInfo.java to LocaleInfo_fr_FR.java. You can then replace the Strings in the copied file with the French translations.

To use a localized resource bundle, you pass the language and country identifiers to the setLocale() method. For example, setLocale(new Locale(fr, FR)) means that the Strings will be read from LocaleInfo_fr_FR.java.

For more information, including standard language and country identifiers, see http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.

If you are creating XML-based charts, either manually or via JClass Chart Customizer, you can internationalize the text on the charts using variables and a resource bundle. For more information, see Internationalizing Your XML-based Chart, in Chapter 12.

Ch 1 JClass Chart Basic		2
Ch 1 JClass Chart Basic		1
2
[bookmark: _Toc534826600]Chart Programming Tutorial
Introduction ■ A Basic Plot Chart ■ Loading Data from a File ■ Adding Header, Footer, and Labels
Changing to a Bar Chart ■ inverting Chart Orientation ■ Bar3d and 3d Effect
 End-User Interaction ■ Get Started Programming with JClass Chart

[bookmark: _Toc534826601]2.1 	Introduction
This tutorial shows you how to start using JClass Chart by compiling and running an example program. It is different from the SimpleChart Bean tutorial because it focuses on programmatic use of JClass Chart. For a Bean tutorial, see Chapter 14, SimpleChart Bean Tutorial. This program, Plot1.java, will graph the 1963 Quarterly Expenses and Revenues for “Michelle’s Microchips”, a small company a little ahead of its time.
The following table shows the data to be displayed:

	
	Q1
	`Q2
	Q3
	Q4

	Expenses
	150.0
	175.0
	160.0
	170.0

	Revenue
	125.0
	100.0
	225.0
	300.0

[bookmark: _Toc534826602]2.2 	A Basic Plot Chart
When Plot1.java is compiled and run, the window shown below is displayed:

[image:]
Figure 6 The Plot1.java program displayed.

The following listing displays the program Plot1.java. This is a minimal Java program that creates a new chart component and loads data into it from a file. It can be run as an applet or a standalone application.

	Line
	Source

	1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
	package examples.chart.intro;

import java.awt.GridLayout;
import javax.swing.JPanel;
import com.klg.jclass.chart.JCChart;
import com.klg.jclass.chart.ChartDataView;
import com.klg.jclass.chart.data.JCFileDataSource;
import com.klg.jclass.util.swing.JCExitFrame;

import demos.common.FileUtil;

/**
* Basic example of Chart use. Load data from
* a file and displays it as a simple plot chart.
*/
public class Plot1 extends JPanel {

/**
* Default constructor for this class. Loads data and
* sets up chart.
*/
public Plot1() {
setLayout(new GridLayout(1.1));

// Create new chart instance.
JCChart chart = new JCChart();
// Load data for chart
try {
// Use JCFileDataSource to load data from specified file
String fname = FileUtil.getFullFileName(
“examples.chart.intro”,”chart1.dat”);
chart.getDataView(0).setDataSource(new JCFileDataSource
(fname));
}
catch (Exception e){
e.printStackTrace(System.out);
}
// Add chart to panel for display.
add(chart);
}

putlic static void main(String args[]) {
JCExitFrame f = new JCExitFrame(“Plot1”);
Plot1 p = new Plot1();
f.getContentPane().add(p);
f.setSize(200, 200);
f.setVisible(true);
}

}

Most of the code in Plot1.java should be familiar to Java programmers. The first few lines (3–10) import the classes necessary to run Plot1.java. In addition to the standard AWT GridLayout class and Swing JPanel class, three classes in the jclass.chart package are needed: JCChart (the main chart class), ChartDataView (the data view object), and JCFileDataSource (a stock data source). This example also makes use of the JCExitFrame from JClass Elements, which is a part of the JClass DesktopViews suite. Line 16 provides the class definition for this program, a subclass of JPanel.

Lines 22–40 define the constructor. The Layout property on line 23 lays out a simple grid structure to display the components it holds. A new chart is then instantiated on line 26. Lines 30-31 load data from a file named chart1.dat into a new data source object (JCFileDataSource) and tell the chart to display this data.

Lines 42-48 define the main() method needed when the program is run as a standalone Java application.

[bookmark: _Toc534826603]2.3 	Loading Data from a File
A common task in any JClass Chart program is to load the chart data into a format that the chart can use. JClass Chart uses a “model view/control” (MVC) architecture to handle data in a flexible and efficient manner. The data itself is stored in a object that implements the ChartDataModel interface created and controlled by your application. The chart has a ChartDataView object that controls a view on this data source, providing properties that control which data source to use, and how to display the data.

JClass Chart includes several stock (built-in) data sources that you can use (or you can define your own). This program uses the data source that reads data from a file: JCFileDataSource. With this understanding we can look more closely at lines 32-33:

chart.getDataView(0).setDataSource(new JCFileDataSource
(fname));

Two things are happening here: a new JCFileDataSource object is instantiated, with the name of the data file passed as a parameter in the constructor, and the DataSource property of the chart’s first (default) data view is being set to use this data source.

The following shows the contents of the chart1.dat file:

ARRAY 2 4
X-values
1.0 2.0 3.0 4.0
Y-values
150.0 175.0 160.0 170.0
Y-values set 2
125.0 100.0 225.0 300.0

This file is in the format understood by JCFileDataSource. Lines beginning with a ‘#’ symbol are treated as comments. The first line tells the FileDataSource object that the data that follows is in Array layout and is made up of two series containing four points each. The X-values are used by all series.

There are two types of data: Array and General. Use Array layout when the series of Yvalues share common X-values. Use General when the Y-values do not share common Xvalues, or when all series do not have the same number of values.

Note that for data arrays in Polar charts, (x, y) coordinates in each data set will be interpreted as (theta, r). For array data, the X-array will represent a fixed theta value for each point.

In Radar and Area Radar charts, only array data can be used. (x, y) points will be interpreted in the same way as for Polar charts (above), except that the theta (that is, x) values will be ignored. The circle will be split into nPoints segments with nSeries points drawn on each radar line.

For complete details on using data with JClass Chart, see Chapter 4, Adding Data with the Underlying Data Model and Chapter 5, Adding Data with the Targeted Data Model.

[bookmark: _Toc534826604]2.4 	Adding Header, Footer, and Labels
The plot displayed by Plot1.java is not very useful to an end-user. There is no header, footer, or legend, and the X-axis numbering is not very meaningful.

The chart below displays various changes that can be made to a chart to make it more useful. The changes made to this chart are listed below. Full source code can be found in the plot2.java program, located in the JCLASS_HOME/examples/chart/intro directory.

[image:]
Figure 7 The program created by Plot2.java.

JClass Chart will always try to produce a reasonable chart display, even if very few properties have been specified. JClass Chart will use intelligent defaults for all unspecified properties.

All properties for a particular chart may be specified when the chart is created. Properties may also be changed as the program runs by calling the property’s set method. A programmer can also ask for the current value of any property by using the property’s get method.

Adding Headers and Footers
To display a header or footer, we need to set properties of the Header and Footer objects contained in the chart. For example, the following code sets the Text and Visible properties for the footer:

// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel - set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");

Visible displays the header/footer. Text specifies the text displayed in the header/footer.

By default, headers and footers are JLabels, although they can be any Swing JComponent. JLabels support the use of HTML tags. The use of HTML tags overrides the default Font and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCL encoding.

Adding a Legend and Labelling Points
A legend clarifies the chart by showing an identifying label for each series in the chart. We would also like to display more meaningful labels for the points along the X-axis. Both types of information can be easily specified in the data file itself. The following lists chart2.dat, a modified version of the previous data file that includes series labels (for the legend), and point labels (for the X-axis):

ARRAY '' 2 4
Point Labels
'Q1' 'Q2' 'Q3' 'Q4'
X-values, with a blank series label ('') -- a blank series
label is required if the Y-values have series labels
'' 1.0 2.0 3.0 4.0
Y-values, with Series label (in this case, Expenses)
'Expenses' 150.0 175.0 160.0 170.0
Y-values set 2, with Series label (in this case, Revenue)
'Revenue' 125.0 100.0 225.0 300.0

Lines beginning with a ‘#’ symbol are treated as comments.

As noted in the comments within the above code, if series labels are being used for the Yvalues, then the X-data must be preceded by a blank series label (''). This blank label will not show up on the chart. The third line specifies the point labels (for instance, “Q1”). Subsequent lines of data begin with a Y-data series label (“Expenses” and “Revenue”).

This data file now provides the labels that we want to use, but to actually display them in the chart, we need to set the Legend object’s Visible property and change the AnnotationMethod property of the X-axis to annotate the axis with the point labels in the data.

These and the previous changes are combined; now the chart is created with code that looks like this:

// Create new chart instance.
chart = new JCChart();
// Load data for chart
try {
// Use JCFileDataSource to load data from specified file
String fname = FileUtil.getFullFileName("examples.chart.intro",
"chart2.dat");
chart.getDataView(0).setDataSource(new
JCFileDataSource(fname));
}
catch (Exception e) {
e.printStackTrace(System.out);
}
// Make header visible, and add some text
chart.getHeader().setVisible(true);
// By default, header is a JLabel -- set its Text property
((JLabel)chart.getHeader()).setText("Michelle's Microchips");
// Make footer visible
chart.getFooter().setVisible(true);
// By default, footer is a JLabel -- set its Text property
((JLabel)chart.getFooter()).setText("1963 Quarterly Results");
// Make legend visible
chart.getLegend().setVisible(true);

// Make X-axis use point labels instead of default value labels.
chart.getChartArea().getXAxis(0).setAnnotationMethod
(JCAxis.POINT_LABELS);

// Add chart to panel for display.
add(chart);

Because we are accessing a variable defined in JCAxis, we need to add that to the classes imported by the program:

import jclass.chart.JCAxis;

In the line that sets the annotation method, notice that XAxis is a collection of JCAxis objects. A single chart can display several X- and Y-axes.

[bookmark: _Toc534826605]2.5 	Changing to a Bar Chart
[image:]
Figure 8 The bar2.java program displayed.

A powerful feature of JClass Chart is the ability to change the chart type independently of any other property. (Although there are interdependencies between some properties, most properties are completely orthogonal.) For example, to change the Plot2 chart to a bar chart, the following code can be used:

c.getDataView(0).setChartType(JCChart.BAR);

This sets the ChartType property of the data view. Alternately, you can set the chart type when you instantiate a new chart, for example:

JCChart c = new JCChart(JCChart.BAR);

The full code for this program (Bar2.java) can be found in with the other examples. JClass Chart can display data in other chart types. For more information, see Chapter 3, Selecting a Chart Type.

[bookmark: _Toc534826606]2.6 	Inverting Chart Orientation
Most graphs display the X-axis horizontally and the Y-axis vertically. It is often appropriate, however, to invert the sense of the X- and Y-axis. This is easy to do, using the Inverted property of the data view object.

In a plot, inverting causes the Y-values to be plotted against the horizontal axis, and the X-values to be plotted against the vertical. In a bar chart, it causes the bars to be displayed horizontally instead of vertically.

When programming JClass Chart, try not to assume that the X-axis is always the horizontal axis. Determining which axis is vertical and which horizontal depends on the value of the Inverted property.

To invert, set the data view object’s Inverted property to true. By default it is false.

c.getDataView(0).setInverted(true);

The following shows the windows created by Plot2.java and Bar2.java when inverted:

[image:]
Figure 9 Plot 2 and Bar 2 windows with inverted set to true.

						Full code for these examples is in the JCLASS_HOME/examples/chart/intro directory.

[bookmark: _Toc534826607]2.7 	Bar3d and 3d Effect
Chart 3D effects can be added to bar and stacking bar charts. Three properties affect the display of 3D information: Depth, Elevation, and Rotation. Modifying these properties will alter the 3D effects displayed. Depth and at least one of Elevation or Rotation must be non-zero to see any 3D effects. The properties can be set as follows:

chart.getChartArea().setElevation(20);
chart.getChartArea().setRotation(30);
chart.getChartArea().setDepth(10);
					
	Function call
Hader for the function
	Description

	setDepth()
public void setDepth(
int newDepth)
	Controls the apparent depth of the chart; the parameter newDepth represents the depth as a percentage of the width; valid values are 0 to 500.

	setElevation()
public void setElevation(
int newElevation)
	Controls the distance above the X-axis for the 3D effect; the parameter newElevation is the number of degrees above the X-axis that the chart is to be positioned; valid values are between -45 and 45.

	setRotation()
public void setRotation(
int newRotation)
	Controls the position of the eye relative to the Y-axis for the 3D effect; the parameter newRotation is the number of degrees to the right of the Y-axis the chart is to be positioned; valid values are between -45 and 45.

[bookmark: _Toc534826608]2.8 	End-User Interaction
More than simply a display tool, JClass Chart is an interactive component. Programmers can explicitly add functions that enable an end-user to directly interact with a chart. The following end-user interactions are possible:
· Translation — users can move a graph or a series of graphs along the X- and/or Y- axes.
· Rotate — users can change the vantage point of a chart type, to better view information contained with a JClass Chart component.
· Zoom — users can zoom in or out of a JClass Chart component to better view information contained within it.
· Depth — users can change the apparent depth of a 3D chart.
· Edit — users can change the placement of data points within a chart.
· Customize — users can alter the other display features of a chart, (such as color, label names, or the numerical value of data points) that comprise a chart display.
· Pick — users can determine the position of data points displayed on a chart.

[bookmark: _Toc534826609]2.9 	Get Started Programming with JClass Chart
The following suggestions should help you become productive with JClass Chart as quickly as possible:
· Check out the sample code — the example and demo programs included with JClass Chart are useful in showing what JClass Chart can do, and how to do it. Run them and examine the source code. They can all be found in the JCLASS_HOME/demos/chart and JCLASS_HOME/examples/chart directories.
· Browse the JClass Chart API documentation – complete reference documentation on the API is available online in HTML format. The properties, methods, and events for each component are documented.

Ch 2 Chart Programming Tutorial		2
Ch 2 Chart Programming Tutorial		1
3
[bookmark: _Toc534826610]Selecting a Chart Type
Plot and Scatter Plot Charts ■ Bar and Stacking Bar Charts
Area and Stacking Area Charts ■ Financial Charts ■ Pie Charts
Polar Charts ■ Radar Charts ■ Area Radar Charts

Most of the chart types share a set of common properties, such as a data view, data series, data points, axes, headers, footers, legends, and other style elements. These shared properties are described in other chapters. The purpose of this chapter is to highlight the differences among the chart types and describe how to use the properties special to one or more of the various chart types.

[bookmark: _Toc534826611]3.1 	Plot and Scatter Plot Charts
In the plot-type charts, the (x,y) data points for each data series are plotted on a rectangular chart. By default, the x-axis is horizontal and the y-axis is vertical. In a plot chart, the data points in a series are connected by lines. In a scatter plot chart, the points remain unconnected.

[image:] [image:]
Figure 10 Sample plot and scatter plot charts.

To specify a plot chart, you use the following syntax:

dataView.setChartType(JCChart.PLOT);

To specify a scatter plot chart, you use the following syntax:

dataView.setChartType(JCChart.SCATTER_PLOT);

Inverted Plot Chart
You can change the axes so that the y-axis is horizontal and the x-axis is vertical. To invert the axes, set the Inverted property of the ChartDataView object to true. To invert charts with multiple data views, set the Inverted property of each ChartDataView object.

[image:]
Figure 11 Inverted plot chart.

[bookmark: _Toc534826612]3.2 	Area and Stacking Area Charts
In area charts, the (x,y) data points for each data series are plotted on a rectangular chart. The data points are connected with a line and the region below the line is filled in with a color or pattern. Each data series is drawn on top of the previously drawn series, with the last data series drawn appearing on top.

In a stacking area chart, the data series are stacked above one another. The stacking is accomplished by adding the y-value of the data point for the current series to the corresponding y-values of all the previously drawn data series.

The following figure shows the same data mapped on an area chart and a stacking area chart. You may notice that the blue data series visible in the stacking area chart is hidden behind other data series in the area chart.

[image:]	[image:]
Figure 12 Sample area chart and stacking ara chart

To specify an area chart, you use the following syntax:

dataView.setChartType(JCChart.AREA);

To specify a stacking area chart, you use the following syntax:

dataView.setChartType(JCChart.STACKING_AREA);

100-Percent Stacking Area Charts
When 100Percent property is set to true, the y-axes display as an area percentage of the total. The top of the chart is 100% (the total of all y-values).

[image:]
Figure 13 Stacking area chart with 100Percent=true

For example:
((JCAreaChartFormat)dataView.getChartFormat()).set100Percent(
true)

[bookmark: _Toc534826613]3.3 	Bar and Stacking Bar Charts
In bar charts, the (x,y) data points in a data series are represented as bars, with each series assigned a unique color or pattern. All the data series in the data view share the same set of x-values, which results in clusters of bars at each x-axis value. By default, the x-axis is horizontal and the y-axis is vertical. You can customize the overlap and width of clusters, as described later in this section.

In a stacking bar chart, instead of clusters of bars, the data series are stacked above one another. The stacking is accomplished by adding the y-value of the data point for the current series to the corresponding y-values of all the previously drawn data series.

[image:]		[image:]
Figure 14 Sample bar and stacking bar charts.

To specify a bar chart, you use the following syntax:

dataView.setChartType(JCChart.BAR);

To specify a stacking bar chart, you use the following syntax:

dataView.setChartType(JCChart.STACKING_BAR);

Inverted Bar Chart
If you want the bars to be presented horizontally instead of vertically, you can invert the axes. To invert the axes, set the Inverted property of the ChartDataView object to true. To invert charts with multiple data views, you need to set the Inverted property for each ChartDataView object.

[image:]
Figure 15 Inverted stacking bar chart.

Cluster Overlap
Use the bar ClusterOverlap property to set the amount that bars in a cluster overlap each other. The default value is 0. The value represents the percentage of bar overlap. Negative values add space between bars and positive values cause bars to overlap. Valid values are between -100 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterOverlap(
50)

[image:]
Figure 16 Negative and positive bar cluster overlap.

Cluster Width
Use the bar ClusterWidth property to set the space used by each bar cluster. The default value is 80. The value represents the percentage available space, with valid values between 0 and 100. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).setClusterWidth(
100)

[image:]
Figure 17 Setting different bar cluster widths.

100-Percent Stacking Bar Charts
The y-axes of stacking bar charts can display a percentage interpretation of the bar data using the 100Percent property. When set to true, each stacked bar’s total y-values represents 100%. The y-value of each bar is interpreted as its percentage of the total. This property has no effect on bar charts. The syntax is as follows:

((JCBarChartFormat)dataView.getChartFormat()).set100Percent(true)

[bookmark: _Toc534826614]3.4 	Financial Charts
The financial charts are the Hi-Lo, Hi-Lo-Open-Close, and candle chart types. The financial chart types use the y-values in multiple data series to construct a bar. The data series share the same set of x-axis values. For a Hi-Lo chart, two data series are used. The first data series contains the high values while the second series represents the low values.

[image:]
Figure 18 Sample Hi-Lo chart using a set of two data series.

In the Hi-Lo-Open-Close and candle charts, four data series are needed. The first two series are the high and low values respectively, the third series contains the open values, and the fourth series contains the close value.

[image:]	[image:]
Figure 19 Sample Hi-Lo-Open-Close and candle charts using a set of four data series.

To specify a Hi-Lo chart, you use the following syntax:

dataView.setChartType(JCChart.HILO);

To specify a Hi-Lo-Open-Close chart, you use the following syntax:

dataView.setChartType(JCChart.HILO_OPEN_CLOSE);

To specify a candle chart, you use the following syntax:

dataView.setChartType(JCChart.CANDLE);

Hi-Lo-Open-Close Charts
When the chart type is JCChart.HILO_OPEN_CLOSE, several properties defined in JCHLOCChartFormat control how open and close ticks are displayed:

ShowingOpen				Displayes or hides open tick marks.

ShowingClose			Displays or hides close tick marks.

OpenCloseFullWidth	Displays open/close ticks across both sides of the bar. This is useful for creating error bar charts.

Customizing ChartStyles
Because these chart types use multiple series for each “row” of Hi-Lo or candle bars, it is difficult to determine which chart style specifies the display attributes of a particular row of bars. To make programming the chart styles of financial charts easier, JClass Chart provides several methods that retrieve and set the style for a logical series. These methods are defined in the JCHiloChartFormat, JCHLOCChartFormat and JCCandleChartFormat classes. Each get method returns the JCChartStyle object used for the logical series you specify. You can customize the properties in this returned object and then use the appropriate set method to apply them to the same logical series in the chart.

Most of the financial chart types use only one or two JCChartStyle properties. The following table lists the properties used by each chart type (see Chart Styles, in Chapter 7 for more information on chart styles):

	
	LineColor
	SymbolSize

	Hi-Lo
	[image:]
	

	Hi-Lo-Open-Close
	[image: Checkmark]
	[image: Checkmark]

	Candle (simple)
	[image: Checkmark]
	[image: Checkmark]

	Candle (complex)
	see below

For every financial chart type except complex candle, the actual chart style used is that of the first series.

Simple and Complex Candle Charts
You can choose between a simple and complex candle chart display using the Complex property defined in JCCandleChartFormat.

When set to false, the chart style from just one series (the first) determines the appearance of the candle. The table above shows the properties used. A rising stock price is indicated by making the candle transparent. A falling stock price displays in the color specified by FillColor.

Complex candle charts (Complex is true), use elements of the chart styles of all four series, providing complete control over every visual aspect of the candles. The convenience methods defined in JCCandleChartFormat make it easy to retrieve/set the style that controls the appearance of a particular aspect of the candles.

The following lists the JCChartStyle properties that control each aspect of a complex candle, along with which of the four chart styles is used:
· Hi-Lo line — LineColor property (first chart style)
· Rising price candle color and width — FillColor and SymbolSize properties (second chart style)
· Falling price candle color and width — FillColor and SymbolSize properties (third chart style)
· Candle outline — LineColor property (fourth chart style)

Example Code
The following code sets the rising and falling candle styles of a complex candle chart:

JCChartStyle chartStyle;
JCCandleChartFormat candleFormat;
// Set candle to complex type so we can change colors
candleFormat=(JCCandleChartFormat)chart.getDataView(1).getChartFormat();
candleFormat.setComplex(true);

// Change rising candle color
chartStyle = candleFormat.getRisingCandleStyle(0);
chartStyle.setLineColor(Color.green);
chartStyle.setFillColor(Color.red);

// Change falling candle color
chartStyle = candleFormat.getFallingCandleStyle(0);
chartStyle.setLineColor(Color.green);
chartStyle.setFillColor(Color.yellow);

Two demo programs included with JClass Chart illustrate creating financial charts: the
stock demo, located in JCLASS_HOME/demos/chart/stock/, and the financial demo, located
in JCLASS_HOME/demos/chart/financial.

[bookmark: _Toc534826615]3.5 	Pie Charts
Pie charts are quite different from the other chart types. They do not have the concept of
a two-dimensional grid or axes. Data points in a data series are represented as slices in a pie. Each data series in the chart data view is captured in a separate pie.

[image:]	[image:]
Figure 20 Sample pie charts displaying one data series and many data series.

Building the “Other” Slice
Pie charts introduce a special category called “Other”, into which all data values below a certain threshold can be grouped.

Pie charts are often more effective if unimportant values are grouped into an “Other” category. Use the ThresholdMethod property to select the grouping method to use. SLICE_CUTOFF is useful when you know the data value that should be grouped into the “Other” slice. PIE_PERCENTILE is useful when you want a certain percentage of the pie to be devoted to the “Other” slice.

[image:]
Figure 21 Three JClass Charts Illustrating how the “Other” slice can be used. .

Use the MinSlices property to fine-tune the number of slices displayed before the “Other” slice. For example, when set to 5, the chart tries to display 5 slices before grouping data into the “Other” slice.

“Other” Slice Style and Label
The OtherStyle property allows access to the ChartStyle used to render the “Other” slice. Use FillStyle’s Pattern and Color properties to define the appearance of the Other slice.

Use the OtherLabel property to change the label of the “Other” slice.

Pie Ordering
Use the SortOrder property to specify whether to display slices largest-to-smallest, smallest-to-largest, or the order they appear in the data.

Start Angle
The position in the pie chart where the first pie slice is drawn can be specified with the StartAngle property. A value of zero degrees represents a horizontal line from the center of the pie to the right-hand side of the pie chart; a value of 90 degrees represents a vertical line from the center of the pie to the top-most point of the pie chart; a value of 180 degrees represents a horizontal line from the center of the pie to the left-hand side of the pie chart; and so on. Slices are drawn clockwise from the specified angle. Values must lie in the range from zero to 360 degrees. The default value is 135 degrees.

Exploded Pie Slices
It is possible to have individual slices of a pie “explode” (that is, detach from the rest of the pie). Exploded slices can be used in both 2D and 3D pie charts. Two properties of JCPieChartFormat are responsible for this function: ExplodeList and ExplodeOffset.

ExplodeList specifies a list of exploded pie slices in the pie charts. It takes pts as a parameter, which is composed of an array of Point objects. Each point object contains the data point index (pie number) in the x-value and the series number (slice index) in the y-value, specifying the pie slice to explode. To explode the “other” slice, the series number should be OTHER_SLICE. If null, no slices are exploded.

ExplodeOffset specifies the distance a slice is exploded from the center of a pie chart. It takes off as a parameter, which is the explode offset value.

The following code sample shows how ExplodeList and ExplodeOffset can be used to set the list of exploded slices.

Point[] exList = new Point[3];
exList[0] = new Point(0, 0);
exList[1] = new Point(1, 5);
exList[2] = new Point(2, JCPieChartFormat.OTHER_SLICE);
pcf.setExplodeList(exList);
pcf.setExplodeOffset(10);

The following code sample shows how to set up a pick listener such that when a user clicks on an individual pie slice, that slice explodes (and then implodes if the user clicks on it again):

public void pick(JCPickEvent e)
{
JCDataIndex di = e.getPickResult();
if (di == null) return;
Object obj = di.getObject();
ChartDataView vw = di.getDataView();
ChartDataViewSeries srs = di.getSeries();
int slice = di.getSeriesIndex();
int pt = di.getPoint();
int dist = di.getDistance();
if (vw != null && slice != -1) {
JCPieChartFormat pcf = (JCPieChartFormat)vw.getChartFormat();
Point[] exList = pcf.getExplodeList();
if (exList == null) return;
// implode existing exploded slices
for (int i = 0; i < exList.length; i++) {
if ((exList[i].x == pt) && (exList[i].y == slice)) {
Point[] newList = new Point[exList.length - 1];
for (int j = 0; j < i; j++)
newList[j] = exList[j];
for (int j = i; j < newList.length; j++)
newList[j] = exList[j + 1];
pcf.setExplodeList(newList);
return;
}
}
// explode new slice
Point[] newList = new Point[exList.length + 1];
for (int j = 0; j < exList.length; j++)
newList[j] = exList[j];
newList[exList.length] = new Point(pt, slice);
pcf.setExplodeList(newList);
}
}
The full code for this program can be found in JCLASS_HOME/examples/chart/interactions/. For more information on pick, see Using Pick and Unpick, in Chapter 9.

Saving and Loading Exploding Pie Slices
Exploded pie slice properties can be saved or loaded to or from both XML and HTML. This is done by passing JCPieChartFormat’s setExplodeList() method an array of Point objects which correspond to the exploded series and points. For each Point object in the array, the X value represents the pie (or point) number, while the Y value represents the slice (or series) number. To specify all of the points or series, use the ALL integer; to specify that the “other” slice should be exploded, use other as the Y value.

For more information on using this feature in XML, see pie-format in Appendix C, XML DTD.

In HTML, the code should resemble the following:

<APPLET CODEBASE="../../" ARCHIVE="lib/jcchart.jar" WIDTH=450 HEIGHT=300
CODE="com/klg/jclass/chart/applet/JCChartApplet.class">
<PARAM name="dataFile" value="sample_1.dat">
<PARAM name="data.chartType" value="PIE">
<PARAM name="data.pie.explodeList" value="0,all|all,1|3,3|4,other">
</APPLET>

where all slices on the first pie are exploded (0,ALL), the slices corresponding to the first dataseries are exploded on all pies (ALL,1), the slice corresponding to the third dataseries is exploded on the fourth pie (3,3), and the fifth pie’s “other” slice is also exploded (4,other). Note that the pie (or point) number starts at 0; therefore, the first pie is 0, the second is 1, and so on.

[bookmark: _Toc534826616]3.6 	Polar Charts
In polar charts, the (x,y) data points for each series are drawn as (theta,r), where theta is amount of rotation from the x-origin and r is the distance from the y-origin. theta can be specified in degrees (default), radians, or gradians. Because the x-axis is a circle, the x-axis maximum and minimum values are fixed.

[image:]
Figure 22 Sample polar chart.

To specify a polar chart, you use the following syntax:

dataView.setChartType(JCChart.POLAR);

Background Information for the Polar Charts
In order to work efficiently with polar charts, you should understand the following basic concepts.

Theta
Theta (θ), which is the angle from the x-axis origin, is measured in a counterclockwise direction. In cartesian (rectangular) X and Y plots, theta “translates” to the x-axis.

r value
r represents the distance from the y-axis origin. In cartesian (rectangular) X and Y plots, r “translates” to the y-axis. Multiple r values are allowed.

[image:]

Angles
Angles can be measured in degrees, radians, or gradians.

X- and Y-values in Polar Charts
[image:]

Setting the Origin
All angles are relative to the origin base angle. The position of the x-axis origin is determined by the origin base angle. The OriginBase property is a value between 0 and 360 degrees (if the angle unit is degrees).

The y-axis angle is the angle that the y-axis makes with the origin base. The origin base angle is set to 0o by default. The y-axis angle is set to 0o to the origin base by default.
[image:]
You can change the origin base angle, the y-axis angle, or both.
[image:]

[image:]
[image:]

Data Format
In the underlying data model, the data format for polar charts is either:
· general – (x,y) for every series; or
· array (only one x-value).
The x-array contains the theta values; the y-array contains the r-values. For array data, the x-array represents a fixed theta value for each point. For more information, see Text Data Formats, in Chapter 4.

[image:]
Figure 23 Data format for polar charts.

PolarChartDraw Class
The PolarChartDraw class (which extends ChartDraw) is a drawable object for polar charts. This object is used for rendering a polar chart based on data contained in the dataObject.

The default constructor is PolarChartDraw().

There are two key methods in this class:
· recalc() – recalculates the extents of related objects
· draw() – draws related objects and takes as its parameter the graphics context to use for drawing
Full or Half-Range X-Axis
Use the HalfRange property to determine whether the x-axis is displayed as one full range from 0 to 360 degrees (default) or two half-ranges: from –180 degrees to zero degrees to 180 degrees. In interval notation the range would be [0,360) when HalfRange is false and (–180, 180] when HalfRange is true.

[image:]
Figure 24 Half-range is true – values in the lower half of the chart are negative.

Allowing Negative Values
Polar charts do not allow negative values for the y-axis unless the y-axis is reversed. A negative radius is interpreted as a positive radius rotated 180 degrees.
Thus (theta, r) = (theta +180, –r).

[bookmark: _Toc534826617]3.7 	Radar Charts
A radar chart plots data as a function of distance from a central point. A line connects the data points for each series, forming a polygon around the chart center.

A radar chart draws the y-value in each data set along a radar line (the x-value is ignored). If the data set has n points, then the chart plane is divided into n equal angle segments, and a radar line is drawn (representing each point) at 360/n degree increments. By default, the radar line representing the first point is drawn horizontally (at 0 degrees).

 [image:]

Radar charts permit easy visualization of symmetry or uniformity of data, and are useful for comparing several attributes of multiple items. Although radar charts look as if they have multiple y-axes, they have only one; hence, you cannot change the scale of just one spoke.

To specify a radar chart, you use the following syntax:

dataView.setChartType(JCChart.RADAR);

The JCPolarRadarChartFormat class provides methods to get or set properties specific to polar, radar, or area radar charts. Using ChartStyles, you can customize the symbol and line properties of each series. For more information, see Chart Styles, in Chapter 7.

Background Information for Radar Charts
An example of the x-values and y-values of a radar chart is shown below; in this case, there are seven x-values and three series of y-values.

[image:]
Data Format
In the underlying data model, the data format required for radar charts is array only. For more information, see Text Data Formats, in Chapter 4.

[image:]

RadarChartDraw Class
The RadarChartDraw class (which extends PolarChartDraw) is a drawable object for radar charts. This object is used for rendering a radar chart based on data contained in the dataObject.

The default constructor is RadarChartDraw().
There are two key methods in this class:
· recalc() – recalculates the extents of related objects; and
· draw() – draws related objects and takes as its parameter the graphics context to use for drawing.

[bookmark: _Toc534826618]3.8 	Area Radar Charts
An area radar chart draws the y-value in each data set along a radar line (the x-value is ignored). If the data set has n points, the chart plane is divided into n equal angle segments, and a radar line is drawn (representing each point) at 360/n degree increments. Each series is drawn “on top” of the preceding series.

Area radar charts are the same as radar charts, except that the area between the origin and the points is filled.

[image:]
Figure 25 Sample area radar chart.

To specify an area radar chart, you use the following syntax:

dataView.setChartType(JCChart.AREA_RADAR);

The JCPolarRadarChartFormat class provides methods to get or set properties specific to polar, radar, or area radar charts. Using ChartStyles, you can customize the fill and line properties of each series. For more information, see Chart Styles, in Chapter 7.

Background Information for Area Radar Charts
An example of the x- and y-values of an area radar chart is shown below; in this case, there are seven x-values and three series of y-values.

[image:]

Data Format
In the underlying data model, the data format required for area radar charts is array only. For more information, see Text Data Formats, in Chapter 4.

[image:]
AreaRadarChartDraw Class
The AreaRadarChartDraw class (which extends RadarChartDraw) is a drawable object for area radar charts. This object is used for rendering an area radar chart based on data contained in the dataObject. The default constructor is AreaRadarChartDraw().

Ch 3 Selecting a Chart Type		2
Ch 3 Selecting a Chart Type		1
4
[bookmark: _Toc534826619]Adding Data with the
Underlying Data Model
Understanding the Underlying Data Model ■ Pre-Built Chart DataSources ■ Loading Data from a File Loading Data from a URL ■ Loading Data from an Applet ■ Loading Data from a Swing TableModel
Loading Data from an XML Source ■ Text Data Formats
Making Your Own Chart Data Source ■ Making an Updating Chart Data Source

After you select the type of chart that you want to create, the next step is to add your data to the chart. The underlying data model can be used to add data to all JClass Chart applications. It is also the model of choice if your data is dynamic and needs to be updated frequently.

Important: If your data is stored as a JDBC result set and you are creating your chart programmatically, you should consider using the targeted data model instead. For more information, see Adding Data, in Chapter 1 and Chapter 5, Adding Data with the Targeted Data Model.

[bookmark: _Toc534826620]4.1 	Understanding the Underlying Data Model
Data sources are added to JClass Chart using data views, which are encapsulated by the ChartDataView object. ChartDataView organizes data as a collection of ChartDataViewSeries objects, one ChartDataViewSeries for each series of data points.

In most cases, your charts will require only one data view. However, JClass Chart allows you to load data from multiple data sources at the same time, assigning each source to a separate data view. By default, all data views are showing, but each may be hidden or revealed depending on the needs of your application. Data views may be mapped to the same set of x-axes and y-axes, or to different axes.

Note: Radar, area radar, and pie charts do not support multiple data views.

[bookmark: _Toc534826621]4.2 	Pre-Built Chart DataSources
JClass Chart provides pre-built DataSource objects that you can use to load data. They
are located in the com.klg.jclass.chart.data package.

The following table summarizes the available DataSource objects:

	DataSource name
	Description

	BaseDataSource
	A very simple container for chart data.

	JCAppletDataSource
	Used to load data from an applet parameter tag.

	JCChartSwingDataSource
	Used to extract data from a Swing TableModel.

	JCDefaultDataSource
	An extension of BasicDataSource.

	JCEditableDataSource
	An editable version of JCDefaultDataSource.

	JCFileDataSource
	Used to load data from a file.

	JCInputStreamDataSource
	Used to load data from any stream.

	JCStringDataSource
	Used to load data from a String.

	JCURLDataSource
	Used to load data from a URL.

	JDBCDataSource
	Used to load data from a JDBC Result Set.

[bookmark: _Toc534826622]4.3 	Loading Data from a File
An easy way to bring data into a chart is to load it from a formatted file using JCFileDataSource. To load data this way, you create a data file that follows JClass Chart’s standard format, as outlined in Section 4.8, Text Data Formats.

To finish, you instantiate a JCFileDataSource object and attach it to a view in your chart application. The following example shows how to instantiate and attach a JCFileDataSource:

chart.getDataView(0).setDataSource(new JCFileDataSource("file.dat"));

[bookmark: _Toc534826623]4.4 	Loading Data from a URL
You can chart data from a URL address using JCURLDataSource. To load data this way, you create a data file that follows JClass Chart’s standard format, as outlined in Section 4.8, Text Data Formats.

Then, you instantiate JCURLDataSource and attach it to a view in your chart. The following example uses data from a file named plot1.dat:
chart.getDataView(0).setDataSource(new
JCURLDataSource(getDocumentBase(), "plot1.dat"));

Parameter options for JCURLDataSource:
The following are valid parameter combinations for JCURLDataSource:
· URL
· base, file
· host, file
host: The WWW hostname.
file: The fully qualified name of the file on the server.
URL: The URL address of a data file, eg, http://www.quest.com/datafile.dat.
base: A URL object representing the directory where the file is located.

In the example above, the first parameter passed is getDocumentBase(), a method that
returns the path where the current applet is located.

[bookmark: _Toc534826624]4.5 	Loading Data from an Applet
You can chart data from an applet using JCAppletDataSource.

To prepare the data, put it into the standard format, (see Data Formats), and insert it into the HTML file that calls your applet. The HTML syntax is as follows:

<Applet>
...
<PARAM NAME=Your_Data_Name VALUE="formatted data... ">
...
</Applet>

“Your_Data_Name” is used by your applet to select the right set of information. Use the same name in the applet and the HTML source. If a name is not provided “data” is assumed.

With your data in the HTML file, instantiate an JCAppletDataSource and attach it to a view in your chart as follows:

chart.getDataView(0).setDataSource(new JCAppletDataSource(applet,
"Your_Data_Name"));

You can also chart data from an HTML file. For a listing of the syntax of JClass Chart properties when specified in an HTML file, please see Appendix B, HTML Syntax.

Example of Data in an HTML file
<APPLET CODEBASE="../../../.."
CODE="jclass/chart/demos/labels/labels.class"
<PARAM NAME=data VALUE="
ARRAY 'Oblivion Inc. 1996 Results' 2 4
'Q1' 'Q2' 'Q3' 'Q4'
'Quarter' 1 2 3 4
'Expenses' 150.2 182.1 152.1 170.6
'Revenue ' 125.5 102.7 225.0 300.9
">
</APPLET>

[bookmark: _Toc534826625]4.6 	Loading Data from a Swing TableModel
The JCChartSwingDataSource class enables you to use any type of Swing TableModel data object for the chart. TableModel is typically used for Swing JTable components, so your application may already have created this type of data object.

JCChartSwingDataSource “wraps” around a TableModel object, so that the data appears to the chart in the format it understands.

This data source is available through the SwingDataModel property in the SimpleChart and MultiChart Beans. To use it, prepare your data in a Swing TableModel object and set the SwingDataModel property to that object.

[bookmark: _Toc534826626]4.7 	Loading Data from an XML Source
For more general XML information, refer to Chapter 12, Loading and Saving Charts Using XML.

JClass Chart can accept XML data formatted to the specifications outlined in com.klg.jclass.chart.data.JCXMLDataInterpreter. This public class extends JCDataInterpreter and implements an interpreter for the JClass Chart XML data format. JCXMLDataInterpreter relies on an input stream reader to populate the specified BaseDataSource class.

Data can be specified either by series or by point. This is fully explained below.

Examples of XML in JClass
For XML data source examples, see the XMLArray, XMLArrayTrans, and XMLGeneral examples in JCLASS_HOME/examples/chart/datasource. These use the array.xml, arraytrans.xml, and general.xml data files, respectively.

Interpreter
The interpreter, which converts incoming data to the internal format used by JClass Chart, must be explicitly set by the user when loading XML-formatted data. The interpreter to use for this purpose is com.klg.jclass.chart.data.JCXMLDataInterpreter.

Many constructors in the various data sources in JClass Chart take the abstract class JCDataInterpreter, which is extended by JCXMLDataInterpreter. It is possible for the user to create a custom data format and a custom data interpreter by extending JCDataInterpreter.

Here are a few code examples that load XML data using JClass Chart’s XML interpreter, JCXMLDataInterpreter:

ChartDataModel cdm = new JCFileDataSource(fileName, new
JCXMLDataInterpreter());
ChartDataModel cdm = new JCURLDataSource(codeBase, fileName, new
JCXMLDataInterpreter());
ChartDataModel cdm = new JCStringDataSource(string, new
JCXMLDataInterpreter());

4.7.1 	Specifying Data by Series
When “specifying by series”, there can be any number of <data-series> tags. Within each <data-series> tag, there can be an optional <data-series-label> tag and any number of <x-data> tags (these tags represent the x-values for that series). If there are no <x-data> tags in any <data-series> tag, a single x-array is generated, starting at 1 and proceeding in increments of 1.

If only one series has <x-data> tags, then that list of x-data is used for all series. If more than one series has <x-data> tags, those tags are used only for the series in which they are located.

Within each <data-series> tag, there must be at least one <y-data> tag (generally there will be many). <y-data> tags represent the y-values for that series.

If the number of x-values and y-values do not match within one series, the one with the fewer number of values is padded out with Hole values.

Here is an example of an XML data file specifying data by series.

<?xml version="1.0"?>
<!DOCTYPE chart-data SYSTEM "JCChartData.dtd">
<chart-data Name="My Chart" Hole="MAX">
<data-point-label>Point Label 1</data-point-label>
<data-point-label>Point Label 2</data-point-label>
<data-point-label>Point Label 3</data-point-label>
<data-point-label>Point Label 4</data-point-label>
<data-series>
<data-series-label>Y Axis #1 Data</data-series-label>
<x-data>1</x-data>
<x-data>2</x-data>
<x-data>3</x-data>
<x-data>4</x-data>
<y-data>1</y-data>
<y-data>2</y-data>
<y-data>3</y-data>
<y-data>4</y-data>
</data-series>
<data-series>
<data-series-label>Y Axis #2 Data</data-series-label>
<y-data>1</y-data>
<y-data>4</y-data>
<y-data>9</y-data>
<y-data>16</y-data>
</data-series>
</chart-data>

This format is similar to both the array and the general formats of the default chart data source.

4.7.2 	Specifying Data by Point
In the “specifying by point” format, there can be any number of <data-point> tags. Within each <data-point> tag, there can be one optional <data-point-label> tag and one optional <x-data> tag (these tags represent the x-value of that point). If there are no <x-data> tags in any of the <data-point> tags, x-values are generated, starting at 1 and then increasing in increments of 1.

If some <data-point> tags have <x-data> tags but others do not, the missing ones will be replaced with Hole values.

Within each <data-point> tag, there must be at least one <y-data> tag (in general, there will be many). <y-data> tags represent the y-values of each series at this point.

There should always be the same number of <y-data> tags within each <data-point> tag. If there are not, then the largest number of <y-data> tags in any one <data-point> tag is used as the number of series, and the other lists of y-values will be padded with Hole values.

Here is an example of an XML data file specifying data by point.

<?xml version="1.0"?>
<!DOCTYPE chart-data SYSTEM "JCChartData.dtd">
<chart-data Name="MyChart">
<series-label>Y Data</series-label>
<series-label>Y 2 Data</series-label>
<data-point>
<data-point-label>Point Label 1</data-point-label>
<x-data>1</x-data>
<y-data>1</y-data>
<y-data>1</y-data>
</data-point>
<data-point>
<data-point-label>Point Label 2</data-point-label>
<x-data>2</x-data>
<y-data>2</y-data>
<y-data>4</y-data>
</data-point>
<data-point>
<data-point-label>Point Label 3</data-point-label>
<x-data>3</x-data>
<y-data>3</y-data>
<y-data>9</y-data>
</data-point>
<data-point>
<data-point-label>Point Label 4</data-point-label>
<x-data>4</x-data>
<y-data>4</y-data>
<y-data>16</y-data>
</data-point>
</chart-data>

This format is similar to the transposed array format of the default chart data source.

4.7.3 	Label and Other Parameters

<data-point-label> and <data-series-label> Tags
<data-point-label> and <data-series-label> tags are optional with both the specifying by series or specifying by point methods. If there are more point labels than data points, or more series labels than data series, the extra labels are ignored. If there are more data points than point labels, or more data series than series labels, then the list is padded with blank labels. If there are no point labels or no series labels at all, the chart default is used – no point labels and series labels containing “Series 1”, “Series 2”, and so on.

Name and Hole Parameters
The Name and Hole parameters of the chart-data tag are also optional. Name can be any
String. Hole can be a value, the String MIN (meaning Double.MIN_VALUE), or the String MAX
(meaning Double.MAX_VALUE). To represent virtual hole values in an x-data or y-data tag,
use the word Hole. Any x-data or y-data tag can contain a value, the String MIN, the String
MAX, or the String Hole.

See the Section 4.7.1, Specifying Data by Series, and Section 4.7.2, Specifying Data by Point, to view these elements in code samples.

[bookmark: _Toc534826627]4.8 	Text Data Formats
When specifying data using ASCII text, JCAppletDataSource, JCFileDataSource, JCURLDataSource, JCInputStreamDataSource, and JCStringDataSource, all require that data be pre-formatted. The following table illustrates the formatting requirements of data for pre-built data sources. There are two main ways to format data: Array and General.

Array-formatted data shares a single series of x-data among one or more series of y-data. General-formatted data specifies a series of x-data for every series of y-data.

Array format is the recommended standard, because it works well with all of the chart types. General Format may not display data properly in stacking bar, stacking area, pie, and bar charts.

Note that for data arrays in polar charts, (x, y) coordinates in each data set will be interpreted as (theta, r). For array data, the x-array will represent a fixed theta value for each point.

In radar and area radar charts, only array data can be used. (x, y) points will be interpreted in the same way as for polar charts (above), except that the theta (that is, X) values will be ignored. The circle will be split into nPoints segments with nSeries points drawn on each radar line.

General format is intended for use in cases where you want to display multiple x-axis values on the same chart.

The following table shows four formatted data examples. An explanation of each element follows.

4.8.1 	Formatted Data Examples

	Array Data Format (Recommended)

	ARRAY 2 3 # 2 series of 3 points
HOLE 10000 # Use only if custom hole value needed
’Point 0’ ’Point 1’ ’Point 2’ # Optional Point-labels
x-values common to all points
 1.0 2.0 3.0
y-values
’Series 0’ 50.0 75.0 60.0 # Series-label is optional
’Series 1’ 25.0 10.0 50.0

	Transposed Array Data Format (same data as previous)

	ARRAY 2 3 T # 2 series of 3 points, Transposed
HOLE 10000
’’ ’Series 0’ ’Series 1’ # Optional Series-labels
x-values Y0-values Y1-values
’Point 0’ 1.0 50.0 25.0 # Point-labels are optional
’Point 1’ 2.0 75.0 10.0
’Point 2’ 3.0 60.0 50.0

	General Data Format (Use if x-data is different for each series)

	GENERAL 2 4 # 2 series, max 4 points in each
HOLE -10000 # Use only if custom hole value needed
’Series 0’ 2 # 2 points, optional series label
 1.0 3.0 # x-values
 50.0 60.0 # y-values
’Series 1’ 4 # 4 points
 2.0 2.5 3.5 5.0 # x-values
 45.0 60.0 HOLE 70.0 # y-values, including data hole

	Transposed General Data Format (same data as previous)

	GENERAL 2 4 T # 2 series, max 4 points in each, Transposed
HOLE -10000
’Series 0’ 2 # 2 points, optional series label
X Y
 1.0 50.0
 3.0 60.0
’Series 1’ 4 # 4 points
X Y
 2.0 45.0
 2.5 60.0
 3.5 HOLE
 5.0 70.0

4.8.2 	Explanation of Format Elements
The first (non-comment) line must begin with either “ARRAY” or “GENERAL” followed by two integers specifying the number of series and the number of points in each series. For example:

#This is an Array data file containing 2 series of 4 points
ARRAY 2 4

The only difference with General data is that the second integer specifies the maximum
number of points possible for each series:
A General data file, 5 series, maximum 10 points
GENERAL 5 10

Hole Value
The second line can optionally specify a data hole value. A hole value is a number that is interpreted by the chart as missing data. There should be only one hole value per ChartDataView class. Use a hole value if you know that a particular value in the data should be ignored in the chart:

HOLE 10000

You can also indicate that any particular point is a hole by specifying the word “HOLE” for that x- or y-value. For example:

50.0 75.0 HOLE 70.0

Note: If the hole value is later changed in the data view, values in the x- and y-data previously set with hole values will not change their values and will not draw.

By default, hole values are not drawn on charts. For a selection of chart types, you can change this default behavior by specifying a style to use for hole values. For more information, see Hole Styles, in Chapter 7.

Comments
You can use comments throughout the data file to make it easier for people to understand. Any text on a line following a “#” symbol is treated as a comment and is ignored.

Point Labels
The third line can optionally specify text labels for each data point, which can be used to annotate the x-axis. Point-labels are generally only useful with Array data; if specified for General data they apply to the first series. The following shows how to specify Pointlabels:

’Point 1’ ’Point 2’ ’Point 3’ # Optional Point-labels

The Data – Array layout
The rest of the file contains the data to be charted. Array layout uses the first line of data as x-values that are common to all points. Subsequent lines specify the y-values for each data series:

1.0 2.0 3.0 4.0 # x-values
150.0 175.0 160.0 170.0 # y-values, series 0
125.0 100.0 225.0 300.0 # y-values, series 1
y-values continue, until end of data

The Data – General layout
General layout provides more flexibility. For each series, the first line of data specifies the number of points in the series (this cannot be greater than the maximum number of points defined earlier). The second line specifies the x-values for that series; the third line specifies the y-values:

4 								# Series 0, 4 points
50.0 75.0 60.0 70.0 		# x-values
25.0 10.0 25.0 30.0 		# y-values
Next series follows, until end of data

Series Labels
You can optionally specify text labels for each series, which can be displayed in the legend. Series labels are enclosed in single quotes. In Array data, the label appears at the start of each line of y-values, for example:

’Series label’ 150.0 175.0 160.0 170.0 	# y-values, series 0

In General data, the label appears at the start of the line defining the number of points in
that series, for example:

’Series label’ 4 			# Series 0, 4 points
50.0 75.0 60.0 70.0 		# x-values
25.0 10.0 25.0 30.0 		# y-values

Transposed Data
JClass Chart can also interpret transposed data, where the meaning of the data series and points is switched. This may be a more convenient way to supply data to the chart for some applications. Note that transposing data also transposes series and point labels. To indicate that the data is transposed, add a “T” to the first line specifying the data layout and size. The following illustrates how data is interpreted when transposed:

ARRAY 2 3 T
# x-values 	Y0-values 	Y1-values
1.0 			150.0 		125.0
2.0 			175.0 		100.0
3.0 			160.0 		225.0

[bookmark: _Toc534826628]4.9 	Making Your Own Chart Data Source
4.9.1 	The Simplest Chart Data Source Possible
In order for a data source object to work with JClass Chart, it must implement the ChartDataModel interface. The EditableChartDataModel interface is an extension of ChartDataModel and can be used when you want to allow the data source to be editable. The LabelledChartDataModel and the HoleValueChartDataModel interfaces can be used in conjunction with ChartDataModel to extend the functionality of ChartDataModel to allow for label values (via the LabelledChartDataModel interface) and hole values (via the HoleValueChartDataModel interface).

The ChartDataModel interface is intended for use with existing data objects. It allows the
chart to ask the data source for the number of data series, and the x-values and y-values for each data series. The interface looks like this:

public double[] getXSeries(int index);
public double[] getYSeries(int index);
public int getNumSeries();

Basically, JClass Chart organizes data based on data series. Each series has x-values and y-values, returned by getXSeries() and getYSeries(), respectively. It is expected that, for a given series index, the X series and Y series will be the same length.

If the x-data is the same for all y-data, then the same X series can be returned for each value. JClass Chart will automatically re-use the array.

As an example, consider SimplestDataSource in examples.chart.datasource example:

/**
 * This example shows the simplest possible chart data source.
 * The data source contains two data series, held in "xvalues"
 * and "yvalues" below.
 */
public class SimplestDataSource extends JPanel implements ChartDataModel {

// x values for chart.
protected double xvalues[] = { 1, 2, 3, 4 };
// y values.
protected double yvalues[][] = { {20, 10, 30, 25}, {30, 22, 10, 40}};

/**
 * Retrieves the specified x-value series
 * In this example, the same x values are used regardless of
 * the index.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getXSeries(int index) {
return xvalues;
}
/**
 * Retrieves the specified y-value series
 * In this example, yvalues contains the y data.
 * @param index data series index
 * @return array of double values representing x-value data
 */
public double[] getYSeries(int index) {
return yvalues[index];
}

/**
 * Retrieves the number of data series.
 * In this example, there are only two data
 * series.
 */
public int getNumSeries() {
return yvalues.length;
}

There are two series in this example. The x-data is repeated for both series, and is stored in an array of doubles (xvalues). The y-data is stored in an array of arrays of doubles (yvalues). Each sub-array is the same length as x-values.

Note: You can run this example from the JCLASS_HOME/examples/chart/datasource/directory.

4.9.2 	LabelledChartDataModel – Labelling Your Chart
Sometimes, it is important to label each data series and each point in a graph. This information can be added to a data source using the LabelledChartDataModel interface.

The LabelledChartDataModel interface allows specification of series and point labels for your data. It is an optional part of the chart data model, but is very commonly used:

public int getNumSeries();
public String[] getPointLabels();
public String[] getSeriesLabels();
public String getDataSourceName();

The getPointLabels() call returns the point labels for all points in the chart. The size of the String array should correspond with the number of items in the XSeries and YSeries arrays.

The getSeriesLabels() call returns the series labels for the chart. The size of the String array should correspond to the value returned by getNumSeries(). Series labels appear in the legend.

The getDataSourceName() call returns the name of the data source. This appears in the chart as the title of the legend.

As an example, consider the following code (taken from LabelledDataSource in JCLASS_HOME/examples/chart/datasource/):

/**
 * This example shows how to add point and series labelling
 * to a data source. It extends SimplestDataSource and
 * implements the LabelledChartDataModel interface to add
 * this information. The result can be seen on the x axis
 * (point labels representing quarters) and in the legend
 * (title, series names).
 */
public class LabelledDataSource extends SimplestDataSource implements
LabelledChartDataModel {

// Point labels
protected String pointLabels[] = { "Q1", "Q2", "Q3", "Q4" };

// Series labels
protected String seriesLabels[] = { "West", "East" };

/*
 * Retrieves the labels to be used for each point in a
 * particular data series.
 * @return array of point labels
 */
public String[] getPointLabels() {
return pointLabels;
}
/**
 * Retrieves the labels to be used for each data series
 */
public String[] getSeriesLabels() {
return seriesLabels;
}

/**
 * Retrieves the name for the data source
 */
public String getDataSourceName() {
return "Sales By Region";
}

As noted, this data source extends SimplestDataSource, adding in the required methods for returning point labels – getPointLabels() – and series labels –getSeriesLabels().

Note that the number of items in the array returned by getSeriesLabels() should equal the number returned by getNumSeries().

Also note that the number of items in the array returned by getPointLabels() should equal the number of items in the array returned by getXSeries() and getYSeries(). (In cases where the x-data is unique for each series and each series has a possibly different number of points, the point labels are applied to the first series.

Note: You can run this example from the JCLASS_HOME/examples/chart/datasource/directory.

4.9.3 	EditableChartChartDataModel – Modifying Your Data
If you want to allow users to modify data using the edit trigger in JClass Chart, your data source must implement EditableChartDataModel. The EditableChartDataModel interface extends ChartDataModel, adding a single method that allows the chart to modify data in the data source:

public boolean setDataItem(int seriesIndex, int pointIndex,
double newValue);

The seriesIndex and pointIndex values are used to save the data sent in newValue. Note that EditableChartDataModel only allows for Y-values to be changed. In other words, newValue is a Y-value!

As an example, consider EditableDataSource in JCLASS_HOME/examples/chart/datasource/.

/**
 * This example shows how to make a data source editable
 * by adding the EditableChartDataModel interface to
 * the object.
 */
public class EditableDataSource extends LabelledDataSource implements
EditableChartDataModel {

/**
 * Change the specified y data value.
 * In this example, the series and point indices index
 * into the yvalues array originally defined in SimplestDataSource.
 *
 * @param seriesIndex series index for the point to be changed.
 * @param pointIndex point index for the point to be changed.
 * @param newValue new y value for the specified point
 * @return boolean value indicating whether the new value was
 * accepted. "true" means value was accepted.
 */
public boolean setDataItem(int seriesIndex, int pointIndex, double
newValue) {
if (newValue < 0) return false;
yvalues[seriesIndex][pointIndex] = newValue;
return true;
}

In this example, the value is saved back into the yvalues array from SimplestDataSource, using the seriesIndex and pointIndex values to index to the appropriate array member.

This example extends LabelledDataSource, adding the setDataItem() method to allow chart to modify the data in the data source.

Note: You can run this example from JCLASS_HOME/examples/chart/datasource/.

4.9.4 	HoleValueChartDataModel – Specifying Hole Values
If you want to supply a specific hole value along with your data, your data source must implement the HoleValueChartDataModel interface.

As noted in Section 4.8.2, Explanation of Format Elements, a hole value is a particular value in the data that should be ignored by the chart. There should be only one hole value per data source.

The HoleValueChartDataModel interface has one method, getHoleValue(). This method retrieves the hole value for the data source.

Note: The default hole value is Double.MAX_VALUE.

[bookmark: _Toc534826629]4.10 	Making an Updating Chart Data Source
Quite often, the data shown in JClass Chart is dynamic. This kind of data requires creation of an updating data source. An updating data source is capable of informing chart that a portion of the data has been changed. Chart can then act on the change.

JClass Chart uses the standard AWT/Swing event/listener mechanism for passing changes between the chart data source and JClass Chart. At a very high level, JClass Chart is a listener to data source events that are fired by the data source.

4.10.1 	Chart Data Source Support Classes
There are a number of data source related support classes included with JClass Chart. These classes make it easier to build updating data sources.

ChartDataEvent and ChartDataListener
The ChartDataListener interface is implemented by objects interested in receiving ChartDataEvents. Most often, the only ChartDataListener is JClass Chart itself. ChartDataEvent and ChartDataListener give data sources away to send update
messages to Chart.

The ChartDataListener interface has only one method:

public void chartDataChange(ChartDataEvent e);

This method is used by the data source to inform the listener of a change. In most systems, only JClass Chart need implement this interface.

The ChartDataEvent object has three immutable properties: Type, SeriesIndex, and PointIndex. SeriesIndex and PointIndex are used to specify the data affected by the posted change. If all data is affected, the enum values ALL_SERIES and ALL_POINTS can be used.

Type is used to specify the kind of update:

	Message
	Meaning

	ADD_SERIES
	A new data series has been added to the end of the existing series in the data source.

	APPEND_DATA
	Used in conjunction with the FastUpdate feature, this tells the listener that data has been added to the existing series. Please see FastUpdate, in Chapter 9, for full details.

	CHANGE_CHART_TYPE
	A request from the data source to change the chart type. The chart type is held inside seriesIndex.

	INSERT_SERIES
	A new data series has been added; seriesIndex indicates where the series should be added.

	RELOAD
	The data has completed changed; the difference here is that the dimensions of the data source (that is, number o data series and number of points) has not changed.

	RELOAD_ALL_POINT_LABELS
	Tells the listener to reload all point labels.

	RELOAD_ALL_SERIES_LABELS
	Tess the listener to reload all series labels.

	RELOAD_DATA_SOURCE_NAME
	Tells the listener the data source name has changed.

	RELOAD_POINT
	Single data value has changed, as specified by seriesIndex and pointIndex.

	RELOAD_POINT_LABEL
	Tells the listener to reload the point label specified by pointIndex.

	RELOAD_SERIES
	An entire data series has changed, as specified by seriesIndex (pointIndex ignored).

	RELOAD_SERIES_LABEL
	Tells the listener to reload the series label specified by seriesIndex.

	REMOVE_SERIES
	Removes the series at seriesIndex.

	RESET
	The data source has completely changed.

ChartDataManageable and ChartDataManager
This interface is used by a data source to tell Chart that it will be sending ChartDataEvents to Chart. Without this interface, there is no way for Chart to know that it has to attach itself as a ChartDataListener to the data source.

The only method in ChartDataManageable returns a ChartDataManager:

public abstract ChartDataManager getChartDataManager();

A ChartDataManager is an object that knows how to register and deregister ChartDataListeners. Chart uses this object to register itself as a listener to events from the data source.

The quickest way to get a data source set up is to extend or use ChartDataSupport.

ChartDataSupport
ChartDataSupport provides a default implementation of ChartDataManager. It will manage a list of ChartDataListeners. It also provides two convenience methods for firing events to the listeners:

public void fireChartDataEvent(int type, int seriesIndex, int
pointIndex)
public void fireChartDataEvent(ChartDataEvent evt)

The first method listed above is the most convenient. Given a ChartDataEvent Type, SeriesIndex, and PointIndex, it constructs and fires a ChartDataEvent to all listeners. The second method requires that you construct the ChartDataEvent yourself.

Creating an Updating Data Source
If your datasource either extends or contains ChartDataSupport, sending updates from the data source to the chart is easy. Simple call fireChartDataEvent() with the event you wish to send.

fireChartDataEvent(ChartDataEvent.RESET, 0, 0);

To have JClass Chart automatically added as a listener, your data source needs to implement the ChartDataManageable interface and to return the ChartDataSupport instance in the getChartDataManager() method.

JClass Chart Data Source Hierarchy
[image:]

Ch 4 Adding Data with the Underlying Data Model		2
Ch 4 Adding Data with the Underlying Data Model		1
5
[bookmark: _Toc534826630]Adding Data with the
Targetd Data Model
Overivew of the Targeted Data Model ■ Review of JDBC Result Sets
 Adding Data from a Result Set to a Chart ■ Result Set Data Set Implementations by Chart Type
Advanced Topics ■ Creating a Custom Data Set Implementation

After you choose the chart type that you want to create, the next step is to add your data to the chart. The implementation of the targeted data model that ships with JClass Chart is designed for JDBC result sets.

Important: If you are developing with JavaBeans or XML, you need to use the underlying data model. And, even if your application meets the requirements of the targeted data model, you can still choose to use the underlying data model instead. For more information, see Adding Data, in Chapter 1, and Chapter 4, Adding Data with the Underlying Data Model.

Note: There are some properties that can only be set using the ChartDataView object in the underlying data model. These properties are noted throughout this guide.

The first two sections of this chapter provide an overview of the targeted data model and a review of JDBC result sets. The next section describes how to add data from a JDBC result set, starting with creating a data set implementation, followed by instantiating the DefaultDataModel, and finally setting the DefaultDataModel on the chart. The examples in this section make use of a basic pre-built data set implementation and use minimal options. Chart-type specific data set implementations are discussed in the next section.

If your data is not in a result set format, you can use the underlying data model, or you can create a custom data set implementation. The last section in this chapter outlines when and how to create a custom data set and describes the interfaces and classes that are available to you.

[bookmark: _Toc534826631]5.1 	Overview of the Targeted Data Model
The targeted data model requires a data model object and at least one data set object. The data model object applies to the entire chart. It contains a list of the data sets that will be graphed on the chart as well as top-level image map information. The data set object contains the information to bind your data to elements in the chart.

Adding data to a chart can be broken down into three steps:
1. Data Set: Create an instance of a data set implementation and bind your data.
See Section 5.3.1, Creating a Data Set Implementation for a Result Set.
2. Data Model: Create an instance of DefaultDataModel and add your data set.
See Section 5.3.2, Creating an Instance of DefaultDataModel.
3. Chart: Set the data model on the chart.
See Section 5.3.3, Setting the Data Model on Your Chart.
The implementation of the targeted data model that ships with JClass Chart is designed for JDBC result sets. The next sections describe JDBC result sets and how to add data from a result set to your chart.

[bookmark: _Toc534826632]5.2 	Review of JDBC Result Sets
A JDBC result set is in a table format of rows and columns. Each row represents a record in a relational database. Series of data can be organized by column or by row.

Column-oriented Result Set
In a column-oriented result set, the values for each data series are represented by a single column. Columns may also represent other information that is part of the data set such as x-values, timestamps, or point labels. A row, therefore, represents the values of all series and related information at a single point.

In the following example, there are three data series: Product A, Product B, and Product C. Each row describes monthly data points for all the products.

	Q1 Sales Report

	Month
	Month Name
	Product A
	Product B
	Product C

	1
	January
	500
	1000
	2500

	2
	February
	750
	1500
	2000

	3
	March
	300
	800
	2200

Figure 26 Example of a column-oriented result set.

Row-oriented Result Set
In a row-oriented result set, the values of all data series are combined into a single column. Other data set information (such as x-values, timestamps, or point labels) are similarly combined into their own columns. One column is designated to contain the series id or, in the case of a pie chart, the slice id. The data in any given row belongs to the series identified in the series id/slice id column. A row, therefore, represents the values of one series and its related information at a single point.

In the following example, there are two series: Product A and Product B. The Product column contains the series id values, that is, the names of the products. Each row describes a monthly data point for the stated product.

	Q1 Sales Report

	Product
	Month
	Month Name
	Sales

	Product A
	1
	January
	500

	Product A
	2
	February
	750

	Product A
	3
	March
	300

	Product B
	1
	January
	1000

	Product B
	2
	February
	1500

	Product B
	3
	March
	800

Figure 27 Example of a row-oriented result set.

[bookmark: _Toc534826633]5.3 	Adding Data from a Result Set to a Chart
This section is organized into the following steps:
· Creating a Data Set Implementation for a Result Set
· Creating an Instance of DefaultDataModel
· Setting the Data Model on Your Chart

5.3.1	Creating a Data Set Implementation for a Result Set
The data set implementations for JDBC result sets are located in the package com.klg.jclass.chart.model.impl. If your data is in a result set format, you can instantiate one of these classes to create your data bindings. If your data is in another format, you may still want to work through this section and the associated class files to get an idea of how interfaces are implemented.

This section provides sample code to create an instance of BasicResultSetDataSet and to add data to a chart using the sample data from the preceding section, Review of JDBC Result Sets. The examples use a Vector object to create lists, but you can use whichever List implementation you prefer. You can also add image maps from your result set or call other data-related methods that are available in the implementation classes. For more information, see Section 5.5, Advanced Topics.

While these examples use BasicResultSetDataSet, the code for the other chart-type implementations is similar. You need to change two things. First, when creating an instance, substitute in the name of the data set implementation for the required chart type. Second, you need to review the parameters required by its addResultSetBinding() method and fill in the appropriate values. For many of the chart types, the sample parameter values will be no different than those found in these examples. For more information, see Section 5.4, Result Set Data Set Implementations by Chart Type.

5.3.1.1	Creating an Instance of a Column-oriented Result Set
The following code snippet creates and uses BasicResultSetDataSet with a columnoriented result set. The three ‘Product’ columns are listed and then bound as the data series. The x-values are bound to the ‘Month’ column, and the labels for the x-values are bound to the ‘Month Name’ column. To see an image of a chart with the sample data, see Figure 28.

// Create an instance of the data set implementation.
BasicResultSetDataSet myResultSetDataSet = new BasicResultSetDataSet();

// Create a list containing the columns to bind to the data series.
Vector seriesColumnNames = new Vector();
seriesColumnNames.add("Product A");
seriesColumnNames.add("Product B");
seriesColumnNames.add("Product C");

// Bind column-oriented data to the chart in the following order:
// name of the resultset = myResultSet
// name of the column containing x-values = “Month”
// name of the column containing labels for the x-values = “Month Name”
// the List containing the data series bindings = seriesColumnNames
myResultSetDataSet.addResultSetBinding(myResultSet,
"Month", "Month Name", seriesColumnNames, null);

The null value in the above code snippet means that the values for seriesColumnNames will be used for seriesLabels as well. You could specify your own labels.

5.3.1.2	Creating an Instance of a Row-oriented Result Set
The following code snippet creates and uses BasicResultSetDataSet with a row-oriented result set. The series id and the series label are bound to the ‘Product’ column. The series label format string is in the format specified by the java.text.MessageFormat class. The x-values are bound to the ‘Month’ column, and the labels for the x-values are bound to the ‘Month Name’ column. The y-values are bound to the ‘Sales’ column. To see an image of a chart with the sample data, see Figure 29.

// Create an instance of the data set implementation.
BasicResultSetDataSet myResultSetDataSet = new BasicResultSetDataSet();

// Create a list containing the name of the column with the series ids.
Vector seriesColumnNames = new Vector();
seriesColumnNames.add("Product");

// Create a String to label all series (uses java.text.MessageFormat style).
String seriesLabelFormatString = “Product Name: {0}”;

// Create a list containing the name of the column to use for series labels.
Vector seriesLabelColumnNames = new Vector();
seriesLabelColumnNames.add("Product");

// Bind row-oriented data to the chart in the following order:
// name of the result set = myResultSet
// the List containing the name of the series id column = seriesColumnNames
// the String containing a label for all series = seriesLabelFormatString
// the List containing series labels column = seriesLabelColumnNames
// name of the column containing x-values = “Month”
// name of the column containing labels for the x values = “Month Name”
// name of the column containing y-values = “Sales”
myResultSetDataSet.addResultSetBinding(myResultSet, seriesColumnNames,seriesLabelFormatString, seriesLabelColumnNames, “Month”,
“Month Name”, “Sales”);

5.3.2	Creating an Instance of Default Data Model
After you create your data set implementation, you then add the data set to an instance of
DefaultDataModel. The DefaultDataModel class is located in the package com.klg.jclass.chart.model.impl. It contains methods to add and return data sets, and to set and return top-level image map information. It is versatile enough so that it can be used as-is with most applications.

To use the DefaultDataModel class, you create an instance of it in your application. You then add data sets using one of the addDataSet*() methods.

Note: Data sets have to be instantiated and bound to your data before you can use them with a data model. The following code snippet assumes this has been done. For more information, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

DefaultDataModel myDataModel = new DefaultDataModel();
// To add a single data set, use the addDataSet() method.
myDataModel.addDataSet(myResultSetDataSet);

// For multiple data sets, use the addDataSets() method.
Vector myDataSets = new Vector();
myDataSets.add(myResultSetDataSet);
myDataSets.add(anotherResultSetDataSet);

myDataModel.addDataSets(myDataSets);

5.3.3	Setting the Data Model on Your Chart
The final step in adding data to your chart is to set your instance of DefaultDataModel on the chart. You need to call one of the following methods:
· To replace any existing data on the chart, use the setDataModel() method. JCChart.setDataModel(myDataModel);
· To add the data to pre-existing chart data, use the addDataModel() method. JCChart.addDataModel(myDataModel);
The method queries the data model implementation for its list of data sets, style settings, and other data-related properties and sets this information on the chart. The data points returned by each data set are organized by the pertinent id (such as series, bar, slice) and converted into the data views and data series required for internal storage in chart. Data that is required to be in Array format (as per the chart type specified in the data set) is converted at this time. For more information on the internal workings of chart data storage, see Chapter 4, Adding Data with the Underlying Data Model.

[bookmark: _Toc534826634]5.4 	Result Set Data Set Implementations by Chart Type
This section describes all the pre-built ResultSetDataSet implementations provided with JClass Chart. These implementations use method parameter names and offer attributes that are meaningful in the context of a particular type of chart. To determine which implementation you should use, locate the type of chart that you want to create in the table below and go to the section listed beside it. If you are creating a custom chart, review the example for the chart type closest to the format of your custom chart.

	Chart Type
	Result Set Data Set Implementation

	Area or Stacking Area
Bar or Stacking Bar
Candle
HiLo or HiLoOpenClose
Pie
Plot or Scatter Plot
Polar
Radar or Area Radar
	See Section 5.4.1, BasicResultSetDataSet
See Section 5.4.2, BarResultSetDataSet
See Section 5.4.3, FinancialResultSetDataSet
See Section 5.4.3, FinancialResultSetDataSet
See Section 5.4.4, PieResultSetDataSet
See Section 5.4.1, BasicResultSetDataSet
See Section 5.4.5, PolarResultSetDataSet
See Section 5.4.6, RadarResultSetDataSet

5.4.1	Column-oriented Result Set: BasicResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, xColumnName,
xLabelColumnName, seriesColumnNames, seriesLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	xColumnName
	The name of the column in the result set that contains the x-values for the data points. If null, the x-values is inferred from the row number.
	String

	xLabelColumnName
	The name of the column that contains the label for the corresponding x-value. If null, no label is used.
	String

	seriesColumnNames
	The names of the columns that contain the y-values that will be graphed at the corresponding x-value.
	List of Strings

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from seriesColumnNames.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

xColumn Name					seriesColumnNames
		xLabelColumnName				seriesLabels

	Month
	Month Name
	Product A
	Product B
	Product C

	1
	January
	500
	1000
	2500

	2
	February
	750
	1500
	2000

	3
	March
	300
	800
	2200

The following image shows the sample data graphed on a chart.
[image:]seriesLabels

x-values = xColumnName
y-values = seriesColumnNames

xLabelColumnName

Figure 28 A plot chart displaying column-oriented sample data.

5.4.1.2	Row-oriented Result Set: BasicResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, seriesColumnNames,
seriesLabelFormatString, seriesLabelColumnNames, xColumnName,xLabelColumnName, yColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	seriesColumnNames
	The names of the columns that contain the y-values that will be graphed at the corresponding x-value.
	List of Strings

	seriesLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the series in the legend. Values from the seriesLabelColumnNames parameter complete the String. For example, using sample data with seriesLabelColumnNames set to the ‘Product’ column, String seriesLabelFormatString = “Product
Name: {0}”;
would display “Product Name: Product A” and “Product Name: Product B” on the chart. If null, default series labels are used.
	String

	Parameter
	Description
	Type

	seriesLabelsColumnNames
	The name of the colums whose values will be substituted in the seriesLabelFormatString parameter. If null, series labels are created from the seriesLabelFormatString parameter.
	List of Strings

	xColumnName
	The name of the column containing the x-values for the data points. If null, the x-values is inferred from the row number within series id.
	String

	xLabelColumnName
	The name of the column that contains the label for the corresponding x-value. If null, no label is used.
	String

	yColumnName
	The name of the column containing the y-value to be graphed at the corresponding x-value.
	String

The following image shows how to bind the parameters to a sample result set.

seriesLabelColumnNames			xLabelColumnName
	seriesColumnNames	xColumnName							yColumnName

	Product
	Month
	Month Name
	Sales

	Product A
	1
	January
	500

	Product A
	2
	February
	750

	Product A
	3
	March
	300

	Product B
	1
	January
	1000

	Product B
	2
	February
	1500

	Product B
	3
	March
	800

The following image shows the sample data graphed on a chart.
 [image:]seriesLabelColumnName

x-values = xColumnName
y-values = yColumnName

xLabelColumnName

Figure 29 A plot chart displaying row-oriented sample data.

5.4.2	BarResultSetDataSet
To bind data in a result set to a bar or stacking bar chart, you need to create an instance of BarResultSetDataSet. For basic examples of how to do this, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

5.4.2.1	Column-oriented Result Set: BarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, clusterIdColumnName,
clusterLabelColumnName, seriesColumnNames, seriesLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	clusterIdColumnName
	The name of the column in the result set that contains the bar cluster id values. The cluster id assigns the data point to a particular bar cluster. If null, the cluster id is inferred from the row number.
	String

	clusterLabelColumnName
	The name of the column that contains the label for the cluster defined by the corresponding cluster id. If null, no label is used.
	String

	seriesColumnNames
	The names of the columns that contain the y-values that will be graphed at the corresponding cluster id value.
	List of Strings

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from seriesColumnNames.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

clusterIdColumnName			seriesColumnNames
	clusterLabelColumnName			seriesLabels

	Month
	Month Name
	Product A
	Product B
	Product C

	1
	January
	500
	1000
	2500

	2
	February
	750
	1500
	2000

	3
	March
	300
	800
	2200

The following image shows the sample data graphed on a chart.

[image:]seriesLabels

cluster-values = clusterIdColumnName
y-values = seriesColumnNames

clusterLabelColumnName

Figure 30 A bar chart displaying column-oriented sample data.

5.4.2.2	Row-oriented Result Set: BarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, seriesColumnNames,
seriesLabelFormatString, seriesLabelColumnNames,
clusterIdColumnName, clusterLabelColumnName, yColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	seriesColumnNames
	The names of the columns in the result set that, taken together, differentiate one data series from another.
	List of Strings

	seriesLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the series in the legend. Values from the seriesLabelColumnNames parameter complete the String. For example, using sample data with seriesLabelColumnNames set to the ‘Product’ column, String seriesLabelFormatString = “Product Name: {0}”;
would display “Product Name: Product A” and “Product Name: Product B” on the chart. If null, default series labels are used.
	String

	seriesLabelsColumnNames
	The name of the colums whose values will be substituted in the seriesLabelFormatString parameter. If null, series labels are created from the seriesLabelFormatString parameter.
	List of Strings

	clusterIdColumnName
	The name of the column containing the cluster id values. The cluster id assigns the data point to a particular bar cluster. If null, the cluster id is inferred from the row number within series id.
	String

	clusterLabelColumnName
	The name of the column that containing the label for the cluster defined by the corresponding cluster id. If null, no label is used.
	String

	yColumnName
	The name of the column containing the y-value to be graphed at the corresponding x-value.
	String

The following image shows how to bind the parameters to a sample result set.

seriesLabelColumnNames			clusterLabelColumnName
	seriesColumnNames	clusterIdColumnName				yColumnName

	Product
	Month
	Month Name
	Sales

	Product A
	1
	January
	500

	Product A
	2
	February
	750

	Product A
	3
	March
	300

	Product B
	1
	January
	1000

	Product B
	2
	February
	1500

	Product B
	3
	March
	800

The following image shows the sample data graphed on a chart.

 [image:]seriesLabelColumnName

bar-values = clusterIdColumnName
y-values = yColumnName

clusterLabelColumnName

Figure 31 A bar chart displaying row-oriented sample data.

5.4.3	FinancialResultSetDataSet
To bind data in a result set to a candle, Hi-Lo, or Hi-Lo-Open-Close chart, you need to create an instance of FinancialResultSetDataSet. For basic examples of how to do this, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

5.4.3.1	Column-oriented Result Set: FinancialResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, xColumnName, xLabelColumnName,
highColumnNames, lowColumnNames, openColumnNames, closeColumnNames,
seriesLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	xColumnName
	The name of the column in the result set that contains the x-values for the data points. If null, the x-values is inferred from the row number.
	String

	xLabelColumnName
	The name of the column that contains the label for the corresponding x-value. If null, no label is used.
	String

	highColumnNames
	The names of the columns that containg the high financial values that will be graphed at the corresponding x-value.
	List of Strings

	lowColumnNames
	The names of the columns that containg the low financial values that will be graphed at the corresponding x-value.
	List of Strings

	openColumnNames
	The names of the columns that containg the open financial values that will be graphed at the corresponding x-value.
	List of Strings

	closeColumnNames
	The names of the columns that containg the close financial values that will be graphed at the corresponding x-value.
	List of Strings

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from the high, low, open, and close ColumnNames parameters.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

xColumnName	 highColumnName	 openColumnName	 highColumnName	 openColumnName
	xLabelColumnName	 lowColumnName	 closeColumnName lowColumnName closeColumnName

	Date
	Stock A High
	Stock A Low
	Stock A
Open
	Stock A
Close
	Stock B
High
	Stock B
Low
	Stock B
Open
	Stock B
Close

	Jan 1, 2004
	12.5
	11.4
	11.6
	12.1
	20.3
	15.6
	19.5
	16.7

	Jan 2, 2004
	13.8
	11.9
	12.1
	13.2
	20.8
	16.2
	16.7
	19.5

	Jan 3, 2004
	13.4
	12.3
	13.2
	12.5
	24.0
	19.2
	19.5
	23.6

The following image shows the sample data graphed on a chart.

 [image:]seriesLabels

x-values = xColumnName
y-values = highColumnName, lowColumnName, openColumnName, closeColumnName

xLabelColumnName

Figure 32 A financial chart displaying column-oriented sample data.
5.4.3.2	Row-oriented Result Set: FinancialResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, seriesColumnNames,
seriesLabelFormatString, seriesLabelColumnNames,
xColumnName, xLabelColumnName,
highColumnName, lowColumnName, openColumnName, closeColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	seriesColumnNames
	The names of the columns in the result set that, taken together, differentiate one data series from another.
	List of Strings

	seriesLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the series in the legend. Values from the seriesLabelColumnNames parameter complete the String. For example, using sample data with seriesLabelColumnNames set to ‘Stock Name’ column, String seriesLabelFormatString = “Stock: {0}”;
would display “Stock: Stock A” and “Stock: Stock B” on the chart. If null, default series labels are used.
	String

	seriesLabelColumnNames
	the name of the columns whose values will be substituted in the seriesLabelFormatString parameter. If null, series labels are created from the seriesLabelFormatString parameter.
	List of Strings

	xColumnName
	The name of the column in the result set that contains the x-values for the data points. If null, the x-values is inferred from the row number.
	String

	xLabelColumnName
	The name of the column that contains the label for the corresponding x-value. If null, no label is used.
	String

	highColumnName
	The names of the columns that containg the high financial values that will be graphed at the corresponding x-value.
	List of Strings

	lowColumnName
	The names of the columns that containg the low financial values that will be graphed at the corresponding x-value.
	List of Strings

	Parameter
	Description
	Type

	openColumnName
	The names of the columns that containg the open financial values that will be graphed at the corresponding x-value.
	List of Strings

	closeColumnName
	The names of the columns that containg the close financial values that will be graphed at the corresponding x-value.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

Note: High, low, open, and close values must be in separate columns in the result set.

xLabelColumnName	 seriesLabelColumnNames	 highColumnName	 openColumnName	
							xColumnName	 seriesColumnName	 lowColumnName	closeColumnName

	Date
	Stock Name
	Stock High
	Stock Low
	Stock Open
	Stock Close

	Jan 1, 2004
	Stock A
	12.5
	11.4
	11.6
	12.1

	Jan 1, 2004
	Stock B
	20.3
	15.612.1
	19.5
	16.7

	Jan 2, 2004
	Stock A
	13.8
	11.9
	12.1
	13.2

	Jan 2, 2004
	Stock B
	20.8
	16.2
	16.7
	19.5

	Jan 3, 2004
	Stock A
	13.4
	12.3
	13.2
	12.5

	Jan 3, 2004
	Stock B
	24.0
	19.2
	19.5
	23.6

The following image shows the sample data graphed on a chart.

 [image:]seriesLabelColumnNames

x-values = xColumnName
y-values = highColumnName, lowColumnName, openColumnName, closeColumnName

xLabelColumnName

Figure 33 A financial chart displaying row-oriented sample data.

5.4.4	PieResultSetDataSet
To bind data in a result set to a pie chart, you need to create an instance of PieResultSetDataSet. For basic examples of how to do this, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

5.4.4.1	Column-oriented Result Set: PieResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, pieIdColumnName,
pieLabelColumnName, sliceColumnNames, sliceLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	pieIdColumnName
	The name of the column in the result set that contains the pie id values. The pie id assigns the data point to a particular pie. If null, the pie id is inferred from the row number.
	String

	pieLabelColumnName
	The name of the column that contains the label for the pie defined by the corresponding pie id. If null, no label is used.
	String

	sliceColumnNames
	The names of the columns that contain the y-values that are turned into slices of the pie, where the pie is defined by the corresponding pie id.
	List of Strings

	sliceLabels
	Labels that identify each pie slice in the legend. If null, the slice labels are taken from sliceColumnNames.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

pieColumnName				sliceColumnNames
		pieLabelColumnName			sliceLabels

	Month
	Month Name
	Product A
	Product B
	Product C

	1
	January
	500
	1000
	2500

	2
	February
	750
	1500
	2000

	3
	March
	300
	800
	2200

The following image shows the sample data graphed on a chart.

[image:]sliceLabels

pie-values = pieIdColumnName
slice-values = sliceColumnName

pieLabelColumnName

Figure 34 Pie charts displaying column-oriented sample data.

5.4.4.2	Row-oriented Result Set: PieResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, sliceColumnNames,
sliceLabelFormatString, sliceLabelColumnNames,
pieIdColumnName, pieLabelColumnName, yColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	sliceColumnNames
	The names of the columns in the result set that, taken together, differentiate one data series (that is, a pie slice that exists in one or more pies) from another.
	List of Strings

	sliceLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the slice in the legend. Values from the sliceLabelColumnNames parameter complete the String.
For example, using sample data with sliceLabelColumnNames set to the ‘Product’ column, String sliceLabelFormatString = “Product Name: {0}”;
would display “Product Name: Product A” and “Product Name: Product B” on the chart. If null, default slice labels are used.
	String

	sliceLabelColumnNames
	The name of the columns whose values will be subsituted in the sliceLabelFormatString parameter. If null, series labels are created from the sliceLabelFormatString parameter.
	List of Strings

	pieIdColumnName
	The name of the column containing the pie id values. The pie id assigns the data point to a particular pie. If null, the pie id is inferred from the row number in slice.
	String

	pieLabelColumnName
	The name of the column that contains the label for the pie defined by the corresponding pie id. If null, no label is used.
	String

	yColumnName
	The name of the column containing the y-value of the slice defined by the corresponding slice column in the pie, where the pie is defined by the corresponding pie id.
	String

The following image shows the sample data graphed on a chart.

[image:]sliceLabelColumnNames

pie-values = pieIdColumnName
slice-values = yColumnName

pieLabelColumnName

Figure 35 Pie charts displaying row-oriented sample data.

5.4.5	PolarResultSetDataSet
To bind data in a result set to a polar chart, you need to create an instance of PolarResultSetDataSet. For basic examples of how to do this, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

5.4.5.1	Column-oriented Result Set: PolarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, angleColumnName,
angleLabelColumnName, seriesColumnNames, seriesLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	angleColumnName
	The name of the columns in the result set that contains the angle values for the data points. If null, the angle value is inferred from the row number.
	String

	angleLabelColumnName
	The name of the column that contains the lablel for the corresponding angle value. If null, no label is used.
	String

	seriesColumnNames
	The names of the columns that contain the y-values that will be graphed at the corresponding angle value.
	List of Strings

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from seriesColumnNames.
	List of Strings

The following image shows how to bind the parameters to a sample result set.

angleColumnName				seriesColumnNames
		angleLabelColumnName			seriesLabels

	Angle
	Angle Name
	Series A
	Series B
	Series C

	0
	East
	4.0
	5.0
	6.0

	90
	North
	4.0
	5.0
	6.0

	180
	West
	4.0
	5.0
	6.0

	270
	South
	4.0
	5.0
	6.0

	360
	East
	4.0
	5.0
	6.0

The following image shows the sample data graphed on a chart.

[image:]seriesLabels

angle-values = angleColumnName
y-values = seriesColumnNames

angleLabelColumnName

Figure 36 A polar chart displaying column-oriented sample data.

5.4.5.2	Row-oriented Result Set: PolarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, seriesColumnNames,
seriesLabelFormatString, seriesLabelColumnNames,
angleColumnName, angleLabelColumnName, yColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	seriesColumnNames
	The names of the columns in the result set, taken together, differentiate one data series from another.
	List of Strings

	seriesLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the series in the legend. Values from the seriesLabelColumnNames parameter complete the String. For example, using sample data with seriesLabelColumnNames set to the Product column, String seriesLabelFormatString = “Product Name: {0}”;
would display “Product Name: Product A” and “Product Name: Product B” on the chart. If null, default series labels are used.
	String

	seriesLabelColumnNames
	The name of the columns whose values will be subsituted in the seriesLabelFormatString parameter. If null, series labels are created from the seriesLabelFormatString parameter.
	List of Strings

	angleColumnName
	The name of the column containing the angle values for the data points. If null, the angle value is inferred from the row number within series id.
	String

	angleLabelColumnName
	The name of the column containing the label for the corresponding angle value. If null, no label is used.
	String

	yColumnName
	The name of the column containing the y-value to be graphed at the corresponding angle.
	String

The following image shows how to bind the parameters to a sample result set.

seriesLabelColumnNames					angleLabelColumnName
	seriesColumnNames		angleColumnName				yColumnName

	Series
	Angle
	Angle Name
	Values

	Series A
	0
	East
	4.0

	Series A
	90
	North
	4.0

	Series A
	180
	West
	4.0

	Series A
	270
	South
	4.0

	Series A
	360
	East
	4.0

	Series B
	0
	East
	5.0

	Series B
	90
	North
	5.0

	Series B
	180
	West
	5.0

	Series B
	270
	South
	5.0

	Series B
	360
	East
	5.0

The following image shows the sample data graphed on a chart.

[image:]seriesLabelColumnNames

angle-values = angleColumnName
y-values = yColumnName

angleLabelColumnName

Figure 37 A polar chart displaying row-oriented sample data.

5.4.6	RadarResultSetDataSet
To bind data in a result set to a radar or area radar chart, you need to create an instance of RadarResultSetDataSet. For basic examples of how to do this, see Section 5.3.1, Creating a Data Set Implementation for a Result Set.

5.4.6.1	Column-oriented Result Set: RadarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

myResultSetDataSet.addResultSetBinding(rs, spokeIdColumnName,
spokeLabelColumnName, seriesColumnNames, seriesLabels);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	spokeIdColumnName
	The name of the column in the result set that contains the spoke id values. The spoke id assigns the data point to a radar spoke. If null, the spoke id is inferred from the row number.
	String

	spokeLabelColumnName
	The name of the column that contains the label for the radar spoke defined by the corresponding spoke id. If null, no label is used.
	String

	seriesColumnNames
	The names of the that contain the y-values that will be graphed at the corresponding spoke id.
	List of Strings

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from seriesColumnNames.
	List of Strings

						
spokeIdColumnName				seriesColumnNames
		spokeLabelColumnName			seriesLabels

	Month
	Month Name
	Product A
	Product B
	Product C

	1
	January
	500
	1000
	2500

	2
	February
	750
	1500
	2000

	3
	March
	300
	800
	2200

The following image shows the sample data graphed on a chart.

[image:]siresLabels

spoke-values = spokeIdColumnName
y-values = siriesColumnName

spokeLabelColumnName

Figure 38 A radar chart displaying column-oriented sample data.

5.4.6.2	Row-oriented Result Set: RadarResultSetDataSet
You need to call the addResultSetBinding() method with the following parameters:

yResultSetDataSet.addResultSetBinding(rs, seriesColumnNames,
seriesLabelFormatString, seriesLabelColumnNames,
spokeIdColumnName, spokeLabelColumnName, yColumnName);

The following table describes the method parameters.

	Parameter
	Description
	Type

	rs
	The JDBC result set containing the source data.
	ResultSet

	seriesColumnNames
	The names of the columns in the result set that, taken together, differentiate one data series from another.
	List of Strings

	seriesLabelFormatString
	Text (in the format specified by the java.text.MessageFormat class) used to build the labels that identify the series in the legend. Values from the seriesLabelColumnNames parameter complete the String. For example, using sample data with seriesLabelColumnNames set to the Product column, String seriesLabelFormatString = “Product Name: {0}”;
would display “Product Name: Product A” and “Product Name: Product B” on the chart. If null, default series labels are used.
	String

	seriesLabelColumnNames
	the name of the columns whose values will be substituted in the seriesLabelFormatString parameter. If null, series labels are created from the serieslabelFormatString parameter.
	List of Strings

	spokeIdColumnName
	The name of the column containing the spoke id values. The spoke id assigns the data point to a radar spoke. If null, the spoke id is inferred from the row number within series id.
	String

	spokeLabelColumnName
	The name of the column containing the label for the radar spoke defined by the corresponding spoke id. If null, no label is used.
	String

	
	
	

	seriesLabels
	Labels that identify each series in the legend. If null, series labels are taken from seriesColumnNames.
	List of Strings

						

The following image shows how to bind the parameters to a sample result set.

seriesLabelColumnNames				spokeLabelColumnName
	serieslColumnNames	spokeIDColumnName			yColumnName

	Product
	Month
	Month Name
	Sales

	Product A
	1
	January
	500

	Product A
	2
	February
	750

	Product A
	3
	March
	300

	Product B
	1
	January
	1000

	Product B
	2
	February
	1500

	Product B
	3
	March
	800

The following image shows the sample data graphed on a chart.

[image:]siresLabelColumnNames

spoke-values = spokeIdColumnName
y-values = siriesColumnName

spokeLabelColumnName

Figure 39 A radar chart displaying row-oriented sample data.

[bookmark: _Toc534826635]5.5 	Advanced Topics
The result set data set implementations offer additional attributes that are related to the data, but not part of it. For example, you can set the name of an axis. The following sections summarize the available properties. Some properties are available in more than one data set implementation; these are listed under Shared Properties. Other properties are only offered by a single data set implementation as outlined in Section 5.5.0.2, Chartspecific Properties. The methods to set these properties are described in the API Documentation.

5.5.0.1	Shared Properties
The following table summarizes the properties that are shared among some or all of the result set data set implementations (as noted). You can use any of the properties indicated for the type of chart that you are creating. In addition, there are some chart-specific properties. For details, see Section 5.5.0.2, Chart-specific Properties.

	Property
	Description
	Basic
	Bar
	Financial
	Pie
	Polor
	Radar

	ChartType
	Chart type (e.g. PLOT, BAR, etc.). Values are the same as those taken by the ChartDataView.setChartType() method.
	X
	X
	X
	X
	X
	X

	FillStylePalette
	List of JCFillStyle objects to be used as the palette from which fill styles are selected when drawing the chart. Fill styles are used to draw bar, pie, area, and area radar charts.
	X
	X
	--
	X
	--
	X

	HoleValue
	When this value is encountered, it is assumed to represent missing data.
	X
	X
	X
	X
	X
	X

	LineStylePaletter
	List of JCLineStyle objects to be used as the palette from which line styles are selected when drawing the chart. Line styles are used to draw Hi-Lo, Hi-Lo-Open-Close, plot, polar, and radar charts.
	X
	--
	X
	--
	X
	X

	OutlineLineStyle
	JCLineStyle object representing line style used to outline fill areas in the chart. The outline Line style is used to draw bar, pie, area, and area radar charts.
	X
	X
	--
	X
	--
	X

	SeriesFillStyle
	Associates a JCFillStyle object with a series id. When the series is drawn, theis fills tyle will be used. Fill styles are used to draw bar, pie, area, and area radar charts.
	X
	X
	--
	X
	--
	X

	SeriesLabel
	Associates a series label with a series id.
	X
	X
	X
	--
	X
	X

	SeriesLineStyle
	Associates a JCLineStyle object with a series id. Line styles are used to draw Hi-Lo, Hi-Lo-Open-Close, plot, polar, and radar charts.
	X
	--
	X
	--
	X
	X

	SeriesSymbolStyle
	Associates a JCSymbolStyle object with a series id. When the series is drawn, this symbol style will be used. Symbol styles are used to draw plot, polar, and radar charts.
	X
	--
	--
	--
	X
	X

	SymbolStylePalette
	List of JCLineStyle objects to be used as the palette from which line styles are selected when drawing the chart. Symbol styles are used to draw plot, polar, and radar charts.
	X
	--
	--
	--
	X
	X

	XAxisName
	Identifies the x-axis in the chart against which data will be plotted
	X
	X
	X
	--
	--
	--

	XLabels
	List of x-labels applied across all points in every seriex
	X
	--
	X
	--
	--
	--

	XMarkers
	List of DataMarker objects representing markers along the x-axis.
	X
	--
	X
	--
	--
	--

	XNumericalTimeBase
	Date object serving as time base when x numerical time data is turned on.
	X
	--
	X
	--
	--
	--

	XNumericalTimeData
	Turns interpresetaion of x-values as numberical time data on/off.
	X
	--
	X
	--
	--
	--

	XNumericalTimeUnit
	Units of numerical time data when x numerical time data is turned on. Values are the same as those set in JCAxis.setTimeUnit().
	X
	--
	X
	--
	--
	--

	Property
	Description
	Basic
	Bar
	Financial
	Pie
	Polor
	Radar

	XThresholds
	List of DataThreshold objects representing thresholds along the x-axis.
	X
	--
	X
	--
	--
	--

	XValues
	List of x-values applied across all points in a every series.
	X
	--
	X
	--
	--
	--

	YAxisName
	Identifies the y-axis in the chart against which data will be plotted.
	X
	X
	X
	--
	X
	X

	YMarkers
	List of DataMarker objects representing markers along the y-axis.
	X
	X
	X
	--
	--
	--

	YNumericalTimeBase
	Date object serving as time base when y numerical time data is turned on.
	X
	X
	X
	--
	--
	--

	YNumericalTimeData
	Turns interpretation of y-values as numerical time data on/off.
	X
	X
	X
	--
	--
	--

	YThresholds
	List of DataThreshold objects represtending thresholds along the y-axis.
	X
	X
	X
	--
	--
	--

5.5.0.2	Chart-specific Properties
The following data set implementations also contain properties unique to the chart types:
· BarResultSetDataSet
· FinancialResultSetDataSet
· PieResultSetDataSet
· PolarResultSetDataSet
· RadarResultSetDataSet

BarResultSetDataSet

	Bar Property
	Description

	Clusterlds
	List of bar cluster ids applied across all points in a every series.

	ClusterLabels
	List of bar cluster labels applied across all points in a every series.

	ClusterMarkers
	List of DataMarker objects representing markers at cluster ids along the x-axis.

FinancialResultSetDataSet

	Financial Property
	Description

	CandleOutlineStylePalette
	List of JCChartStyle objects to be used as the palette from which financial candle outline systyles are selected when drawing the chart.

	FallingCandleStylePalette
	List of JCChartStyle objects to be used as the palette from which financial falling candle styles are selected when drawing the chart.

	HiloStylePalette
	List of JCChartStyle objects to be used as the palette from which financial Hi-Lo styles are selected when drawing the chart.

	RisingCandleStylePalette
	List of JCChartStyle objects to be used as the palette from which financial rising candle styles are selected when drawing the chart.

	SeriesCandleOutlineStyle
	Associates a JCChartStyle object containing a financial candle outline style with a series id. When the series is drawn, this style will be used.

	SeriesFallingCandleStyle
	Associates a JCChartStyle object containing a financial falling candle style with a series id. When the series is drawn, this style will be used.

	SeriesHiloStyle
	Associates a JCChartStyle object containing a financial falling candle style with a series id. When the series is drawn, this style will be used.

	SeriesRisingCandleStyle
	Associates a JCChartStyle object containing a financial rising candle style with a series id. When the series is drawn, this style will be used.

	TickSize
	Associates a tick size to be used in a financial Hi-Lo-Open-Close chart with one or all series.

PieResultSetDataSet

	Pie Property
	Description

	OtherSliceExploded
	Marks the other slice of a particular pie or of all pies to be drawn exploded.

	OtherSliceFillStyle
	JCFillStyle objects to be used as the fill style for the other slice on a pie chart.

	OtherSliceLabel
	The label that identifies the other slice in the legend.

	PieIds
	List of pie ids applied across all points in a every series.

	PieLables
	List of pie labels applied across all points in a every series.

	SliceExploded
	Marks a particular slice in a particular pie or a particular slice across all pies to be drawn exploded.

	SliceLabel
	Associates a slice label with a slice id.

PolarResultSetDataSet

	Polar Property
	Description

	AngleLabels
	List of angle labels applied across all points in a every series.

	AngleUnit
	Unit of angle in x-values.

	AngleValues
	List of angle values applied across all points in a every series.

	ThetaAxisName
	Identifies the theta axis in the chart against which data will be plotted.

RadarResultSetDataSet

	Radar Property
	Description

	SpokeIds
	List of radar spoke ids applied across all points in a every series.

	SpokeLabels
	List of radar spoke labels applied across all points in a every series.

[bookmark: _Toc534826636]5.6 	Creating a Custom Data Set Implementation
The JDBC result set data set implementations are based on a set of interfaces and classes. If your data is not in a JDBC result set, you can use these interfaces and classes to create a data set implementation that works with the format of your existing data source. The data source can be a flat file, a database-related format, or some other format.

This section provides an overview of the data model, followed by a BasicDataSet implementation example. After the example is a guide to help you select interfaces and classes for your own data set implementation. The sample code at the end of the section extends the BasicDataSet implementation example and demonstrates using the BarDataSet interface with its related style interface and data point class.

5.6.1	Understanding the Targeted Data Model
The targeted data model is based on a set of interfaces and classes. This section provides a high-level look at the interfaces and classes and how they work together. For details, see the JClass API Documentation.

5.6.1.1 	Data Model Interface
The highest level interface is DataModel. It represents all data being added to the chart. Data is returned from the getDataSets() method as a List of data set implementations. An implementation of the DataModel interface, called DefaultDataModel.java, is provided and can be used in most applications. For more information, see Section 5.3.2, Creating an Instance of DefaultDataModel.

5.6.1.2 	Data Set Interfaces and Classes
The data set interfaces and classes are divided into five categories: chart-type data sets, data-type data sets, style data sets, iterators, and data points. Many of the interfaces and classes are optimized for specific chart types. This enables you to bind data to the chart using terminology and properties suitable for that chart type. For example, the interface for a pie chart has pie slice properties while the interface for a radar chart has spoke properties.

The following table lists the interfaces and classes by category, describes the purpose for each category, and notes which interfaces and classes are required.

	Categories
	Interfaces
	Description

	Chart-type Data Setsa
	BasicDataSet
BarDataSet
PieDataSet
PolarDataSet
RadarDataSet
	Interfaces for a chart type or set of chart types for one collection of data. For example, PieDataSet is, obviously, for pie charts, while BasicDataSet can be used for most charts, but is best for plot, scatter plot, area, stacking area, and financial charts.

	Data-type
Data Sets
	ClusterDataSet
NumercialTimeDataSet
SeriesDataSet
	Interfaces that either interpret the data provided by the DataIterator or allow parts of the data to be specified separately.

	Style Data Sets
	AreaStyleDataSet
AreaRadarStyleDataSet
BarStyleDataSet
CandleStyleDataSet
HiloStyleDataSet
HLOCStyleDataSet
PieStyleDataSet
PlotStyleDataSet
PolarStyleDataSet
RadarStyleDataSet
	Interfaces for chart tyle elements that are tightly coupled with the data for one collection of data.

	Iterators
	DataIteratorb
MarkerIterator
ThresholdIterator
	Interfaces that iterate over your data for the purpose of returning data to JClass Chart. DataIterator returns all data points in the data set. MarkerIterator and ThresholdIterator do likewise with markers and thresholds in the data set.

	Data Pointsa
	BasicDataPoint
BarDataPoint
FinancialDataPoint
PieDataPoint
PolarDataPoint
RadarDataPoint
	Classes that describe the properties of a point of data for a particular chart type or set of chart types. Each instance of a class represents a single point of data in the data set. These classes are returned from the getNextDataPoint() method in the DataIterator class.

a. Required. You need to implement the interface/class that matches your chart type.
b. Required.

The data set for a chart is made by implementing the required interfaces and classes, plus any other interfaces that suit the chart type or data source. For example, if you want to create a data set implementation for an area chart where the data contains time data, you can implement the following interfaces and classes:
· BasicDataSet
· NumericalTimeDataSet
· AreaStyleDataSet (optional)
· DataIterator
· BasicDataPoint
For more information, see Section 5.6.3, Summary of the Interfaces and Classes.

5.6.2	Creating a BasicDataSet Implementation
The primary purpose of the data set implementation is to retrieve your data from wherever it is stored, assign the data to fields in a suitable DataPoint class, and return the DataPoint class from your implementation of DataIterator. The following example creates a data set implementation for a plot chart with three small series of three points each graphed against the default x and y axes. It is a simple data set implementation that takes values stored in local arrays and maps them to the fields in the BasicDataPoint class. There are no image maps, no markers, and no thresholds used in this example.

In your own implementation, you can expand on the methods used here or implement other interfaces, such as relevant data-type DataSet interfaces or a StyleDataSet interface.

import com.klg.jclass.chart.model.*;
import com.klg.jclass.chart.JCChart;
import com.klg.jclass.util.ImageMapInfo;

public class MyDataSet implements BasicDataSet, DataIterator {

protected double[][] yvalues = {{5.0, 6.0, 7.0},
 {10.0, 4.5, 2.7},
 {3.8, 8.6, 4.3}};

protected String[] seriesIds = {"Series 1", "Series 2", "Series 3"};
protected String[] xLabels = {"Jan", "Feb", "Mar"};

protected String dataSetName = null;
protected int dataCounter = 0;
protected int seriesCounter = 0;
private BasicDataPoint basicDataPoint;

public MyDataSet() {
dataSetName = "My Data Set";
basicDataPoint = new BasicDataPoint();
}

public void incrementCounters() {
dataCounter++;

if (dataCounter >= yvalues[seriesCounter].length) {
seriesCounter++;
dataCounter = 0;
}
}

/**
 * DataIterator implementation
 */
public boolean hasMoreDataPoints() {
if (seriesCounter >= yvalues.length) {
return false;
}
return true;
}

public DataPoint getNextDataPoint() {
basicDataPoint.clear();
basicDataPoint.xValue = new Integer(dataCounter);
basicDataPoint.yValue = new Double(yvalues[seriesCounter]
[dataCounter]);
basicDataPoint.seriesId = seriesIds[seriesCounter];
basicDataPoint.seriesLabel = seriesIds[seriesCounter];
basicDataPoint.xLabel = xLabels[dataCounter];
incrementCounters();
return basicDataPoint;
}

/**
 * BasicDataSet implementation
 */
public String getName() {
return dataSetName;
}

public int getChartType() {
return JCChart.PLOT;
}

public DataIterator getDataIterator() {
return this;
}

public Number getHoleValue() {
return new Double(Double.MAX_VALUE);
}

public DataOrder getDataOrder() {
return DataOrder.ASCENDING;
}

public ImageMapInfo getLegendImageMap() {
return null;
}

public Class getXDataType() {

try {
return Class.forName("java.lang.Number");
}
catch (ClassNotFoundException cnfe) {}
return null;
}

public Class getYDataType() {
try {
return Class.forName("java.lang.Number");
}
catch (ClassNotFoundException cnfe) {
return null;
}
}

public String getXAxisName() {
return null;
}

public String getYAxisName() {
return null;
}

public MarkerIterator getXMarkerIterator() {
return null;
}

public MarkerIterator getYMarkerIterator() {
return null;
}

public ThresholdIterator getXThresholdIterator() {
return null;
}

public ThresholdIterator getYThresholdIterator() {
return null;
}
}

5.6.3	Summary of the Interfaces and Classes
The following tables briefly describe the purpose of the interfaces and classes. After you select the interfaces and classes that you think you might use, consult the JClass API Documentation for details.

5.6.3.1 	Chart-type DataSet Interfaces
When creating a custom data set implementation, you should start by selecting a DataSet interface that suits the type of chart that you want to provide.

	Chart-type DataSet
	Description

	BasicDataSet
	Provides properties and methods relevant to most chart types, however the terminology used is best suited for area, stacking area, plot, scatter plot, and financial (Hi-Lo, Hi-Lo-Open-Close, candle) charts.

	BarDataSet
	Provides properties and methods for bar and stacking bar charts.

	PieDataSet
	Provides properties and methods for pie charts.

	PolarDataSet
	Provides properties and methods for polar charts.

	RadarDataSet
	Provides properties and methods for radar and area radar charts.

5.6.3.2 	Data-type DataSet Interfaces
The data-type DataSet interfaces are required to support some types of data, in particular time data and data associated with a cluster or series of data. If your data source does not include these types of data, you do not need to implement a data-type DataSet interface.

	Data-type DataSet
	Description

	ClusterDataSet
	Provides information associated with a cluster of data (rather than a single point). For example, you can iterate over a list of x values applied to points at the same position in all series; these x values override the x values in the DataPoint classes.

	NumericalTimeDataSet
	Required when numerical data returned from the DataIterator should be interpreted as time data relative to a user-provided time base and unit.

	SeriesDataSet
	Provides information associated with a data series (rather than a point.)

5.6.3.3 	StyleDataSet Interfaces
StyleDataSet interfaces provide control over chart style elements that are tightly coupled with the data for one collection of data. If you are satisfied with the default styles, you do not need to implement a StyleDataSet interface. If you implement a StyleDataSet interface, select one that works with the chart-type DataSet that you are implementing.

	StyleDataSet
	Description
	Chart-type DataSet

	AreaStyleDataSet
	Provides fill style and outline style information for data in area and stacking area charts.
	BasicDataSet

	AreaRadarStyleDataSet
	Provides fill style and outline style information for data in area radar charts.
	RadarDataSet or BasicDataSet

	BarStyleDataSet
	Provides fill style and outline style information for data in bar and stacking bar charts.
	BarDataSet or BasicDataSet

	StyleDataSet
	Description
	Chart-type DataSet

	CandleStyleDataSet
	Provides data-associated style information for data in candle charts, such as styles to use for the box portion of a candle chart.
	BasicDataSet

	HiloStyleDataSet
	Provides line style information for data in Hi-Lo charts.
	BasicDataSet

	HLOCStyleDataSet
	Provides line style and tick size information for data in HLOC charts.
	BasicDataSet

	PieStyleDataSet
	Provides fill style and outline style information for data in pie charts.
	PieDataSet or BasicDataSet

	PlotStyleDataSet
	Proivdes line style and symbol style information for data in plot and scatter plot charts.
	BasicDataSet

	PolarStyleDataSet
	Provides line style and symbol style information from data in polar charts.
	PolarDataSet

	RadarStyleDataSet
	Provides line style and symbol style information for data in radar charts.
	RadarDataSet or BasicDataSet

5.6.3.4 	StyleDataSet Interfaces
The DataIterator interface is required so that JClass Chart can iterate over the data points in the data source. If you intend to use markers or thresholds in your chart (not all chart types support them), you also need to implement the corresponding interface.

	Iterator
	Description

	DataIterator
	Iterates over the data points until the end of the data is reaches. Implement this interface in the class that iterates over your data points.

	MarkerIterator
	If you are adding markers to your chart, you need to implement this interface in the class that iterators over the markers.
Note: Not applicable to pie data set implementation because this chart type does not support markers.

	ThresholdIterator
	If you are adding thresholds to your chart, you need to implement this interface in the class that iterators over the markers.
Note: Not applicable to pie data set implementation because this chart type does not support markers.

5.6.3.5 	DataPointClasses
DataPoint classes define the information necessary to describe a single data point of a specific chart type. You use the class to map the elements in your data source to a neutral format that can be understood by JClass Chart. Each instance of a class represents a single point of data in the data set.

	DataPoint
	Description
	Chart-type DataSet

	BasicDataPoint
	Represents a chart data point for use with all chart types, however, it is best suited for area, stacking area, plot, and scatter plot chart types.
	BasicDataSet

	BarDataPoint
	Represents a chart data point for bar and stacking bar charts.
	BarDataSet or BasicDataSet

	FinancialDataPoint
	Represents a chart data point for Hi-Lo, Hi-Lo-Open-Close, and candle charts.
	BasicDataSet

	PieDataPoint
	Represents a chart data point for pie charts.
	PieDataSet or BasicDataSet

	PolarDataPoint
	Represents a chart data point for polar charts
	PolarDataSet

	RadarDataPoint
	Represents a chart data point for radar and area radar charts.
	RadarDataSet or BasicDataSet

5.6.4	A BarDataSet Implementation Example
The following example demonstrates the use of one of the specialized chart-type DataSet interfaces: BarDataSet. The sample code creates a MyBarDataSet implementation that extends the MyDataSet implementation covered in Section 5.6.2, Creating a BasicDataSet Implementation. It implements the BarDataSet and BarStyleDataSet interfaces and uses the BarDataPoint class. BarStyleDataSet is used to define the fill style and outline style to be used in the chart. BarDataPoint has properties that are especially suited to binding data to a bar chart.

import com.klg.jclass.chart.*;
import com.klg.jclass.chart.model.*;

import java.awt.Color;

public class MyBarDataSet extends MyDataSet
implements BarDataSet, BarStyleDataSet {

private Color[] colors = {Color.red, Color.white, Color.blue};
private BarDataPoint barDataPoint;

public MyBarDataSet() {
dataSetName = "My Bar Data Set";
barDataPoint = new BarDataPoint();
}

public DataPoint getNextDataPoint() {
barDataPoint.clear();
barDataPoint.clusterId = xLabels[dataCounter];
barDataPoint.clusterLabel = xLabels[dataCounter];
barDataPoint.yValue = new Double(yvalues[seriesCounter][dataCounter]);
barDataPoint.seriesId = seriesIds[seriesCounter];
barDataPoint.seriesLabel = seriesIds[seriesCounter];
incrementCounters();
return barDataPoint;
}

public int getChartType() {
return JCChart.STACKING_BAR;
}

/**
 * BarDataSet implementation. Rest of methods inherited from super class.
 */
public MarkerIterator getClusterMarkerIterator() {
return(null);
}

/**
 * BarStyleDataSet implementation
 */
public JCFillStyle getFillStyle(Object seriesId) {
JCFillStyle fillStyle = null;
for (int i = 0; i < seriesIds.length; i++) {
if (seriesIds[i].equals(seriesId)) {
fillStyle = new JCFillStyle(colors[i], JCFillStyle.SOLID);
break;
}
}
return fillStyle;
}

public JCLineStyle getOutlineStyle() {
return new JCLineStyle(1, Color.MAGENTA, JCLineStyle.SOLID);
}
}

Ch 5 Adding Data with the Targeted Data Model		2
Ch 5 Adding Data with the Targeted Data Model		1
6
[bookmark: _Toc534826637]Defining Axis Controls
Axis Labelling and Annotation Methods ■ Positioning Axes ■ Chart Orientation and Axis Direction
Setting Axis Bounds ■ Customizing Origins ■ Logarithmic Axes
Titling Axes and Rotating Axis Elements ■ Gridlines ■ Adding a Second Y-Axis

JClass Chart can automatically set properties based on the data, so axis numbering and data display usually do not need much customizing. However, you can control any aspect of the chart axes, depending on your requirements. This chapter covers the different axis
controls available.

Note: If you are developing your chart application using one of the JClass Chart Beans, go to Chapter 13, JClass Chart Beans instead.

[bookmark: _Toc534826638]6.1 	Axis Labelling and Annotation Methods
There are several ways to annotate the chart’s axes, each suited to specific situations. The chart can automatically generate numeric annotation appropriate to the data it is displaying; you can provide a label for each point in the chart (x-axis only); you can provide a label for specific values along the axis; or the chart can automatically generate time-based annotations.

Please note that none of the axis properties discussed in this section apply to pie charts, because pie charts do not have axes. To annotate a pie chart, use chart labels; for more information, please see Chart Labels, in Chapter 7.

Whichever annotation method you choose, the chart makes considerable effort to produce the most natural annotation possible, even as the data changes. You can fine-tune this process using axis annotation properties.

User-set annotations support the use of HTML tags. The use of HTML tags overrides the default Font and Color properties of the label.

Please note that HTML labels may not work with PDF, PS, or PCLencoding.

6.1.1	Choosing an Annotation Method
A variety of properties combine to determine the annotation that appears on the axes. The JCAxis AnnotationMethod property specifies the method used to annotate the axis. The valid annotation methods are:

	JCAxis.VALUE
(default)
	The chart chooses appropriate axis annotation automatically (with possible callbacks to a label generator), based on the chart type and the data itself.

	JCAxis.POINT_LABELS
(x-axis only)
	The chart spaces the points based on the x-values and annotates them with text you specify (in the data source) for each point.

	JCAxis.VALUE_LABELS
	The chart annotates the axis with text you define for specific x-axis or y-axis coordinates.

	JCAxis.TIME_LABELS
	The chart interprets the x- or y-values as units of time, automatically choosing time/data annotation based on the starting point and format you specify. Not for polar, radar, or area radar charts.

Notes:
· Point labels annotation (JCAxis.POINT_LABELS) is only valid for an x-axis when it has been added to the x-axis collection in JCChartArea. This means that a new JCAxis instance that has not yet been added to JCChartArea will not be considered an x-axis.
· The spokes of area radar and radar charts are automatically labelled “0”, “1”, “2”, and so forth, unless the x-annotation method is JCAxis.POINT_LABELS.
· For polar charts, the default annotation for JCAxis.VALUE depends on the angle units specified. If it is radians, the symbol for pi will not be used (it will be represented by 3.14 instead). Also, the x-axis will always be linear; that is, setting the logarithmic properties to true will be ignored.
The following topics discuss setting up and fine-tuning each type of annotation.

6.1.2	Values Annotation
Values annotation produces numeric labelling along an axis, based on the data itself. The chart can produce very natural-looking axis numbering automatically, but you can finetune the properties that control this process.

Axis Annotation Increments, Numbering, and Precision
When a JCAxis is instantiated, a pair of JCAnno objects representing default labels and ticks are automatically created and set on the axis. Those default JCAnno objects may be modified, deleted, or augmented with other JCAnno objects.

The following table describes the different properties that can be set on a JCAnno object in order to customize the labels and tick marks:

	Property
	Function

	startValue
	Sets the value at which the annotation begins.

	stopValue
	Sets the value at which the annotation ends.

	incrementValue
	Sets the increment between annotation along an axis.

	innerExtent
	Defines the space, in pixes, that tick marks extend into the plot area.

	outerExtent
	Defines the space, in pixels, that tick marks extend out of the plot area.

	tickColor
	Determines the color of the tick marks.

	drawTicks
	Determines whether or not the tick marks defined by JCAnno are drawn.

	labelExtent
	Defines the distance, in pixels, of the labels from the axis.

	labelColor
	Determines the color of the labels.

	precision
	Sets the number of decimal places to use when displaying a chart label number. The effect depends on whether it is positive or negative:
* Positive values add that number of places after the decimal place. For example, a value of 2 displays an annotation of 10 as “10.00”.
* Negative values indicate the minimum number of zeros to use before the decimal place. For example, a value of -2 displays annotation in multiples of 100.

	drawLabels
	Determines whether or not the labels defined by JCAnno are drawn.

When the annotation method for an axis is VALUE_LABELS, POINT_LABELS, or TIME_LABELS, the labels are either user-supplied or internally generated without the use of JCAnno objects. The boolean UseAnnoTicks property of a JCAxis determines how tick marks are drawn in those cases. If UseAnnoTicks is true, tick marks are drawn at the labels. If the value is false, ticks defined by JCAnno objects are drawn instead.

Using multiple JCAnno objects, an axis can be drawn with major and minor ticks. Labels can be turned on or off for the individual tick series, as can the actual tick marks, enabling further flexibility.

[image:]
Figure 40 Different tick styles that can be applied to a chart axis.

Please refer to the AnnoGrid.java example included in the examples/chart/intro package to view different tick marks in a JClass Chart example.

6.1.3	PointLabels Annotation
PointLabels annotation displays defined labels along an x-axis. This is useful for annotating the x-axis of any chart for which all series share common x-values. PointLabels are most useful with bar, stacking bar, and pie charts. It is possible to add, remove, and edit PointLabels. In JClass Chart, PointLabels are typically defined with the data.

[image:]
 Figure 41 PointLabels x-axis annotation.

PointLabels are a collection of labels. The first label applies to the first point, the second label applies to the second point, and so on. The labels can also be supplied by setting the PointLabels property of the ChartDataView object for this chart. For example, the following code specifies labels for each of the three points on the x-axis:

String[] labels = {"Q1", "Q2", "Q3, "Q4"};
c.getChartArea().getXAxis(0).setAnnotationMethod(JCAxis.POINT_LABELS);
ChartDataView cd = c.getDataView(0);
ArrayList pLabels = new ArrayList();
for (int i = 0; i < labels.length; i++) {
pLabels.add(labels[i]);
}
cd.setPointLabels(pLabels);

For polar, radar, and area radar charts, if the x-axis annotation is POINT_LABELS and the data is of type array, then a point label is drawn at the outside of the x-axis for each point. (Series labels are used in the legend as usual.)

Note: If you are using the targeted data model, you can set x-axis labels in your data set implementation.

6.1.4	ValueLabels Annotation
ValueLabels annotation displays labels at the axis coordinate specified. This is useful for displaying special text at a specific axis coordinate, or when a type of annotation that the chart does not support is needed, such as scientific notation. You can set the axis coordinate and the text to display for each ValueLabel, and also add and remove individual ValueLabels.

[image:]
Figure 42 Using ValueLabels to annotate axes.

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value property and a Label property.

If the AnnotationMethod property is set to JCAxis.VALUE_LABELS, the chart places labels at explicit locations along an axis. The ValueLabels property of JCAxis, which is a ValueLabels collection, supplies this list of Strings and their locations. For example, the following code sets value labels at the locations 10, 20, and 30:

String[] labels = {"Sales", "Beta Testing", "Documentation",
 "Alpha Testing", "Programming",
 						 "Production Definition"};
JCAxis y = c.getChartArea().getYAxis(0);
y.setAnnotationMethod(JCAxis.VALUE_LABELS);
JCValueLabel[] valueLabels = new JCValueLabel[labels.length];
for (int i = 0; i < labels.length; i++) {
valueLabels[i] = new JCValueLabel(10.0 * (i + 1), labels[i], y);
}
y.setValueLabels(valueLabels);

The ValueLabels collection can be indexed either by subscript or by value:

JCAxis x = c.getChartArea().getXAxis(0);
// The following retrieves the second value label
JCValueLabel v1 = x.getValueLabels(1);
// The following retrieves the closest label to chart coordinate 2.0
JCValueLabel v2 = x.getValueLabel(2.0);

6.1.5	TimeLabels Annotation
TimeLabels annotation interprets the value data as units of time. The chart calculates and displays a time-axis based on the starting point and format specified. A time-axis is useful for charts that measure something in seconds, minutes, hours, days, weeks, months, or years.

[image:]
Figure 43 TimeLabels annotating x-axes and y-axes.

Four properties are used to control the display and behavior of TimeLabels:
· AnnotationMethod (set to JCAxis.TIME_LABELS to use this annotation method)
· TimeUnit
· TimeBase
· TimeFormat
Time Unit
Use the TimeUnit property to specify how to interpret the values in the data. Select either JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS, JCAxis.WEEKS, JCAxis.MONTHS, or JCAxis.YEARS. For example, when set to JCAxis.YEARS, values that range from 5 to 15 become a time-axis spanning 10 years. By default, TimeUnit is set to JCAxis.SECONDS.

Time Base
Use the TimeBase property to set the date and time that the time-axis starts from. Use the Java Date class (java.util.Date) to specify the TimeBase. The default for TimeBase is the current time.

For example, the following statement sets the starting point to January 15, 1985:
c.getChartArea().getXAxis(0).setTimeBase(new Date(85,0,15));

Time Format
Use the TimeFormat property to specify the text to display at each annotation point. The TimeFormatIsDefault property allows the chart to automatically determine an appropriate format based on the TimeUnit property and the data, so it is often unnecessary to customize the format.

TimeFormat specifies a time format. You build a time format using the Java time format codes from the java.text.SimpleDateFormat class. The chart displays only the parts of the date/time specified by TimeFormat. The format codes are based on the default Java formatting provided by java.text.

	Symbol
	Meaning
	Presentation
	Example

	G
	era designator
	
	AD

	y
	year
	Number
	1997

	M
	month in year
	Text & Number
	July 07

	d
	day in month
	Number
	10

	h
	hour in am/pm (1~12)
	Number
	12

	H
	hour in day (0~23)
	Number
	0

	m
	minute in hour
	Number
	30

	s
	second in minute
	Number
	55

	S
	millisecond
	Number
	978

	E
	day in week
	Text
	Tuesday

	D
	day in year
	Number
	189

	F
	day in week in month
	Number
	2nd Wed in July

	w
	week in year
	Number
	27

	Symbol
	Meaning
	Presentation
	Example

	W
	week in month
	Number
	2

	a
	am/pm marker
	Text
	PM

	k
	hour in day (1~24)
	Number
	24

	K
	hour in am/pm (0~11)
	Number
	0

	z
	time zone
	Text
	Pacific Standard Time

	’
	escape for text
	delimiter
	

	”
	single quote
	Literal
	

The default for TimeFormat is the same as the default used by Java’s SimpleDateFormat class (located in the java.text package).

Using Date Methods
The dateToValue() method converts a Java date value into its corresponding axis value (a floating-point value). The valueToDate() method converts a value along an axis to the date that it represents. Note that the axis must already be set as a time label axis.

Here is a code example showing the dateToValue() method converting a date (in this case, February 2, 1999) to a y-axis value, and showing the valueToDate() method converting a y-axis value (in this case, 3.0) to the date that it represents.

JCAxis y = chart.getChartArea().getYAxis(0);
Date d = y.valueToDate(3.0);
double val = y.dateToValue(new Date(99,1,2));

6.1.6	Custom Axes Labels
JClass Chart will label axes by default. However, you can also generate custom labels for the axes by implementing the JCLabelGenerator interface. This interface has one method – makeLabel() – that is called when a label is required at a particular value.

Note that the spokes of radar and area radar charts will be automatically labelled “0”, “1”, “2”, and so forth, unless the x-annotation method is JCAxis.POINT_LABELS.

To generate custom axes labels, the axis’ AnnotationMethod property, which determines how the axis is labelled, must be set to VALUE. Also, the setLabelGenerator() method must be called with the class that implements the JCLabelGenerator interface.

The number of labels, that is, the number of times makeLabel() is called, depends on the NumSpacing parameter of the axis. Not all labels will be displayed if there is not enough room.

The makeLabel() method takes two parameters: value (the axis value to be labelled) and precision (the numeric precision to be used).
· In the usual case, the makeLabel() method returns a String, and that String will be used as the axis label at value.
· If the makeLabel() method returns a ChartText object, then that ChartText object will be used as the axis label at value.
· If an object other than String or ChartText is returned, the String derived from calling that object’s toString() method will be used as the axis label at value.
Here is a code example showing how to customize the labels for a linear axis by implementing the JCLabelGenerator interface. In this case, Roman numeral labels are going to be generated (instead of the usual Arabic labels) for the numbers 1 through 13.

class MyLabelGenerator implements JCLabelGenerator
{
public Object makeLabel(double value, int precision) {
int intvalue = (int) value;
String s = null;
switch (intvalue) {
case 1 :
s = "I";
break;
case 2 :
s = "II";
break;
case 3 :
s = "III";
break;
case 4 :
s = "IV";
break;
case 5 :
s = "V";
break;
case 6 :
s = "VI";
break;
case 7 :
s = "VII";
break;
case 8 :
s = "VIII";
break;
case 9 :
s = "IX";
break;
case 10 :
s = "X";
break;
default :
s = "";
break;
}
return s;
}
}

Note that the user will need to specify the label generator as follows:

axis.setLabelGenerator(new MyLabelGenerator());

Also note that JClass Chart calls the makeLabel() method for each needed label (recall that each axis requests needed labels based on its NumSpacing, Min, and Max properties). Thus, if JClass Chart needs n labels, the makeLabel() method is called n times.

[bookmark: _Toc534826639]6.2 	Positioning Axes
Use the Placement property to make a specific axis placement or use the PlacementIsDefault property to specify whether the chart is meant to determine axis placement. When making a specific axis placement, the axes may be placed against its partner axis at that axis' minimum value, maximum value, origin value, or a userspecified value.

For example,

axis.setPlacement(JCAxis.MIN);

will place the axis against its partner axis' minimum value, while

axis.setPlacement(otherAxis, 5.0)

will place the axis against otherAxis at the value 5.0

Note: When Placement is set to Origin, changing the axis origin will move the placed axis to the new origin value.

[image:]
Figure 44 An example of axes positioning; the x-axis is placed against the y-axis’ minimum value..

Polar Charts – Special Minimum and Maximum Values
Note that for polar charts, the x-axis maximum and minimum values are fixed, and these fixed values change depending on the angle unit type. The y-axis maximum and minimum values are adjustable, but are constrained to avoid data clipping. The y-axis minimum will never be less than zero (unless the y-axis is reversed). (theta, –r) will be interpreted as (theta+180, r). The y-axis minimum will always be at the center unless the axis is reversed, in which case the y-axis maximum will be at the center.

Radar and Area Radar Charts – Minimum Values
The minimum value for a y-axis in radar and area radar charts can be negative.

[bookmark: _Toc534826640]6.3 	Chart Orientation and Axis Direction
A typical rectangular chart draws the x-axis horizontally from left-to-right and the y-axes vertically from bottom-to-top. You can reverse the orientation of thee entire chart, and/or the direction of each axis.

6.3.1	Inverting Chart Orientation
Use the ChartDataView object’s Inverted property to change the chart orientation for rectangular charts. When set to true, the x-axis is drawn vertically and the y-axis horizontally for the data view. Any properties set on the x-axis then apply to the vertical axis, and y-axis properties apply to the horizontal axis.

Note: To switch the orientation of charts with multiple data views, you must set the Inverted property of each ChartDataView object.

[image:]
Figure 45 Normal and inverted orientation.

The property is ignored for circular charts.

6.3.2	Changing Axis Direction
Use the Reversed property of JCAxis to reverse the direction of an axis. By default, Reversed is set to false.

[image:]
Figure 46 Two charts depicting a normal and revered y-axis.

For polar charts, data points with positive x-values will be displayed in a counterclockwise direction starting at the origin base. When the XAxis.reversed flag is true, positive xvalues will be displayed clockwise.

[bookmark: _Toc534826641]6.4 	Setting Axis Bounds
Normally a graph displays all of the data it contains. There are situations where only part of the data is to be displayed. This can be accomplished by fixing axis bounds.

Min and Max
Use the Min and Max properties of JCAxis to frame a chart at specific axis values. The MinIsDefault and MaxIsDefault properties allow the chart to automatically determine axis bounds based on the data bounds.

[bookmark: _Toc534826642]6.5 	Customizing Origins
The chart can choose appropriate origins for the axes automatically, based on the data. It is also possible to customize how the chart determines the origin, or to directly specify the coordinates of the origin.

[image:]
Figure 47 Defining origins for x-axes and y-axes.

Origin Placement
The easiest way to customize an origin is by controlling its placement, using the Axes’ OriginPlacement property. It has four possible values: AUTOMATIC, ZERO, MIN, and MAX. When set to AUTOMATIC, the origin is placed at the axis minimum or at zero, if the data contains positive and negative values or is a bar chart. ZERO places the origin at zero, MIN places the origin at the minimum value on the axis, and MAX places the origin at the maximum value on axis.

Origin Coordinates
When the origin of a coordinate must be set to a value different from the default (0,0), use the Axes’ Origin property. The OriginIsDefault property allows the chart to automatically determine the origin coordinate based on the data.

Note: When an origin coordinate is explicitly set or fixed, the chart ignores the OriginPlacement property.

[bookmark: _Toc534826643]6.6 	Logarithmic Axes
Axis annotation is normally interpreted and drawn in a linear fashion. It is also possible to set any axis to be interpreted logarithmically (log base 10), as shown in the following image. Logarithmic axes are useful for charting certain types of scientific data.

[image:]
Figure 48 Logarithmic x-axes and y-axes.

Because of the nature of logarithmic axes, they impose the following restrictions on the chart:
· any data that is less than or equal to zero is not graphed (it is treated as a data hole), since a logarithmic axis only handles data values that are greater than zero. For the same reason, axis and data minimum/maximum bounds and origin properties cannot be set to zero or less.
· axis numbering increment, ticking increment, and precision properties have no effect when the axis is logarithmic.
· the x-axis of bar and stacking bar charts cannot be logarithmic.
· the annotation method for the x-axis cannot be PointLabels or TimeLabels.

Specifying a Logarithmic Axis
Use the Logarithmic property of JCAxis to make an axis logarithmic.

Note: Pie charts are not affected by logarithmic axes.

[bookmark: _Toc534826644]6.7 	Titling Axes and Rotating Axis Elements
Adding a title to an axis clarifies what is charted along that axis. You can add a title to any axis, and also rotate the title or the annotation along the axis, as shown below.

[image:]
Figure 49 Rotated axis title and annotation.

Adding an Axis Title
Use the Title property to add a title to an axis. It sets the JCAxisTitle object associated with the JCAxis. JCAxisTitle controls the appearance of the axis title. JCAxisTitle’s Text property specifies the title text.

Axis Title Rotation
Use the Rotation property of JCAxisTitle to set the rotation of the title. Valid values are defined in ChartText: DEG_0 (no rotation), DEG_90 (90 degrees counterclockwise), DEG_180 (180 degrees), and DEG_270 (270 degrees).

Rotating Axis Annotation
Use the AnnotationRotation property of JCAxis to rotate the axis annotation to either 90, 180, or 270 degrees clockwise from the horizontal position. 90-degree rotation usually looks best on a right-hand side axis.

This property can also be used to rotate the annotation at any other specified angle, if it is set to AnnotationRotation.ROTATION_OTHER. The new angle will be determined by the AnnotationRotationAngle property’s value. By default, the angle is 0.0 degrees.

It is important to know that some fonts may not draw properly at an angle; therefore, they might not be visually appealing. If you are using rotated labels, your font choice should be made with care.

Note: In some cases, rotated labels will overlap. When labels overlap, the visible property for the higher indexed label is cleared, and only the lower indexed label is visible.

[bookmark: _Toc534826645]6.8 	Gridlines
Displaying a grid on a chart can make it easier to see the exact value of data points. Gridlines are hidden by default. To show gridlines, set the GridVisible property to true. You can customize the spacing between gridlines as well as the appearance of the lines.

Gridlines in Rectangular Charts
In a rectangular charts, such as plot and bar charts, gridlines are laid out in standard grid format. Horizontal gridlines are a property of the y-axis. Vertical gridlines are a property of the x-axis. Each can be given unique spacing and style properties, as described later in this section.

[image:]
Figure 50 Gridlines in a rectangular chart.

Gridlines in Polar Charts
For polar charts, y-axis gridlines are circular while x-axis gridlines are radial lines from the center to the outside of the plot area. Each can be given unique spacing and style properties, as described later in this section.

[image:]
Figure 51 Circular Gridlines.

Gridlines in Radar Charts
For radar and area radar charts, y-axis gridlines are represented as concentric circles around the center of the chart. If you would prefer webbed gridlines, where the lines between radial gridlines are drawn straight rather than as arcs, you need to set the RadarCircularGrid property to false.

[image:]			[image:]
Figure 52 Circular gridlines vs webbed gridlines.

Grid Spacing
By default, the spacing between gridlines automatically corresponds with the axis annotations.You can customize the interval between gridlines for each axis. To specify the gridline spacing for an axis, you set the GridSpacing property for the axis and specify the interval between gridlines as a positive double (setting a value of zero means gridlines are not shown).

For example:

// Set grid spacing for the x-axis
xaxis.setGridSpacing(10);

Gridline Attributes
You can customize the line pattern, thickness, and color of the gridlines by axis. To set the line attributes, you set the GridStyle property for each axis. For example, the following code fragment changes the line color to green:

otherXAxis.setGridVisible(true);
otherXAxis.getGridStyle().getLineStyle().setColor(Color.green);
otherYAxis.setGridVisible(true);
otherYAxis.getGridStyle().getLineStyle().setColor(Color.green);

[bookmark: _Toc534826646]6.9 	Adding a Second Y-Axis
There are two ways to create a second y-axis on a chart. The simplest way is to define a numeric relationship between the two y-axes, as shown in the following illustration. Use this to display a different scale or interpretation of the same graph data.

Note: For polar, radar, and area radar charts, there is no second y-axis.

Defining Axis Multiplier
Use the Multiplier property to define the multiplication factor for the second axis. This property is used to generate axis values based on the first axis. The multiplication factor can be positive or negative.

Using a Constant Value
Use the Constant axis property to define a value to be added to or subtracted from the axis values generated by Multiplier.

[image:]
Figure 53 Chart containing multiple y-axes.

In some cases, it may be desirable to show two sets of data in the same chart that are plotted against different axes. JClass Chart supports this by allowing each DataView to specify its own XAxis and YAxis. For example, consider a case in which a second data set d2 is to be plotted against its own y-axis. A JCAxis instance must be created and added to the JCChartArea, as shown:

// Create a new axis and set it vertical
otherYAxis = new JCAxis();
otherYAxis.setVertical(true);

// Add it to the list of new axes in the chart area
c.getChartArea().setYAxis(1, otherYAxis);
// Add it to the data view
d2.setYAxis(otherYAxis);

Hiding the Second Axis
Set the Visible property to false to remove it from display. By default, it is set to true.

Other Second-Axis Properties
All axes have the same features. Any property can be set on any axis.

Ch 6 Defining Axis Controls		2
Ch 6 Defining Axis Controls		1
7
[bookmark: _Toc534826647]Defining Text and Style Elements
Header and Footer Titles ■ Legends ■ Chart Labels
Chart Styles ■ Outline Style ■ Hole Styles ■ Borders ■ Fonts ■ Colors
Positioning Elements on the Chart Object ■ 3D Effect ■ Anti-Aliasing

This chapter describes the different formatting elements available within JClass Chart, and how they can be used.

Note: If you are developing your chart application using one of the JClass Chart beans, go to Chapter 13, JClass Chart Beans instead.

[bookmark: _Toc534826648]7.1 	Header and Footer Titles
A chart can have two titles, called the header and footer. A title consists of one or more lines of text with an optional border. By default they are JLabel instances and behave accordingly. A JLabel object can display text, an image, or both. By default, labels are vertically centered in their display area. Text-only labels are left-aligned, while imageonly labels are horizontally centered by default.

You can change the text alignment by setting the HorizontalAlignment and VerticalAlignment properties of JLabel. You can also customize the title border, font, colors, and the size and position of the title. For more information, see Section 7.7, Borders, Section 7.8, Fonts, Section 7.9, Colors, and Section 7.10, Positioning Elements on the Chart Object.

[bookmark: _Toc534826649]7.2 	Legends
A legend shows the visual attributes (or ChartStyle) used for each series in the chart, with text that labels the series.

[image:]
Figure 54 Verticcally oriented legend anchored NorthEast.

7.2.1	Types of Legends
There are two types of legend objects: JCGridLegend (the default) for a single-column layout and JCMultiColLegend for a multiple-column layout. If these legends do not provide the desired functionality, you can customize the legend using the JCLegend Toolkit. For more information, see Section 7.2.3, Creating Custom Legends with the JCLegend Toolkit.

Single-Column Legends
The classic single-column legend layout is provided by JCGridLegend. This is the default layout in JClass Chart.

Multi-Column Legends
Multi-column legend layout is available using JCMultiColumnLegend. To designate this layout, follow these steps:
1. Create an instance.
2. Set the number of rows and columns.
3. Set the legend property of the chart to this instance.

For example:

JCMultiColLegend mcl = new JCMultiColumnLegend();
mcl.setNumColumns(2);
myChart.setLegend(mcl);

This example creates a legend for the current chart that has two columns. The number of rows depends on the number of items in the legend. To fix the number of rows, use setNumRows(). Both the number of rows and the number of columns are variable by default.

To reset the number of rows and columns to a variable state after they have been fixed, call the appropriate set method with a negative value. If both the NumRows and NumColumns properties are set to fixed values, the legend will be of that exact size and will ignore any extra items.

7.2.2	Customizing Legends
You can customize the series label and positioning. The legend is a JComponent, and all properties such as border, colors, font, and so on, apply. You can also specify the maximum width of a column in the legend.

7.2.2.1 	Displaying Series Labels in the Legend
The legend displays the text contained in the Label property of each Series in a DataView. The VisibleInLegend property of the series determines whether the Series will appear in the Legend. SeriesLabels support the use of HTML tags. The use of HTML tags overrides the default Font and Color properties of the label. Please note that HTML labels may not work with PDF, PS, or PCL encoding.

7.2.2.2 	Displaying Marker or Threshold Labels in the Legend
If you use markers or thresholds in your chart, you can choose to display their labels in the legend using the VisibleInLegend properties from JCMarker and JCThreshold respectively. When true, the text contained in the Label property of the marker or threshold is displayed in the legend. VisibleInLegend is false by default.

7.2.2.3 	Setting the Legend Orientation
Use the legend Orientation property to lay out the legend horizontally or vertically.

7.2.2.4 	Positioning the Legend
You can use the legend Anchor property to specify where to position the legend relative to the ChartArea. You can select from eight compass points around the ChartArea. Valid values are: JCLegend.NORTH, JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST, JCLegend.SOUTHWEST, JCLegend.NORTHEAST, and JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

To specify an absolute position for the legend, you set the LayoutHints property from JCChart and provide coordinates. For more information, see Section 7.10, Positioning Elements on the Chart Object.

7.2.2.5 	Setting the Width of the Legend and its Columns
If the legend text is very long, you may find that by default the legend becomes very wide, leaving proportionally less room for the chart itself. You can improve the balance between chart and legend by controlling the width of the legend. You have two choices for setting the width. You can set the width of the legend explicitly and allow the columns within the legend to be sized automatically, or you can set the column widths and allow the legend width to be calculated.

Specifying the Legend Width
To set the width of the entire legend, you set the LayoutHints property from JCChart and provide the width of the legend rectangle. For example, the following code snippet sets the width of the legend to 200 pixels:

chart.setLayoutHints(chart.getLegend(),
new Rectangle(Integer.MAX_VALUE, Integer.MAX_VALUE,
200, Integer.MAX_VALUE));

Integer.MAX_VALUE means that the dimension is dynamic. In the above example, there are no restrictions on the positioning of the legend or on the height dimension. For more information, see Section 7.10, Positioning Elements on the Chart Object.

Specifying Column Widths
To set the width of columns within the legend, you set the MaxItemTextWidth property from JCLegend and specify the width in pixels as a non-negative Integer. By default, the value is Integer.MAX_VALUE, which means the width is dynamic.

For example, the following code sets the width for each of the columns in the legend to 100 pixels.

legend.setMaxItemTextWidth(100);

To specify different widths for columns in a multicolumn legend, you need to provide an additional parameter that specifies the column number. For example, the following code specifies column widths of 50, 100, and 75 pixels for consecutive columns in a threecolumn
legend:

legend.setMaxItemTextWidth(50, 0);
legend.setMaxItemTextWidth(100, 1);
legend.setMaxItemTextWidth(75, 2);

7.2.2.6 	Handling Truncated Text
You can set properties to control what happens when the length of the text exceeds the width of a column. By default, column text is aligned with the leading edge of the column (for example, it is aligned left in a left-to-right orientation). When text is truncated, the trailing text (the rightmost text in a left-to-right orientation) is hidden and an ellipsis is displayed in its place. You can modify this behavior by setting the JCLegend properties described below.

To change the text alignment, you set the ItemTextAlignment property and specify the value using one of the following enumerations: SwingConstants.LEFT, SwingConstants.RIGHT, SwingConstants.CENTER, SwingConstants.LEADING (default), or SwingConstants.TRAILING. For example, the following code causes text to be right aligned for all columns except the second column (column 1), where the text is centered:

legend.setItemTextAlignment(SwingConstants.RIGHT);
legend.setItemTextAlignment(SwingConstants.CENTER, 1);

To change how the text is truncated, you set the TruncateMode property. The following table shows the possible values followed by how the text would appear:

	JCLegend.TRUNCATE_LEFT
	...text

	JCLegend.TRUNCATE_MIDDLE
	text...text

	JCLegend.TRUNCATE_RIGHT
	text...

	JCLegend.TRUNCATE_END
	...text...

	JCLegend.TRUNCATE_LEADING
	In a left-to-right orientation, same as
JCLegend.TRUNCATE_LEFT.
In a right-to-left orientation, same as
JCLegend.TRUNCATE_RIGHT.

	JCLegend.TRUNCATE_TRAILING (default)
	In a left-to-right orientation, same as
JCLegend.TRUNCATE_RIGHT.
In a right-to-left orientation, same as
JCLegend.TRUNCATE_LEFT.

For example, the following code causes text to be truncated on the right for all columns, except for the third column (column 2), where the ends are truncated:

legend.setTruncateMode(JCLegend.TRUNCATE_RIGHT);
legend.setTruncateMode(JCLegend.TRUNCATE_END, 2);

To stop the ellipsis from being displayed, you set the UseEllipsisWhenTruncating property to false. There will be no visual indication that text is hidden. This property always applies to all columns.

You can also choose to display the entire legend item text in a tooltip whenever the mouse hovers over a legend item. The tooltip appears whether or not the legend text is truncated. To activate the tooltips, set the ItemTextToolTipEnabled property to true. This property always applies to all columns.

7.2.3	Creating Custom Legends with the JCLegend Toolkit
The JCLegend Toolkit allows you the freedom to design your own legend implementations. The options range from simple changes, such as affecting the order of the items in the legend, to providing more complex layouts.

The JCLegend Toolkit consists of a JCLegend class that can be subclassed to provide legend layout rules and two interfaces: JCLegendPopulator and JCLegendRenderer. JCLegendPopulator is implemented by classes wishing to populate a legend with data, and JCLegendRenderer is implemented by a class that wishes to help render the legend’s elements according to the user’s instructions. Examples of how to use the JCLegend Toolkit are provided in JCLASS_HOME/examples/chart/legend/.

JCChartLegendManager is the class used by JClass Chart to implement both the JCLegendPopulator and JCLegendRenderer interfaces, and to provide a built-in mechanism for itemizing range objects in a legend.

7.2.3.1 	Custom Legends – Layout
The Legend Toolkit allows you to create custom legend implementations. JCLegend is an abstract class that can be subclassed by users wishing to customize the legend layout or other legend behavior.

To provide a custom layout, override the method:

public abstract Dimension layoutLegend(List itemList, boolean
vertical,Font useFont)

The itemlist argument is a List containing a Vector for each data view contained in the chart. Each of these sub-vectors contains one JCLegendItem instance for each series in the data view and one instance for the data view title.

The vertical argument is true if the orientation of the legend is vertical and false if the orientation of the legend is horizontal.

The useFont argument contains the default font to use for the legend.

Each item in the legend consists of a text portion and a symbol portion. For example, in a Plot Chart, the text portion is the name of the series, and is preceded by the symbol used to mark a point on the chart. For the title of the data view, the text portion is the name of the data view and there is no symbol.

JCLegendItem is a class that encapsulates an item in the legend with the properties.

	Property name
	Description

	Point pos;
	position of this legen item within the legend

	Point symbolPos;
	position of the symbol within the legend item

	Point textPos;
	position of the text portion within the legend item

	Dimension dim;
	full size of the legend item

	Dimension symbolDim;
	size of the symbol; provided by JCLegend

	Dimension textDim;
	size of the text portion; provided by JCLegend

	Rectangle
pickRectangle;
	the rectangle to use for pick operations; optional

	Property name
	Description

	int drawType;
	determines drawing type; one of JCLegend.NONE, JCLegend.BOX, JCLegend.IMAGE, JCLegend.IMAGE_OUTLINED, JCLegend.CUSTOM_SYMBOL, or JCLegend.CUSTOM_ALL

	Object itemInfo;
	data related to this legend item; is a JCDataIndex object containing the data view and series to which the legend item is related

	Object symbol;
	the symbol if other than the default type; usually null (means drawLegendItem decideds)

	Object contents;
	the text portion; a String or JCString

When the itemList is passed to layoutLegend, it has been filled in with JCLegendItem instances representing each data series and data view title. These instances will have the symbolDim, textDim, symbol, contents, itemInfo, and drawType already filled in.

The value of drawType will determine whether a particular default symbol type will be drawn or whether user-provided drawing methods will be called.

The layoutLegend() method is expected to calculate and fill in the pos, symbolPos, textPos, and dim fields. Additionally, the method must return a Dimension object containing the overall size of the legend. Optionally, it may also calculate the pickRectangle member of the JCLegendItem class. The pickRectangle is used in pick operations to specify the region in the legend that is associated with the series that this legend item represents. If left null, a default pickRectangle will be calculated using the dim and pos members.

Any of the public methods in the JCLegend class may be overridden by a user requiring custom behavior. One such method is:

public int getSymbolSize()

getSymbolSize() returns the size of the legend-calculated symbols to be drawn in the legend. Default JCLegend behavior sets the symbol size to be equal to the ascent of the default font that is used to draw the legend text. If you want to use a different symbol, you can override it. One possible implementation is to use a symbol size identical to that which appears on the actual chart.

7.2.3.2 	Custom Legends – Population
JCLegendPopulator is an interface that can be implemented by any user desiring to populate the legend with custom items. This interface comprises two methods that need to be implemented:

public List getLegendItems(FontMetrics fm)
public boolean isTitleItem(JCLegendItem item)

getLegendItems() should return a List object containing any number of Vector objects where each Vector object represents one column in the legend. Each Vector object contains the JCLegendItem objects for that column. In JClass Chart, each column generally represents one data view.

isTitleItem() should return true or false, depending on whether the passed JCLegendItem object represents a title for the column. This is used to determine whether a symbol is drawn for a particular legend item.

If implemented, the legend should be notified of the new populator with the setLegendPopulator() method of JCLegend.

7.2.3.3 	Custom Legends – Rendering
JCLegendRenderer is an interface that can be implemented by any user desiring to custom render legend items. This interface consists of four methods that need to be implemented:

public void drawLegendItem(Graphics gc, Font useFont,JCLegendItem thisItem)
public void drawLegendItemSymbol(Graphics gc, Font useFont,JCLegendItem
thisItem)
public Color getOutlineColor(JCLegendItem thisItem)
public void setFillGraphics(Graphics gc, JCLegendItem thisItem)

JCLegendRenderer also has the capacity to implement custom text objects for drawing, and is called when the legend cannot interpret an object placed in the contents field of the JCLegendItem. This interface consists of one method that needs to be implemented:

void drawLegendItemText (Graphics gc, Font useFont, JCLegendItem thisItem);

drawLegendItem() provides a way for a user to define a custom drawing routine for an entire legend item. It is called when a legend item’s draw type has been set to JCLegend.CUSTOM_ALL.

drawLegendItemSymbol() provides a way for a user to define a custom drawing routine for a legend item’s symbol. It is called when a legend item’s draw type has been set to JCLegend.CUSTOM_SYMBOL.

getOutlineColor() should return the outline color to be used to draw the legend item’s symbol. If null is returned, the legend’s foreground color will be used.

getOutlineColor() is called when a legend item’s draw type has been set to either JCLegend.BOX or JCLegend.IMAGE_OUTLINED.

setFillGraphics() should set the appropriate fill properties on the provided Graphics object for drawing the provided legend item.

setFillGraphics()is called when the legend item’s draw type has been set to JCLegend.BOX.

If implemented, the legend should be notified of the new renderer with the setLegendRenderer()method of JCLegend.

7.2.3.4 	Examples of Simple Custom Legends
The easiest way to perform simple legend customizations is to extend an existing legend. The following example (taken from the Reversed Legend example in JCLASS_HOME/examples/chart/legend/) overrides the JCChartLegendManager class (the class that implements the JCLegendPopulator and JCLegendRenderer interfaces in JClass Chart) to reverse the order of the legend items. This class overrides the getLegendItems() method, first calling the superclass’ method to get the list of legend items and then rearranging the order before returning the newly reversed list of legend items.

[image:]
Figure 55 The Reversed Legend example reverses the order of the legend items.

Here is the Reverse Legend example code:

public ReverseLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that reverses
// the order of the legend items
JCChart c = new JCChart(JCChart.PLOT);
...
RevLegendManager legMan = new RevLegendManager(c);
c.getLegend().setLegendPopulator(legMan);
c.getLegend().setLegendRenderer(legMan);
c.getLegend().setVisible(true);
...
}

/** RevLegendManager overrides the standard legend representation
* to reverse the drawing order of the legend items. It does this by
 * overriding getLegendItems() method of the JCChartLabelManager
 * class to reverse the order of the items in the legend
 * vector.
 */

class RevLegendManager extends JCChartLegendManager
{

RevLegendManager(JCChart chart)
{
super(chart);
}

/** Override getLegendItems(). Reverse order of items in legend
 * vector.
 */
public List getLegendItems(FontMetrics fm)
{
// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// reverse the list
for (int i = 0; i < itemList.size(); i++) {
List viewItems = (List) itemList.get(i);

List reverseView = new Vector();
for (int j = viewItems.size() - 1; j >= 0; j--) {
JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// reverse items in list, but keep the title at the top.
if (isTitleItem(thisItem)) {
reverseView.add(0, thisItem);
} else {
reverseView.add(thisItem);
}
}
itemList.set(i, reverseView);
}
// now that we've set up the list correctly, let the superclass
// position it
return itemList;
}

}

The Separator Legend example in JCLASS_HOME/examples/chart/legend/ shows how to place a separator between the data view title and the series beneath it. Similar to the Reversed Legend example, the Separator Legend example overrides the JCChartLegendManager class.

In the Separator Legend example, a new JCLegendItem is inserted into the list after the data view title item as part of the layoutLegend() method. This new JCLegendItem has only its textDimension filled in with the size of the separator, but the actual contents field remains null – which is how one recognizes the separator when it is time to draw it.

The drawType field of the JCLegendItem is set to JCLegend.CUSTOM_ALL to ensure that the drawLegendItem() method will be called. Finally, the example returns the item list with the newly added item and lets the superclass do the positioning and sizing calculations.

The drawLegendItem() method is also overridden so that the separator can be drawn. Before drawing, however, it is first determined whether the provided legend item is, indeed, the separator created above.

[image:]
Figure 56 The Separator Legend example places a separator between the data view title and the series beneath it, and extends JCLegendManager.

Here is the Separator Legend example code:

public SeparatorLegend() {

setLayout(new GridLayout(1,1));

// replace standard legend with custom legend that draws a
// separator between the title and the body
JCChart c = new JCChart(JCChart.BAR);
...
SepLegendManager sepMan = new SepLegendManager(c);
c.getLegend().setLegendPopulator(sepMan);
c.getLegend().setLegendRenderer(sepMan);
c.getLegend().setVisible(true);
...
}

/** sepLegendManager overrides the standard legend populator and
 * renderer implementations to draw a separator between the legend
 * title and body. It does this by overriding the
 * JCChartLegendManager's getLegendItem() method (to insert an item
 * to take the place of a separator) and drawLegendItem() (to draw
 * the separator) methods.
 */
public class SepLegendManager extends JCChartLegendManager
{

public SepLegendManager(JCChart chart)
{
super(chart);
}

/** Override getLegendItems() to insert separator item into
 * legend vector.
 */
public List getLegendItems(FontMetrics fm)
{
// get the list of legend items from the superclass
List itemList = super.getLegendItems(fm);

// go through the list to find the spot for the separator
for (int i = 0; i < itemList.size(); i++) {
List viewItems = (List) itemList.get(i);

for (int j = 0; j < viewItems.size(); j++) {
JCLegendItem thisItem = (JCLegendItem) viewItems.get(j);

// Insert separator item after title item
// our separator is identified by having null contents
// but an existing text dimension. Make the separator as
// wide as the text portion of the title.

if (isTitleItem(thisItem)) {
JCLegendItem newItem = new JCLegendItem();
boolean vertical = chart.getLegend().getOrientation()
JCLegend.VERTICAL;
if (vertical) {newItem.textDim = new
Dimension(thisItem.textDim.width, 3);

} else {
newItem.textDim = new Dimension(3, thisItem.textDim.height);
}
// make sure to set draw type as CUSTOM_ALL so that
// drawLegendItem() will be called.
newItem.drawType = JCLegend.CUSTOM_ALL;
viewItems.add(j+1, newItem);
break;
}
}
}

// now that the list is set up, let the superclass worry about
// positioning everything
return itemList;
}
/** Override drawLegendItem() to draw the separator item
 * when encountered.
 */
public void drawLegendItem(Graphics gc, Font useFont,
JCLegendItem thisItem)
{
// if our separator, draw it
if (thisItem.contents == null && thisItem.textDim != null) {
if (gc.getColor() != getForeground())
gc.setColor(getForeground());

gc.fillRect(thisItem.pos.x + thisItem.textPos.x,
thisItem.pos.y + thisItem.textPos.y,
thisItem.textDim.width,
thisItem.textDim.height);
}
}
}
Remember to use the setLegendPopulator() and setLegendRenderer() methods of the JCLegend class to notify the legend of the new class.

7.2.3.5 	Examples of Complex Legends
More complex customizations are also possible. Legends that require full-scale changes to the rules of layout can override the JCLegend class and create their own implementation. Have a look at JCLASS_HOME/examples/chart/legend/FlowLegend for an example of a custom legend layout.

[bookmark: _Toc534826650]7.3 	Chart Labels
Chart labels allow you to add more information to your chart. There are static labels that display continuously and interactive labels that pop-up when a cursor moves over a data item. Labels can be attached to different parts of a chart: absolute coordinates, coordinates in the plotting area, or a specific data item. To see a wide range of label uses, browse the demos in the JCLASS_HOME/demos/chart/labels/ directory.

7.3.1	Label Implementation
The list of labels is managed by the ChartLabelManager. This property is initially null. By calling getChartLabelManager(), JClass Chart will create a manager class with an empty list of labels. When you create a label, you must add it to the manager with addChartlabel(). Labels are instances of the JCChartLabel class.

7.3.2	Adding Labels to a Chart
Labels are added to a chart in two ways: with the AutoLabels property of ChartDataView, or by attaching an instance of JCChartLabel to a chart element.

Individual labels are attached in three ways: to coordinates on the chart (ATTACH_COORD); coordinates on the plot area (ATTACH_DATACOORD); or to a data item (ATTACH_DATAINDEX). Interactive labels must use the ATTACH_DATAINDEX method.

Each label on the chart below uses a different attachment method. The “Point(100,50)” label, is attached to coordinates originating from the top left corner of the chart. “Value(2,220)” is attached to axes coordinates, and “Data(Set0,Point2)” is attached to a specific data item.

[image:]
Figure 57 Adding chart labels.

Attaching a Label to a Data Item
To attach a label to a point, bar or slice, set the AttachMethod property to ATTACH_DATAINDEX. The labels move with the data element; the labels also move when the chart is resized. Note that the points and series are zero-based. The following example puts a label on a chart next to the fourth data point in the second data series.

cl = new JCChartLabel("Fourth data point");
cl.setDataIndex(new JCDataIndex(view, series, 1, 3));
cl.setAttachMethod(JCChartLabel.ATTACH_DATAINDEX);
cl.setAnchor(JCChartLabel.AUTO);
chart.getChartLabelManager().addChartLabel(cl)

Attaching a Label to Chart Coordinates
To attach a label to a point on the chart, set the AttachMethod property to ATTACH_COORD. The coordinate origin for this method is the top left corner of the chart.

JCChartLabel cl = new JCChartLabel("Point(100, 50)");
cl.setAttachMethod(JCChartLabel.ATTACH_COORD);
cl.setCoord(new Point(100, 50));
chart.getChartLabelManager().addChartLabel(cl)

Attaching a Label to Plot Area Coordinates
To attach a label to coordinates on the plot area, set the AttachMethod property to ATTACH_DATACOORD. The plot area is defined by the chart’s x-axis and y-axis.

The following example places a label in the plot area at x-value 2.5, y-value 160.

JCChartLabel cl = new JCChartLabel("Attached to the data
coordinate",false);
cl.setDataCoord(new JCDataCoord(2.5, 160));
cl.setAnchor(JCChartLabel.NORTH);
cl.setAttachMethod(JCChartLabel.ATTACH_DATACOORD);
cl.setBorderType(Border.ETCHED_OUT);
cl.setBorderWidth(5);
chart.getChartLabelManager().addChartLabel(cl)

7.3.3	Interactive Labels
You can have labels pop-up in your chart when the mouse cursor dwells over a particular point, bar, or slice contained in your chart. For example, in the following figure, the number ‘225’ appears on top of the bar as the cursor passes over it, to indicate the value of the bar.

[image:]
Figure 58 Bar chart displaying a dwell label.

In JClass Chart, these interactive labels are called dwell labels. You can use the AutoLabel property to set up a complete series of dwell labels.

Automatically Generated Labels
By default, the AutoLabel property of ChartDataView will generate a complete series of chart labels. It attaches chart labels to every data index.

The following code adds automatic dwell labels to the data:

chart.getDataView(0).setAutoLabel(true);

Adding Individual Dwell Labels
Attaching an individual dwell label follows the same procedure as attaching a static label to a data item, except that the DwellLabel property is set to true:

JCChartLabel cl = new JCChartLabel();
cl.setDwellLabel(true);

A dwell label can only be used when the AttachMethod property is set to ATTACH_DATAINDEX.

7.3.4	Adding and Formatting Label Text
JCChartLabel is just a holder for any JComponent. By default it is a JLabel instance, and text can be set the same way you would set text on a JLabel. You can access the component portion of the chart label with the getComponent() method.

JLabels support the use of HTML tags. The use of HTML tags overrides the default Font and Color properties of the label. Please note that HTML labels may not work with PDF, PS, or PCL encoding.

Adding Label Text
You can add text to a label by passing it to the constructor, or by using the Text property. To add text to a label when it is constructed, include the text in the constructor’s argument, as follows:

JCChartLabel cl = new JCChartLabel("I’m a Label", false);

To add text using the Text property, use the setText method, as follows:

((JLabel)cl.getComponent()).setText("I’m a Label");

Formatting Label Text
Font f = new Font("timesroman", Font.BOLD, 24);
cl.getComponent(),setFont(f)

JComponent properties such as fonts, borders, and colors are set in the same manner.

7.3.5	Positioning Labels
The Anchor property determines the position of the label, relative to the point of attachment. The valid constants are:
· JCChartLabel.NORTHWEST
· JCChartLabel.NORTH
· JCChartLabel.NORTHEAST
· JCChartLabel.EAST
· JCChartLabel.SOUTHEAST
· JCChartLabel.SOUTH
· JCChartLabel.SOUTHWEST
· JCChartLabel.WEST
The following example shows the syntax:

cl.setAnchor(JCChartLabel.EAST);

7.3.6	Adding Connecting Lines
You can add lines that connect a label to its point of attachment. This can help the enduser pinpoint what a label refers to on a chart.

[image:]
Figure 59 An example of a connecting line.

To add a connecting line to a label, set the Connected property to true, as follows:

cl.setConnected(true);

[bookmark: _Toc534826651]7.4 	Chart Styles
Chart styles define all of the visual attributes of how data appears in the chart, including:
· Lines and points in plots and financial charts.
· Color of each bar in bar charts.
· Slice colors in pie charts.
· Color of each filled area in area charts.

Each series in a data view has its own JCChartStyle object; as new series are added, new JCChartStyle objects are created automatically by the chart. JClass Chart automatically defines a set of visually different styles for up to 13 series, so while you can customize any chart style, you may not need to.

Note: If you are using the targeted data model, you can change the default chart styles by implementing the appropriate StyleDataSet in your data set implementation. For more information, see StyleDataSet Interfaces, in Chapter 5.

Every ChartStyle has a FillStyle, a LineStyle, and a SymbolStyle. FillStyles are used for area, bar, candle, Hi-Lo, Hi-Lo-Open-Close, pie, and stacking bar charts. LineStyles and SymbolStyles are used for plots.

[image:]
Figure 60 Types of ChartStyles available.

ChartStyle is an indexed property of ChartDataView that “owns” the JCChartStyle objects for that data view. It can be manipulated like any other indexed property, for example:

arr.setChartStyle(0, new JCChartStyle());

This adds the specified ChartStyle to the indexed property at the specified index. If the ChartStyle is null, the JCChartStyle at the specified point is removed. The following lists some of the other ways ChartStyle can be used:
· getChartStyle(index) — retrieves the chart style at the specified index
· setChartStyle(List) — replaces all existing chart styles
· List getChartStyle() — retrieves a copy of the array of chart styles

Normally, you will not need to add or remove JCChartStyle objects from the collection yourself. If a JCChartStyle object already exists when its corresponding series is created, the previously created JCChartStyle object is used to display the data in this series.

Customizing Existing ChartStyles
Each JCChartStyle object contains three smaller objects that control different aspects of the style: JCFillStyle, JCLineStyle, and JCSymbolStyle.

The most common chart style sub-properties are repeated in JCChartStyle. For example, FillColor is a property of JCChartStyle that corresponds to the Color property of JCFillStyle object.

The following properties are repeated in the specified class:
· LinePattern, LineWidth, and LineColor repeat JCLineStyle properties.
· SymbolShape, SymbolColor, SymbolSize, and SymbolCustomShape repeat JCSymbol properties.
· FillColor, FillPattern, and FillImage repeat JCFillStyle properties.

FillStyle
JCFillStyle controls the fills used in bar, pie, area, and candle charts. Its properties include Color and Pattern. Use Pattern to set the fill drawing pattern and Color to set the fill color. The default pattern is solid fill.

Available fill patterns include none, solid, 25%, 50%, 75%, horizontal stripes, vertical stripes, 45 degree angle stripes, 135 degree angle stripes, diagonal hatched pattern, cross hatched pattern, custom fill, custom paint, or, for bar charts only, custom stack fill. Custom fill and custom stack fill draw using the image set in the Image property. Custom paint draws using the TexturePaint object, which is set in the CustomPaint property.

Note: Filled areas are not supported for polar charts.

LineStyle
JCLineStyle controls line drawing, used in line and Hi-Lo charts. Its properties are Color, Pattern and Width. Use Pattern to set the line drawing pattern, Color to set the line color, and Width to set the line width. Custom line patterns can be set with a setPattern() method that specifies the line pattern arrays to use.

SymbolStyle
JCSymbolStyle controls the symbol used to represent points in a data series, used in plot or scatter plot charts. Its properties are Shape, Color and Size. Use Shape to set the symbol type, Size to set its size, and Color to set the symbol color.

[image:]
Figure 61 Symbols available in JCSymbolStyle.
You can also provide a custom shape by implementing an abstract class JCShape and assigning it to the CustomShape property.

Customizing All ChartStyles
By looping through the JCChartStyle indexed property, you can quickly change the appearance of all of the bars, lines, or points in a chart. For example, the following code lightens all of the bars in a chart:

for (Iterator i = c.getDataView(1).getChartStyle().listIterator();
i.hasNext();)
{
JCChartStyle cs = (JCChartStyle) i.next();
JCFillStyle fs = cs.getFillStyle();
fs.setColor(fs.getColor().brighten);
}

[bookmark: _Toc534826652]7.5 	Outline Style
The ChartDataView’s OutlineStyle property controls the outlines of area, stacking area, area radar, bar, stacking bar, and pie charts. It is of type JCLineStyle and thus the properties of the line can be controlled by getting the JCLineStyle object using getOutlineStyle() and setting its properties.

The default outline style is a solid line of width one in the chart area’s foreground color.

[bookmark: _Toc534826653]7.6 	Hole Styles
Hole values are data points that are invalid or missing in the data series, or that are defined as hole values in the data source. For more information, see Hole Value under Text Data Formats, in Chapter 4.

By default, hole values are not drawn on the chart. If you want, you can choose to indicate that a hole value has occurred by specifying a hole style. A hole style is a JCChartStyle object that defines the line and fill styles to use when drawing hole values. Each data series can have a different style for holes. Hole styles are supported for plot, polar, and area charts.

Note: If hole styles are defined for the other chart types, the hole styles are ignored.

To specify the style to use for hole values in a data series, set the HoleStyle property in the ChartDataViewSeries object. The HoleStyle property takes a JCChartStyle object. The hole style objects for all the data series are stored in a Vector called HoleStyles in the ChartDataView object. You can access and manipulate the objects in the HoleStyles Vector in much the same way as described for ChartStyle in Section 7.4, Chart Styles.

7.6.1	Example of Hole Styles
For example, in the following code sample (taken from the holes.java example located in JCLASS_HOME/examples/chart/datasource/) when true is passed to the createStyles() method, it creates hole styles for each of the data series. Otherwise, it creates the basic chart styles. For hole styles, the line style is a long dash in the same color and width as the data series. The fill style is solid and uses a color that is defined in a holeColor[] array elsewhere in the code. Symbol styles are ignored; hole styles use the same symbol as the rest of the data series. The resulting JCChartStyle instances are added to a styles[] array.

...
// Create chart styles for hole display
holeStyles = createStyles(true);
dataView.setHoleStyle(holeStyles);
...
public List createStyles(boolean holeStyles)
List styles = new ArrayList();
for (int i = 0; i < yData.length; i++) {
// Define line style
int linePattern =
holeStyles ? JCLineStyle.LONG_DASH : JCLineStyle.SOLID;
JCLineStyle lineStyle = new JCLineStyle(1, colors[i],
linePattern);
// Define fill style
Color fillColor = holeStyles ? holeColors[i] : colors[i];
JCFillStyle fillStyle = new JCFillStyle(fillColor,
JCFillStyle.SOLID);
// Define symbol style
JCSymbolStyle symbolStyle = new
JCSymbolStyle(symbolPatterns[i],
colors[i], 6);
// Create the JCChartStyle instance
JCChartStyle chartStyle = new JCChartStyle(lineStyle,
fillStyle,symbolStyle);
// Add the style to the styles array
styles.add(chartStyle);
}
return styles;
}

The following sections show examples of the various chart types before and after the hole styles defined above are applied. The charts all use the same data series. The hole values are specified using the constant hole.

// Y-axis values for each of the three data series
protected double yData[][] = {
{7, 8, hole, 9, hole, 8, 7},
{4, 6, hole, hole, hole, 6, 4},
{1, hole, 2, 3, 2, hole, 1}
}

7.6.2	Hole Styles in Plot and Polar Charts
By default, when a hole value is encountered in a data series for a plot or polar chart, the hole value is not drawn and the lines that would have connected the missing value to valid data points on either side are omitted. The result is a broken line. When hole styles are specified, the chart uses the hole style’s line attributes to connect valid data points.

Note: Two valid data points are required to draw a line. Therefore, if the first or last point in a series is a hole, no line is drawn even if a hole style is present.

The following figures show plot and polar charts before and after the hole styles defined in the preceding example are applied to the three data series.

[image:]		[image:]

Figure 62 Plot chart before (left) and after (right) hole styles are applied.

[image:]		[image:]

7.6.3	Hole Styles in Area Charts
By default, when a hole value is encountered in a data series for an area chart, the hole value is not drawn and the region that spans the hole (that is, the region extending from the last valid point before the hole to the next valid point after the hole) is not filled. If a single valid data point is bounded by hole values on either side, the valid data point is drawn as a single line (see Figure 63, left image). When a hole style is specified, the fill attributes are used to fill the region between valid data points.

Note: Two valid data points are required to fill a region. Therefore, if the first or last point in a series is a hole, no fill style is used even if a hole style is present.

The following figure shows an area chart before and after the hole styles defined in the preceding example are applied to the three data series.

[image:]		[image:]
Figure 63 Area chart before (left) and after (right) hole styles are applied.

[bookmark: _Toc534826654]7.7 	Borders
One way to highlight important information or improve the chart’s appearance is to use a border. You can customize the border of the following chart objects:
· Header and Footer titles
· Legend
· ChartArea
· each ChartLabel added to the chart
· the entire chart
Border properties are set using the standard JComponent border facilities, getBorder() and setBorder().

[bookmark: _Toc534826655]7.8 	Fonts
A chart can have more impact when you customize the fonts used for different chart elements. You may also want to change the font size to make an element better fit the overall size of the chart. Any font available when the chart is running can be used. You can set the font for the following chart elements:
· Header and Footer titles
· Legend
· Axis annotation and title
· each ChartLabel added to the chart

Changing a Font
Font properties are set using the standard JComponent font facilities, getFont() and setFont(). Use the font properties to set the font, style, and size attributes.

[bookmark: _Toc534826656]7.9 	Colors
Color can powerfully enhance a chart’s visual impact. You can customize chart colors using Java color names or RGB values. Using JClass Chart Customizer can make selecting custom colors quick and easy. Each of the following visual elements in the chart has a background and foreground color that you can customize:
· the entire chart
· header and footer titles
· legend
· chart area
· plot area (foreground colors JCChartArea’s AxisBoundingBox)
· each chart label added to the chart

Color Defaults
All chart subcomponents are transparent by default with no background color. If made opaque, the legend, chart area and plot will inherit background color from the parent chart. The same objects will always inherit the foreground color from the chart. Headers and footers are independent objects and behave according to the rules of whatever object they are. However, once the application sets the colors of an element, they do not change when other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that specifies the current color of the element. The easiest way to specify a color is to use the built-in colornames defined in java.awt.Color. The following table summarizes these colors:

	Built-in Colors in java.awt.Color

	black
darkGray
lightGray
pink
	blue
gray
magenta
red
yellow
	cyan
green
orange
white

Alternately, you can specify a color by its RGB components, useful for matching another RGB color. RGB color specifications are composed of a value from 0 – 255 for each of the red, green and blue components of a color. For example, the RGB specification of Cyan is “0-255-255” (combining the maximum value for both green and blue with no red).

The following example sets the header background using a built-in color, and the footer background to an RGB color (a dark shade of Turquoise):

c.getHeader().setBackground(Color.cyan);

mycolor = new Color(95,158,160);
c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the chart. The default ChartStyles use all of the built-in colors in the following order: Red, Orange, Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan, Black, Pink, and White. Note that JClass Chart will skip colors that match background colors. For example, if the chart area background is Red, then the line, fill, and symbol colors will start at Orange.

For all charts, the foreground and background colors of the plot area are adjustable.

Transparency
If the JClass Chart component is meant to have a transparent background, set the Opaque property to False; then generated GIFs and PNGs will also contain a transparent background.

[bookmark: _Toc534826657]7.10 	Positioning Elements on the Chart Object
Each of the main chart elements (Header, Footer, Legend, and ChartArea) has properties that control its position and size. While the chart can automatically control these properties, you can also customize the following:
· positioning of any element
· size of any element

When the chart controls positioning, it first allows space for the Header, Footer, and Legend, if they exist (size is determined by contents, border, and font). The ChartArea is sized and positioned to fit into the largest remaining rectangular area. Positioning adjusts when other chart properties change.

ChartLabels do not figure into the overall Chart layout. Instead, they are positioned above all other Chart elements.

Changing the Location and Size
To specify the absolute location and size of a chart element, call setLayoutHints() in JCChart with the object you wish to move and a rectangle containing its desired X and Y location, width, and height. If you desire any of those values to be calculated rather than set, make them equal to Integer.MAX_VALUE.

For example, the following code sets the legend to be 200 pixels wide and 300 pixels high and places it at the x,y coordinate (0,150):

chart.setLayoutHints(legend, newRectange(0,150,200,300))

Whereas this code allows the legend size to be dynamic, but places the legend at (0,150):

chart.setLayoutHints(legend, Rectange(0,150,
Integer.MAX_VALUE,Integer.MAX_VALUE, Integer.MAX_VALUE))

[bookmark: _Toc534826658]7.11 	3D Effect
Data in bar, stacking bar, and pie charts can be displayed with a three-dimensional appearance using several JCChartArea properties:
· Depth — Specifies the apparent depth as a percentage of the chart’s width. No 3D effect appears unless this property is set greater than zero.
· Elevation — Specifies the eye’s position above the horizontal axis, in degrees.
· Rotation — Specifies the number of degrees the eye is positioned to the right of the vertical axis. This property has no effect on pie charts.
You can set the visual depth and the “elevation angle” of the 3D effect. You can also set the “rotation angle” on bar and stacking bar charts. Depth, Rotation and Elevation are all properties of the ChartArea.

[image:]
Figure 64 Four charts illustrating 3D effects.

[bookmark: _Toc534826659]7.12 	Anti-Aliasing
Anti-aliasing is the process of smoothing out lines and curves to remove the pixelated appearance of text and graphics. The smoothing is done by padding pixels with intermediate colors. For example, a black and white image would be smoothed out using gray.

[image:]
Figure 65 The appearance of text with and without anti-aliasing.

JClass Chart is equipped with the AntiAliasing property which can turn anti-aliasing on or off when the chart and its subcomponents are painted.
· JCChart.ANTI_ALIASING_ON turns on anti-aliasing for the chart;
· JCChart.ANTI_ALIASING_OFF turns off anti-aliasing for the chart;
· JCChart.ANTI_ALIASING_DEFAULT, which is the default value, ensures that the graphics object will be untouched with respect to anti-aliasing when the chart is painted.

Ch 8 Defining Markers and Thresholds		2
Ch 7 Defining Text and Style Elements		1
8
[bookmark: _Toc534826660]Defining Markers and Thresholds
Markers ■ Thresholds

You can enhance your clients’ understanding of the data in your chart by implementing markers or thresholds. Markers are displayed as lines in the chart, and can be used to mark things like the average data value, data limits, or a particular coordinate in the chart. Thresholds cover a range of data values and are displayed as areas of color in the chart background. Thresholds can be used to identify and draw attention to groups of data values, such as values that fall below expectations, meet expectations, or exceed expectations. You can use both markers and thresholds in the same chart.

Important: This section assumes that you are using the underlying data model. If you are using the targeted data model, you need to implement the marker or threshold iterator. For more information, see Chapter 5, Adding Data with the Targeted Data Model.

[bookmark: _Toc534826661]8.1 	Markers
Markers enable you to draw lines in the plot area of the chart. For example, you could create a control chart by using parallel marker lines to represent an upper limit, an average, and a lower limit. Alternatively, you could create a crosshair at a particular coordinate to highlight a target value.

Note: Markers are not available for pie charts.

[image:]
Figure 66 A control chart that uses markers to create the upper and lower limits and an average.

You can have a list of markers for each data view. The ChartDataView object maintains this list and has methods to add markers, remove markers, and get the current list of markers. For more information, see ChartDataView in the JClass API Documentation.

After you create a JCMarker object, you associate the marker with a data view and an axis and then specify the value on that axis at which to draw the marker line. The following sections describe how to create a marker on the x-axis and the y-axis, as well as how to create a crosshair.

8.1.1	Creating X-axis Markers
To add an x-axis marker to the chart, you need to create a JCMarker object with its AssociatedWithYAxis property set to false, add it to the data view, and specify the value on the x-axis at which to draw the line. You can customize the line style and length, as well as control whether or not the markers are drawn on top of the data. For more information, see Section 8.1.4, Customizing Markers.

The following code snippet demonstrates how to create an x-axis marker. The JCMarker constructor shown in this example takes the following parameters: a label (String) and a value at which to draw the marker line (double). The AssociatedWithYAxis property is set after the object is created. For more information, see JCMarker in Appendix A.23 and in the JClass API Documentation.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker = new JCMarker("Marker at 2", 2.0);
marker.setAssociatedWithYAxis(false);
dataView.addMarker(marker);

X-axis Marker in a Rectangular Chart
In a rectangular chart (default orientation), associating a marker with the x-axis creates a vertical marker. By default, the vertical marker line spans the height of the plot area.

[image:]
Figure 67 Plot chart (non-inverted) with an x-axis (vertical) marker.

If the chart orientation is inverted so that the x-axis is the vertical axis, the marker is drawn horizontally.

X-axis Marker in a Circular Chart
In a circular chart, markers associated with the x-axis are drawn as radial lines.

[image:]
Figure 68 Polar chart with an x-axis (radial) marker.

8.1.2	Creating Y-axis Markers
To add a y-axis marker to the chart, you need to create a JCMarker object with its AssociatedWithYAxis property set to true, add it to the data view, and specify the value on the y-axis at which to draw the line. You can customize the line style and length, as well as control whether or not the markers are drawn on top of the data. For more information, see Section 8.1.4, Customizing Markers.

The following code snippet demonstrates how to create a y-axis marker. The JCMarker constructor shown in this example takes the following parameters: a label (String) and a value at which to draw the marker line (double). The AssociatedWithYAxis property is set after the object is created. For more information, see JCMarker in Appendix A.23 and in the JClass API Documentation.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker = new JCMarker("Marker at 200", 200.0);
marker.setAssociatedWithYAxis(true);
dataView.addMarker(marker);

Y-axis Marker in a Rectangular Chart
In a rectangular chart (default orientation), associating a marker with the y-axis creates a horizontal marker. By default, the horizontal marker line spans the width of the plot area.

[image:]
Figure 69 Bar chart (non-inverted) with a y-axis (horizontal) marker.
If the chart orientation is inverted so that the y-axis is the horizontal axis, the marker is drawn vertically.

Y-axis Marker in a Circular Chart
In a circular chart, markers associated with the y-axis are drawn as circles (or arcs, if a line length is specified).

[image:][image:]
Figure 70 Polar chart and an area radar chart displaying y-axis markers as circles.

Y-axis Marker in a Webbed Chart
In radar charts, if webbed gridlines are drawn, then a y-axis marker is displayed as a web shape rather than a circular shape. For more information, see Gridlines, in Chapter 6.

[image:]
Figure 71 Area radar chart displaying a y-axis marker drawn in a web-like fashion.

8.1.3	Creating a Crosshair with Markers
To create a crosshair, you add two markers to your selected data view, one associated with the x-axis and one with the y-axis, and position them so that they intersect at the coordinate that you want to highlight.

The following code snippet demonstrates how to create a crosshair.

ChartDataView dataView = chart.getDataView(0);
JCMarker xMarker = new JCMarker("X Marker", 2.0);
xMarker.setAssociatedWithYAxis(false);
dataView.addMarker(xMarker);

JCMarker yMarker = new JCMarker("Y Marker", 175.0);
yMarker.setAssociatedWithYAxis(true);
dataView.addMarker(yMarker);

[image:]
Figure 72 Area chart with markers that create a crosshair.

8.1.4	Customizing Markers
You can set the start and end points for the marker and customize the line style. You can also choose when the markers are drawn on the chart, that is, before or after the data is displayed. If you like, you can display marker labels in the legend or add chart labels to your markers.

8.1.4.1 	Setting the Start and End Points
By default, a marker line spans the entire plot area. You can choose to specify the start point and end point of the line in terms of the non-associated axis. For example, the start and end point values for a x-axis marker refer to values on the y-axis. If the start point is undefined, the marker is drawn from the minimum value on the y-axis. Conversely, if the end point is not set, the marker line ends at the maximum value on the y-axis.

Note: For radar charts, markers associated with the y-axis can start and end only at spoke boundaries.

In the following code snippet, the StartPoint and EndPoint properties are used to modify the markers so that they do not span the entire plot area. Note that the StartPoint property for ‘Marker 2’ is not specified, so the line starts from the minimum value on the y-axis.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker1 = new JCMarker("Marker 1", 2.0);
marker1.setAssociatedWithYAxis(false);
marker1.setStartPoint(175.0);
marker1.setEndPoint(275.0);
dataView.addMarker(marker1);

JCMarker marker2 = new JCMarker("Marker 2", 3.0);
marker2.setAssociatedWithYAxis(false);
marker2.setEndPoint(160.0);
dataView.addMarker(marker2);

[image:][image:]
Figure 73 Stacking bar chart and area radar chart displaying two markers.

In a circular chart where the y-axis marker is drawn as a circle, setting a start and end point results in an arc that spans the distance between the two points. The following code snippet demonstrates how you might specify a y-axis marker for a polar chart.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker = new JCMarker("Marker", 200.0);
marker.setStartPoint(Math.PI / 4.0);
marker.setEndPoint(1.5 * Math.PI);
marker.setAssociatedWithYAxis(true);
dataView.addMarker(marker);

[image:]
Figure 74 Polar chart displaying a y-axis marker with a start and end point (arc).

8.1.4.2 	Setting the Line Style
You can define the width of the line, the color, and the line attribute (solid, dashed, dotted, etcetera.).

The following code snippet creates two markers. Unique LineStyle properties are set for each of the markers. You may also notice that one marker is drawn before the data, and the other is drawn after the data. For more information, see Section 8.1.4.3, Controlling When Markers are Drawn.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker1 = new JCMarker("Marker 1", 100.0);
marker1.setAssociatedWithYAxis(true);
marker1.setLineStyle(new JCLineStyle(3, Color.BLUE,
JCLineStyle.SHORT_DASH));
dataView.addMarker(marker1);

JCMarker marker2 = new JCMarker("Marker 2", 400.0);
marker2.setAssociatedWithYAxis(true);
marker2.setLineStyle(new JCLineStyle(3, Color.DARK_GRAY,
JCLineStyle.DASH_DOT));
marker2.setDrawnBeforeData(true);
dataView.addMarker(marker2);

[image:]
Figure 75 Stacking area chart showing two markers with different line styles.

8.1.4.3 	Controlling When Markers are Drawn
You can choose to draw markers before or after the data is added to the chart. By default, the markers are drawn after the data and axes, but before chart labels are added. You can change the order so that the markers are drawn before the axes and data are displayed, but after the background, thresholds, and grid lines are added.

In the following code snippet, the DrawnBeforeData property is set to true so that the markers are drawn before the data.

ChartDataView dataView = chart.getDataView(0);
JCMarker xMarker = new JCMarker("X Marker", 2.0);
xMarker.setAssociatedWithYAxis(false);
xMarker.setDrawnBeforeData(true);
dataView.addMarker(xMarker);

JCMarker yMarker = new JCMarker("Y Marker", 175.0);
yMarker.setAssociatedWithYAxis(true);
yMarker.setDrawnBeforeData(true);
dataView.addMarker(yMarker);

[image:]
Figure 76 Plot chart with crosshair markers drawn before the data, so that the data point is displayed
on top.

For another example of using the DrawnBeforeData property, see Section 8.1.4.2, Setting the Line Style.

8.1.4.4 	Identifying Markers in the Legend
If you want, you can add labels for your markers to the legend. Marker labels are displayed below series labels but before threshold labels (if any).

In the following code snippet, the marker labels are added to the legend by setting the VisibleInLegend property to true. The programmer also needed to set different LineStyles on the markers to be able to distinguish the markers from each other in the legend. For more information, see Section 8.1.4.2, Setting the Line Style.

ChartDataView dataView = chart.getDataView(0);
chart.getLegend().setVisible(true);
JCMarker marker1 = new JCMarker("Marker 1", 2.0);
marker1.setAssociatedWithYAxis(false);
marker1.setLineStyle(new JCLineStyle(1, Color.black,
JCLineStyle.SHORT_DASH));
marker1.setVisibleInLegend(true);
dataView.addMarker(marker1);

JCMarker marker2 = new JCMarker("Marker 2", 200.0);
marker2.setAssociatedWithYAxis(true);
marker2.setLineStyle(new JCLineStyle(1, Color.black,
JCLineStyle.DASH_DOT));
marker2.setVisibleInLegend(true);
dataView.addMarker(marker2);

[image:]
Figure 77 3D bar chart with crosshair markers identified in the legend.

8.1.4.5 	Attaching Chart Labels
To attach a chart label to a marker, you create the chart label and then set the ChartLabel property on the marker. You can set most chart label properties as usual, though there are some restrictions (see Restrictions below). By default, the chart label is attached to the marker midway between the start point and the end point. You can change where the marker is attached by setting the DataCoord property of the chart label. For more information, see Chart Labels, in Chapter 7, and JCChartLabel in Appendix A.13 and in the API Documentation.

Restrictions:
· The JCChartLabel component must be a JLabel (default), or an exception is thrown.
· The attach type is always JCChartLabel.ATTACH_DATACOORD; if this is not the case, it is forced upon the chart label by the marker.
· When setting the attach point, the coordinate value that represents the associated axis for the marker must be on the marker. If this is not the case, it is forced upon the chart label. For example, for an x-axis marker, the x-value of the attach point will be on the marker line, even if you set the x-value to something else.
· The data view for the chart label must be the same as the marker; if this is not the case, it is forced upon the chart label.
· A chart label cannot be a dwell label, or an exception is thrown.
· A chart label must not have been added to the chart's label manager, or an exception is thrown.

The following code snippet sets a chart label on an x-axis marker and sets some properties. The chart label is attached to the marker at the default midway point.

ChartDataView dataView = chart.getDataView(0);
JCMarker marker = new JCMarker("My marker", 2.0);
marker.setAssociatedWithYAxis(false);
JCChartLabel label = new JCChartLabel("A Marker Label");
label.setOffset(new Point(60, -60));
label.setConnected(true);
label.getComponent().setBorder(new LineBorder(Color.black, 2));
marker.setChartLabel(label);
dataView.addMarker(marker);

[image:]
Figure 78 Plot chart showing a marker with a chart label that is attached at the midway point.

8.1.4.6 	Troubleshooting Missing Markers
If a marker is not drawn on your chart, it may be that its value falls outside the minimum or maximum data bounds for its associated axis. For example, if an x-axis marker value is 19, and the maximum value displayed on the chart for that axis is 10, the marker is not drawn.

By default, the data bounds for an axis are calculated based on the range of values for that axis contained in the data set; marker values are ignored. To include a marker value in the data bounds calculation, set the marker’s IncludedInDataBounds property to true.

Note: This property is ignored for axes that have fixed bounds. Axes that have fixed bounds are the x -axis for polar and radar charts and the y-axis for 100% stacking charts. In addition, the y-axis in polar, radar, and area radar charts have a fixed minimum bound of zero (when not reversed).

[bookmark: _Toc534826662]8.2 	Thresholds
Thresholds enable you to specify regions of different colors in the plot area of the chart. For example, you can create a red zone to indicate that the data values located within the zone are problematic in some specified way. You can use multiple thresholds in a single chart, and the thresholds can overlap.

Note: Thresholds are not available for pie charts.

[image:]
Figure 79 Bar chart that uses thresholds to highlight positive (green) and negative (red) price flucuations.

You can have a list of thresholds for each data view. The ChartDataView object maintains this list and has methods to add thresholds, remove thresholds, and get the current list of thresholds. For more information, see ChartDataView in the JClass API Documentation.

After you create a JCThreshold object, you associate the threshold with a data view and an axis. Thresholds are drawn immediately after the plot area is drawn, and they are drawn in the order in which they appear in the threshold list for the data view. The following sections describe how to create a threshold on the x-axis or the y-axis, and what happens when thresholds overlap or intersect.

8.2.1	Creating X-axis Thresholds
To add an x-axis threshold to the chart, you need to create a JCThreshold object with its AssociatedWithYAxis property set to false and then add it to a data view. You can define the width of the threshold by specifying a start value and an end value on the x-axis. You can also customize the fill style and add boundary lines. For more information, see Section 8.2.4, Customizing Thresholds.

The following code snippet demonstrates how to create an x-axis threshold. The JCThreshold constructor shown in this example takes the following parameters: a label (String), the value at which to start the threshold (double), the value at which to end the threshold (double), the boolean isAssociatedWithYAxis (which is set to false for an x-axis threshold), and a color (in the form specified by java.awt.Color). For more
information, see JCThreshold in Appendix A.28 and in the JClass API Documentation.

ChartDataView dataView = chart.getDataView(0);
boolean isAssociatedWithYAxis = false;
JCThreshold threshold = new JCThreshold("My Threshold", 2.0, 3.0,
isAssociatedWithYAxis,Color.blue);
dataView.addThreshold(threshold);

X-axis Threshold in a Rectangular Chart
In a rectangular chart (default orientation), associating a threshold with the x-axis creates a vertical threshold. By default, the vertical threshold spans the height of the plot area.

[image:]
Figure 80 Plot chart (non-inverted) with an x-axis (vertical) threshold.

If the chart orientation is inverted so that the x-axis is the vertical axis, the threshold is drawn horizontally.

X-axis Threshold in a Circular Chart
In a circular chart, thresholds associated with the x-axis are drawn as colored slices of a pie in the circular plot area.

[image:]		[image:]
Figure 81 Polar chart and radar chart displaying pie-shaped x-axis thresholds.

X-axis Threshold in a Webbed Chart
In radar charts, if webbed gridlines are drawn, then an x-axis threshold is displayed with straight outer edges rather the circular arcs. For more information on webbed gridlines, see Gridlines, in Chapter 6.

[image:]
Figure 82 Radar chart displaying an x-axis threshold drawn in a web-like fashion.
8.2.2	Creating Y-axis Thresholds
To add a y-axis threshold to the chart, you need to create a JCThreshold object with its AssociatedWithYAxis property set to true and then add it to a data view. You can define the area of the threshold by specifying a start value and an end value on the y-axis, customize the fill style, and add boundary lines. For more information, see Section 8.2.4, Customizing Thresholds.

The following code snippet demonstrates how to create a y-axis threshold. The JCThreshold constructor shown in this example takes the following parameters: a label (String), the value at which to start the threshold (double), the value at which to end the threshold (double), the boolean isAssociatedWithYAxis (which is set to true for a y-axis threshold), and a color (in the form specified by java.awt.Color).

ChartDataView dataView = chart.getDataView(0);
boolean isAssociatedWithYAxis = true;
JCThreshold threshold = new JCThreshold("My Threshold", 150.0,
250.0,isAssociatedWithYAxis, Color.blue);
dataView.addThreshold(threshold);

Y-axis Threshold in a Rectangular Chart
In a rectangular chart (default orientation), associating a marker with the y-axis creates a horizontal marker. By default, the horizontal marker line spans the width of the plot area.

[image:]
Figure 83 Stacking bar chart (non-inverted) with a y-axis (horizontal) threshold.

If the chart orientation is inverted so that the y-axis is the horizontal axis, the marker is drawn vertically.

Y-axis Threshold in a Circular Chart
In a circular chart, thresholds associated with the y-axis are drawn as circular bands of color.

[image:]		[image:]	
Figure 84 Polar chart and radar chart showing y-axis thresholds as circular bands of color.

Y-axis Threshold in a Webbed Chart
In radar charts, if webbed gridlines are drawn, then a y-axis threshold is displayed as a band of color with a webbed shape rather than a circular shape. For more information on webbed gridlines, see Gridlines, in Chapter 6.

[image:]
Figure 85 Radar chart displaying a y-axis threshold drawn as a web-shaped band of color.	

8.2.3	Overlapping and Intersecting Thresholds
When you add multiple thresholds to a chart, the thresholds can be associated with either axis. If thresholds on the same axis overlap, or if you intersect thresholds by using both axes, the order in which the thresholds are drawn becomes important. Each threshold is painted on top of previously drawn thresholds. If the fill style is solid (which is the default), this means that parts or all of previously drawn thresholds may be hidden.

When the following code snippet executes, the y-axis threshold, threshold2, is drawn on top of the x-axis threshold because the y-axis threshold is added to the data view last.

ChartDataView dataView = chart.getDataView(0);
boolean isAssociatedWithYAxis = false;
JCThreshold threshold1 = new JCThreshold("My Threshold", 1.5,
2.5,isAssociatedWithYAxis, Color.green);
dataView.addThreshold(threshold1);

isAssociatedWithYAxis = true;
JCThreshold threshold2 = new JCThreshold("My Threshold",
150.0, 250.0,isAssociatedWithYAxis, Color.blue);
dataView.addThreshold(threshold2);

[image:]
Figure 86 Bar chart with intersecting thresholds.

8.2.4	Customizing Thresholds
You can specify the fill style for a threshold and add boundary lines to the edges of the threshold. If you like, you can add threshold labels to the legend.

8.2.4.1 	Setting the Fill Style for Thresholds
You can specify a fill color, fill pattern, or an image to fill the threshold region. If the FillStyle property of the threshold is set to null, the threshold is not filled; however, if the start and end lines are specified, the lines are still drawn. For more information, see JCFillStyle in Appendix A.16 and in the JClass API Documentation.

The following code snippet creates two x-axis thresholds with different fill styles. The fill styles are specified using the FillStyle property and the JCFillStyle object.

ChartDataView dataView = chart.getDataView(0);
boolean isAssociatedWithYAxis = false;
JCThreshold threshold1 = new JCThreshold("Threshold 1", 1.0,
2.5, isAssociatedWithYAxis);
threshold1.setFillStyle(new JCFillStyle(Color.blue,
JCFillStyle.STRIPE_135));
dataView.addThreshold(threshold1);

JCThreshold threshold2 = new JCThreshold("Threshold 2", 2.5,
4.0, isAssociatedWithYAxis);
threshold2.setFillStyle(new JCFillStyle(Color.red,
JCFillStyle.STRIPE_45));
dataView.addThreshold(threshold2);

[image:]
Figure 87 Scatter plot chart showing two thresholds with differen fill styles.

8.2.4.2 	Adding Boundary Lines
You can add boundary lines at the start and end of the threshold area by specifying the StartLineStyle and/or the EndLineStyle properties of the threshold. By default these properties are set to null, which means no lines are drawn. When you set one of these properties, you construct a JCLineStyle object to specify the line style. For more information, see JCLineStyle in Appendix A.22 and in the JClass API Documentation.

The following code snippet demonstrates how to add bounding lines to a threshold using the StartLineStyle and EndLineStyle properties with JCLineStyle objects.

ChartDataView dataView = chart.getDataView(0);
boolean isAssociatedWithYAxis = true;
JCThreshold threshold = new JCThreshold("Threshold", 300.0,
400.0, isAssociatedWithYAxis, Color.blue);
threshold.setStartLineStyle(new JCLineStyle(2, Color.black,
JCLineStyle.DASH_DOT));
threshold.setEndLineStyle(new JCLineStyle(2, Color.black,
JCLineStyle.DASH_DOT));
dataView.addThreshold(threshold);

[image:]
Figure 88 3D stacking bar chart showing a threshold with boundary lines.

8.2.4.3 	Identifying Thresholds in the Legend
If you want, you can add labels for your thresholds to the legend. Threshold labels are displayed below both series labels and marker labels (if any).

In the following code snippet, the threshold labels are added to the legend by setting the VisibleInLegend property to true. Note that for clarity, the fill color chosen for the threshold should be different than the colors used for the series. For more information, see Section 8.2.4.1, Setting the Fill Style for Thresholds.

ChartDataView dataView = chart.getDataView(0);
chart.getLegend().setVisible(true);
boolean isAssociatedWithYAxis = true;
JCThreshold threshold = new JCThreshold("The Blue Zone",
200.0, 300.0, isAssociatedWithYAxis, Color.blue);
threshold.setStartLineStyle(new JCLineStyle(1, Color.black,
JCLineStyle.SOLID));
threshold.setEndLineStyle(new JCLineStyle(1, Color.black,
JCLineStyle.SOLID));
threshold.setVisibleInLegend(true);
dataView.addThreshold(threshold);

[image:]
Figure 89 Polar chart with a circular y-axis threshold that is identified in the legend.

8.2.4.4 	Troubleshooting Missing or Partial Thresholds
If your threshold is missing or is only partially visible on the chart, it may be that its start value and/or end value falls outside the minimum or maximum data bounds for its associated axis. A threshold is not drawn on the chart when its start and end values fall below the minimum data bound or exceed the maximum data bounds for its associated axis. A threshold is only partial visible if its start value falls below the minimum bound while its end value is within data bounds. Similarly, if the end value exceeds the maximum bound while the start value is within bounds, only the start of the threshold is visible.

By default, the data bounds for an axis are calculated based on the range of values for that axis contained in the data set; threshold values are ignored. To include a threshold’s start and end values in the data bounds calculations, set the threshold’s IncludedInDataBounds property to true.

Note: This property is ignored for axes that have fixed bounds. Axes that have fixed bounds are the x -axis for polar and radar charts and the y-axis for 100% stacking charts. In addition, the y-axis in polar, radar, and area radar charts have a fixed minimum bound of zero (when not reversed).

Ch 8 Defining Markers and Thresholds		1
9
[bookmark: _Toc534826663]Advanced Chart Programming
Outputting JClass Charts ■ Batching Chart Updates
FastAction ■ FastUpdate ■ Programming End-User Interaction
Map and Upmap ■ Pick ■ Unpick ■ Using Pick and Unpick
Coordinate Conversion Methods ■ Image-Filled Bar Charts

Controlling the chart in an application program is generally straightforward once you are familiar with the programming basics and the object hierarchy. For most JClass Chart objects, all the information needed to program them can be found in the API. In addition, extensive information on how they can be used can be found in the numerous example and demonstration programs provided with JClass Chart.

This chapter covers more advanced programming concepts for JClass Chart and also looks at more complex chart programming tasks.

[bookmark: _Toc534826664]9.1 	Outputting JClass Charts
Many applications require that the user has a way to get an image or a hard copy of a chart. JClass Chart allows you to output your chart as a GIF, PNG, or JPEG image, to either a file or an output stream. If you have JClass PageLayout installed, you can also choose to encode your charts as an EPS, PS, or PDF file. For more information, please see the JClass PageLayout Programmer’s Guide.

Located in com.klg.jclass.util.swing.encode, the JCEncodeComponent class is used to encode components into different image file formats. When you include this class in your program, you can call one of two methods that allow you to save the chart image as a GIF, PNG, or JPEG file, sending it to either a file or an output stream.

The parameters of the two methods are the same, except for output.

9.1.1	Encode method
The method to output to a file is:

public static void encode(JCEncodeComponent.Encoding encoding,
Component component, File file)

The method to output to an output stream is the same, except that the last parameter is OutputStream output, that is ...Component component, OutputStream output)

The component parameter refers to the component to encode, that is, the chart; the encoding parameter refers to the type of encoding to use (a GIF, PNG, or JPEG; or, if you have JClass PageLayout installed, EPS, PS, or PDF file); and the output parameter refers either to the file to which to write the encoding or to the stream to which to write the encoding.

9.1.2	Encode example
To see this encode method in action, review the Encode example, found in the Example & Demo Gallery. This example appears in the Advanced folder.

[image:]

In this example, you can alter the encoding type by selecting a different encoding type from the drop-down menu. Another option provided is your choice of file name. Also, you can right-click the example to bring up the Property Editor and further manipulate the properties of the chart.

9.1.3	Code example
The following code snippet was used to create the example above.

public void actionPerformed(ActionEvent evt) {
int typeIndex = encTypesCB.getSelectedIndex();
String fileName = encFileTF.getText();

if (evt.getSource() == encButton) {
// if encode button pressed, get the encoding type and file name
// and use them to encoding the chart

if (typeIndex >= 0 && !(fileName.equals(""))) {
// Call chart's encoding method, but make sure to catch
// possible exception
try {
JCEncodeComponent.encode (JCEncodeComponent.ENCODINGS
[typeIndex], chart, new File(fileName));
}
catch (EncoderException ee) {
ee.printStackTrace();
}
catch (IOException io) {
io.printStackTrace();
}
}
}
}

[bookmark: _Toc534826665]9.2 	Batching Chart Updates
Normally, the chart is repainted immediately after a property is set. To make several changes to a chart before causing a repaint, set the Batched property of the JCChart object to true. Property changes do not cause a repaint until Batched is reset to false.

The Batched property is also defined for the ChartDataView object. This Batched property is independent of JCChart.Batched. It is used to control the update requests sent from the DataSource to the chart.

Note: It is highly recommended that you batch around the creation or updating of multiple chart labels.

[bookmark: _Toc534826666]9.3 	FastAction
The FastAction property determines whether chart actions will use an optimized mode in which it does not bother to update display axis annotations or gridlines during a chart action. Default value is false.

Using FastAction can greatly improve the performance of a chart display, because relatively more time is needed to draw such things as axis annotations or gridlines than for simply updating the points on a chart. It is designed for use in dynamic chart displays, such as charts that enable the user to perform translation or rotation actions.

The following line of code shows how FastAction can be used in a program:

c.getChartArea().setFastAction(true);

[bookmark: _Toc534826667]9.4 	FastUpdate
The FastUpdate property optimizes chart drawing – if possible, only new data that has been added to the datasource is drawn when the chart updates, with little recalculating and redrawing of existing points. (Please see Making Your Own Chart Data Source, in Chapter 4, for a guide on how to build an updating chart data source.) However, if the new data goes outside of the current axis boundaries, then a full redraw is done.

Using FastUpdate can improve the performance of a chart display, especially with dynamic chart displays.

The following line of code shows how FastUpdate can be used in a program:

c.getDataView(0).setFastUpdate(true);

A chart using the fast update feature will not draw correctly when the chart object is placed within an JInternalFrame object or when items from a JPopupMenu overlay the chart.

Please see the FastUpdate demo, found in JCLASS_HOME/demos/chart/fastupd/, for a demonstration of this feature.

Note: This feature is not supported in Area Radar or Radar charts. For Polar charts, there is no need to check the axis bounds in the x-direction. The routines for checking axis bounds can still be used for the y-direction.

[bookmark: _Toc534826668]9.5 	Programming End-User Interaction
An end-user can interact with a chart more directly than using the Customizer. Using the mouse and keyboard, a user can examine data more closely or visually isolate part of the chart. JClass Chart provides the following interactions:
· moving the chart
· zooming into or out of the chart
· rotation (only for bar or pie charts displaying a 3D effect)
· adding depth cues to the chart
· interactively change data points (using the pick feature)
It is also possible in most cases for the user to reset the chart to its original display parameters. The interactions described here affect the chart displayed inside the ChartArea; other chart elements, such as the header, are not affected.

Note: The keyboard/mouse combinations that perform the different interactions can be changed or removed by a programmer. The interactions described here may not be enabled for your chart.

A chart action is a user event that causes some interactive action to take place in the control. In JClass Chart, actions like zoom, translate and rotate can be mapped to a mouse button and a modifier. For example, it is possible to bind the translate event to the combination of mouse button 2 and the Control key. Whenever the user hits Control and mouse button 2 and drags the mouse, the chart will move.

9.5.1 	Event Triggers
An event trigger is a mapping of a mouse operation and/or a key press to a chart action. In the example above, the trigger for translate is a combination of mouse button 2 and the Control key.

An event trigger has two parts:
· the modifier, which specifies the combination of meta keys and mouse buttons that will trigger the action
· the action, which specifies the combination of chart action that will occur
Valid actions include EventTrigger.CUSTOMIZE, EventTrigger.DEPTH, EventTrigger.EDIT, EventTrigger.PICK, EventTrigger.PICK_SERIES,
EventTrigger.ROTATE, EventTrigger.TRANSLATE, and EventTrigger.ZOOM.

9.5.2 	Valid Modifiers
The value of a modifier is specified using java.AWT.event modifiers, as shown in the
following list:
· InputEvent.SHIFT_MASK
· InputEvent.CTRL_MASK
· InputEvent.ALT_MASK
· InputEvent.META_MASK
You can also specify the mouse button using one of the following modifiers:
· InputEvent.BUTTON1_MASK
· InputEvent.BUTTON2_MASK
· InputEvent.BUTTON3_MASK
9.5.3 	Programming Event Triggers
To program an event trigger, use the setTrigger method to add the new action mapping
to the collection.

For example, the following tells JClass Chart to add a zoom operation as its first trigger
(first trigger denoted by 0) when Shift and mouse button are pressed:

c.setTrigger(0,newEventTrigger(Event.SHIFT_MASK,
EventTrigger.ZOOM);

9.5.4 	Removing Action Mappings
To remove an existing action mapping, set the trigger to null, as in the following example:

c.setTrigger(0,null);

9.5.5 	Calling an Action Directly
In JClass Chart, it is possible to force some actions by calling a method of JCChart. The
following is a list of the methods that can be called upon to force a particular action:
· Translation – translateStart(), translate(), translateEnd()
· Rotation – rotateStart(), rotate(), rotateEnd()
· Zoom – zoomStart(), zoom(), zoomEnd()
· Scale – scale()
· Reset – reset()

9.5.6 	Specifying Action Axes
Actions like translation occur with respect to one or more axes. In JClass Chart, the axes can be set using the HorizActionAxis and VertActionAxis properties of JCChartArea, as the following code fragment illustrates:

ChartDataView arr = c.getDataView(0);
c.getChartArea().setHorizActionAxis(arr.getXAxis());
c.getChartArea().setVertActionAxis(arr.getYAxis());

Note that it is possible to have a null value for an action axis. This means that chart actions like translation do not have any effect in that direction. By default, the HorizActionAxis is set to the default x-axis, and the VertActionAxis is set to the default y-axis.

[bookmark: _Toc534826669]9.6 	Map and Unmap
The map and unmap are functionally equivalent to the coordToDataCoord() and dataIndexToCoord() methods. They are provided as convenience methods, and are more in keeping with typical Java terminology than coordToDataCoord() and dataIndexToCoord(). For more information, see Section 9.10, Coordinate Conversion Methods.

For polar charts, the x- and y-values are interpreted as (theta, r) coordinates. The X units used will depend on the current value of angle unit. The case for radar and area radar charts is similar, except that x-values will be ignored.

[bookmark: _Toc534826670]9.7 		Pick
There are two pick methods: pick() and pickSeries().

The pick() method is used to translate a pixel coordinate on a chart to the data point that is closest to it. The method takes a Point object containing a pixel coordinate and an optional ChartDataView object to check against, and returns the resulting data point encapsulated in a JCDataIndex object.

The pickSeries() method is used to translate a pixel coordinate on a chart to the data series line that is closest to it. The method takes a Point object containing a pixel coordinate and an optional ChartDataView object to check against, and returns the resulting data series and the nearest point on the series line encapsulated in a JCDataIndex object. The pickSeries() method is suitable for plot, polar, and radar charts, that is, chart types where the points in a series are plotted and connected by a line. Calling the pickSeries() method on other chart types returns the same result as calling the pick() method.

For the pick methods to work correctly, the JCChart instance must first be laid out. This is automatically done whenever a chart is drawn, such as when the snapshot() method is called. Alternately, layout can be accomplished manually by calling the doLayout() method of JCChart.

9.7.1 	Pick Methods for Polar and Radar Charts
The pick() method for polar and radar charts is implemented in two stages. The data point closest to the pick point is identified in a primary search, thus obeying the specified pick focus rule. In some cases (for example, radar charts with more than one series), there may be two or more data points that have the same x- or y-value. The primary search result may be ambiguous if the pick focus rule is PICK_FOCUS_X or PICK_FOCUS_Y. To determine which of those points is the desired one, a secondary search is carried out using the PICK_FOCUS_XY rule.

For pickSeries(), PICK_FOCUS_XY is always used.

9.7.2 	Pick Methods for Area Radar Charts
The pick behavior for area radar charts differs from that of polar or radar charts. If the user clicks on a point within a filled polygon, the search for the closest point (again, obeying the pick focus rule) is limited to the data series represented by that polygon. Pick points within a polygon have the JCDataIndex.distance variable set to 0. If the pick point is not within a filled polygon (that is, the user clicked on a point outside of the largest polygon), then the smallest distance from the pick point to the polygon is taken. As with the polar and radar chart types, primary and secondary searches are conducted to resolve ambiguities that may arise for PICK_FOCUS_X or PICK_FOCUS_Y.

9.7.3	Pick Focus
pick normally takes an x,y coordinate value, but it can take an x- or y-value only, which is useful for specific chart types. This can be specified using the PickFocus property of ChartDataView which specifies how distance is determined for pick operations. When set to PICK_FOCUS_XY (default), a pick operation will use the actual distance between the point and the drawn data. When set to values of PICK_FOCUS_X or PICK_FOCUS_Y, only the distance along the x-axis or the y-axis is used.

This is particularly useful when using bar charts. In most cases it is desirable to translate a pixel coordinate into the bar directly below the coordinate rather than the nearest bar, which may be to one side. To accomplish this, merely set the PickFocus property to carry out only operations against the y coordinate as follows:

arr.setPickFocus(ChartDataView.PICK_FOCUS_Y);

[bookmark: _Toc534826671]9.8 		Unpick
The unpick() method essentially functions in the opposite manner of pick: given a data series and a data point within that series, unpick returns the pixel co-ordinates of that point relative to the chart area. It takes two sets of parameters: pt for the point index, and series for the data series. For bar charts it returns the top-middle location for a given bar, and the middle of an arc for a pie chart. unpick can be used to display information at a given point in a chart, and can be used for attaching labels to chart regions.

For unpick() to work correctly, the JCChart instance must first be laid out. This is automatically done whenever a chart is drawn, such as when the snapshot() method is called. Alternately, layout can be accomplished manually by calling the doLayout() method of JCChart.

[bookmark: _Toc534826672]9.9 		Using Pick and Unpick
The pick method is used to retrieve an x,y coordinate in a chart from user input and then translate that into selecting the data point nearest to it. For example, if a user clicks within a single bar within a bar chart, pick takes the coordinates of the mouse-click and selects that bar for any action within the program. Similarly, if a user clicks in an area immediately above a bar chart, pick is used to select the bar that is closest to the mouse click.

To use the pick or pick series listener, you must first set up a PICK or PICK_SERIES event trigger on the chart. For more information, see Section 9.7, Pick and Section 9.5.3, Programming Event Triggers.

Consider the following code (taken from the DrillDown demo in JCLASS_HOME/demos/chart/drilldown/) that demonstrates how pick can be used to “drill down” to reveal more information.

Note: This example assumes that a data.class file exists that understands different data levels.

package demos.chart.drilldown;

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Event;
import java.awt.GridLayout;
import javax.swing.JComponent;
import javax.swing.JPanel;
import javax.swing.JLabel;
import javax.swing.JEditorPane;
import javax.swing.BorderFactory;

import java.util.Iterator;
import java.util.List;
import com.klg.jclass.chart.ChartDataView;
import com.klg.jclass.chart.ChartDataViewSeries;
import com.klg.jclass.chart.EventTrigger;
import com.klg.jclass.chart.JCAxis;
import com.klg.jclass.chart.JCPickListener;
import com.klg.jclass.chart.JCPickEvent;
import com.klg.jclass.chart.JCChartStyle;
import com.klg.jclass.chart.JCLineStyle;
import com.klg.jclass.chart.JCChart;
import com.klg.jclass.chart.ChartText;
import com.klg.jclass.chart.JCDataIndex;
import com.klg.jclass.chart.JCChartArea;
import com.klg.jclass.util.swing.JCExitFrame;
import com.klg.jclass.util.legend.JCLegend;

/*
 * This demo demonstrates using pick to drill down to more
 * refined data
 */
public class DrillDown extends javax.swing.JPanel
implements JCPickListener {
protected Data d = null;
protected JCChart c = null;

public DrillDown()
{
setLayout(new BorderLayout(10,10));
setPreferredSize(new Dimension(600,400));
d = new Data();

Color Turquoise = new Color(64,224,208);
Color DarkTurquoise = new Color(0x00,0xce,0xd1);

c = new JCChart();
c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
c.setBackground(DarkTurquoise);

JCChartArea area = c.getChartArea();
area.getPlotArea().setBackground(Turquoise);
area.setOpaque(true);
area.setBorder(BorderFactory.createEtchedBorder());

JComponent header = c.getHeader();
header.setBackground(Turquoise);

((JLabel)header).setText("<html><center>
Drill Down
Demo<P>Independent Comic Book
Sales 1996</center>");

header.setBorder(BorderFactory.createRaisedBevelBorder());
header.setVisible(true);

JCLegend legend = c.getLegend();
legend.setVisible(true);
legend.setBackground(Turquoise);
legend.setForeground(Color.black);
legend.setBorder(BorderFactory.createLoweredBevelBorder());

ChartDataView dataView = c.getDataView(0);
c.setBatched(false);
dataView.setDataSource(d);
dataView.setChartType(JCChart.BAR);
dataView.setHoleValue(-1000);
dataView.getOutlineStyle().setColor(Color.darkGray);

JComponent footer = c.getFooter();
footer.setVisible(true);

((JLabel)footer).setText("<html>
<CENTER><i>Drill Down -> Mouse Down
on Bar or Legend<P>Drill Up ->
Mouse Down on Other Area of
Graph</i></CENTER>");
area.setDepth(10);
area.setElevation(20);
area.setRotation(20);

JCAxis yAxis = area.getYAxis(0);
yAxis.setGridVisible(true);
yAxis.getGridStyle().getLineStyle().setColor(new
Color(154,154,229));

// Set colors for each data series
setSeriesColor();

// Set up pick and rotate trigger
c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
c.setTrigger(1, new EventTrigger(Event.SHIFT_MASK,
EventTrigger.ROTATE));
c.setTrigger(2, new EventTrigger(Event.META_MASK,
EventTrigger.CUSTOMIZE));
c.setAllowUserChanges(true);

// Add listener for pick events
c.addPickListener(this);

add("Center",c);
}
void setSeriesColor()
{
// Set colors for each data series
Color colors[] = {Color.red, Color.blue, Color.white,
Color.magenta, Color.green, Color.cyan,
Color.orange, Color.yellow};
ChartDataView dataView = c.getDataView(0);
List seriesList = dataView.getSeries();
Iterator iter = seriesList.iterator();
for (int i = 0; iter.hasNext(); i++) {
ChartDataViewSeries series =
(ChartDataViewSeries)iter.next();
series.getStyle().setFillColor(colors[i]);
}
}

/**
 * Pick event listener. Upon receipt of a pick event, it either
 * drills up or down to more general or refined data.
 */
public void pick(JCPickEvent e)
{
boolean doLevel = false;
boolean doUpLevel = true;
JCDataIndex di = e.getPickResult();
int srs = 0;

// If clicked on bar or legend item, drill down. If clicked on
// any other area of chart, drill up.
if (di != null) {
Object obj = di.getObject();
ChartDataView vw = di.getDataView();
srs = di.getSeriesIndex();
int pt = di.getPoint();
int dist = di.getDistance();

if (vw != null && srs != -1) {
if (srs >= 0) {
if ((obj instanceof JCLegend) ||
(obj instanceof JCChartArea && dist == 0))
{
doLevel = true;
doUpLevel = false;
}
else {
doLevel = true;
}
}
}
else {
doLevel = true;
}
}
else {
doLevel = true;
}

if (doLevel) {
c.setBatched(true);
if (doUpLevel) {
d.upLevel();
}
else {
d.downLevel(srs);
}
setSeriesColor();
c.setBatched(false);
}
}
public static void main(String args[])
{
JCExitFrame f = new JCExitFrame("Basic Drilldown example");
DrillDown tc = new DrillDown();
f.getContentPane().add(tc);
f.pack();
f.setVisible(true);
}

}

When compiled and run, the DrillDown.class program displays the following:

[image:]
Figure 90 the DrillDown demonstration program displayed.

When a bar or legend within this chart is clicked by the user, the program “drills down” to reveal more refined data comprising that bar. If an area outside of the bars is clicked upon, then the program “drills up” to reveal more general data.

pick is key to this program, determining the way the program interacts with the user.
pick requires an event trigger and listener to work, as the following code fragment shows:

c.setTrigger(0, new EventTrigger(0, EventTrigger.PICK));
c.addPickListener(this);
public void pick(JCPickEvent e)
{
JCDataIndex di = e.getPickResult();
}

When a user clicks in the DrillDown demonstration program, the event is triggered, and the x,y coordinates are passed along to the pick event listener, which in turn takes the information and performs the indicated action. The pick() method returns a JCDataIndex, which encapsulates the point index and data series of the selected point. It is also possible to send a pick event to objects manually.

When the sendPickEvent() method is called, it sends a pick event to all objects listening for it.

[bookmark: _Toc534826673]9.10 	Coordinate Conversion Methods
The ChartDataView object in the underlying data model provides methods that enable you to do the following:
· Convert from data coordinates (x- and y-data values) to pixel coordinates (where these data coordinates appear on screen) and vice versa.
· Determine the pixel coordinates of a given data point in a series, or the closest point or series to a given set of pixel coordinates.

Note that for these calls to work, the chart must first be laid out with a call to doLayout().

The following table outlines which method or functional equivalent to use for each action.

	Method
	Functional
equivalent
	Action

	dataCoordToCoord()
	unmap
	Converts from data coordinates to pixel coordinates

	coordToDataCoord()
	map
	Converts from pixel coordinates to data coordinates

	dataIndexToCoord()
	unpick
	Determines the pixel coordinates of a given data point in a series

	coordToDataIndex()
	pick
	Determines the closest point in pixels to a given data point in a series

	coordToDataSeries()
	pickSeries
	Determines the closest point in pixels to a series line

DataCoordToCoord
To convert from data coordinates to pixel coordinates, call the dataCoordToCoord() method. For example, the following code obtains the pixel coordinates corresponding to the data coordinates (5.1, 10.2):

Point p=c.getDataView(0).dataCoordToCoord(5.1,10.2);

This works in the same way as unmap. Note that the pixel coordinate positioning is relative to the upper left corner of the JCChart component display.

CoordToDataCoord
To convert from pixel coordinates to data coordinates, call coordToDataCoord(). For example, the following converts the pixel coordinates (225, 92) to their equivalent data coordinates:

JCDataCoord cd=c.getDataView(0).coordToDataCoord(225,92);

This works in the same manner as map. So, coordToDataCoord() returns a JCDataCoord object containing the x- and y-values in the data space.

DataIndexToCoord
To determine the pixel coordinates of a given data point, call dataIndexToCoord(). For example, the following code obtains the pixel coordinates of the third point in the first data series:

JCDataIndex di= new JCDataIndex(3,c.getDataView(0).getSeries(0));
Point cdc=c.getDataView(0).dataIndexToCoord(di);

CoordToDataIndex
To determine the closest data point to a set of pixel coordinates, call coordToDataIndex():

JCDataIndex di=c.getDataView(0).coordToDataIndex(225,92,
ChartDataView.PICK_FOCUSXY);

The last argument specifies how the nearest series and point value are determined. This argument can be one of ChartDataView.PICK_FOCUSXY, ChartDataView.PICK_FOCUSX, PICK_FOCUSY, or ChartDataView.PICK_FOCUS_LOCAL. Produces the same result as calling the pick() method. JCDataIndex contains the series and point value corresponding to the closest data point, and also returns the distance in pixels between the pixel coordinates and the point. Returns a JCDataIndex instance.

CoordToDataSeries
To determine the closest series line to a set of pixel coordinates, call coordToDataSeries():

JCDataIndex di=c.getDataView(0).coordToDataSeries(225,92,
ChartDataView.PICK_FOCUSXY);

The last argument specifies how the nearest series and point value are determined. This argument can be one of ChartDataView.PICK_FOCUSXY or ChartDataView.PICK_FOCUS_LOCAL. Produces the same result as calling the pickSeries() method. Returns a JCDataIndex instance.

[bookmark: _Toc534826674]9.11 	Image-Filled Bar Charts
Using the underlying data model, it is possible to use image files as chart elements within a bar chart. This is accomplished by using the Image in JCFillStyle and iterating through the series. Image sets the image used to paint the fill region of bar charts. It takes img as a parameter, which is an AWT Image class representing the image to be used to paint image fills. If set to null, no image fill is done.

The following code fragment shows how Image can be incorporated into a program:

String imageStrings[] = {"cd.gif", "tape.gif"};
List seriesList = arr.getSeries();
Iterator iter = seriesList.iterator();
for (int i = 0; iter.hasNext(); i++) {
ChartDataViewSeries thisSeries = (ChartDataViewSeries) iter.next();
if (i < seriesLabels.length) {
if (imageStrings[i] != null) {
Class cl = getClass();
URL url = cl.getResource("/examples/chart/intro/"+
imageStrings[i]);
if (url != null) {
ImageIcon icon = new ImageIcon(url);

thisSeries.getStyle().getFillStyle().setImage(icon.getImage());

thisSeries.getStyle().getFillStyle().setPattern(JCFillStyle.CUSTOM_STACK);
}
}
}
}

The effects can be seen in the ImageBar example located in the JCLASS_HOME/examples/chart/intro/ directory.

[image:]
Figure 91 Demonstration of image bars.

The image is clipped at the point of the highest value indicated for the bar chart. Image only tiles the image along a single axis. For example, if the bars were widened in the above illustration, it would still tile along the vertical y-axis only, and would not fill in the image across the horizontal x-axis. This same principle applies (though along different axes) when the bar chart is rotated 90 degrees.

Note: Image can only be used with the image formats that can be used in Java.

Ch 9 Advanced Chart Programming		2
Ch 9 Advanced Chart Programming		1
Part
II
Supported
Technologies

		2
Ch 1 JClass Chart 3D Basics		2

10
[bookmark: _Toc534826675]Using JCChartFactor
Overview of the JCChartFactor Class ■ Overview of the LoadProperties Class
Saving Data: the OutputDataProperties Class ■ Saving Image Information: The OutputProperties Class

You can use the JCChartFactory class to create and update charts using properties defined in a markup language, as well as save chart properties to a markup language. Currently, JClass Chart supports the following markup languages: HTML and XML.

This chapter describes the JCChartFactory and related classes.

The following chapters tell you how to use the factory with HTML and XML:
· Chapter 11, Loading and Saving Charts Using HTML
· Chapter 12, Loading and Saving Charts Using XML

[bookmark: _Toc534826676]10.1 	Overview of the JCChartFactory Class
The JCChartFactory class is a convenience class that provides methods to create, update, and save a chart using a variety of data formats. You can define the chart properties in HTML or XML; the JCChartFactory methods have a type parameter where you specify JCChartFactory.HTML or JCChartFactory.XML, as appropriate.

For example, the following code snippet (taken from the example in Chapter 11, Loading and Saving Charts Using HTML) creates a chart from properties contained in a file (inFile). The last parameter in the method tells the factory that the properties are defined in HTML tags.

chart = JCChartFactory.makeChartFromFile(inFile, loadProps,
chartName, JCChartFactory.HTML);

Similarly, for XML (taken from Chapter 12, Loading and Saving Charts Using XML):

chart = JCChartFactory.makeChartFromFile(inFile, loadProps,
chartName, JCChartFactory.XML);

The loadProps parameter is an instance of LoadProperties. For more information, see Section 10.2, Overview of the LoadProperties Class.

The following table summarizes the methods in JCChartFactory for creating, updating, and saving charts. The format-specific make and update methods, with the exception of updateChartWithData(), call updateChart() under the hood. These methods are provided for convenience. Similarly, the save methods call saveChart(). For a list of the method parameters, look up the JCChartFactory class in the API Documentation.

	Create Methods
	Update Methods
	Save Methods

	makeChartFromFile()
makeChartFromReader()
makeChartFromStream()
makeChartFromString()
	updateChart()a
updateChartFromFile()
updateChartFromReader()
updateChartFromStream()
updateChartFromString()
updateChartWithData()
	saveChart()b
saveChartToFile()
saveChartToStream()
saveChartToString()

a. You can use this method instead of one of the convenience methods. The input source can be a String (interpreted as a file name), URL, InputStream, or Reader.
b. You can use this method instead of one of the convenience methods. The output target can be a String (interpreted as a file name), OutputStream, or Writer.

[bookmark: _Toc534826677]10.2 	Overview of the LoadProperties Class
The LoadProperties class is responsible for the following tasks:
· Telling the chart how to access data files and image files based on their fileAccess properties defined in the HTML or XML source. For more information, see Section 10.2.1, LoadProperties Class and the fileAccess Property.
· Passing user-defined objects to an external Java class when <external-java-code> elements are defined in the XML source. For more information, see external-javacode in Appendix C, XML DTD.
· Identifying what to do when there is an error in reading external data or an image from its source. Normally, the chart throws a JCIOException when this happens. However, you can ignore these exceptions and continue loading the chart by setting the ignoreExternalResourceExceptions property to true.

The JCChartFactory class automatically creates a default LoadProperties object if you do not define one. In many cases, the default object is sufficient. However, there are times when you will need to define a LoadProperties object. For more information, see Section 10.2.2, When to Define a LoadProperties Object.

10.2.1 	LoadProperties Class and the fileAccess Property
When you define a data file or an image file in HTML or XML, you specify a filename property and a fileAccess property. The fileAccess property is used by the LoadProperties object to determine how to access the data file or image file named in the fileName property.

The following table summarizes the valid values for the fileAccess property and describes how the LoadProperties object interprets the fileName property.

	fileAccess Value
	Description

	Default
	The default access is Absolute.

	Absolute
	Interprets the value of fileName as an absolute name.

	Url
	Interpresets the value of fileName as a URL.

	Relative-Url
	Interprets the value of fileName as a URL after adding a prefix to the beginning of it. You specify the prefix by setting the relativeURLPrefix property of the LoadProperties object. For more information, see Section 10.2.2, When to Define a LoadProperties Object.

	Resolving_Class
	Requires a resolving class Class object to load the file. The ClassLoader of the resolving class is used to resolve the String set in the fileName property through a call to getResource(filename). In the resolution process, if the String starts with “/”, it is unchanged; otherwise, the package name of the resolving Class is added to the beginning of the String, after converting “.” to “/”. You specify the resolving class by setting the resolvingClass property of the LoadProperties object. For more information, see Section 10.2.2, When to Define a LoadProperties Object.

The same values are used by the chart when saving to HTML or XML so that, if the chartis reloaded, the chart knows how to access the data and images.

10.2.2 	When to Define a LoadProperties Object
In simple cases, you can use the default LoadProperties object created by the factory or you can use the no-arguments LoadProperties constructor to create a LoadProperties object that uses null values for all its properties. In some cases, however, you need to specify some LoadProperties properties.

In the following circumstances, you need to set the specified LoadProperties property:
· When you define a data file or image file with fileAccess=Resolving_Class, you need to set the resolvingClass property of the LoadProperties object to specify the Class object that is used to resolve the location of file.
· When you define a data file or image file with fileAccess=Relative_Url, you need to set the relativeURLPrefix property of the LoadProperties object to specify the String to prepend to the URL. (Recall that in this case the fileName attribute of the <image-file> is interpreted as a URL.)
· When you specify an <external-java-code> tag in XML, you need to set the userObject property to specify the Object and the storeUserObject property to determine if the Object is stored to the userObject property of the chart.

The following example shows a LoadProperties constructor with some properties set.

Class myResolvingClass = new Class(...);
Object myObject = new Object(...);

// Create a LoadProperties object and set properties
LoadProperties loadProps = new LoadProperties(
myResolvingClass, // resolvingClass
"", // relativeURLPrefix (default is empty String)
myObject, // userObject
true); // storeUserObject

Alternatively, you can set these properties using the LoadProperties object’s set*() methods. For more information, look up com.klg.jclass.util.io.LoadProperties in the API documentation.

[bookmark: _Toc534826678]10.3 	Saving Data: The OutputDataProperties Class
The OutputDataProperties class is responsible for controlling whether or not the chart data is saved when the chart properties are saved, and if it is, whether the data is embedded in the chart properties file or saved to a separate file. It also specifies how the data should be read in when the HTML or XML chart properties are loaded into a chart.

The following code creates a sample OutputDataProperties object.

// Create an instance of OutputProperties
OutputProperties dataOutputProps = new OutputProperties(
"chartdataout.xml", // outputFileName
"http://www.mysite.com/chartdataout.xml", // propertyName
OutputDataProperties.DATA_FILE_XML, // saveType
Properties.URL); // fileAccess

The saveType determines whether or not data is saved, and if so, how it is saved. The following table summarizes the valid values for the saveType property:

	saveType Value
	Description

	OutputDataProperties.NO_DATA
	Data is not saved. This ChartDataView will have no data when the saved chart properties are loaded into a chart.

	OutputDataProperties.EMBED_DATA
	The data is embedded in the chart properties file. No data file is required.

	OutputDataProperties.DATA_FILE_TXT
	The data is saved to a file in text data format (see Section 4.8, Text Data Formats). In the chart properties files, the data file’s fileType attribute is set to Text.

	OutputDataProperties.DATA_FILE_XML
	The data is saved to a file in XML data format (see Section 4.7, Loading Data from an XML Source). In the chart properties file, the data file’s fileType attribute is set to Xml.

The outputFileName is an absolute file name. If the saveType is either DATA_FILE_TXT or DATA_FILE_XML, the data is saved to the specified file name.

The propertyName property specifies the data file using a text string. The text is saved to the chart properties file and used to later reload the data. The propertyName and fileAccess parameters correspond to the data file’s fileName and fileAccess properties in the saved chart properties file. Recall that the LoadProperties object uses the fileAccess property to interpret the fileName attribute. For more information, see Section 10.2.1, LoadProperties Class and the fileAccess Property.

For more information, see Saving a Chart to HTML, in Chapter 11 and Saving a Chart to XML, in Chapter 12. See also com.klg.jclass.util.io.OutputDataProperties in the API Documentation.

[bookmark: _Toc534826679]10.4 	Saving Image Information: The OutputProperties Class
Images are not saved when a chart is saved to HTML or XML. You can, however, choose to save information about the images so that if you reload the chart the images can be located and displayed. Image information includes the file name and how to access it.

Every image in your chart whose information you want to save requires an OutputProperties object.

[bookmark: _Toc534826680]10.4.1 	Constructing an OutputProperties Object
The following code creates an OutputProperties object for use with an image in a JCFillStyle object associated with the chart.

// Create an instance of OutputProperties
OutputProperties imageOutputProps = new OutputProperties(
null, 							// outputFileName (not used here)
"images/bgimage.jpg", 				// propertyName
null, 									// saveType (not used here)
OutputProperties.RELATIVE_URL); 	// fileAccess

The propertyName property specifies the file name and location of the image. The fileAccess property specifies how to interpret the propertyName.
· In HTML, propertyName is stored as data.seriesn.fill.image.fileName and fileAccess is stored as data.seriesn.fill.image.fileAccess.
· In XML, propertyName is stored in the <image-file> fileName attribute and fileAccess is stored in the <image-file> fileAccess attribute.

For more information, see Saving Image Information to HTML, in Chapter 11 and Saving Image Information to XML, in Chapter 12.

The outputFileName and saveType properties are null, because this class has other uses and these properties are not required for images. For more information, look up the com.klg.jclass.util.io.OutputProperties class in the API Documentation.

[bookmark: _Toc534826681]10.4.2 	Setting Output Properties on an Image
Images are specified in fill styles. To prepare to save information about an image to a markup language, you need to set the OutputProperties property of the fill style and specify its OutputProperties object.

// Define an image
String URLString = "http://www.my_site.com/snowflakes.jpg";
URL url = new URL(URLString);

// Load the image (where loadImageFromURL is some method
// that creates an image from a URL)
Image inputImage = loadImageFromURL(url);

// Set the image in the fill style
ChartDataView dv = chart.getDavaView(0);
JCChartStyle cs = dv.getChartStyle(0);
JCFillStyle fs = cs.getFillStyle();
fs.setImage(inputImage);

// Set the output properties for the image
OutputProperties imageOutputProps = new OutputProperties(
null, URLString, null, OutputProperties.URL);

fs.setOutputProperties(imageOutputProps);

Ch 10 Using JCChartFactor		2
Ch 10 Using JCChartFactor 		2

11
[bookmark: _Toc534826682]Loading and Saving Charts Using HTML
Overview of HTML for JClass Chart ■ Creating a Chart from HTML
Updating a Chart Using HTML ■ Saving a Chart to HTML

This chapter describes how to create, update, and save a chart using HTML tags to define the chart properties. For more information on the syntax for chart properties, see Appendix B, HTML Syntax.

[bookmark: _Toc534826683]11.1 	Overview of HTML for JClass Chart
JClass Chart defines HTML syntax for most chart properties and ships with some HTML
examples.

HTML Syntax for Chart Properties
Most, though not all, chart properties can be specified in HTML. To specify chart properties in HTML, you provide name/value pairs using the syntax and value types outlined in Appendix B, HTML Syntax.

For example, you can specify the chart type using the name data.chartType and a value that represents any of the enumerations defined for chart types, such as AREA, BAR, or PIE. The format in which you provide the name/value pairs is dictated by the input medium. The JCChartFactory class contains methods to create a chart using properties read from a file, reader, stream, URL, or string.

For example, when specifying properties in an HTML file, you use the <PARAM> tag. The chart property is specified in the NAME element and its value in the VALUE element. The following properties create a bar chart using data read from a file called bar.dat:

<PARAM NAME="width" VALUE="400">
<PARAM NAME="height" VALUE="400">
<PARAM NAME="dataFile" VALUE="bar.dat">
<PARAM NAME="data.chartType" VALUE="BAR">
<PARAM NAME="xaxis.annotationMethod" VALUE="Point_Labels">

The bar.dat file contains the data and the point label annotations:

The data is in array format
It has one set of x-axis data, multiple sets of y-axis data
It can have names for the data view and for the x and y series
Each x point can have a point label
ARRAY '' 5 4
'Network' 'Cache' 'Connect' 'System'
'' 0.0 90.0 180.0 270.0
'Planning' 8.2 17.3 28.4 26.2
'Finance' 35.2 36.1 23.1 38.5
'Research' 35.1 19.7 21.2 20.1
'Sales' 15.1 4.1 8.2 16.1
'Contracts' 16.5 28.1 18.2 0.9

HTML Examples
Many example HTML files are located in the JCLASS_HOME/demos/chart/applet JCLASS_HOME/examples/chart/applet directories. A pre-built applet, called JCChartApplet.class, is also provided. For more information, lookup com.klg.jclass.chart.property.html.JCChartApplet in the API Documentation.

[bookmark: _Toc534826684]11.2 	Creating a Chart from HTML
The JCChartFactory class has methods that create a JCChart instance from a file, reader, stream, URL, or String. The following sections demonstrate how to create a chart from an HTML file using the makeChartFromFile() method.

The examples used in this section create the chart displayed in the following figure:

[image:]
Figure 92 Chart created from HTML tags

[bookmark: _Toc534826685]11.2.1 	Specifying JClass Chart Properties Using HTML Tags
When specifying chart properties using HTML, you need to encode the properties within HTML <PARAM> tags. The NAME element of the <PARAM> tag specifies the property name; the VALUE element specifies the property value to set. When the file is read in, only the properties inside <PARAM> tags are used; all other HTML tags are ignored.

For example, the following line of code shows how to specify the name of the file that
contains the chart data:

<PARAM NAME="chart.dataFile" VALUE="sample_1.dat">

Appendix B, HTML Syntax, contains a list of chart properties by class. Each entry states the HTML syntax for the property (NAME element) and its value type (VALUE element). The easiest way to create a set of HTML properties is to use the JClass Chart Customizer to save the property values to an HTML file. For more details, see JClass Chart Customizer, in Chapter 1.

For example, the following chart properties were used to create the chart shown at the beginning of this section (Figure 92). The data is embedded in the file. This excerpt is taken from the yoyodyne.html demo located in the JCLASS_HOME/demos/chart/applet/ directory.

<PARAM NAME=background VALUE="210-180-140">
<PARAM NAME=foreground VALUE="black">
<PARAM NAME=font VALUE="Dialog-PLAIN-12">
<PARAM NAME=CustomizeTrigger VALUE="Meta">
<PARAM NAME=allowUserChanges VALUE="true">
<PARAM NAME=footer.y VALUE="55">
<PARAM NAME=footer.font VALUE="TimesRoman-PLAIN-20">
<PARAM NAME=footer.text VALUE="Profits have recovered but share
prices remain low">
<PARAM NAME=footer.visible VALUE="true">
<PARAM NAME=header.border VALUE="bevel|raised">
<PARAM NAME=header.font VALUE="TimesRoman-BOLD-24">
<PARAM NAME=header.background VALUE="245-222-180">
<PARAM NAME=header.text VALUE="Yoyodyne snaps back">
<PARAM NAME=header.visible VALUE="true">
<PARAM NAME=legend.y VALUE="345">
<PARAM NAME=legend.border VALUE="etched|raised">
<PARAM NAME=legend.font VALUE="Dialog-PLAIN-14">
<PARAM NAME=legend.background VALUE="245-222-180">
<PARAM NAME=legend.visible VALUE="true">
<PARAM NAME=legend.anchor VALUE="South">
<PARAM NAME=legend.orientation VALUE="Horizontal">
<PARAM NAME=chartArea.y VALUE="90">
<PARAM NAME=chartArea.border VALUE="bevel|lowered">
<PARAM NAME=chartArea.background VALUE="245-222-180">
<PARAM NAME=chartArea.plotArea.background VALUE="255-232-190">
<PARAM NAME=xaxis.annotationMethod VALUE="Value_Labels">
<PARAM NAME=xaxis.placement VALUE="Min">
<PARAM NAME=xaxis.placementAxis VALUE="yaxis">
<PARAM NAME=xaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=xaxis.valueLabels VALUE="1.0; '93; 2.0; '94; 3.0;
'95; 4.0; '96; 5.0; '97">
<PARAM NAME=xaxis.title.visible VALUE="false">
<PARAM NAME=yaxis.placement VALUE="Min">
<PARAM NAME=yaxis.grid.visible VALUE="true">
<PARAM NAME=yaxis.grid.Color VALUE="210-180-140">
<PARAM NAME=yaxis.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis.title.text VALUE="$millions">
<PARAM NAME=chartArea.yaxisName1 VALUE="yaxis1">
<PARAM NAME=yaxis1.placement VALUE="Max">
<PARAM NAME=yaxis1.min VALUE="4.0">
<PARAM NAME=yaxis1.max VALUE="22.0">
<PARAM NAME=yaxis1.grid.Color VALUE="black">
<PARAM NAME=yaxis1.title.font VALUE="TimesRoman-BOLD-12">
<PARAM NAME=yaxis1.title.text VALUE="share prices ">
<PARAM NAME=data.chartType VALUE="BAR">
<PARAM NAME=data.line.color VALUE="black">
<PARAM NAME=data.series1.line.colorIndex VALUE="0">
<PARAM NAME=data.series1.line.width VALUE="8">
<PARAM NAME=data.series1.fill.colorIndex VALUE="0">
<PARAM NAME=data.series1.fill.color VALUE="0-84-255">
<PARAM NAME=data.series1.fill.pattern VALUE="Per_25">
<PARAM NAME=data.series1.symbol.colorIndex VALUE="0">
<PARAM NAME=data.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data.series1.symbol.size VALUE="7">
<PARAM NAME=data.series1.label VALUE="Profits">
<PARAM NAME=data.Bar.clusterWidth VALUE="50">
<PARAM NAME=data VALUE="
ARRAY ' ' 1 5 1.0 2.0 3.0 4.0 5.0 24.0 30.2 36.4 -19.8 10.6">
<PARAM NAME=dataName1 VALUE="data1">
<PARAM NAME=data1.outlineColor VALUE="black">
<PARAM NAME=data1.series1.line.colorIndex VALUE="1">
<PARAM NAME=data1.series1.line.color VALUE="red">
<PARAM NAME=data1.series1.line.width VALUE="7">
<PARAM NAME=data1.series1.fill.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.colorIndex VALUE="1">
<PARAM NAME=data1.series1.symbol.color VALUE="255-165-0">
<PARAM NAME=data1.series1.symbol.shape VALUE="Dot">
<PARAM NAME=data1.series1.symbol.size VALUE="14">
<PARAM NAME=data1.series1.label VALUE="Share Prices">
<PARAM NAME=data1.yaxis VALUE="yaxis1">
<PARAM NAME=data1 VALUE="
ARRAY ' ' 1 5 1.0 2.0 3.0 4.0 5.0 20.5 12.3 14.8 6.2 5.75">

[bookmark: _Toc534826686]11.2.2 	Creating the Chart and Loading HTML-based Properties
This section demonstrates how to load properties from a file. The file is called chart.in.html.

LoadProperties loadProps = new LoadProperties();

String inFile = "chart.in.html";
String chartName = "myChart";
JCChart chart = null;
try {
chart = JCChartFactory.makeChartFromFile(inFile,
loadProps, chartName, JCChartFactory.HTML);
}
catch (JCIOException e) {
System.out.println("Error accessing external file:" +
e.getMessage());
}
catch (JCParseException e) {
System.out.println("Error parsing file:" +
e.getMessage());
}
catch (IOException e) {
System.out.println("Error reading " + inFile + ":" +
e.getMessage());
}

where
· inFile is an input file containing JClass Chart properties in HTML.
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).
· chartName is the name of the chart, and is the name with which each of the properties begins. If there is more than one chart in the HTML file, only the parameters beginning with that name are assigned to the chart. If there is only one set of chart parameters stored in the file, the name can be dropped and an empty String passed as the third parameter.
· JCChartFactory.HTML specifies HTML as the markup language used.

[bookmark: _Toc534826687]11.3 	Updating a Chart Using HTML
You can update an existing chart with new chart properties or with a new data set.

[bookmark: _Toc534826688]11.3.1 	Updating a Chart with New Chart Properties
You can update existing charts with new chart properties using the update methods in the JCChartFactory class. The new properties can come from a file, reader, stream, URL, or a String. Properties that are unspecified retain their existing values.

For example, the following code sample updates a chart using properties defined in an HTML file:

String updateFile = "chart.update.html";

try {
JCChartFactory.updateChartFromFile(chartName,
updateFile, loadProps, name, JCChartFactory.HTML)
}
catch (JCIOException e) {
System.out.println("Error accessing external file:" +
e.getMessage());
}
catch (JCParseException e) {
System.out.println("Error parsing file:" + e.getMessage());
}
catch (IOException e) {
System.out.println("Error reading " + updateFile + ":" +
e.getMessage());
}

where
· chartName is the chart to update.
· updateFile is an input file containing JClass Chart properties in HTML.
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).
· name of the chart being read from parameters. If non-null, only parameters of the form name.parameter are applied to this chart.
· JCChartFactory.HTML specifies HTML as the markup language used.

For more information, lookup JCChartFactory in the API Documentation and review the update methods.

[bookmark: _Toc534826689]11.3.2 	Updating a Chart with a New Data Set
JCChartFactory also has a method, updateChartWithData(), that updates a chart with a new data set. In the given data view, the old data set is replaced by the new data set, with information provided by a file, reader, or an input stream.

Note: You need to use the underlying data model to complete this task. For more information, see Chapter 4, Adding Data with the Underlying Data Model and the ChartDataView and JCChartFactory classes in the API Documentation.

For example, the following code sample updates a chart with data defined in a text file:

String updateDataFile = "newchartdata.txt";

try{
JCChartFactory.updateChartWithData(chartName,
JCChartFactory.DATA_FILE_TEXT, updateDataFile,
dataViewIndex, loadProps);
}

catch (IOException e) {
System.out.println("Error reading " + updateDataFile + ":"
+
e.getMessage());
}

where
· chartName is the chart to update.
· JCChartFactory.DATA_FILE_TEXT specifies that the data is in a text file. Alternatively, you can specify an XML data file using JCChartFactory.DATA_FILE_XML.
· updateDataFile is the name of the file containing the data. Alternatively, data could be coming from a Reader or an InputStream.
· dataViewIndex is the index of the ChartDataView on which the data is to be set (there is also a method where the ChartDataView can be specified by name).
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).

This method creates a data source from the data object, and sets this new data source on
the appropriate ChartDataView on the chart.

[bookmark: _Toc534826690]11.4 	Saving a Chart to HTML
The JCChartFactory class also has methods that save a JCChart instance to a stream, file, writer, or String.

Note: You need to use the underlying data model to complete this task. For more information, see Chapter 4, Adding Data with the Underlying Data Model and the ChartDataView and JCChartFactory classes in the API Documentation.

The following example code saves chart properties to a file called chart.out.html and the chart data to a file called chart.dat.

String outFile = "chart.out.html";
String outDataFile = "chart.dat";
ChartDataView dv = chart.getDataView(0);

if (dv != null) {
OutputDataProperties outProps = dv.getOutputDataProperties();
if (outProps == null) {
outProps = new OutputDataProperties();
}

// Save data to a text file, which can be accessed via a URL
outProps.setOutputFileName(outDataFile);
outProps.setPropertyName("file:///C:/jclass_home/" + outDataFile);
outProps.setSaveType(OutputDataProperties.DATA_FILE_TXT);
outProps.setFileAccess(OutputDataProperties.URL);
dv.setOutputDataProperties(outProps);
}

try {
JCChartFactory.saveChartToFile(chart, outFile,
JCChartFactory.HTML);
}
catch (IOException e) {
System.out.println("Error writing to " + outFile + ":" +
e.getMessage());
}

[bookmark: _Toc534826691]11.4.1 	Saving Data When a Chart is Saved to HTML
In the above example, outProps is an instance of OutputDataProperties. The OutputDataProperties instance specifies that the data is to be saved to a file named chart.dat in text format. When loading the chart, the chart can access the data via the URL file:///C:/jclass_home/.

For more information, see Saving Data: The OutputDataProperties Class, in Chapter 10.

[bookmark: _Toc534826692]11.4.2 	Saving Image Information to HTML
When a chart containing an image is saved to HTML, the information about the image that is contained in its OutputProperties object is also saved. If an image does not have an OutputProperties object associated with it, the image is ignored.

For example, consider an image that is used as a fill style for a threshold. If the image has the following OutputProperties object associated with it:

OutputProperties imageOutputProps = new OutputProperties(
null, "threshold.jpg", null, OutputProperties.ABSOLUTE);

the information about the image is stored as:

<PARAM NAME=data.thresholdn.fill.image.fileName VALUE="threshold.jpg">
<PARAM NAME=data.thresholdn.fill.image.fileAccess VALUE="Absolute">

where data is the name of the dataset.

The image file threshold.jpg will be interpreted an absolute file name when the properties in the HTML file are loaded back into a chart.

Note that HTML elements map to the OutputProperties object as follows:
· data.thresholdn.fill.image.fileName maps to the propertyName parameter.
· data.thresholdn.fill.image.fileAccess maps to the fileAccess parameter.
For more information, see Saving Image Information: The OutputProperties Class, in Chapter 10.

Ch 11 Loading and Saving Charts as HTML		2
Ch 11 Loading and Savinig Charts as HTML 		2

12
[bookmark: _Toc534826693]Loading and Saving Charts Using XML
Background XML Information ■ Overview of XML for JClass Chart
 Creating a Chart Using XML ■ Updating a Chart Using XML ■ Saving a Chart to XML
Internationalizing Your XML-based Chart

This chapter describes how to create a chart using XML tags to define chart properties. The first two sections provide some general XML information followed by an overview of how JClass Chart implements XML. The next three sections describe how to create, update, and save a chart. The last section deals with the topic of internationalizing XMLbased charts. For more information, see Appendix C, XML DTD.

[bookmark: _Toc534826694]12.1 	Background XML Information

XML Primer
XML – eXtensible Markup Language – is a scaled-down version of SGML (Standard Generalized Markup Language), the standard for creating a document structure. XML was designed especially for web documents, and allows designers to create customized tags (“extensible”), thereby enabling common information formats for sharing both the format and the data on the Internet, intranets, et cetera.

XML is similar to HTML in that both contain markup tags to describe the contents of a page or file. But HTML describes the content of a web page (mainly text and graphic images) only in terms of how it is to be displayed and interacted with. XML, however, describes the content in terms of what data is being described. This means that an XML file can be used in various ways. For instance, an XML file can be utilized as a convenient way to exchange data across heterogeneous systems. As another example, an XML file can be processed (for example, via XSLT [Extensible Stylesheet Language Transformations]) in order to be visually displayed to the user by transforming it into HTML.

In XML, certain special characters need to be “escaped” if you want them to be displayed. For example, you cannot simply put and ampersand (&) or a greater than sign (>) into a block of text; these special characters are represented as & and > respectively. See http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/4_refs.html#chars.

DTD Primer
The document type definition (DTD) file has one purpose: to specify the structure of an XML file. The DTD describes, in XML Declaration Syntax, the particular type of document, and sets out what names are to be used for various elements, where these elements may occur, and how they work together.

Further Information About XML
Here are links to more information on XML.
http://www.w3.org/XML/ – another W3C site; contains information on standards
http://www.ucc.ie/xml – an extensive FAQ devoted to XML
http://java.sun.com/docs/index.html – Sun’s XML site

[bookmark: _Toc534826695]12.2 	Overview of XML for JClass Chart
JClass Chart ships with the following DTDs and examples for XML.

DTDs
DTD files are located in JCLASS_HOME/xml-dtd.
· Chart.dtd – Defines chart elements.
· JCChartData.dtd – Defines chart data elements. Requires Chart.dtd.

In JClass Chart, the elements, sub-elements, and attributes in the DTDs, for the most part coincide with the objects, sub-objects, and properties within the chart component. Properties are specified as Strings in the XML file. The Strings are converted to the appropriate type by the JClass Chart XML handler. For more information, see Appendix C, XML DTD.

XML Examples
The XMLCharts demo and its sample XML files are in JCLASS_HOME/demos/chart/xml. You can also load and save XML files using the JClass Chart Customizer. For more information, see JClass Chart Customizer, in Chapter 1.

[bookmark: _Toc534826696]12.3 	Creating a Chart Using XML
The JCChartFactory class has methods that create a JCChart instance from a file, reader, stream, URL, or String. The following sections demonstrate how to create a chart from an XML file using the makeChartFromFile() method.

[image:]
Figure 93 Chart created using the XMLCharts demo with the yoyodyne.xml file selected.

[bookmark: _Toc534826697]12.3.1 	Specifying JClass Chart Properties Using XML Elements
The XML elements for JClass Chart are defined in the DTD files that ship with JClass DesktopViews. For your convenience, the elements and subelements are also listed in Appendix C, XML DTD. The easiest way to create a set of XML chart properties is to use the JClass Chart Customizer to save the property values to an XML file. For more details, see JClass Chart Customizer, in Chapter 1.

The following example shows the XML elements used to define the chart in Figure 93. This code is from the yoyodyne.xml file located in the JCLASS_HOME/demos/chart/xml/ directory. It runs with the XMLCharts demo located in the same directory.

<?xml version="1.0"?>
<!DOCTYPE chart SYSTEM "Chart.dtd">
<chart name=""
allowUserChanges="true"
width="550"
height="420">
<component background="210-180-140"
foreground="black"
font="Dialog-PLAIN-12" />
<event-trigger trigger="Customize"
modifier="Meta" />
<event-trigger trigger="Customize"
modifier="Meta" />
<header text="Yoyodyne snaps back">
<component background="245-222-180"
opaque="true"
font="TimesRoman-BOLD-24"
visible="true">
<bevel-border soft="false"
type="Raised"
highlightColor="white"
shadowColor="119-108-87" />
</component>
</header>
<footer text="Profits have recovered but share prices remain
low">
<component font="TimesRoman-PLAIN-20"
visible="true" />
<layout-hints y="55" />
</footer>
<legend anchor="South"
orientation="Horizontal">
<component background="245-222-180"
opaque="true"
foreground="black"
font="Dialog-PLAIN-14"
visible="true">
<etched-border type="Raised"
highlightColor="white"
shadowColor="171-155-125" />
</component>
<layout-hints y="345" />
</legend>
<chart-area>
<component background="245-222-180"
opaque="true"
foreground="black"
font="Dialog-PLAIN-12">
<bevel-border soft="false"
type="Lowered"
highlightColor="white"
shadowColor="119-108-87" />
</component>
<layout-hints y="90" />
<plot-area foreground="black"
background="255-232-190" />
<axis type="XAxis"
name="xaxis"
annotationMethod="Value_Labels"
placement="Min"
placementAxis="yaxis">
<chart-interior-region font="Dialog-PLAIN-12"
foreground="black"
background="245-222-180">
</chart-interior-region>
<axis-title>
<chart-interior-region font="Dialog-PLAIN-12"
foreground="black"
background="245-222-180">
</chart-interior-region>
</axis-title>
<value-label value="1.0">'97</value-label>
<value-label value="2.0">'98</value-label>
<value-label value="3.0">'99</value-label>
<value-label value="4.0">'00</value-label>
<value-label value="5.0">'01</value-label>
<line-style color="210-180-140" />
</axis>
<axis type="YAxis"
name="yaxis"
placement="Min"
gridVisible="true">
<chart-interior-region font="Dialog-PLAIN-12"
foreground="black"
background="245-222-180">
</chart-interior-region>
<axis-title text="$millions">
<chart-interior-region font="TimesRoman-BOLD-12"
foreground="black"
background="245-222-180"
visible="true">
</chart-interior-region>
</axis-title>
 <line-style color="210-180-140" />
</axis>
<axis type="YAxis"
name="yaxis1"
placement="Max">
<chart-interior-region font="Dialog-PLAIN-12"
foreground="black"
background="245-222-180">
</chart-interior-region>
<axis-title text="share prices ">
<chart-interior-region font="TimesRoman-BOLD-12"
foreground="black"
background="245-222-180"
visible="true">
</chart-interior-region>
</axis-title>
<line-style color="black" />
</axis>
</chart-area>
<chart-data-view chartType="Bar"
name=" ">
<chart-data name=" " hole="max">
<data-series>
<x-data>1.0</x-data>
<x-data>2.0</x-data>
<x-data>3.0</x-data>
<x-data>4.0</x-data>
<x-data>5.0</x-data>
<y-data>24.0</y-data>
<y-data>30.2</y-data>
<y-data>36.4</y-data>
<y-data>-19.8</y-data>
<y-data>10.6</y-data>
</data-series>
</chart-data>
<line-style color="black" />
<chart-data-view-series label="Share Prices">
<chart-style>
<line-style color="red"
width="7" />
<fill-style color="orange" />
<symbol-style color="255-165-0"
shape="Dot"
size="14" />
</chart-style>
</chart-data-view-series>
</chart-data-view>
</chart>

[bookmark: _Toc534826698]12.3.2 	Creating the Chart and Loading XML-based Properties
The following code sample creates a chart using properties defined in an XML file. The file is called chart.in.xml.

public CreateXMLChart()
{
LoadProperties loadProps = new LoadProperties();

String inFile = "chart.in.xml";
String chartName = "myChart";
JCChart chart = null;
try {
chart = JCChartFactory.makeChartFromFile(inFile, loadProps,
chartName, JCChartFactory.XML);
}
catch (JCIOException e) {
System.out.println("Error accessing external file:" +
e.getMessage());
}
catch (JCParseException e) {
System.out.println("Error parsing file:" + e.getMessage());
}
catch (IOException e) {
System.out.println("Error reading " + inFile + ":" +
e.getMessage());
}

add(chart);
}

where

· inFile is an input file containing JClass Chart properties in XML.
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).
· chartName is set as the name property of the chart.
· JCChartFactory.XML specifies XML as the markup language used.

[bookmark: _Toc534826699]12.4 	Updating a Chart Using XML
You can update an existing chart with new chart properties or with a new data set.

[bookmark: _Toc534826700]12.4.1 	Updating a Chart with New Chart Properties
You can update existing charts with new chart properties using the update methods in the JCChartFactory class. The new properties can come from a file, reader, stream, URL, or a String. Properties that are unspecified retain their existing values.

For example, the following code sample updates a chart using properties defined in an XML file.

try {
JCChartFactory.updateChartFromFile(chartName, updateFile,
loadProps, null, JCChartFactory.XML);
}
catch (JCIOException e) {
System.out.println("Error accessing external file:" +
e.getMessage());
}
catch (JCParseException e) {
System.out.println("Error parsing file:" + e.getMessage());
}
catch (IOException e) {
System.out.println("Error reading " + updateFile + ":" +
e.getMessage());
}

where
· chartName is the name of the chart to update.
· updateFile is an input file containing JClass Chart properties in XML.
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).
· name parameter is only used in HTML.
· JCChartFactory.XML specifies XML as the markup language used.

[bookmark: _Toc534826701]12.4.2 	Updating a Chart with a New Data Set
JCChartFactory also has a method, updateChartWithData(), that updates a chart with a new data set. In the given data view, the old data set is replaced by the new data set, with information provided by a file, reader, or an input stream.

Note: You need to use the underlying data model to complete this task. For more information, see Chapter 4, Adding Data with the Underlying Data Model and the ChartDataView and JCChartFactory classes in the API Documentation.

For example, the following code sample updates a chart with data from a data file:

try{
JCChartFactory.updateChartWithData(chartName,
JCChartFactory.DATA_FILE_TEXT, updateDataFile
dataViewIndex, loadProps);
}

catch (IOException e) {
 System.out.println("Error reading " + updateDataFile + ":" +
e.getMessage());
}
where
· chartName is the chart to update.
· JCChartFactory.DATA_FILE_TEXT specifies that the data is in a text file. Alternatively, you can specify an XML data file using JCChartFactory.DATA_FILE_XML.
· updateDataFile is the name of the file containing the data. Alternatively, data could be coming from a Reader or an InputStream.
· dataViewIndex is the index of the ChartDataView on which the data is to be set (there is also a method where the ChartDataView can be specified by name).
· loadProps is a LoadProperties object containing properties that specify how to load the chart (see Overview of the LoadProperties Class, in Chapter 10).

This method creates a data source from the data object, and sets this new data source on the appropriate ChartDataView on the chart.

[bookmark: _Toc534826702]12.5 	Saving a Chart to XML
The JCChartFactory class has methods that save a JCChart instance to a stream, file, or String. The following code sample saves a chart to the file chart.out.xml and the data to a file called chart.dat.xml.

public class SaveXMLChart extends JPanel
{

private JCChart chart = null;

public SaveXMLChart()
{
chart = new JCChart();
chart.setPreferredSize(new Dimension(400, 400));
ChartDataView dv = chart.getDataView(0);
dv.setDataSource(new JCDefaultDataSource());
add(chart);
}

public void saveChart()
{

ChartDataView dv = chart.getDataView(0);
String outFile = "chart.out.xml";
String outDataFile = "chart.dat.xml";

// Set properties for saving the chart's data
if (dv != null) {
OutputDataProperties outProps = dv.getOutputDataProperties();
if (outProps == null) {
outProps = new OutputDataProperties();
}
// Save data to an XML file, which can be accessed using
// an absolute file name
outProps.setOutputFileName(outDataFile);
outProps.setSaveType(OutputDataProperties.DATA_FILE_XML);
outProps.setFileAccess(OutputDataProperties.ABSOLUTE);
dv.setOutputDataProperties(outProps);
}

// Save the chart and the data
try {
JCChartFactory.saveChartToFile(chart, outFile,
JCChartFactory.XML);
}
catch (IOException e) {
System.out.println("Error writing to " + outFile + ":" +
e.getMessage());
}
}

public static void main(String args[])
{
JCExitFrame f = new JCExitFrame("Save JClass Chart XML Example");
f.setSize(new Dimension(450, 450));
SaveXMLChart s = new SaveXMLChart();
f.getContentPane().add(s);
f.setVisible(true);

s.saveChart();
}
}

[bookmark: _Toc534826703]12.5.1 	Saving Data When a Chart is Saved to XML
In the above example, outProps is an instance of OutputDataProperties. The OutputDataProperties instance specifies that the data is to be saved to a file named chart.dat.xml in XML data format. When loading the chart, the chart can use the file name
for the data file as an absolute file name.

For more information, see Saving Data: The OutputDataProperties Class, in Chapter 10.

[bookmark: _Toc534826704]12.5.2 	Saving Image Information to XML
When a chart containing an image is saved to XML, the information about the image that is contained in its OutputProperties object is stored in an <image-file> element. An <image-file> element is nested within the <fill-style> element. If an image does not have an OutputProperties object associated with it, the image is ignored.

For example, consider an image that is used as a fill style for a threshold. If the image has the following OutputProperties object associated with it:

OutputProperties imageOutputProps = new OutputProperties(
null, "threshold.jpg", null, OutputProperties.ABSOLUTE);

information about the image is stored as:

<chart>
...
<threshold...>
<fill-style...>
<image-file fileName="threshold.jpg"
fileAccess="Absolute"/>
</fill-style>
</threshold>
</chart>

The image file threshold.jpg will be interpreted an absolute file name when the properties in the HTML file are loaded back into a chart.

Note that the attributes in <image-file> map to the OutputProperties object as follows:
· fileName attribute maps to the propertyName parameter.
· fileAccess attribute maps to the fileAccess parameter.
For more information, see Saving Image Information: The OutputProperties Class, in Chapter 10.

[bookmark: _Toc534826705]12.6 	Internationalizing Your XML-based Chart
If you need to offer your XML-based chart in multiple languages, you can replace the text strings with variables and provide a resource bundle containing properties files or ResourceBundle classes for each language that you support. When your client’s browser requests the chart, the browser’s locale or, for JSF, the client’s operating system locale, determines which language is displayed by default. The following sections describe how to add variables to your chart, create the resource bundle, and use your resource bundle in different environments.

[bookmark: _Toc534826706]12.6.1 	Using Variables
Wherever text appears on your chart, you need to replace the text string with a variable in your XML file. For example, you can use variables for the header, footer, axes titles, data view name, series labels, data point labels, and text in a URL. Variables take the form ${KEY}, where KEY is a unique variable name. Variable names are case-sensitive and can be uppercase, lowercase, or mixed case. Try to use meaningful names so that, when you create your resource bundle, it is easier to map the correct text strings to the variables.

Note: If you want, you can embed a variable within a text string. For example, you could specify a value such as “This is a ${KEY}”. Mixing text and variables, however, is not generally recommended; you usually want to provide charts with the text entirely in your client’s language.

[bookmark: _Toc534826707]12.6.2 	Creating a Resource Bundle
Depending on your needs, you can use the class ResourceBundle or either of its subclasses – PropertyResourceBundle or ListResourceBundle – to assign text strings to the variables that you used in your XML file. PropertyResourceBundle looks for the localized strings in properties files, while ResourceBundle and ListResourceBundle looks for them in your code. For more information on how to use these classes, locate java.lang.ResourceBundle in the Java API documentation.

Whichever method you choose, your resource bundle must include a default locale – the language used when a locale is not specified by the browser – plus a properties file or ResourceBundle class for each of the other languages that you want to support. The default locale uses the base name of your resource bundle, while all other locales should follow the I18N naming conventions for language and country, though the country code is optional if there is no chance of confusion. For example, your base name and default locale could be called myresources, while U.S. English would be myresources_en_US, and German would be myresources_de_DE (or myresources_de). For more information, see Internationalization, in Chapter 1.

[bookmark: _Toc534826708]12.6.3 	Using Resource Bundles
To load a localized chart, you need to implement a locale handler using the com.klg.jclass.util.LocaleHandler interface. You can use the implementation provided with JClass Chart, called LocaleBundle, or you can create your own locale handler by implementing the LocaleHandler interface.

To use LocaleBundle, you create an instance of LocaleBundle and specify the fully qualified pathname to the base name of your resource bundle and a Locale object for the locale you want to use. To tell the factory how to find your resource bundle, you set the localeHandler property of your LoadProperties object to point to your LocaleBundle object.

In the following example, the programmer creates a LocaleBundle object called localeBundle and specifies the location of the bundle and a Locale object. The location of the localeBundle is in a fictitious JCLASS_HOME/demos.chart.xml.resources directory and the bundle base name is XMLLocaleInfo. The Locale object is defined elsewhere and passed as a parameter to the createChart() method.

The instance of LocaleBundle is then passed to the setLocaleHandler() method for the loadProperties object. Finally, the loadProperties object is passed to the factory’s makeChartFromFile() method.

import com.klg.jclass.chart.JCChart;
...
import com.klg.jclass.util.LocaleBundle;
...
import java.util.Locale;

public class XMLExample extends JPanel implements ActionListener
{
...
public JCChart createChart(Locale locale)
{
JCChart chart = null;
// Create the chart
try {
LoadProperties loadProperties = new LoadProperties();
LocaleBundle localeBundle = new LocaleBundle(
"demos.chart.xml.resources.XMLLocaleInfo", locale);
loadProperties.setLocaleHandler(localeBundle);
URL url = getClass().getResource("chart.xml");
chart = JCChartFactory.makeChartFromFile(
url, loadProperties, JCChartFactory.XML);
}
catch (IOException e) {
e.printStackTrace();
}
return chart;
}
...
}

Ch 12 Loading and Saving Charts as XML		2
Ch 12 Loading and Savinig Charts as XML 		2

13
[bookmark: _Toc534826709]JClass Chart Beans
Choosing the Right Bean ■ Standard Bena Properties ■ Data-Loading Methods

This chapter is a reference for JClass Chart beans and their properties. For basic JavaBean concepts and a tutorial, see the SimpleChart Bean Tutorial, in Chapter 14.

[bookmark: _Toc534826710]13.1 	Choosing the Right Bean
When creating new applications in an IDE, you can use either MultiChart or SimpleChart. We recommend using MultiChart, both for learning JClass Chart’s features and for creating new applications.

The MultiChart Bean
MultiChart is JClass Chart’s most powerful Bean. It contains a richer set of features than previous Beans, highlighting the superiority of JClass Chart as a charting application tool. Among its features are the ability to handle multiple data sources and multiple axes. For
more information, see MultiChart Bean, in Chapter 15.

SimpleChart
SimpleChart was designed for quick chart development in any IDE environment. It exposes the most commonly used charting properties, and presents them in easy-to-use property editors. SimpleChart can load data from a file or a design-time editor.

SimpleChart and the data-binding Beans share a common set of properties that are covered in this chapter. SimpleChart and the data-binding Beans only differ in how they load data. Therefore, this chapter is divided into Standard Bean Properties and Data-Loading Methods.

[bookmark: _Toc534826711]13.1.1 	JClass Chart Beans
The following table shows all of the available JClass Beans and their uses:

	JClass Chart Bean
	Description

	MultiChart
	The most powerful charting Bean.
· Charts data from two data sources and plots them against multiple axes.
· Data sources can be a file, or data entered at designtime. Also supports using Swing TableModel objects as data sources.
· Compatible with all IDEs.
See MultiChart Bean, in Chapter 15, for complete details.

	SimpleChart
	Charts data from a file or data entered at design-time. Also supports a Swing TableModel object as a data source. Compatible with all IDEs.

[bookmark: _Toc534826712]13.1.2 	JClass Chart Beans and JCChart
All JClass Chart Beans are subclasses of the main chart object, JCChart. This means that the entire JClass Chart API is available to any developer using any of the Beans.

[bookmark: _Toc534826713]13.2 	Standard Bean Properties
SimpleChart has a set of standard properties that allow you to control the appearance and behavior of your charts.

[bookmark: _Toc534826714]13.2.1 	Axis Properties
JClass Chart Beans set up basic axis properties for you automatically, and adjust these properties to your data. You can also customize your axes with the axes property editors. You have control over the following axis properties:
· Axis Titles
· Annotation Method
· Axis Number Intervals
· Axis Range
· Axis Grids
· Axis Hiding
· Logarithmic Notation
· Axis Orientation

Axis Titles
Enter X- and Y-axis titles in the xAxisTitleText and yAxisTitleText property editors:

[image:]
Figure 94 Axis titles.

Annotation Method
Set the annotation method for the axes using the xAnnotationMethod and yAnnotationMethod editors. By default, Value annotation is used for both:

[image:]

[image:]
Figure 95 Annotation methods for x and y axes.

Value_Labels notation can only be added programmatically or by using HTML parameters; therefore, it is not very useful for Bean programming. The following examples show the three applicable annotation methods as applied to the X-axis:

[image:]	[image:]	[image:]
Figure 96 Annotation methods.

Axis Number Intervals
To specify the number interval on the axes, enter the interval into the yAxisNumSpacing or xAxisNumSpacing property editors:

[image:]
Figure 97 Axis number spacing.

Axis Range
The axis number range is determined by the minimum and maximum values of the axes. By default, these values are set automatically, based on the available data. You can specify the range by using the xAxisMinMax and yAxisMinMax property editors. Enter the minimum value on the left of the comma, and the maximum on the right:

[image:]
Figure 98 Axis range.

Logarithmic Notation
You can specify that one or both of the axes are logarithmic by setting the xAxisLogarithmic or yAxisLogarithmic properties to true:

[image:]
Figure 99 Logarithmic notation.

Hiding Axes
By default, both the X- and Y-axes are displayed. You can hide them by setting the xAxisVisible or yAxisVisible properties to false. The following example hides the Y-axis:

[image:]
Figure 100 Hidden axes

Showing Grids
Display gridlines for one or both axes by setting the xAxisGridVisible or yAxisGridVisible properties to true. By default, the grids are hidden. The following example sets both axes to display gridlines:

[image:]
Figure 101 Gridlines.

Axis Orientation
Axis orientation determines how the axes are positioned on the chart. By default, the axes are positioned with the Y-axis left/vertical and the X-axis right/horizontal. Use the axis orientation custom editor to change how your axes are oriented. To launch the custom editor, click the axisOrientation property:

[image:]
Figure 102 Axis orientation.

Select the desired orientation and click Done.

[image:]

[bookmark: _Toc534826715]13.2.2 	Chart Types
By default, JClass Chart Beans use the Plot chart type to display data. To change to another type, use the chartType property editor. The following example selects the PIE type:

[image:]

Data Interpretation
The following examples show how data is displayed by the different chart types:

[image:] 	[image:] 	[image:] 	[image:]
Area 			Bar 				Candle 			HiLo

 [image:]	[image:]		 [image:] 	[image:]
Hilo_Open_Close 		Pie 				Plot 			 Scatter_Plot

[image:]		[image:]		[image:]	[image:]
Stacking_Area 	Stacking_Bar 		Polar			Area Radar

[image:]
Radar

[bookmark: _Toc534826716]13.2.3 	Display Properties

Font
Set the size and style of text on your chart by clicking the font property:
[image:]

The font you choose will apply to all text on the chart simultaneously with the exception of the header and footer. Note that the font editor that appears in your IDE may be different from the example below. The following example sets the font to Courier, Bold, 24 point, with the BeanBox font editor:

[image:]
Note: The different font properties all work in the same way. Font affects all text on the chart area and legend. Header font affects the header, and Footer Font affects the footer.

Foreground and Background Colors
Click the foreground and background properties to set the foreground and background colors of your chart. A color editor will appear. By default, the colors are black foreground and light-gray background:

[image:]

Most IDEs have their own color editors that differ from the BeanBox. The following example sets the background color to red:

[image:]

3D Effects
To add 3D effects to your chart, click the View3D property:

[image:]
This will bring up the View3DEditor. There are two main settings in the View3DEditor: depth, and combined elevation and rotation.

You can add 3D effects either by typing a value in the editable box next to the Depth, Elevation, and Rotation settings, or by dragging the red square in the editor until it has the desired Elevation and Rotation. Then, check the Change Depth option box, and drag the red square until it has the Depth you want; alternatively, simply type in the value in the editable box next to this setting.

The degree of depth, elevation, and rotation is displayed in numbers at the top of the editor. Click Done to set the changes:

[image:]

[bookmark: _Toc534826717]13.2.4 	Headers and Footers
Add a header, footer, or both with the headerText and footerText property editors. The following example sets both:
[image:]

The font characteristics of the header and footer are determined by the Header Font and Footer Font properties. See Section 13.2.3, Display Properties, for more details.

[bookmark: _Toc534826718]13.2.5 	Legends
You can add a legend, position it, and select its layout. The legend is set up from information in the data source. For information on how to set up legend items in the data source, see Text Data Formats, in Chapter 4.

Showing the Legend
To show the legend, set the legendVisible property to true:
[image:]

Legend Placement
Specify where the legend will be anchored in the chart area by selecting a compass direction from the legendAnchor property options. By default, legends are anchored on the East. The following example anchors the legend North:

[image:]

Legend Layout
Legend items can be laid out vertically or horizontally. By default the legend has a vertical layout. To specify a horizontal layout, set the legendOrientation property to Horizontal

[image:]:

[bookmark: _Toc534826719]13.3 	Data-Loading Methods
This section covers the data-loading methods of SimpleChart. For MultiChart data loading details, see MultiChart Bean, in Chapter 15.

	JClass Chart Bean
	Data Source & IDE Compatibility

	SimpleChart
	Formatted file or design-time editor.
■ Also supports using a Swing TableModel object as the data source.
■ All IDEs.

[bookmark: _Toc534826720]13.3.1 	SimpleChart: Loading Data from a File
There are two ways of loading data with the SimpleChart Bean: from a .dat file, or by entering data directly into the custom editor. Both methods are managed by the DataSourceEditor. To bring up the DataSourceEditor, click on the data property:

[image:]
The DataSource Editor will appear (see below).

Loading Data from a .dat File
To load data from a file, click Load data from a file, enter the name of the file in the File Location field, and click Done:

[image:]

Specify the full path of the file. The file must be pre-formatted to the JClass Chart Standard (see Text Data Formats, in Chapter 4). Sample data files are located in the JCLASS_HOME/examples/intro/chart2.dat directory.

Editing the Default Data
You can use the data provided in the editor as is, or you can modify it. To use existing data, just check the Edit data in the text area radio button, and click Done. Change data by deleting and inserting text in the area provided. Be careful to preserve the punctuation surrounding the original text:

[image:]

The chart below shows how the default data appears as a plot. Notice where the different elements are positioned. Each point on the X-axis is labelled with the names specified in the default data. The name of each series of y-values appears in the legend. The name of the data view is positioned directly above the legend.

In order for the default data to display this way, you must first set the xAxisAnnotation property to Point_Labels, and the legendVisible property to true.

[image:]

[bookmark: _Toc534826721]13.3.2 	SimpleChart: Using Swing TableModel Data Objects
Your (Swing) application may have the data you want to chart contained in a Swing TableModel-type data object. You can use this object as your data source instead of using the JClass Chart built-in data sources if your IDE supports a TableModel editor.

Use the SwingDataModel property to specify an already-created Swing TableModel object to use as the chart’s data source.

Ch 13 JClass Chart Beans		2
Ch 13 JClass Chart Beans 		2

14
[bookmark: _Toc534826722]SimpleChart Bean Tutorial
Introduction to JavaBeans ■ SimpleChart Bean Tutorial

[bookmark: _Toc534826723]14.1 	Introduction to JavaBeans
JClass Chart components are JavaBean-compliant. The JavaBeans specification makes it very easy for a Java Integrated Development Environment (IDE) to “discover” the set of properties belonging to an object. The developer can then manipulate the properties of the object easily through the graphical interface of the IDE when constructing a program.

The three main characteristics of a Bean are:
· the set of properties it exposes
· the set of methods it allows other components to call; and
· the set of events it fires

Properties control the appearance and behavior of the Bean. Bean methods can also be called from other components. Beans fire events to notify other components that an action has happened.

[bookmark: _Toc534826724]14.1.1 	Properties
“Properties” are the named method attributes of a class that can affect its appearance or behavior. Properties that are readable have a “get” (or “is” for booleans) method, which enables the developer to read a property’s value, and those properties that are writable have a “set” method, which enables a property’s value to be changed.

For example, the JCAxis object in JClass Chart has a property called AnnotationMethod. This property is used to control how an axis is labelled. To set the property value, the setAnnotationMethod() method is used. To get the property value, the getAnnotationMethod() method is used.

For complete details on how object properties are organized, see JClass Chart Object Containment and Setting and Getting Object Properties, in Chapter 1.

Setting Bean Properties at Design-Time
One of the features of any JavaBean component is that it can be manipulated interactively in a visual design tool (such as a commercial Java IDE) to set the initial property values when the application starts. Consult the IDE documentation for details on how to load third-party Bean components into the IDE.

You can also refer to the “JClass and Your IDE” chapter in the JClass DesktopViews Installation Guide.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the property you want to set in this list and edit its value. Again, consult the IDE’s documentation for complete details.

[bookmark: _Toc534826725]14.2 	SimpleChart Bean Tutorial
This tutorial guides you through the development of an application that uses SimpleChart to chart the financial information of “Michelle’s Microchips”. It is a good starting point for learning basic JClass Chart features. To explore more advanced features of JClass Chart, however, we recommend that you use the MultiChart Bean bean.

The tutorial does not cover all of the properties available in SimpleChart. For a complete reference, see JClass Chart Beans, in Chapter 13. The screen captures have all been taken from Sun’s BeanBox and will differ slightly from your IDE’s appearance.

[bookmark: _Toc534826726]14.2.1 	Steps in this Tutorial
This tutorial has eight steps:
1. Create a new application in your IDE and add a container.
2. Put a SimpleChart object into the container.
3. Load the data for Michelle’s Microchips.
4. Add a header, footer, and legend.
5. Add point labels to the X-axis.
6. Change the background color to white.
7. Set the chart type to bar, and add 3D effects.
8. Compile and run the application.

Step 1: Create the ‘Michelle’ Application
Create a new application in your IDE and add a container to hold a SimpleChart object. In most IDEs this will be a panel. See your IDE’s documentation for instructions on creating a basic application and adding a container.

Step 2: Put a Chart Object into the Container
With the container displayed in design mode, click the SimpleChart icon and place a SimpleChart object into the container’s area. See your IDE’s documentation for details on placing objects into a container. The SimpleChart icon looks like this:
[image:]
In your container object, you should now see a basic chart area with an X- and Y-axis, like this:

[image:]

If you open your property list (the window that displays the Bean’s properties) with the SimpleChart area selected, you should see the property editors that are available in SimpleChart.

Step 3: Load Data from a File
This tutorial uses data from a file named chart2.dat contained in the JCLASS_HOME/examples/chart/intro/chart2.dat directory. To load chart2.dat into SimpleChart, bring up the custom data source editor by clicking on the data property:

[image:]

The data source editor provides two methods for loading data: editing data in the text area, or loading data from a file. For Michelle’s Microchips, click the Load data from a file radio button. Then, enter the full path name of chart2.dat in the File Location field. After you click Done, you should see the data displayed in the chart area as follows:

[image:]

What’s in chart2.dat?
chart2.dat has financial information for Michelle’s Microchips, formatted for the file data source method of data loading. SimpleChart accepts only .dat files, or modifications to the default data in the editor. For more information on creating a file data source, see Loading Data from a File, in Chapter 4.

The content of chart2.dat is:

	ARRAY '' 2 4
'Q1' 'Q2' 'Q3' 'Q4'
'' 1.0 2.0 3.0 4.0
'Expenses' 150.0 175.0 160.0 170.0
'Revenue' 125.0 100.0 225.0 300.0

JClass Chart also has other Beans which allow you to chart data from a database easily. See JClass Chart Beans, in Chapter 13, for more information.

Step 4: Add a Header, Footer, and Legend
Enter “Michelle’s Microchips” in the headerText property editor and “1963 Quarterly Results” in the footerText property editor:

[image:]

To add the legend, set the legendVisible property to true. The legend text is taken from information in the data source. Notice how the plot area is resized to accommodate the legend. You may have to resize your chart area to accommodate the changes:

[image:]

For more information on legend properties, see Legends, in Chapter 13.

Step 5: Add Point Labels to the X-axis
By default, SimpleChart annotates the axes with values. You can change the annotation to show point labels or time labels.

For Michelle’s Microchips, change the X-axis annotation from values to point labels. Do this by setting the xAxisAnnotationMethod property to Point_Labels:

[image:]

You should now see “Q1”, “Q2”, “Q3”, and “Q4” on the X-axis. These labels are contained in the chart2.dat file, and come up automatically when Point_Labels is selected. For more information on axis annotation, see Axis Properties, in Chapter 13.

Step 6: Change the Background Color
To change the background color to white, click the background property to bring up your color editor:

[image:]

The custom color editor used by your IDE will differ from the BeanBox. Select purewhite from the options on your color editor:

[image:]

Step 7: Change to Bar Chart and add 3D Effects
You can select from 13 chart types using the chartType property editor (see Chart Types, in Chapter 13, for a complete list). For Michelle’s Microchips, select the BAR type:

[image:]

To add three-dimensional visuals to your chart, click the view3D property to bring up the View3DEditor:

[image:]

There are two main settings in the View3DEditor (below): depth, and combined elevation and rotation. They are both set either by dragging the box in the editor with a mouse or by typing in the value in the editable box next to these settings.

First, drag the square with your mouse until you have an Elevation of 45 and a Rotation of 45, or simply type “45” in the editable box next to these settings. Second, check the Change Depth box, and drag the red square until it has a depth of 31, or simply type “31” in the editable box next to Depth. Click Done to set the changes:

[image:]

Step 8: Compile and Run the Application
For the last step, compile and run the application. See your IDE’s documentation for details. When you run the application, you should have a window with a chart, displaying Michelle’s Microchips’ financial information.

The following example illustrates how the application appears when run:

[image:]

Ch 14 SimpleChart Bean Tutorial		2
Ch 15 MultiChart Bean 		2

15
[bookmark: _Toc534826727]MultiChart Bean
Introduction to MultiChart ■ Getting Started with MultiChart ■ MultiChart Property Reference

[bookmark: _Toc534826728]15.1 	Introduction to MultiChart
MultiChart is the next generation charting Bean from JClass Chart. It contains a richer set of features than previous Beans, highlighting the superiority of JClass Chart as a charting application tool.

The MultiChart icon:

[image:]

Highlights of the MultiChart Bean
· Handles multiple data sources.
· Plots data against multiple X- and Y-axes.
· Fully customizable axes.
· Extensive control of font, colors, borders, and styles for each chart element.

[bookmark: _Toc534826729]15.1.1 	Multiple Axes
MultiChart can have two X- and two Y-axes, as in the example below:

[image:]

Setting Properties on Multiple Axes
Axis properties can be set for each axis individually. At the top of each axis editor you
will see four radio buttons:

[image:]

When a radio button is selected, all that follows below will apply to that axis.

[bookmark: _Toc534826730]15.1.2 	Multiple Data Views
MultiChart allows you to load data from two different sources at the same time. When loading data from two different sources, they are each assigned to a separate data view.

By default, both data views are showing, but you can hide or reveal data views depending on your application’s needs. Both sets of data can be mapped to the same set of X- and Yaxes, or, mapped to different axes.

Note: Radar, area radar, and pie charts do not support multiple data views. For more information on data views, see Understanding the Underlying Data Model, in Chapter 4.

[bookmark: _Toc534826731]15.1.3 	Intelligent Defaults
MultiChart has a sophisticated set of dynamic default settings in the custom property editors. You can override these defaults to suit your needs. When you override a default value in a text editor, it becomes static, and will not automatically adjust anymore.

Returning to Default Values
If you want to return to default settings in the custom editors after overriding them, all you have to do is delete the contents of the changed field, and leave it blank. The next time you bring the editor you will see that the automatic values have returned.

[bookmark: _Toc534826732]15.2 	Getting Started with MultiChart
MultiChart has a sophisticated set of dynamic default settings that adjust to your data and other settings. This means that you only have to make a minimum of settings to have a respectable chart. The following list describes the most common start-up tasks and the editors used for them:

· Load Data. To load data in the chart, use the DataSource editor. This editor allows you to load data from one or two sources. There is also a default set of data built-in that you can use to experiment with. Alternately, you can use a Swing TableModel data object as the chart’s data source using the SwingDataModel property.
· Select Chart Types. For each data view, you can select a chart type and the axes that the data will be plotted against with the DataChart editor.
· Set BackGround Color. Use ChartAppearance to set the color of the chart background.
· Set Axis Annotation. By default, MultiChart uses values to annotate the axes. You can also use value labels, point labels, or time labels by setting the annotation type with the AxisAnnotation editor.
· Add a Legend. Add a legend by checking the Visible box in the LegendAppearance editor.
· Add a Header and Footer. To add a header, use HeaderText to add the text, and then select the Visible check box in HeaderAppearance. The footer is the same, but uses the FooterText, and FooterAppearance editors
· Add Extra Axes. By default a standard X-Y axis set is displayed. If you require, you can display a second X- or Y-axis. Display them with the AxisMisc editor’s Visible property. Then use the many axis editors, such as AxisPlacement, to set up and align the axes.

[bookmark: _Toc534826733]15.3 	MultiChart Property Reference
The following property reference section covers all of MultiChart’s features.

[bookmark: _Toc534826734]15.3.1 	Axis Controls
This group of editors sets up the axes. MultiChart has a sophisticated set of automatic default values that adjust to your data. This makes chart development fast and easy. MultiChart is also extremely flexible, and every aspect of the axes can be adjusted.

AxisAnnotation
With the AxisAnnotation editor, you can set the annotation type for each axis, and control how they look. Axis annotations are numbers or text that appear along the axes. Options in the Method menu are: Value, Time_Labels, Point_Labels, and Value_Labels.

[image:]	

For each of the labelling methods, there is a corresponding editor that gives you more control over the behavior and appearance. For Value, use AxisScale, for Point_Labels, use AxisPointLabels, for Time_Labels, use AxisTimeLabels, and for Value_Labels, use AxisValueLabels.

The following examples illustrate the different label types:

[image:]		[image:]		[image:]
Time_Labels 	Value 		Value_Labels

With the Rotation property, you can rotate the labels on the axis. The following example shows Value_Labels, rotated by 270 degrees and with bold, 12pt font:

[image:]

Gap controls the space between annotations, in pixels. If, for example, you used point labels, you could use the Gap property to make sure they have enough room to display properly.

AxisGrid
Use the AxisGrid editor to set up gridlines on each of the axes. There are also controls for color, line spacing, and line width of the gridlines.
[image:]

The following example sets X Axis 1 grid and Y Axis 1 grid to Visible with Spacing = 1 and Width = 1 for the X Axis, and with Spacing = 1 and Width = 10 for the YAxis:

[image:]

AxisOrigin
The AxisOrigin editor allows you to specify an origin by coordinates, or by choosing an option from a pull down menu. By default, axes origins are set automatically, based on the available data.

To place the origin, you can select one of the locations from the pull-down menu, such as Min or Max. If you want to set the origin to a specific value on the axis, select Value_Anchored from the menu and then enter the value in the Origin field:

[image:]

The following example anchors the origin of Y Axis 1 at 20 (default data):

[image:]

Note that, by default, X Axis 1 is placed at the origin of Y Axis 1. To override this default, use the AxisPlacement editor.

AxisPlacement
Axis placement determines the placement of an axis in relation to another. By default, this is set automatically by MultiChart, based on the given data. Sometimes, however, you may want to locate an axis in a different location.

[image:]

Using the Placement field, select the type of placement for the axis selected. Placement options include: Min, Max, Automatic. Origin, and Value_Anchored.

The Axis field selects the anchor-axis that you want to place the current axis against (for example, place X Axis 1 in relation to Y Axis 2). If you select None as an Axis, MultiChart will use the default axis.

To place the axis at a specific value along another axis, select Value_Anchored from the pull-down menu, and enter the value in the Location field.

The following example shows X Axis 1, with a Placement of Max in relation to YAxis 1:

[image:]

AxisMisc
Use AxisMisc to show or hide any of the axes. It also allows you to make any axis
logarithmic. The Editable property, when selected, allows zooming, editing, and
translation for the selected axis. For more information on interactive events, see Section
15.3.6, Event Controls.

[image:]

The following example hides X Axis 1 from view by deselecting Visible.

[image:]

AxisPointLabels
Use the AxisPointLabels editor to create point labels (applies to X1 and X2 axes only). Point labels label specific points of data on the X-axes.

The editor reads data from the data source associated with the selected axis and provides a list of point labels. To change the text in these labels, change the text alongside the point. Note that the format is “point value then comma then the name of the label”. For example,

3.0, PointLabel3

In order for the labels to appear on the chart, you also have to set the annotation method to Point_Labels in the AxisAnnotation editor.

See below for an example.

[image:]

The following example shows how the default data’s point labels appear on X Axis 1:

[image:]

Note that if you are mapping multiple data sources against a single axis, then you will want to use value labels instead, as the AxisPointLabels editor only uses points from the first data source associated with the selected axis.

AxisRelationships
The AxisRelationship editor allows you to create a mathematical relationship between two axes. For example, if you want to create a thermometer chart with Celsius values on the left and the Fahrenheit values on the right, you could create a Celsius axis, and then base the Fahrenheit axis values on it.

There are three properties included in this calculation: Originator, Multiplier, and Constant. The calculation is based on the formula:

New Axis Value = Constant + Multiplier X Originator.

[image:]

To use this editor, first click on the radio button next to the Axis that you want to alter. Next, select an axis from the Originator menu that your calculation will be based on, and then enter a value in the Multiplier field that represents the relationship. The Constant value is optional; its default value is 0.0.

AxisScale
The AxisScale editor controls the range on each axis, the interval of the numbering, and Tick Spacing. It is used primarily for the Value method of axis annotation (see the AxisAnnotation). Precision determines the numeric precision of the axis numbering.

The effect of Precision depends on whether it is positive or negative:
· Positive values add that number of places after the decimal place. For example, a value of 2 displays an annotation of 10 as “10.00”.
· Negative values indicate the minimum number of zeros to use before the decimal place. For example, a value of –2 displays annotation in multiples of 100.

The default value of Precision is calculated from the data supplied.

The Min and Max fields determine the range of data that is displayed on the chart. There are intelligent defaults in this editor that adjust to your data and other chart settings. You can override these settings with the fields provided.

[image:]

AxisTimeLabels
The AxisTimeLabel editor allows you to control how the time labels appear. When you select the annotation method with AxisAnnotations, you can select time labels, which represent the values on the axis as units of time.

Time Base determines the date and time that the labelling starts from (default is current time/date). Time Unit is the unit of time the labels use, such as year, month, day, minute, second, and so on. The default time unit is minutes.

Time Format allows you to customize the text in the time labels with a set of formatting codes. See Axis Labelling and Annotation Methods, in Chapter 6, for a list of these codes.

[image:]

The following example uses time labelling on X Axis 1, with seconds as the time unit:

[image:]

AxisTitle
Using the AxisTitle editor, you can add axis titles to each axis. There are also settings for the font, point, rotation, and placement of the title.

[image:]

In the Placement field’s pull-down menu are a list of compass directions for title placement. Not all options are available to X- and Y-axes. If you select a placement, and it returns to the previous selection, that placement is not available for that axis. The following image shows the effects of adding titles to X Axis 1 and Y Axis 1, and setting the font to bold, with a size of 12:

[image:]

AxisValueLabels
Use the AxisValueLabel editor to enter value labels for the axes. Value labels appear along the axis at specified values. You also have to set the annotation method to Value_Labels, in the AxisAnnotation editor before the labels will display.

[image:]

To add value labels, enter the value, followed by a comma and a label (see above). The following example shows how the labels in the editor above appear on X Axis 1.

[image:]

[bookmark: _Toc534826735]15.3.2 	Headers, Footers, and Legends

FooterText
The FooterText editor allows you to enter text that will appear at the bottom of the chartarea. You can also select a font, font style, and size for the footer.

[image:]

Note that the footer will not display unless you check the Visible box, in the FooterAppearance editor (this editor also controls footer opacity, background, and foreground).

[image:]

The following example shows how a ‘pointless footer’ appears on the chart area:

[image:]

HeaderText
The HeaderText editor allows you to enter header text, that will appear at the top of the chart area. You can also select a font, font style, and size of the header.

[image:]

Note that the header will not display unless you check the Visible box, in the HeaderAppearance editor (which also controls header opacity, background and foreground).

[image:]

The following example shows how a ‘pointless header’ displays on the chart:

[image:]

LegendLayout
The LegendLayout editor controls the layout of the legends. Orientation determines how the legend items are placed in the legend (either vertically or horizontally). The Anchor property positions the entire legend on the chart, based on compass directions.

In order for the legend to display on your chart, the Visible checkbox in the LegendAppearance editor must be selected.

[image:]

Below are two examples of legend layout:

[image:]

The example on the left uses the default settings with Anchor = East and Orientation = Vertical. In the example on the right, Anchor = North and Orientation = Horizontal.

[bookmark: _Toc534826736]15.3.3 	Data Source and Data View Controls
This group of editors manages the properties that control the data source, and the views on the data. MultiChart can load data from two different sources. Each of the data sources is assigned to a data view.

DataChart
The DataChart editor allows you to select the chart type of each data view, and which axes each data view will be mapped against.

[image:]

The ChartType property selects from the following chart types:

[image:]		 [image:] 	[image:] 	[image:]
 	Area 			Bar 			Candle 			HiLo

[image:]		[image:]		[image:]		[image:]
Hilo_Open_Close 	Pie 				Plot 		Scatter_Plot

[image:]		[image:]		[image:]	[image:]
Stacking_Area 	Stacking_Bar 		Polar 		Area Radar

[image:]
Radar

DataMisc
The DataMisc editor controls several aspects of the data views.

[image:]

With the Visible property, you can show or hide each data view from the display area. Visible In Legend will show/hide a data view from the legend (but the data will still be charted).

Automatic Labelling attaches a dwell label to every data point in the chart. A dwell label is an interactive label that shows the value of a point, bar or slice, when a user’s mouse moves over it. In the example below, ‘225’ appears on top of the green bar as the cursor passes over it, indicating that the value of the bar is 225.

[image:]

When Draw on Front Plane is selected, the data view will be mapped on the front plane of a three-dimensional chart space. Applies only in cases where there are multiple data series, displayed on multiple axes, using 3D effects.

DataSource
There are three ways of loading data with the MultiChart Bean. Two are handled by this property: from a .dat file, or by entering data directly into the custom editor. Both methods are managed by the DataSource editor.

The third method is to use a Swing TableModel-type data object as a data source, instead of using the JClass Chart built-in data source. See SwingDataModel below for details.

The first step is to select a data view with one of the radio buttons. Then, follow the procedure below for each data view.

To load data from a file into a data view, click Load data from a file, enter the name of the file in the File Location field, and click Done:

[image:]

Specify the full path of the file. The file must be pre-formatted to the JClass Chart Standard (see Text Data Formats, in Chapter 4). Sample data files are located in the JCLASS_HOME/jclass/chart/examples directory.

You can use the data provided in the editor, as is, or you can modify it. To use existing data, just check the Edit data in the text area radio button, and click Done. Change data by deleting and inserting text in the area provided. Be careful to preserve the punctuation surrounding the original text:

[image:]

The chart below shows how the default data for Data View 1 appears as a plot. Notice where the different elements are positioned. Each point on the X-axis is labelled with the names specified in the default data. The name of each series of y-values appears in the legend. The name of the data view is positioned directly above the legend.

In order for the default data to display this way, you must first set the xAxisAnnotation property to Point_Labels, and the legendVisible property to true.

[image:]

SwingDataModel
Instead of using the chart’s internal data source, you can use a Swing TableModel-type data object that you have already created for your application, if your IDE supports an editor for TableModel. This saves reformatting your data to match the format used by JClass Chart.

Use the SwingDataModel1 property to specify an already-created Swing TableModel object to use as the data source for the first data view. Use SwingDataModel2 to specify a TableModel object to use for the chart’s second data view.

[bookmark: _Toc534826737]15.3.4 	Appearance Controls
This group of editors allows you to control the look of specific chart subcomponents. You can control font, borders, background, and foreground for the chart, chart area, plot area, header, footer, and legend. The following diagram illustrates the different chart subcomponents.

[image:]

All of the editors have the same basic functionality that apply to a specific chart subcomponent, as follows:
[image:]

Small differences in each editor will be discussed below. Note that for most of the appearance editors, there are corresponding editors for controlling other properties of that chart element.

ChartAppearance
The ChartAppearance editor sets the foreground/background border, and opaque values for the chart. This editor affects the areas behind all other chart elements.

ChartAreaAppearance
The ChartAreaAppearance editor sets the foreground/background border, visible, and opacity values for the chart area (see diagram above).

FooterAppearance
The FooterAppearance editor sets the foreground/background border, visible, and opaque values for the footer. When Visible is checked, the footer will be displayed in the chart. By default the footer is not showing. The FooterAppearance editor works in conjunction with the FooterText editor, which is used to enter the footer text.

HeaderAppearance
The HeaderAppearance editor sets the foreground/background border, visible, and opaque values for the header. When Visible is checked, a header will be displayed in the chart. By default the header is not showing. This editor works in conjunction with the HeaderText editor.

LegendAppearance
The LegendAppearance editor sets the foreground/background border, visible, and opaque values for the legend and determines if it is displayed. By default, the legend will not appear. When Visible is checked, a legend will be displayed in the chart.

The content of the legend comes from the information in the data source. In order to change the contents of the legend, you have to change what is in the data source. For information on how to set up legend items in the data source, see Text Data Formats, in
Chapter 4.

Other legend settings are found in the LegendLayout editor.

PlotAreaAppearance
The PlotAreaAppearance editor sets the foreground and background for the plot area, and allows you to add an Axis Bounding Box. A bounding box is a graphical feature that closes off the axes, thus forming a square.

[image:]

Font
The Font editor sets the font defaults for your chart.

The font you choose will apply to all text on the chart simultaneously. The following example sets the font to Courier, Bold, 24 point:

[image:]

This font editor sets up a default font for the chart (not including the header and footer). You can, however, change font for selected elements using custom editors for each you to override the default font settings.

[bookmark: _Toc534826738]15.3.5 	View3D
To add 3D effects to your chart, click the View3D property.

First drag the red square in the editor until it has the desired Elevation and Rotation. Then, check the Change Depth option box, and drag the red square until it has the Depth you want to see on your chart. The degree of depth, elevation and rotation is displayed in numbers at the top of the editor. Click Done to set the changes:

[image:]

[bookmark: _Toc534826739]15.3.6 	Event Controls

TriggerList
The TriggerList editor sets up what user events the chart will handle, either from a mouse, or mouse-keyboard combination.

[image:]

Actions are the available event mechanisms, such as Zoom, Rotate, Depth, Customize, Pick, and Translate. By setting up these triggers, the end-user can examine data more closely or visually isolate part of the chart. The following list describes these interactions:
· Translate allows moving of the chart.
· Zoom allows zooming into or out from the chart.
· Rotate allows rotation (only for bar or pie charts displaying a 3D effect).
· Depth allows adding depth cues to the chart (only for bar or pie charts displaying a 3D effect).
· Customize allows the user to launch the chart Customizer. To use this feature, you must also check the Allow User Changes box.
· Pick allows you to set up pick events. The pick method is used to retrieve an x,y coordinate in a Chart from user input and then translate that into the data point nearest to it. This feature requires some non-bean programming. See Using Pick and Unpick, in Chapter 9, for more details.

A Modifier is a keyboard event that can ‘modify’ a mouse click.

It is also possible in most cases for the user to reset the chart to its original display parameters. The interactions described here affect the chart displayed inside the ChartArea; other chart elements, like the header, are not affected.

Ch 15 MultiChart Bean		2

Part
III
Reference
Appendices

 		2
Appendix A Summary of Properties for JClass Chart Objects		1
A
[bookmark: _Toc534826740]Summary of Properties for
JClass Chart Object
ChartDataView ■ ChartDataViewSeries ■ ChartText
JCAnno ■ JCAreaChartFormat ■ JCAxis ■ JCAxisFormula ■ JCAxisTitle
JCBarChartFormat ■ JCCandleChartFormat ■ JCChart ■ JCChartArea ■ JCChartLabel
JCChartLabelManager ■ JCChartStyle ■ JCFillStyle ■ JCGrid ■ JCGridLegend
JCHiloChartFormat ■ JCHLOCChartFormat ■ JCLegend ■ JCLineStyle ■ JCMarker
JCMultiColLegend ■ JCPieChartFormat ■ JCPolarRadarChartFormat
JCSymbolStyle ■ JCThreshold ■ JCValueLabel ■ PlotArea ■ SimpleChart

This appendix summarizes the JClass Chart properties for all commonly-used classes in alphabetical order.

[bookmark: _Toc534826741]A.1 	ChartDataView

	Name
	Description

	AutoLabel
	The AutoLabel property determines if the chart automatically generates labels for each point in each series. The default is false. The labels are stored in the AutoLabelList property. They are created using the Label property of each series.

	Batched
	The Batched property controls whether the ChartDataView is notified immediately of data source changes, or if the changes are accumulated and sent at a later date.

	BufferPlotData
	The BufferPlotData property controls whether plot data is to be buffered to speed up the drawing process. This property is applicable for Plot, Scatter, Area, Hilo, HLOC, and Candle chart types only. Normally it is true. The property is ignored if the FastUpdate property is true. Plot data will be buffered for FastUpdate.

	Name
	Description

	Changed
	The Changed property manages whether the data view requires recalculation. If set to true, a recalculation may be triggered. Default value is true.

	ChartFormat
	The ChartFormat property represents an instance of JCAreaChartFormat, JCBarChartFormat, JCCandleChartFormat, JCHiloChartFormat, JCHLOCChartFormat, or JCPieChartFormat,depending on the current chart type.

	ChartStyle
	The ChartStyle property contains all the JCChartStyles for the data series in this data view. Default value is generated.

	ChartType
	The ChartType property of the ChartData object specifies the type of chart used to plot the data. Valid values are: JCChart.AREA, JCChart.AREA_RADAR, JCChart.BAR, JCChart.CANDLE, JCChart.HILO, JCChart.HILO_OPEN_CLOSE, JCChart.PIE, JCChart.PLOT (default), JCChart.POLAR, JCChart.RADAR, JCChart.SCATTER_PLOT, JCChart.STACKING_AREA, and JCChart.STACKING_BAR.

	ColorHandler
	The ColorHandler property specifies a class used to override the default color determination. The ColorHandler property must implement JCDrawableColorHandler.

	DataSource
	The DataSource property, if non-null, is used as a source for data in the ChartDataView. The object must implement ChartDataModel.

	DrawFrontPlane
	The DrawFrontPlane property determines whether a data view that has both axes on the front plane of a 3d chart will draw on the front or back plane of that chart. If true, it will draw on the front plane; if false it will draw on the back plane. If either axis associated with the data view is on the back plane, this property will be ignored and the data view will automatically be drawn on the back plane. This property is also ignored for 3d chart types such as bar and stacking bars that automatically appear on the front plane.

	DrawingOrder
	The DrawingOrder property determines the drawing order of items. When the DrawingOrder property is changed, the order properties of all ChartDataView instances managed by a single JCChart object are normalized.

	FastUpdate
	The FastUpdate property controls whether column appends to the data are performed quickly, only recalculating and redrawing the newly-appended data.

	Name
	Description

	HoleValue
	The HoleValue property is a floating point number used to represent a hole in the data. Internally, ChartDataView places this value in the x- and y-arrays to represent a missing data value. Note that if the HoleValue is changed, values in the xand y-data previously set with HoleValues will not change their values but will now draw.

	Inverted
	If the Inverted property is set to true for rectangular charts, the x-axis becomes vertical, and the y-axis becomes horizontal. Default value is false. Note: This property is ignored for circular charts.

	Markers
	The Markers property associates a list of markers with the data view.

	Name
	The Name property is used as an index for referencing particular ChartDataView objects.

	NamePointLabels
	The NumPointLabels property determines the number of labels in the PointLabels property. The PointLabels property is an indexed property consisting of a series of Strings representing the desired label for a particular data point.

	NumSeries
	The NumSeries property determines how many data series there are in a ChartDataView.

	OutlineColor
	The OutlineColor property determines the color with which to draw the outline around a filled chart item (e.g. bar, pie).

	PickFocus
	The PickFocus property specifies how distance is determined for pick operations. When set to PICK_FOCUS_XY, a pick operation will use the actual distance between the point and the drawn data. When set to values of PICK_FOCUS_X or PICK_FOCUS_Y, the distance only along the x-axis or y-axis is used.

	PointLabel
	Sets a particular PointLabel from the PointLabels property (see below).

	PointLabels
	The PointLabels property is an indexed property comprising a series of Strings representing the desired label for a particular data point.

	Series
	The Series property is an indexed property that contains all data series for a particular ChartDataView. The order of ChartDataViewSeries objects in the series array corresponds to the drawing order.

	Thresholds
	The Thresholds property associates a list of thresholds with the data view.

	Name
	Description

	Visible
	The Visible property determines whether the dataview is ashowing or not. Default value is true.

	VisibleInLegend
	The VisibleInLegend property determines whether or not the view name and its series will appear in the chart legend.

	XAxis
	The XAxis property determines the x-axis against which the data in ChartDataView is plotted.

	YAxis
	The YAxis property determines the y-axis against which the data in ChartDataView is plotted.

[bookmark: _Toc534826742]A.2 	ChartDataViewSeries

	Name
	Description

	DrawingOrder
	The DrawingOrder property determines the order of display of data series. When the DrawingOrder property is changed, ChartDataView will normalize the order properties of all the ChartDataViewSeries objects that it manages.

	FirstPoint
	The FirstPoint property controls the index of the first point displayed in the ChartDataViewSeries.

	Included
	The Included property determines whether a data series is included in chart calculations (like axis bounds).

	Label
	The Label property controls the text that appears next to the data series inside the legend.

	LastPoint
	The LastPoint property controls the index of the first point displayed in the ChartDataViewSeries.

	LastPointIsDefault
	The LastPointIsDefault property determines whether the LastPoint property should be calculated from the data.

	Name
	The Name property represents the name of the data series. In JClass Chart, data series are named, and can be retrieved by name.

	Style
	The Style property defines the rendering style for the data series.

	Name
	Description

	Visible
	The Visible property determines whether the data series is showing in the chart area. Note that data series that are not showing are still used in axis calculations. See the Included property for details on how to omit a data series from chart calculations.

	VisibleInLegend
	The VisibleInLegend property determines whether or not this eries will appear in the chart legend.

[bookmark: _Toc534826743]A.3 	ChartText

	Name
	Description

	Adjust
	The Adjust property determines how text is justified (positioned) in the label. Valid values include ChartText.LEFT, ChartText.CENTER, and ChartText.RIGHT. The default value is ChartText.LEFT.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent ChartRegion.

	Font
	The Font property determines what font is used to render text inside the chart region. Note that the Font property is inherited from the parent ChartRegion.

	Foreground
	The Foreground property determines the foreground color used to draw inside the chart region. Note that the Foreground property is inherited from the parent ChartRegion.

	Height
	The Height property determines the height of the ChartRegion. The default value is calculated.

	HeightIsDefault
	The HeightIsDefault property determines whether the height of the chart region is calculated by Chart (true) or taken from the Height property (false). The default value is true.

	Insets
	The Insets property specifies the space that a container must leave at each of its edges. The space can be a border, a blank space, or a title.

	Name
	Description

	Left
	The Left property determines the location of the left of the ChartRegion. The default value is calculated.

	LeftIsDefault
	The LeftIsDefault property determines whether the left position of the chart region is calculated by the chart (true) or taken from the Left property (false). The default value is true.

	Name
	The Name property specifies a String identifier for the ChartRegion object.

	Rotation
	The Rotation property controls the rotation of the label. Valid values include ChartText.DEG_90, ChartText.DEG_180, ChartText.DEG_270, and ChartText.DEG_0. The default value is ChartText.DEG_0.

	Text
	The Text property is a String property that represents the text to be displayed inside the chart label. Default value is “ ” (empty String).

	Top
	The Top property determines the location of the top of the ChartRegion. The default value is calculated.

	TopIsDefault
	The TopIsDefault property determines whether the top position of the chart region is calculated by the chart (true) or taken from the Top property (false). The default value is true.

	Visible
	The Visible property determines whether the associated ChartRegion is currently visible. Default value is true.

	Width
	The Width property determines the width of the ChartRegion. The default value is calculated.

	WidthIsDefault
	The WidthIsDefault property determines whether the width of the chart region is calculated by the chart (true) or taken from the Width property (false). The default value is true.

[bookmark: _Toc534826744]A.4 	JCAnno

	Name
	Description

	AnnotationList
	The AnnotationList property represents the list of JCAnno objects that have been added to the axis.

	DrawLabels
	The DrawLabels property determines whether or not labels are drawn for a series of annotations.

	Name
	Description

	DrawTicks
	The DrawTicks property determines whether or not tick marks are drawn for a series of annotations.

	GridList
	The GridList property represents the list of JCGrid objects that have been added to the axis.

	IncrementValue
	The IncrementValue property determines tbe pixel distance that tick marks extend away from the plow area.

	LabelColor
	The LabelColor property determines the color of labels.

	LabelExtent
	The LabelExtent property determines the pixel distance of labels from the axis.

	OuterExtent
	The OuterExtent property determines the pixel distance that tick marks extend away from the plot area.

	Precision
	The Precision property determines the precision to which numeric labels are displayed.

	StartValue
	The StartValue property determines the axis value at which the drawing of annotations begin.

	StopValue
	The StopValue property determines the axis value at which the drawing of annotations ends.

	TickColor
	The TickColor property determines the color of tick marks.

	Type
	The Type property determines the tick object’s type. Default_Labels defines the JCAnno object to be the set of default labels for the axis. Default_Ticks defines the JCAnno object to be the set of default ticks for the axis. Default is User_Defined.

	UseAnnoTicks
	The UseAnnoTicks property determines whether or not tick marks are drawn at the labels when the annotation method is VALUE_LABELS, POINT_LABELS, or TIME_LABELS. If True, tick marks are drawn at the labels. If False, tick marks are drawn according to the properties of one or more JCAnno objects.

[bookmark: _Toc534826745]A.5 	JCAreaChartFormat

	Name
	Description

	100Percent
	The 100Percent property determines whether a stacking area will be charted versus an axis representing a percentage between 0 and 100. Default value is false.

[bookmark: _Toc534826746]A.6 	JCAxis

	Name
	Description

	AnnotationMethod
	The AnnotationMethod property determines how axis annotations are generated. Valid values are JCAxis.VALUE (annotation is generated by the chart, with possible callbacks to a label generator); JCAxis.VALUE_LABELS (annotation is taken from a list of value labels provided by the user -- a value label is a label that appears at a particular axis value); JCAxis.POINT_LABELS (annotation comes from the data source’s point labels that are associated with particular data points); and JCAxis.TIME_LABELS (the chart generates time/date labels based on the TimeUnit, TimeBase and TimeFormat properties). Default value is JCAxis.VALUE.

	AnnotationRotation
	The AnnotationRotation property specifies the rotation of each axis label. Valid values are JCAxis.ROTATE_90, JCAxis.ROTATE_180, JCAxis.ROTATE_270, JCAxis.ROTATE_NONE, or JCAxis.ROTATE_OTHER. Default value is JCAxis.ROTATE_NONE.

	AnnotationRotationAngle
	Specifies the angle of the annotation for the currently selected axis. The angle is always set in degrees.

	AnnotationVisible
	The AnnotationVisible property determines whether or not the annotation is visible.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent ChartRegion.

	DropOverLappingLabels
	The DropOverlappingLabels property determines whether or not overlapping labels are dropped. When true, one or more of the overlapping labels are eliminated so that the remaining labels do not overlap.

	Editable
	The Editable property determines whether the axis can be affected by edit/translation/zooming. Default value is true.

	Font
	The Font property determines what font is used to render text inside chart region. Not that the Font property is inherited from the parent ChartRegion.

	Name
	Description

	Foreground
	The Foureground property determines the foreground color used to draw inside the chart region. Not that the Foreground property is inherited from the parent ChartRegion.

	Formula
	The Formula property determines how an axis is related to another axis object. If set, the Formula property overrides all other axis properties. See JCAxisFormula for details.

	Gap
	The Gap property determines the amount of space left between adjacent axis annotations, in pixels.

	GeneratedValueLabels
	The GeneratedValueLabels property reveals the value label at th specified index in the list of value labels generated for this axis.

	GridDefault
	The GridDefault property determines whether or not grid lines are drawn at the labels.

	GridSpacing
	The GridSpacing property controls the spacing between gridlines relative to the axis. Default value is 0.0.

	GridSpacingIsDefault
	The GridSpacingIsDefault property determines whether the chart is responsible for calculating the grid spacing value. If true, the chart will calculate the grid spacing. If false, the chart will use the provided grid spacing. Default value is true.

	GridStyle
	The GridStyle property controls how grids are drawn. The default value in generated.

	GridVisible
	The GridVisible property determines whether a grid is drawn for the axis. Default value is false.

	Height
	The Height property determines the height of the ChartRegion. The default value is calculated.

	HeightIsDefault
	The HeightIsDefault property determines whether the height of the chart region is calculated by the chart (true) or taken from the Height property (false). Default value is true.

	LabelGenerator
	The LabelGenerator property holds a reference to an object that implements the JCLabelGenerator interface. This interface is used to externally generate labels if the AnnotationMethod property is set to JCAxis.Value. Default value is null.

	Name
	Description

	Left
	The Left property determines the location of the left of the ChartRegion. The default value is calculated.

	LeftIsDefault
	The LeftIsDefault property determines whether the left position of thee chart region is calculated by the chart (true) or taken from the Left property (false). Default value is true.

	Logarithmic
	The Logarithmic property determines whether the axis will be logarithmic (true) or linear (false). Default value is false.

	Max
	The Max property controls the maximum value shown on the axis. The data max is determined by the chart. Default value is calculated.

	MaxIsDefault
	The MaxIsDefault property determines whether the chart is responsible for calculating the maximum axis value. If true, the chart calculates the axis max. If false, the chart uses the provided axis max. Default value is true.

	Min
	The Min property controls the minimum value shown on the axis. The data min is determined by the chart.

	MinIsDefault
	The MinIsDefault property determines whether the chart is responsible for calculating the minimum axis value. If true, the chart will calculate the axis min. If false, the chart will use the provided axis min. Default value is true.

	Name
	The Name property specifies a String identify for the ChartRegion object. Not that the Name property is inherited from the parent CharRegion.

	NumSpacing
	The NumSpacing property controls the interval between axis labels. The default value is calculated.

	NumSpacingIsDefault
	The NumSpacingIsDefault property determines whether the chart is responsible for calculating the numbering spacing. If true, the chart will calculate the spacing. If false, the chart will use the provided numbering spacing. Default value is true.

	Origin
	The Origin property controls location of the origin along the axis. The default value is calculated.

	Name
	Description

	OriginIsDefault
	The OriginIsDefault property determines whether the chart is responsible for positioning the axis origin. If true, the chart calculates the axis origin. If false, the chart uses the provided axis origin value. Default value is true.

	OriginPlacement
	The OriginPlacement property specifies where the origin is placed. Note that the OriginPlacement property is only active if the Origin property has not been set. Valid values include AUTOMATIC (places origin at minimum value). ZERO (places origin at zero), MIN (places origin at minimum value on axis) or MAX (places origin at maximum value on axis). Default value is AUTOMATIC.

	OriginPlacementIsDefault
	The OriginPlacementIsDefault property determines whether the chart is responsible for determining the location of the axis origin. If true, the chart calculates the origin positioning. If false, the chart uses the provided origin placement.

	Placement
	The Placement property determines the method used to place the axis. Valid values include JCAxis.AUTOMATIC (the chart chooses an appropriate location), JCAxis.ORIGIN (appears at the origin of another axis, specified via the PlacementAxis property), JCAxis.MIN (appears at the minimum axis value), JCAxis.MAX (appears at the maximum axis value) or CAxis.VALUE_ANCHORED (appears at a particular value along another axis, specified via the PlacementAxis property). Default value is AUTOMATIC.

	PlacementAxis
	The PlacementAxis property determines the axis that controls the placement of this axis. In JCChart, it is possible to position an axis at a particular position on another axis (in conjunction with the PlacementLocation property or the Placement property). Default value is null.

	PlacementIsDefault
	The PlacementIsDefault property determines whether the chart is responsible for determining the location of the axis. If true, the chart calculates the axis positioning. If false, the chart uses the provided axis placement.

	PlacementLocation
	The PlacementLocation property is used with the PlacementAxis property to position the current axis object at a particular point on another axis. Default value is 0.0.

	Name
	Description

	Precision
	The Precision property controls the number of zeros that appear after the decimal place in chart-generated axis labels. The default value is calculated.

	PrecisionIsDefault
	The PrecisionIsDefault determines whether the chart is responsible for calculating the numbering precision. If true, the chart will calculate the precision. If false, the chart will use the provided precision. Default value is true.

	Reversed
	The Reversed property of JCAxis determines if the axis direction is reversed. Default value is false.

	TickSpacing
	The TickSpacing property controls the interval between tick lines on the axis. Note: if the AnnotationMethod property is set to POINT_LABELS, tick lines appear at point values. The default value is calculated.

	TickSpacingIsDefault
	The TickSpacingIsDefault property determines whether the chart is responsible for calculating the tick spacing. If true, the chart will calculate the tick spacing. If false, the chart will use the provided tick spacing. Default value is true.

	TimeBase
	The TimeBase property defines the start time for the axis. Default value is the current time.

	TimeFormat
	The TimeFormat property controls the format used to generate time labels for time labelled axes. The formats supported are the same as in Java's SimpleDateFormat class. Default value is calculated based on TimeUnit.

	TimeFormatIsDefault
	The TimeFormatIsDefault property determines whether a time label format is generated automatically, or the user value for TimeFormat is used. Default value is true.

	TimeUnit
	The TimeUnit property controls the unit of time used for labelling a time labelled axis. Valid TimeUnit values include JCAxis.SECONDS, JCAxis.MINUTES, JCAxis.HOURS, JCAxis.DAYS, JCAxis.WEEKS, JCAxis.MONTHS and JCAxis.YEARS. Default value is JCAxis.SECONDS.

	TimeZone
	The TimeZone property specifies the time zone for this axis. Use only for time-based labels.

	Title
	The Title property controls the appearance of the axis title.

	Name
	Description

	Top
	The Top property determines the location of the top of the ChartRegion. The default value is calculated.

	TopIsDefault
	The TopIsDefault property determines whether the top position of the chart region is calculated by the chart (true) or taken from the Top property (false). Default value is true.

	ValueLabels
	The ValueLabels property is an indexed property containing a list of all annotations for an axis. Default value is null, no value labels.

	Vertical
	The Vertical property determines whether the associated Axis is vertical. Default value is false.

	Visible
	The Visible property determines whether the associated Axis is currently visible. Default value is true. Note that the Font property is inherited from the parent ChartRegion.

	Width
	The Width property determines the width of the ChartRegion. The default value is calculated.

	WidthIsDefault
	The WidthIsDefault property determines whether the width of the chart region is calculated by the chart (true) or taken from the Width property (false). Default value is true.

[bookmark: _Toc534826747]A.7 	JCAxisFormula

	Name
	Description

	Constant
	The Constant property specifies the “c” value in the axis relationship y2 = my + c.

	Multiplier
	The Multiplier property specifies the “m” value in the relationship y2 = my + c.

	Originator
	The Originator property specifies an object representing the axis that is related to the current axis by the formula y = mx + c. The originator is “x”.

[bookmark: _Toc534826748]A.8 	JCAxisTitle

	Name
	Description

	Adjust
	The Adjust property determines how text is justified (positioned) in the label. Valid values include ChartText.LEFT, ChartText.CENTER, and ChartText.RIGHT. Default value is ChartText.LEFT.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent ChartText.

	Font
	The Font property determines what font is used to render text inside the chart region. Note that the Font property is inherited from the parent ChartText.

	Foreground
	The Foreground property determines the foreground color used to draw inside the chart region. Note that the Foreground property is inherited from the parent ChartText.

	Height
	The Height property defines the height of the chart region. The default value is calculated.

	HeightIsDefault
	The HeightIsDefault property determines whether the height of the chart region is calculated by the chart (true) or taken from the Height property (false).

	Left
	The Left property determines the location of the left of the chart region. The default value is calculated.

	LeftIsDefault
	The LeftIsDefault property determines whether the left position of the chart region is calculated by the chart (true) or taken from the Left property (false).

	Placement
	The Placement property controls where the JCAxis title is placed relative to the “opposing” axis. Valid values include JCLegend.NORTH or JCLegend.SOUTH for horizontal axes, and JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHEAST, JCLegend.SOUTHEAST, JCLegend.NORTHWEST or JCLegend.SOUTHWEST for vertical axes. The default value is calculated.

	PlacementIsDefault
	The PlacementIsDefault property determines whether the chart is responsible for calculating a reasonable default placement for the axis title. Default value is true.

	Name
	Description

	Rotation
	The Rotation property controls the rotation of the label. Valid values include ChartText.DEG_90, ChartText.DEG_180, ChartText.DEG_270, and ChartText.DEG_0. Default value is ChartText.DEG_0.

	Text
	The Text property is a String property that represents the text to be displayed inside the chart label. Default value is “ ” (nothing).

	Top
	The Top property determines the location of the top of the chart region the default value is calculated.

	TopIsDefault
	The TopIsDefault property determines whether the top position of the chart region is calculated by the chart (true) or taken from the Top property (false).

	Visible
	The Visible property determines whether the associated Axis is currently visible. Default value is true.

	Width
	The Width property defines the width of the chart region. The default value is calculated.

	WithIsDefault
	The WidthIsDefault property determines whether the width of the chart region is calculated by the chart (true) or taken from the Width property (false).

[bookmark: _Toc534826749]A.9 	JCBarChartFormat

	Name
	Description

	100Percent
	The 100Percent property determines whether stacking bar charts will be charted versus an axis representing a percentage between 0 and 100. Default value is false.

	ClusterOverlap
	The ClusterOverlap property specifies the overlap between bars. Valid values are between -100 and 100. Default value is 0.

	ClusterWidth
	The ClusterWidth property determines the percentage of available space which will be occupied by the bars. Valid values are between 0 and 100. Default value is 80.

[bookmark: _Toc534826750]A.10 	JCCandleChartFormat

	Name
	Description

	CandleOutlineStyle
	The CandleOutlineStyle determines the candle outline style of the complex candle chart.

	Complex
	The Complex property determines whether candle charts use the simple or the complex display style. When false, the chart only uses the style referenced by getHiLoStyle() for the candle appearance. When set to true, all four styles are used. Default value is false.

	FallingCandleStyle
	The FallingCandleStyle determines the candle style of the falling candle style of the complex candle chart.

	HiloStyle
	The HiloStyle determines the candle style of the simple candle or the Hi-Lo line of the complex candle chart.

	risingCandleStyle
	The RisingCandleStyle determines the rising candle style of the complex candle chart.

[bookmark: _Toc534826751]A.11 	JCChart

	[bookmark: _Hlk533776168]Name
	Description

	About
	The About property displays contact information for Quest Software in the bean box.

	AloowUserChanges
	The AllowUserChanges property determines whether the user viewing the graph can modify graph values. Default value is false.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent JCComponent.

	Batched
	The Batched property controls whether chart updates are accumulated. Default value is false.

	CancelKey
	The CancelKey property specifies the key used to perform a cancel operation.

	Changed
	The Changed property determines whether the chart requires recalculation. Default value is false.

	Name
	Description

	ChartArea
	The ChartArea property controls the object that controls the display of the graph. Default value is null.

	ChartLabelManager
	The ChartLabelManager property manages all chart labels.

	CustomizerName
	The CustomizerName property specifies the full class name of the Chart Customizer. Default is com.klg.jclass.chart.customizer.ChartCustomizer.

	DataView
	The DataView property is an indexed property that contains all the data to be displayed in Chart. See ChartDataView for details on data format. By default, one ChartDataView is created.

	FillColorIndex
	The FillColorIndex property controls the fill color index. Default value is 0.

	Font
	The Font property determines what font is used to render text inside the chart region. Note that the Font property is inherited from the parent JCComponent.

	Footer
	The Footer property controls the object that controls the display of the footer. Default value is a JLabel instance

	Foreground
	The Foreground property determines the foreground color used to draw inside the chart region. Note that the Foreground property is inherited from the parent JCComponent.

	Header
	The Header property controls the object that controls the display of the header. Default value is a null.

	LayoutHints
	The LayoutHints property sets layout hints for a child component of JClass Chart.

	Legend
	The Legend property controls the object that controls the display of the legend. Default value is an instance of JCGridLegend.

	LineColorIndex
	The LineColorIndex property controls the line color index. Default value is 0.

	NumData
	The NumData property indicates how many ChartDataView objects are stored in JCChart. This is a read-only property. Default value is 1.

	NumTriggers
	The NumTriggers property indicates how many event triggers have been specified.

	ResetKey
	The ResetKey property specifies the key used to perform a reset operation.

	Name
	Description

	SymbolColorIndex
	The SymbolColorIndex property controls the symbol color index. Default value is 0.

	SymbolShapeIndex
	The SymbolShapeIndex property controls the symbol shape index. Default value is 1.

	Trigger
	The Trigger property is an indexed property that contains all the information necessary to map user events into Chart actions. The Trigger property is made up of a number of EventTrigger objects. Default value is empty.

	WarningDialog
	The WarningDialog property determines whether JClass Chart will display a warning dialogue when required.

[bookmark: _Toc534826752]A.12 	JCChartArea

	Name
	Description

	AngleUnit
	The AngleUnit property determines the unit of all angle values. Default value is DEGREES.

	AxisBoundingBox
	The AxisBoundingBox property determines whether a box is drawn around the area bound by the inner axes.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent JCChart.

	Depth
	The Depth property controls the apparent depth of a graph. Default value is 0.0.

	Elevation
	The Elevation property controls distance from the x-axis. Default value is 0.0.

	FastAction
	The FastAction property determines whether chart actions will use an optimized mode in which it does not bother to display axis annotations or gridlines. Default value is false.

	Font
	The Font property determines what font is used to render text inside the chart region. Note that the Font property is inherited from the parent JCChart.

	Foreground
	The Foreground property determines the foreground color used to draw inside the chart region. Note that the Foreground property is inherited from the parent JCChart.

	Name
	Description

	HorizActionAxis
	The HorizActionAxis property determines the axis used for actions (zooming, translating) in the horizontal direction. Default value is null.

	PlotArea
	The PlotArea property represents the region of the ChartArea that is inside the axes. This property is read-only.

	Rotation
	The Rotation property controls the position of the eye relative to the y-axis. Default value is 0.0.

	VerActionAxis
	The VertActionAxis property determines the axis used for actions (zooming, translating) in the vertical direction. Default value is null.

	Visibe
	If true, the ChartRegion will appear on the screen. If false, it will not appear on the screen. (Legend, header, footer and chart area are all ChartRegion instances.) Default value is true.

	XAxis
	The XAxis property is an indexed property that contains all the x-axes for the chart area. Default value is one x-axis.

	YAxis
	The YAxis property is an indexed property that contains all the y-axes for the chart area. Default value is one y-axis.

[bookmark: _Toc534826753]A.13 	JCChartLabel

	Name
	Description

	Anchor
	Specifies how the label is to be positioned relative to the specified point. Valid values are JCChartLabel.NORTHEAST, JCChartLabel. NORTHWEST, JCChartLabel.NORTH, JCChartLabel.EAST, JCChartLabel.WEST, JCChartLabel.SOUTHEAST, JCChartLabel.SOUTHWEST, JCChartLabel.SOUTH, JCChartLabel.CENTER, or JCChartLabel.AUTO.

	AttachMethod
	Specifies how the label is attached to the chart. Valid values are JCChartLabel.ATTACH_COORD (attach label to an absolute point anywhere on the chart), JCChartLabel.ATTACH_DATACOORD (attach label to a point in the data space on the chart area), and JCChartLabel.ATTACH_DATAINDEX (attach the label to a specific point/bar/slice on the chart).

	Component
	The Swing component used as the chart label. By default, this is a JLabel instance.

	Coord
	The coordinate in the chart's space where the label is to be attached.

	Name
	Description

	DataCoord
	The coordinate in the chart area’s data space where the label is to be attached.

	DataIndex
	A data index representing the point/bar/slice in the chart to which the label is to be attached.

	DataView
	For labels using ATTACH_DATACOORD, this property specifies which ChartDataView’s axes should be used.

	Offset
	The Offset property specifies where the label should be positioned relative to the position the labels thinks it should be, depending on what the label’s attachMethod is.

	ParentManager
	The ParentManager property is the ChartLabelManager instance that controls the JCChartLabel.

	Text
	The Text property controls the text displayed inside the label.

[bookmark: _Toc534826754]A.14 	JCChartLabelManager

	Name
	Description

	AutoLabelList
	The AutoLabelList property is a two-dimensional array of automatically-generated JCChartLabel instances, one for every point and series. The inner array is indexed by point; the outer array by series. Default is empty.

[bookmark: _Toc534826755]A.15 	JCChartStyle

	Name
	Description

	FillColor
	The FillColor property determines the color used to fill regions in chart. Default value is generated.

	FillImage
	The FillImage property determines the image used to paint the fill region of bar and area charts. Default value is null.

	FillPattern
	The FillPattern property determines the fill pattern used to fill regions in chart. Default value is JCFillStyle.SOLID.

	FillStyle
	The FillStyle property controls the appearance of filled areas in chart. See JCFillStyle for additional properties. Note that all JCChartStyle properties of the format Fill* are virtual properties that map to properties of JCFillStyle.

	Name
	Description

	LineCap
	The LineCap property specifies the cap style used to end a line. Valid values include BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and BasicStroke.CAP_SQUARE.

	LineColor
	The LineColor property determines the color used to draw a line. Default value is generated.

	LineJoin
	The LineJoin property specifies the join style used to join two lines. Valid values include BasicStroke.JOIN_MITER, BasicStroke.JOIN_BEVEL, and BasicStroke.JOIN_ROUND.

	LinePattern
	The LinePattern property dictates the pattern used to draw a line. Valid values include JCLineStyle.NONE, JCLineStyle.SOLID, JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH, JCLineStyle.LSL_DASH, and JCLineStyle.DASH_DOT. Default value is JCLineStyle.SOLID.

	LineStyle
	The LineStyle property controls the appearance of lines in chart. See JCLineStyle for additional properties.

	LineWidth
	The LineWidth property controls the line width. Default value is 1.

	SymbolColor
	The SymbolColor property determines the color used to paint the symbol. Default value is generated.

	SymbolCustomShape
	The SymbolCustomShape property contains an object derived from JCShape that is used to draw points. See JCShape for details. Default value is null.

	SymbolShape
	The SymbolShape property determines the type of symbol that will be drawn. Valid values include JCSymbolStyle.NONE, JCSymbolStyle.DOT, JCSymbolStyle.BOX, JCSymbolStyle.TRIANGLE, JCSymbolStyle.DIAMOND, JCSymbolStyle.STAR, JCSymbolStyle.VERT_LINE, JCSymbolStyle.HORIZ_LINE, JCSymbolStyle.CROSS, JCSymbolStyle.CIRCLE, and JCSymbolStyle.SQUARE. Default value is generated.

	SymbolSize
	The SymbolSize property determines the size of the symbol. Default value is 6.

	SymbolStyle
	The SymbolStyle property controls the symbol that represents an individual point. See JCSymbolStyle for additional properties. Note that all JCChartStyle properties of the format Symbol* are virtual properties that map to properties of JCSymbolStyle.

[bookmark: _Toc534826756]A.16 	JCFillStyle

	Name
	Description

	Background
	The Background property determines the background color used when painting patterned fills.

	Color
	The Color property determines the color used to fill regions in chart. The default value is generated.

	CustomPaint
	The CustomPaint property specifies the TexturePaint object used to paint the fill region when the pattern is set to CUSTOM_PAINT.

	Image
	The Image property determines the image used to paint the fill region when the pattern is set to CUSTOM_FILL or CUSTOM_STACK. The default value is null.

	Pattern
	The Pattern property determines the fill pattern used to fill regions in chart. The default value is JCFillStyle.SOLID.

Available fill patterns are: NONE, SOLID, 25_PERCENT, 50_PERCENT, 75_PERCENT, HORIZ_STRIPE, VERT_STRIPE, 45_STRIPE, 135_STRIPE, DIAG_HATCHED, CROSS_HATCHED, CUSTOM_FILL, CUSTOM_PAINT, or, for bar charts only, CUSTOM_STACK.

[bookmark: _Toc534826757]A.17 	JCGrid

	Name
	Description

	GridStyle
	The GridStyle property determines the style in which grid lines are drawn.

	IncrementValue
	The IncrementValue property determines the value spacing between grid lines.

	Orientation
	The Orientation property determines how legend information is laid out. Valid values include JCLegend.VERTICAL and JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

	StartValue
	The StartValue property determines the axis value at which the drawing of grid lines begins.

	StopValue
	The StopValue property determines the axis value where the drawing of grid lines ends.

	Name
	Description

	SymbolSize
	The SymbolSize property determines the size of the symbol. Default value is 6.

	Visible
	The Visible property determines whether the grid lines defined by this object are visible.

[bookmark: _Toc534826758]A.18 	JCGridLegend
See also: JCLegend

	Name
	Description

	Anchor
	The Anchor property determines the position of the legend relative to the ChartArea. Valid values include JCLegend.NORTH, JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST, JCLegend.SOUTHWEST, JCLegend.NORTHEAST, and JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

	Background
	The Background property determines the background color used to draw inside the legend. Note that the Background property is inherited from the parent JCChart.

	Font
	The Font property determines what font is used to render text inside the legend. Note that the Font property is inherited from the parent JCChart.

	Foreground
	The Foreground property determines the foreground color used to draw inside the legend. Note that the Foreground property is inherited from the parent JCChart.

	GroupGap
	The GroupGap property determines the gap between groups of items in the chart legend (e.g. the columns/rows associated with a data view).

	InsideItemGap
	The InsideItemGap property determines the gap between the symbol and text portions of a legend item.

	ItemGap
	The ItemGap property determines the gap between the legend items in the same group.

	MarginGap
	The MarginGap property determines the gap between the edge of the legend and the start of the item layout.

	Orientation
	The Orientation property determines how legend information is laid out. Valid values include JCLegend.VERTICAL and JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

	Name
	Description

	SymbolSize
	The SymbolSize property determines the size of the symbol. Default value is 6.

	Visible
	The Visible property determines the gap between the legend items in the same group.

[bookmark: _Toc534826759]A.19 	JCHiloChartFormat

	Name
	Description

	HiloStyle
	The HiloStyle property specifies the JCChartStyle object that defines the style of the chart.

[bookmark: _Toc534826760]A.20 	JCHLOCChartFormat

	Name
	Description

	HiloStyle
	The HiloStyle property specifies the JCChartStyle object that defines the style of the chart.

	OpenCloseFullWidth
	The OpenCloseFullWidth property indicates whether the open and close tick indications are drawn across the full width of the Hi-Lo bar or just on one side. The default value is false.

	ShowingClose
	The ShowingClose property indicates whether the close tick indication is shown or not. The tick appears to the right of the Hi-Lo line. The default value is true.

	ShowingOpen
	The ShowingOpen property indicates whether the open tick indication is shown or not. The tick appears to the left of the Hi-Lo line. The default value is true.

	TickSize
	The TickSize property specifies the tick size for open and close ticks.

[bookmark: _Toc534826761]A.21 	JCLegend

	Name
	Description

	Anchor
	The Anchor property determines the position of the legend relative to the ChartArea. Valid values include JCLegend.NORTH, JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST, JCLegend.SOUTHWEST, JCLegend.NORTHEAST, and JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

	Background
	The Background property determines the background color used to draw inside the legend. Note that the Background property is inherited from the parent JCChart.

	Border
	The Border property sets the border of a component. Note that the Border property is inherited from JComponent.

	Font
	The Font property determines what font is used to render text inside the legend. Note that the Font property is inherited from the parent JCChart.

	Foreground
	The Foreground property determines the foreground color used to draw inside the legend. Note that the Foreground property is inherited from the parent JCChart.

	ItemTextAlignment
	The ItemTextAlignment property determines the alignment for the text in a column. Valid values are: SwingConstants.LEFT, SwingConstants.CENTER, SwingConstants.RIGHT, SwingConstants.LEADING, and SwingConstants.TRAILING. Default is SwingConstants.LEADING. By default, this property applies to all columns, but you can set it on individual columns by specifying the column number.

	ItemTextToolTip
 Enabled
	The ItemTextToolTipEnabled property determines whether or not tooltips are displayed when the mouse hovers over a legend item.

	MaxItemTextWidth
	The MaxItemTextWidth property specifies the maximum width of the column in pixels. If the column text exceeds this width, the text is truncated. By default, this property applies to all columns, but you can set it on individual columns by specifying the column number.

	Opaque
	The Opaque property determines the background color. If the component is completely opaque, the background will be filled with the background color. Otherwise, the background is transparent, and whatever is underneath will show through. Note, that the Opaque property is inherited from JComponent.

	Name
	Description

	Orientation
	The Orientation property determines how legend information is laid out. Valid values include JCLegend.VERTICAL and JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

	TruncateMode
	The TruncateMode property determines how text is truncated when the length of the text exceeds the maximum width of the column. Valid values are: JCLegend.TRUNCATE_LEFT, JCLegend.TRUNCATE_RIGHT, JCLegend.TRUNCATE_MIDDLE, JCLegend.TRUNCATE_END, JCLegend.TRUNCATE_LEADING, and JCLegend.TRUNCATE_TRAILING. Default is TRUNCATE_TRAILING. By default, this property applies to all columns, but you can set it on individual columns by specifying the column number.

	UseEllipsisWhen
 Truncating
	The UseEllipsisWhenTruncating property determines whether or not an ellipsis is used to indicate truncated legend text.

	Visible
	The Visible property determines whether the legend is currently visible. Default value is false.

[bookmark: _Toc534826762]A.22 	JCLineStyle

	Name
	Description

	Cap
	The Cap property specifies the cap style used to end a line. Valid values include BasicStroke.CAP_BUTT, BasicStroke.CAP_ROUND, and BasicStroke.CAP_SQUARE.

	Color
	The Color property determines the color used to draw a line. The default value is generated.

	Join
	The Join property specifies the join style used to join two lines. Valid values include BasicStroke. JOIN_MITER, BasicStroke.JOIN_BEVEL, and BasicStroke.JOIN_ROUND.

	Pattern
	The Pattern property dictates the pattern used to draw a line. Valid values include JCLineStyle.NONE, JCLineStyle.SOLID, JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH, JCLineStyle.LSL_DASH, and JCLineStyle.DASH_DOT. The default value is JCLineStyle.SOLID.

	Width
	The Width property controls the line width. The default value is 1.

[bookmark: _Toc534826763]A.23 	JCMarker

	Name
	Description

	AssociatedWithYAxis
	The AssociatedWithYAxis property specifies whether the marker is associated with the y-axis (true) or the x-axis (false). Default is true.

	ChartLabel
	The ChartLabel property is of type JCChartLabel. Setting this property allows a chart label to be attached to the marker (the default is null which means no chart label is attached to the marker). The default attachment point is on the marker, halfway between the start point and the end point.

	DrawnBeforeData
	The DrawnBeforeData property specifies whether the marker is drawn before the data (true) or after the data (false). Default is false.

	EndPoint
	The EndPoint property specifies the value on the non-associated axis at which to end the marker line. The default is the maximum value on the axis.

	IncludedInDataBounds
	The IncludedInDataBounds property determines whether or not the marker’s value is included when calculating the data minimum and data maximum for the data view.

	Label
	The Label property specifies the name of the marker and the label used in the legend (if VisibleInLegend is true).

	LineStyle
	The LineStyle property determines the width, color, and type of the marker line via a JCLineStyle object. By default, the LineStyle is a solid black line of width 1 (one). Setting the LineStyle property to null means that no line is drawn.

	StartPoint
	The StartPoint property specifies the value on the non-associated axis at which to start the marker line. The default is the minimum value on the axis.

	Value
	The Value property specifies the value on the associated axis at which to draw the marker line.

	VisibleInLegend
	The VisibleInLegend property determines whether the marker label is displayed in the legend (true) or not (false). The default is false.

[bookmark: _Toc534826764]A.24 	JCMultiColLegend
See also: JCLegend

	Name
	Description

	Anchor
	The Anchor property determines the position of the legend relative to the ChartArea. Valid values include JCLegend.NORTH, JCLegend.SOUTH, JCLegend.EAST, JCLegend.WEST, JCLegend.NORTHWEST, JCLegend.SOUTHWEST, JCLegend.NORTHEAST and JCLegend.SOUTHEAST. The default value is JCLegend.EAST.

	Background
	The Background property determines the background color used to draw inside the legend. Note that the Background property is inherited from the parent ChartRegion.

	Border
	The Border property sets the border of a component. Note that the Border property is inherited from JComponent.

	Font
	The Font property determines what font is used to render text inside the legend. Note that the Font property is inherited from the parent JCChart.

	Foreground
	The Foreground property determines the foreground color used to draw inside the legend. Note that the Foreground property is inherited from the parent JCChart.

	GroupGap
	The GroupGap property determines the gap between groups of items in the chart legend (e.g. the columns/rows associated with a data view).

	InsideItemGap
	The InsideItemGap property determines the gap between the symbol and text portions of a legend item.

	ItemGap
	The ItemGap property determines the gap between the legend items in the same group.

	MarginGap
	The MarginGap property determines the gap between the edge of the legend and the start of the item layout.

	NumColumns
	The NumColumns property determines the number of columns in this legend. If the number of columns is set to zero (the default), then the NumColumns will be adjusted automatically.

	NumRows
	The NumRows property determines the number of rows in this legend. If the number of rows is set to zero (the default), the number of rows will be adjusted automatically.

	Name
	Description

	Orientation
	The Orientation property determines how legend information is laid out. Valid values include JCLegend.VERTICAL and JCLegend.HORIZONTAL. The default value is JCLegend.VERTICAL.

	SymbolSize
	The SymbolSize property determines the size of the symbol. Default value is 6.

[bookmark: _Toc534826765]A.25 	JCPieChartFormat

	Name
	Description

	ExplodeList
	The ExplodeList property specifies a list of exploded pie slices in the pie charts. Default value is an empty list.

	ExplodeOffset
	The ExplodeOffset property specifies the distance a slice is exploded from the center of a pie chart. Default value is 10.

	Minslices
	The MinSlices property represents the minimum number of pie slices that the chart will try to display before grouping slices into the other slice. Default value is 5.

	OtherLabel
	The OtherLabel property represents the label used on the “other” pie slice. As with other point labels, the “other” label is a ChartText instance. Default value is “ ” (empty String).

	OtherStyle
	The OtherStyle property specifies the style used to render the “other” pie slice.

	SortOrder
	The SortOrder property determines the order in which pie slices will be displayed. Note that the other slice is always last in any ordering. Valid values include JCPieChartFormat.ASCENDING_ORDER, JCPieChartFormat.DESCENDING_ORDER, and JCPieChartFormat.DATA_ORDER. Default value is JCPieChartFormat.DATA_ORDER.

	Startangle
	The position in the pie chart where the first pie slice is drawn. A value of zero degrees represents a horizontal line from the center of the pie to the right-hand side of the pie chart; a value of 90 degrees represents a vertical line from the center of the pie to the top-most point of the pie chart; a value of 180 degrees represents a horizontal line from the center of the pie to the left-hand side of the pie chart; and so on. Slices are drawn clockwise from the specified angle. Values must lie in the range from zero degrees to 360 degrees. The default value is 135 degrees.

	Name
	Description

	ThresholdMethod
	The ThresholdMethod property determines how the ThresholdValue property is used. If the method is SLICE_CUTOFF, the ThresholdValue is used as a cutoff to determine what items are lumped into the other slice. If the method is PIE_PERCENTILE, items are groups into the other slice until it represents “ThresholdValue” percent of the pie. Default value is SLICE_CUTOFF.

	ThresholdValue
	The ThresholdValue property is a percentage value between 0.0 and 100.0. How this value is used depends on the ThresholdMethod property. Default value is 10.0.

[bookmark: _Toc534826766]A.26 	JCPolarRadarchartFormat

	Name
	Description

	HalfRange
	The HalfRange property determines whether the x-axis for polar charts consists of two half-ranges or one full range from 0 to 360 degrees.

	OriginBase
	The OriginBase property determines the angle of the theta axis origin in polar, radar, and area radar charts. Angles are based on zero degrees pointing east (the normal rectangular x-axis direction) with positive angles going counter-clockwise. The angle units are assumed to be the current value of the chart area’s angleUnit property.

	RadarCircularGrid
	The YAxisGridCircular property determines whether gridlines are circular or “webbed” for radar and area radar charts.

	YAxisAngle
	The YAxisAngle property determines the angle of the y-axis in polar, radar, and area radar charts. Angles are relative to the current origin base. The angle units are assumed to be the current value of the chart area’s angleUnit property.

[bookmark: _Toc534826767]A.27 	JCSymbolStyle

	Name
	Description

	Color
	The Color property determines the color used to paint the symbol. The default value is generated.

	CustomShape
	The CustomShape property contains an object derived from JCShape that is used to draw points. See JCShape for details. The default value is null.

	Shape
	The Shape property determines the shape of symbol that will be drawn. Valid values include JCSymbolStyle.NONE, JCSymbolStyle.DOT, JCSymbolStyle.BOX, JCSymbolStyle.TRIANGLE, JCSymbolStyle.DIAMOND, JCSymbolStyle.STAR, JCSymbolStyle.VERT_LINE, JCSymbolStyle.HORIZ_LINE, JCSymbolStyle.CROSS, JCSymbolStyle.CIRCLE and JCSymbolStyle.SQUARE. The default value is JCSymbolStyle.DOT.

	Size
	The Size property determines the size of the symbol. The default value is 6.

[bookmark: _Toc534826768]A.28 	JCThreshold

	Name
	Description

	AssociatedWithYAxis
	The AssociatedWithYAxis property specifies whether the threshold is associated with the y-axis (true) or the x-axis (false). Default is true.

	EndLineStyle
	The EndLineStyle property determines the width, color, and type of a line on the end value of the threshold via a JCLineStyle object. By default, this property is null, which means no line is drawn on the end boundary.

	EndValue
	The EndValue property specifies the value on the associated axis at which to end the threshold.

	IncludedInDataBounds
	The IncludedInDataBounds property determines whether or not the threshold’s StartValue and EndValue are included when calculating the data minimum and data maximum for the data view.

	Label
	The Label property specifies the name of the threshold and the label used in the legend (if VisibleInLegend is true).

	Name
	Description

	FillStyle
	The FillStyle property determines the color and fill pattern of the threshold via a JCFillStyle object. By default, the FillStyle is a solid color determined by the chart to be different from the background color (it is best to set your own color). Setting this property to null means the threshold area is unfilled.

	StartLineStyle
	The StartLineStyle property determines the width, color, and type of a line on the start value of the threshold via a JCLineStyle object. By default, this property is null, which means no line is drawn on the start boundary.

	StartValue
	The StartValue property specifies the value on the associated axis at which to start the threshold.

	BisibleInLegend
	The VisibleInLegend property determines whether the threshold label is displayed in the legend (true) or not (false). The default is false.

[bookmark: _Toc534826769]A.29 	JCValueLabel

	Name
	Description

	ChartText
	The ChartText property controls the ChartText associated with this Value label. The default value is a ChartText instance.

	Text
	The Text property specifies the text displayed inside the label. The default value is “ ” (empty String).

	Value
	The Value property controls the position of a label in data space along a particular axis. The default value is 0.0.

[bookmark: _Toc534826770]A.30 	PlotArea

	Name
	Description

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background is inherited from the parent ChartRegion.

	bottom
	The Bottom property determines the location of the bottom of the PlotArea.

	Name
	Description

	BottomIsDefault
	The BottomIsDefault property determines whether the Bottom of the chart region is calculated by the chart (true) or taken from the Bottom property (false).

	Foreground
	The Foreground property determines the color used to draw the axis bounding box controlled by JCChartArea. Note that the Foreground property is inherited from the parent ChartRegion.

	Left
	The Left property determines the location of the left of the PlotArea.

	LeftIsDefault
	The LeftIsDefault property determines whether the left position of the chart region is calculated by the chart (true) or taken from the Left property (false).

	Right
	The Right property determines the Right of the PlotArea.

	RightIsDefault
	The RightIsDefault property determines whether the Right of the chart region is calculated by the chart (true) or taken from the Right property (false).

	Top
	The Top property determines the location of the top of the PlotArea.

	TopIsDefault
	The TopIsDefault property determines whether the top position of the chart region is calculated by the chart (true) or taken from the Top property (false).

[bookmark: _Toc534826771]A.31 	SimpleChart

	Name
	Description

	AxisOrientation
	The AxisOrientation property determines if the x- and y-axes are inverted and reversed.

	Background
	The Background property determines the background color used to draw inside the chart region. Note that the Background property is inherited from the parent JCComponent.

	ChartType
	The ChartType property determines the chart type of the first set of data in the chart.

	Data
	The Data property controls the file or URL used for the first set of data in chart.

	Name
	Description

	Font
	The Font property determines what font is used to render text inside the chart region. Note that the Font property is inherited from the parent JCComponent.

	FooterFont
	The FooterFont property determines what font is used to render text inside the footer region.

	FooterText
	The FooterText property holds the text that is displayed in the footer. The default value is “ ” (empty String).

	Foreground
	The Foreground property determines the foreground color used to draw inside the chart region. Note that the Foreground property is inherited from the parent JCComponent.

	HeaderFont
	The HeaderFont property determines what font is used to render text inside the header region.

	HeaderText
	The HeaderText property holds the text that is displayed in the header. The default value is “ ” (empty String).

	LegendAnchor
	The LegendAnchor property determines the position of the legend relative to the ChartArea. Valid values include NORTH, SOUTH, EAST, WEST, NORTHWEST, SOUTHWEST, NORTHEAST, and SOUTHEAST. The default value is EAST.

	LegendOrientation
	The LegendOrientation property determines how legend information is laid out. Valid values include VERTICAL and HORIZONTAL. The default value is VERTICAL.

	LegendVisible
	The LegendVisible property determines whether the legend is currently visible. Default value is false.

	SwingDataModel
	Sets the chart’s data source to use a specified Swing TableModel object, instead of using the Data property.

	View3D
	The View3D property combines the values of the Depth, Elevation, and Rotation properties defined in JCChartArea. Depth controls the apparent depth of a graph. Elevation controls the distance above the x-axis for the 3D effect. Rotation controls the position of the eye relative to the y-axis for the 3D effect. The default value s “0.0,0.0,0.0”.

	Name
	Description

	XAxisAnnotationMethod
	The XAxisAnnotationMethod property determines how axis annotations are generated. Valid values include VALUE (annotation is generated by the chart, with possible callbacks to a label generator), VALUE_LABELS (annotation is taken from a list of value labels provided by the user – a value label is a label that appears at a particular axis value), POINT_LABELS (annotation comes from the data source's point labels that are associated with particular data points), and TIME_LABELS (the chart generates time/date labels based on the TimeUnit, TimeBase and TimeFormat properties). The default value is VALUE.

	XAxisGridVisible
	The XAxisGridVisible property determines whether a grid is drawn for the axis. The default value is false.

	XAxisLogartihmic
	The XAxisLogarithmic property determines whether the first x-axis will be logarithmic (true) or linear (false). The default value is false.

	XAxisMinMax
	The XAxisMinMax controls both the XAxisMin and XAxisMax properties. The XAxisMin property controls the minimum value shown on the axis. If a null String is used, the chart will calculate the axis minimum. The data minimum is determined by the chart. The default value is calculated. The XAxisMax property controls the maximum value shown on the axis. If a null String is used, the chart will calculate the axis maximum. The data maximum is determined by the chart. The default value is calculated.

	XAxisNumSpacing
	The XAxisNumSpacing property controls the interval between axis labels. If a null String is used, the chart will calculate the interval. The default value is calculated.

	xAxisTitleText
	The XAxisTitleText property specifies the text that will appear as the x-axis title. The default value is “ ” (empty String).

	XAxisVisible
	The XAxisVisible property determines whether the first x-axis is currently visible. Default value is true.

	YAxisAnnotationMethod
	The YAxisAnnotationMethod property determines how axis annotations are generated. Valid values include VALUE (annotation is generated by the chart, with possible callbacks to a label generator), VALUE_LABELS (annotation is taken from a list of value labels provided by the user – a value label is a label that appears at a particular axis value), POINT_LABELS (annotation comes from the data source's point labels that are associated with particular data points), and TIME_LABELS (the chart generates time/date labels based on the TimeUnit, TimeBase and TimeFormat properties). The default value is VALUE.

	Name
	Description

	YAxisGridVisible
	The YAxisGridVisible property determines whether a grid is drawn for the axis.

	YAxisLogarithmic
	The YAxisLogarithmic property determines whether the first y-axis will be logarithmic (true) or linear (false). The default value is false.

	YAxisMinMax
	The YAxisMinMax controls both the YAxisMin and YAxisMax properties. The YAxisMin property controls the minimum value shown on the axis. If a null String is used, Chart will calculate the axis min. The data min is determined by Chart. The default value is calculated. The YAxisMax property controls the maximum value shown on the axis. If a null String is used, Chart will calculate the axis max. The data max is determined by Chart. The default value is calculated.

	YAxisNumSpacing
	The YAxisNumSpacing property controls the interval between axis labels. If a null String is used, Chart will calculate the interval. The default value is calculated.

	YAxisTitleText
	The YAxisTitleText property specifies the text that will appear as the y-axis title. The default value is “ ” (empty String).

	YAxisVisible
	The YAxisVisible property determines whether the first yaxis is currently visible. Default value is true.

Appendix A Summary of Properties for JClass Chart Objects 		2
B
[bookmark: _Toc534826772]HTML Syntax
ChartDataView Properties ■ ChartDataViewSeries Properties ■ Header and Footer Properties
JCAreaChartFormat Properties ■ JCAnnoProperties
JCAxis X-Axies and Y-Axes Properties ■ JCBarChartFormat Properties ■ JCCandleChartFormat Properties
JCChart Properties ■ JCChartArea Properties ■ JCChartLabel Properties ■ JCDataIndex Properties
JCGrid Properties ■ JCHiLoChartFormat Properties ■ JCHLOCChartFormat Properties
JCLegend Properties ■ JCMarker Properties ■ JCMultiColLegend Properties
JCPieChartFormat Properties ■ JCPolarRadarChartFormat Properties ■ JCThreshold Properties

This appendix lists the syntax of JClass Chart property parameters when specified in an HTML file. For example, the following HTML code sets the x-axis annotation method property:

<PARAM NAME="xaxis.annotationMethod" VALUE="POINT_LABELS">

Some value types are listed as enum. If you are unfamiliar with the enumerations available for a chart property, you can look up the property’s class in the API documentation and then search on the property name. Enumerations are usually located with the set method for the property.

[bookmark: _Toc534826773]B.1 	ChartDataView Properties

	Chart Property
	HTML Syntax
	Value Type

	Auto Label
	data.autoLabela
	boolean

	Buffer Plot Data
	data.bufferPlotData
	boolean

	Character Set
	data.fileCharset
	String

	Chart Type
	data.charType
	enum

	Data
	data
	AppletDataSource

	Data File
	datafile, data1File, or data2File
	URLDataSource, FileDataSource

	Data Name
	dataNamen
	Stringb

	Darw Front Plane
	data.drawFrontPlane
	boolean

	Fast Update
	data.fastUpdate
	boolean

	File Access
	data.fileAccess
	String

	File Type
	data.fileType
	XML or Text

	Hole Value
	data.holeValue
	double

	Inverted
	data.inverted
	boolean

	Name
	data.name
	String

	Outline Color
	data.line.color
	Color

	Outline Cap
	data.line.cap
	enum

	Outline Join
	data.line.join
	enum

	Outline Pattern
	data.line.pattern
	enum

	Outline Width
	data.line.width
	int

	Point Labels
	data.pointLabels
	String

	Visible
	data.visible
	boolean

	Visible In Legend
	data.visibleInLegend
	boolean

	Chart Property
	HTML Syntax
	Value Type

	X Axis
	data.xaxis
	X axis name

	Y Axis
	data.yaxis
	Y axis name

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, … datan.
b. n is the data view number; not needed for first data view.

[bookmark: _Toc534826774]B.2 	ChartDataViewSeries Properties

	Chart Property
	HTML Syntax
	Value Type

	Fill Background
	data.seriesn.fill.backgrounda
	enum

	Fill Color
	data.seriesn.fill.color
	Color

	Fill Color Index
	data.seriesn.fill.colorIndex
	int

	Fill Image
	data.seriesn.fill.image
	Image

	Fill Image Name
	data.seriesn.fill.image.fileName
	String

	Fill Image Access Type
	data.seriesn.fill.image.fileAccess
	String

	Fill Pattern
	data.seriesn.fill.pattern
	enum

	First Point
	data.seriesn.firstPoint
	int

	Included
	data.seriesn.included
	Boolean

	Label
	data.seriesn.label
	String

	Last Point
	data.seriesn.lastPoint
	int

	Line Color
	data.seriesn.line.color
	Color

	Line Color Index
	data.seriesn.line.colorIndex
	int

	Line Cap
	data.seriesn.line.cap
	enum

	Line Join
	data.seriesn.line.join
	enum

	Line Pattern
	data.seriesn.line.pattern
	enum

	Line Width
	data.seriesn.line.width
	int

	Name
	data.seriesn.name
	String

	Chart Property
	HTML Syntax
	Value Type

	Symbol Color
	data.seriesn.symbol.color
	Color

	Symbol Color Index
	data.seriesn.symbol.colorIndex
	int

	Symbol Shape
	data.seriesn.symbol.shape
	enum

	Symbol Shape Index
	data.seriesn.symbol.shapeIndex
	int

	Symbol Size
	data.seriesn.symbol.size
	int

	Visible
	data.seriesn.visible
	boolean

	Visible In Legend
	data.seriesn.visibleInLegend
	boolean

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, … datan.

[bookmark: _Toc534826775]B.3 	Header and Footer Properties

	Chart Property
	HTML Syntax
	Value Type

	Background
	header.background
footer.background
	Color

	Border
	header.border
footer.border
	Stringa

	Font
	header.font
footer.font
	Font

	Foreground
	header.foreground
footer.foreground
	Color

	Height
	header.height
footer.height
	int

	Opaque
	header.opaque
footer.opaque
	boolean

	Text
	header.orientation
footer.orientation
	String

	Visible
	header.visible
footer.visible
	boolean

	Width
	header.width
footer.width
	int

	Chart Property
	HTML Syntax
	Value Type

	X
	header.x
footer.x
	int

	Y
	header.y
footer.y
	int

a. String of format bordertype|param1|param2|…

[bookmark: _Toc534826776]B.4 	JCAreaChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	100 Percent
	data.Area.100Percenta
	boolean

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, … datan.

[bookmark: _Toc534826777]B.5 	JCAnnoProperties

	Chart Property
	HTML Syntax
	Value Type

	Draw Labels
	[xy]axis.annon.drawLabelsa
	boolean

	Draw Ticks
	[xy]axis.annon.drawTicks
	boolean

	Increment Value
	[xy]axis.annon.incremendValue
	double

	Inner Extent
	[xy]axis.annon.innerExtent
	int

	Label Color
	[xy]axis.annon.labelColor
	Color

	Label Extent
	[xy]axis.annon.labelExtent
	int

	Outer Extent
	[xy]axis.annon.outerExtent
	int

	Precision
	[xy]axis.annon.precision
	int

	Start Value
	[xy]axis.annon.startValue
	double

	Stop Value
	[xy]axis.annon.stopValue
	double

	Tick Color
	[xy]axis.annon.tickColor
	Color

	Type
	[xy]axis.annon.tickType
	enum

a. xaxis and yaxis are the name of the first axes, generated when chart properties are saved to an HTML file; additional axes are named xaxis1, xaxis2, … xaxisn and yaxis1, yaxis2, … yaxisn.
[bookmark: _Toc534826778]B.6 	JCAxis X-Axes and Y-Axes Properties

	Chart Property
	HTML Syntax
	Value Type

	Annotation Method
	[xy]axis.annotationMethoda
	enum

	Annotation Rotation
	[xy]axis.annotationRotation
	enum

	Annotation Rotation Angle
	[xy]axis.annotationRotationAngle
	int

	Annotation Visible
	[xy]axis.annotationVisible
	boolean

	Drop Overlapping Labels
	[xy]axis.dropOverlappingLabels
	boolean

	Editable
	[xy]axis.editable
	boolean

	Font
	[xy]axis.font
	Font

	Foreground
	[xy]axis.foreground
	Color

	Formula Constant
	[xy]axis.formula.constant
	double

	Formula Multiplier
	[xy]axis.formula.multiplier
	double

	Formula Originator
	[xy]axis.formula.originator
	Axis Nameb

	Gap
	[xy]axis.gap
	int

	Grid Color
	[xy]axis.grid.color
	Color

	Grid Default
	[xy]axis.grid.default
	boolean

	Grid Visible
	[xy]axis.grid.visible
	boolean

	Grid Spacing
	[xy]axis.grid.spacing
	double

	Logarithmic
	[xy]axis.logarithmic
	boolean

	Max
	[xy]axis.max
	double

	Min
	[xy]axis.min
	double

	Name
	[xy]axis.name
	String

	Num Spacing
	[xy]axis.numSpacing
	double

	Origin
	[xy]axis.origin
	double

	Chart Property
	HTML Syntax
	Value Type

	Origin Placement
	[xy]axis.originPlacement
	enum

	Placement
	[xy]axis.placement
	enum

	Placement Axis
	[xy]axis.placementAxis
	Axis Nameb

	Placement Location
	[xy]axis.placementLocation
	double

	Precision
	[xy]axis.precision
	int

	Reversed
	[xy]axis.reversed
	boolean

	Tick Spacing
	[xy]axis.tickSpacing
	double

	Time Base
	[xy]axis.timeBase
	Date

	Time Format
	[xy]axis.timeFormat
	String

	Time Unit
	[xy]axis.timeUnit
	enum

	Time Zone
	[xy]axis.timeZone
	java.util.TimeZone

	Title Adjust
	[xy]axis.title.adjust
	enum

	Title Background
	[xy]axis.title.background
	Color

	Title Font
	[xy]axis.title.font
	Font

	Title Foreground
	[xy]axis.title.foreground
	Color

	Title Placement
	[xy]axis.title.placement
	enum

	Title Rotation
	[xy]axis.title.rotation
	0, 90, 180, 270

	Title Text
	[xy]axis.title.text
	String

	Title Visible
	[xy]axis.title.visible
	boolean

	Type
	[xy]axis.type
	enum

	Use Anno Ticks
	[xy]axis.useAnnoTicks
	boolean

	Use Default Grid
	[xy]axis.useDefaultGrid
	boolean

	Use Default Labels
	[xy]axis.useDefaultLabels
	boolean

	Use Default Ticks
	[xy]axis.useDefaultTicks
	boolean

	Chart Property
	HTML Syntax
	Value Type

	Value Labels
	[xy]axis.valueLabels
	String[] (values separeated by “;”)

	Vertical
	[xy]axis.vertical
	boolean

	Visible
	[xy]axis.visible
	boolean

a. xaxis and yaxis are the names of the first axes, generated when chart properties are saved to an HTML file; additional axes are named xaxis1, xaxis2, ... xaxisn and yaxis1, yaxis2, ... yaxisn.
b. For example, xaxis1.

[bookmark: _Toc534826779]B.7	JCBarChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	100 Percent
	data.Bar.100Percenta
	boolean

	Cluster Overlap
	data.Bar.clusterOverlap
	int

	Cluster Width
	data.Bar.clusterWidth
	int

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, … datan.

[bookmark: _Toc534826780]B.8	JCCandleChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	Complex
	data.Bar.Candle.Complexa
	boolean

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, … datan.

[bookmark: _Toc534826781]B.9	JCChart Properties

	Chart Property
	HTML Syntax
	Value Type

	Allow User Changes
	allowUserChanges
	boolean

	Antialiasing
	antialiasing
	enum

	Background
	background
	Color

	Batched
	batched
	boolean

	Border
	border
	Stringa

	Chart Property
	HTML Syntax
	Value Type

	Cancel Key
	cancelKey
	int

	Customize Trigger
	customizTrigger
	enumb

	Depth Trigger
	depthTrigger
	enumb

	Edit Trigger
	editTrigger
	enumb

	Font
	font
	Font

	Foreground
	foreground
	Color

	Height
	height
	int

	Label Name
	labeln
	Stringc

	Name
	name
	String

	Opaque
	opaque
	boolean

	Parameter File
	paramFile
	Filed

	Pick Trigger
	pickTrigger
	enumb

	Reset Key
	resetKey
	int

	Rotate Trigger
	rotateTrigger
	enumb

	Translate Trigger
	translateTrigger
	enumb

	Width
	width
	int

	Zoom Trigger
	zoomTrigger
	enumb

a. String of format bordertype|param1|param2|...
b. Valid values for any Trigger property are NONE, CTRL, SHIFT, ALT, or META (right-mouse-click).
c. labeln is the number of Chart Labels when chart properties are saved to HTML.
d. File from which to load additional properties.

[bookmark: _Toc534826782]
B.10	JCChartArea Properties

	Chart Property
	HTML Syntax
	Value Type

	Angle Unit
	chartArea.angleUnit
	enum

	Axis Bounding Box
	chartArea.axisBoundingBox
	boolean

	Background
	chartArea.background
	Color

	Border
	chartArea.border
	Stringa

	Depth
	chartArea.depth
	int

	Elevation
	chartArea.elevation
	int

	Fast Action
	chartArea.fastAction
	boolean

	Font
	chartArea.font
	Font

	Foreground
	chartArea.foreground
	Color

	Height
	chartArea.height
	int

	Horz Action Axis
	chartArea.horizActionAxis
	Axis Nameb

	Insets
	chartArea.insets
	Insets

	Opque
	chartArea.opaque
	boolean

	Plot Area Background
	chartArea.plotArea.background
	Color

	Plot Area Bottom
	chartArea.plotArea.bottom
	int

	Plot Area Foreground
	chartArea.plotArea.foreround
	Color

	Plot Area Left
	chartArea.plotArea.left
	int

	Plot Area Right
	chartArea.plotArea.right
	int

	Plot Area Top
	chartArea.plotArea.top
	int

	Rotation
	chartArea.rotation
	int

	Vert Action Axis
	chartArea.vertActionAxis
	Axis Nameb

	Visible
	chartArea.visible
	boolean

	Width
	chartArea.width
	int

	Chart Property
	HTML Syntax
	Value Type

	X
	chartArea.x
	int

	Y
	chartArea.y
	int

a. String of format bordertype|param1|param2|...
b. For example, xaxis1.

[bookmark: _Toc534826783]B.11	JCChartLabel Properties

	Chart Property
	HTML Syntax
	Value Type

	Anchor
	labeln.anchora
	enum

	Attach Method
	labeln.attachMethod
	enum

	Background
	labeln.background
	Color

	Connected
	labeln.connected
	boolean

	Coord
	labeln.coord
	Point

	Data Attach X
	labeln.dataAttachX
	int

	Data Attach Y
	labeln.dataAttachY
	int

	Data Index
	labeln.dataIndex
	DataIndex Name,
for example, indexName

	Data View
	labeln.dataView
	ChartDataView

	Dwell Label
	labeln.dwellLabel
	boolean

	Font
	labeln.font
	Font

	Foreground
	labeln.foreground
	Color

	Label Name
	labelNamen
	String

	Last Label Index
	lastLabelIndex
	intb

	Offset
	labeln.offset
	Font

	Text
	labeln.text
	String

	Chart Property
	HTML Syntax
	Value Type

	Visible
	labeln.visible
	boolean

a. label1 is the name of the first Chart Label, generated when chart properties are saved to an HTML file; additional labels are named label2, label3, ... labeln.
b. The index of the last label. Used as the upper boundary on labels and data indices during load. Only needs to be explicitly specified if n is greater than 99.

[bookmark: _Toc534826784]B.12	JCDataIndex Properties

	Chart Property
	HTML Syntax
	Value Type

	Data View
	indexn.dataViewa
	ChartDataView

	Distance
	indexn.distance
	int

	Index Name
	indexNamen
	String

	Point
	indexn.point
	Font

	Series Index
	indexn.seriesIndex
	int

a. n is the index number.

[bookmark: _Toc534826785]B.13	JCGrid Properties

	Chart Property
	HTML Syntax
	Value Type

	Grid Line Cap
	[xy]axis.gridn.capa
	enum

	Grid Line Color
	[xy]axis.gridn.color
	Color

	Grid Line Join
	[xy]axis.gridn.join
	enum

	Grid Line Pattern
	[xy]axis.gridn.pattern
	enum

	Grid Line Width
	[xy]axis.gridn.width
	int

	Increment Value
	[xy]axis.gridn.incrementValue
	double

	Start Value
	[xy]axis.gridn.startValue
	double

	Stop Value
	[xy]axis.gridn.stopValue
	double

a. xaxis and yaxis are the names of the first axes, generated when chart properties are saved to an HTML file; additional axes are named xaxis1, xaxis2, ... xaxisn and yaxis1, yaxis2, ... yaxisn.

[bookmark: _Toc534826786]B.14	JCHiLoChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	Line Color
	data.Hilo.seriesn.line.colora
	Color

	Line Width
	data.Hilo.seriesn.line.width
	int

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

[bookmark: _Toc534826787]B.15	JCHLOCChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	Line Color
	data.HLOC.seriesn.hilo.line.colora
	Color

	Line Width
	data.HLOC.seriesn.hilo.line.width
	int

	Open Close Full Width
	data.HLOC.openCloseFullWidth
	boolean

	Showing Close
	data.HLOC.showingClose
	boolean

	Showing Open
	data.HLOC.showingOpen
	boolean

	Tick Size
	data.HLOC.seriesn.tickSize
	int

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

[bookmark: _Toc534826788]B.16	JCLegend Properties

	Chart Property
	HTML Syntax
	Value Type

	Anchor
	legend.anchor
	enum

	Background
	legend.background
	Color

	Border
	legend.border
	Stringa

	Column
	legend.column
	int

	Font
	legend.font
	Font

	Foreground
	legend.foreground
	Color

	Height
	legend.height
	int

	Item Text Alignment
	legend.itemTextAlignment
	enum

	Chart Property
	HTML Syntax
	Value Type

	Item Text Tool Tip Enabled
	legend.itemTexttoolTipEnabled
	boolean

	Max Item Text Width
	legend.maxItemTextWidth
	int

	Opaque
	legend.opaque
	Boolean

	Orientation
	legend.orientation
	enum

	Truncate Mode
	legend.truncateMode
	enum

	Type
	legend.type
	enum

	Use Ellipsis When Truncating
	legend.useEllipsisWhenTruncating
	boolean

	Visible
	legend.visible
	boolean

	Width
	legend.width
	int

	X
	legend.x
	int

	Y
	legend.y
	int

a. String of format bordertype|param1|param2|…

[bookmark: _Toc534826789]B.17	JCMarker Properties

	Chart Property
	HTML Syntax
	Value Type

	Associated with Y-Axis
	data.markern.associatedWithYAxisa
	boolean

	Chart Label Anchor
	data.markern.chartLabel.anchor
	enum

	Chart Label Attach Method
	data.markern.chartLabel.attachMethod
	enum

	Chart Label Background
	data.markern.chartLabel.background
	Color

	Chart Label Border
	data.markern.chartLabel.border
	String

	Chart Label Connected
	data.markern.chartLabel.connected
	boolean

	Chart Label Data Attach X
	data.markern.chartLabel.dataAttachX
	int

	Chart Property
	HTML Syntax
	Value Type

	Chart Label Data Attach Y
	data.markern.chartLabel.dataAttachY
	int

	Chart Label Data View
	data.markern.chartLabel.dataView
	ChartDataView

	Chart Label Font
	data.markern.chartLabel.font
	Font

	Chart Label Foreground
	data.markern.chartLabel.foreground
	Color

	Chart Label Offset
	data.markern.chartLabel.offset
	Font

	Chart Label Opaque
	data.markern.chartLabel.opaque
	boolean

	Chart Label Text
	data.markern.chartLabel.text
	String

	Chart Label Visible
	data.markern.chartLabel.visible
	boolean

	Drawn Before Data
	data.markern.drawnBeforeData
	boolean

	End Poinnt
	data.markern.endPoint
	double

	Has Chart Label
	data.markern.hasChartLabel
	boolean

	Included in Data Bounds
	data.markern.includedInDataBounds
	boolean

	Label
	data.markern.label
	String

	Line Color
	data.markern.line.color
	Color

	Line Pattern
	data.markern.line.pattern
	enum

	Line Width
	data.markern.line.width
	int

	Start Point
	data.markern.startPoint
	double

	Value
	data.markern.value
	double

	Visible in Legend
	data.markern.visibleInLegend
	boolean

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

[bookmark: _Toc534826790]B.18	JCMultiColLegend Properties

	Chart Property
	HTML Syntax
	Value Type

	Number of Colmns
	legend.numCols
	int

	Number of Rows
	legend.numRows
	int

[bookmark: _Toc534826791]B.19	JCPieChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	Explode Offset
	data.Pie.explodeOffseta
	int

	Min Slices
	data.Pie.minSlices
	int

	Other Fill Background
	data.Pie.other.fill.background
	enum

	Other Fill Color
	data.Pie.other.fill.color
	Color

	Other Fill Color Index
	data.Pie.other.fill.colorIndex
	int

	Other Fill Image
	data.Pie.other.fill.image
	Image

	Other Fill Image File Name
	data.Pie.other.fill.image.fileName
	String

	Other Fill Image File Access
	data.Pie.other.fill.image.fileAccess
	String

	Other Fill Pattern
	data.Pie.other.fill.pattern
	enum

	Other Label
	data.Pie.other.fill.label
	String

	Sort Order
	data.Pie.sortOrder
	ASCENDING,DESCENDING

	Threshold Method
	data.Pie.thresholdMethod
	enum

	Threshold Value
	data.Pie.thresholdValue
	int

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

[bookmark: _Toc534826792]B.20	JCPolarRadarChartFormat Properties

	Chart Property
	HTML Syntax
	Value Type

	HalfRange
	data.PolarRadar.halfRangea
	boolean

	OriginBase
	data.PolarRadar.originBase
	double

	RadarCircularGrid
	data.PolarRadar.radarCircularGrid
	boolean

	YAxisAngle
	data.PolarRadar.yAxisAngle
	double

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

[bookmark: _Toc534826793]B.21	JCThreshold Properties

	Chart Property
	HTML Syntax
	Value Type

	Associated with Y-Axis
	data.thresholdn.associatedWithYAxisa
	boolean

	End Line Color
	data.thresholdn.endLine.color
	Color

	End Line Pattern
	data.thresholdn.endLine.pattern
	enum

	End Line Width
	data.thresholdn.endLine.width
	int

	End Value
	data.thresholdn.endValue
	double

	Fill Color
	data.thresholdn.fill.color
	Color

	Fill Image
	data.thresholdn.fill.image
	Image

	Fill Image Name
	data.thresholdn.fill.image.fileName
	String

	Fill Image Access Type
	data.thresholdn.fill.image.fileAccess
	String

	Fill Pattern
	data.thresholdn.fill.pattern
	enum

	Has End Line Style
	data.thresholdn.hasEndLineStyle
	boolean

	Has Start Line Style
	data.thresholdn.hasStartLineStyle
	boolean

	Included in Data Bounds
	data.thresholdn.includedInDataBounds
	boolean

	Label
	data.thresholdn.label
	String

	Chart Property
	HTML Syntax
	Value Type

	Start Line Color
	data.thresholdn.startLine.color
	Color

	Start Line Pattern
	data.thresholdn.startLine.pattern
	enum

	Start Line Width
	data.thresholdn.startLine.width
	int

	Start Value
	data.thresholdn.startValue
	double

	Visible in Legend
	data.thresholdn.visibleInLegend
	boolean

a. data is the name of the first dataset, generated when chart properties are saved to an HTML file; additional datasets are named data1, data2, ... datan.

Appendix B HTML Syntax 		2
Appendix B HTML Syntax		1
C
[bookmark: _Toc534826794]XML DTD
Chart.dtd ■ JCChartData.dtd

This appendix describes the DTDs available with JClass Chart. For more information, see Chapter 12, Loading and Saving Charts Using XML.

JClass Chart has two DTDs: Chart.dtd and JCChartData.dtd. In general, the elements, subelements, and attributes coincide with the objects, sub-objects, and properties within the chart component.

You should find that the values and types expected for each attribute are, for the most part, straightforward and easy to understand. However, there are a few types that require further explanation:
· Font: You specify Font types in the format “name-style-size”, where style is one of plain, bold, italic, or bolditalic. For example, the following syntax specifies a plain, 10 point Helvetica font: Helvetica-plain-10
· Color: You specify Color types in one of three ways: as a hexadecimal (#RRGGBB), as an RGB value (RRR-GGG-BBB), or as a color enum (such as black or white).
· JCAxis: JCAxis values correspond to the name of an axis. You specify JCAxis values using the value of the name attribute from the desired <axis> tag in the XML file.
· ChartDataView: ChartDataView values correspond to the name of a data view. You specify ChartDataView values using the value of the name attribute from the desired <chart-data-view> element in the XML file.

The next two sections describe the contents of the DTDs.

[bookmark: _Toc534826795]C.1 	Chart.dtd
When using the Chart.dtd, the values of any properties that remain unspecified in the XML file remain unchanged when the XML file is applied to the chart. Properties are specified as strings in the XML file, and are converted to the appropriate type by the chart’s XML handler.

The following is a list of each of the Chart.dtd elements, as well as their descriptions.

C.1.1	chart

Purpose:
The main chart element. The properties and sub-elements by and large coincide with the properties and sub-objects of the corresponding object within the chart component.

	Equivalent in
JClass Chart:

	JCChart

	Sub-Elements:
	· chart-area
· chart-data-view
· chart-label
· component
· event-trigger
· external-java-code
· footer
· header
· key
· legend
· locale

Attributes:

	Name
	Definition
	Possible Values or Type

	allowUserChanges
	Determines whether or not the user viewing the graph can modify graph values.
	boolean

	antialiasing
	Determines if anti-aliasing is enabled. Default is Default.
	· Default
· On
· Off

	height
	Determines the height of the chart. If not specified, the height remains unchanged.
	int

	name
	Specifies a string identifier for the chart.
	String

	width
	Determines the width of the chart. If not specified, the width remains unchanged.
	int

C.1.2	anno

Purpose:
Controls the chart annotation marks.

Equivalent in
JClass Chart: 	JCAnno

Sub-Elements: 	none

Attributes:

	Name
	Definition
	Possible Values or Type

	drawLabels
	Determines if labels are drawn.
	boolean

	drawTicks
	Determines if tick marks are drawn.
	boolean

	incrementValue
	Specifies the increment between ticks or labels
	double

	innerExtent
	Specifies the pixel extent of tick marks into the plot area.
	int

	labelColor
	Specifies the color of labels.
	Color

	labelExtent
	Specifies the pixel distance of labels from the axis.
	int

	outerExtent
	Specifies the pixel extent of tick marks away from the plot area.
	int

	precision
	Specifies the precision to which numeric labels are displayed.
	int

	startValue
	Specifies the start value of a tick or label.
	double

	stopValue
	Specifies the end value of a tick or label.
	double

	tickColor
	Specifies the color of the tick marks.
	Color

	type
	Determines the tick object’s type. Default_Labels defines the anno object to be the set of default labels for the axis.
Default_Ticks defines the anno object to be the set of default ticks for the axis. Default is User_Defined.
	· Default_Labels
· Default_Ticks
· User_Defined

C.1.3	area-format

Purpose:
Properteris specific to area chart.

Equivalent in
JClass Chart: 	JCAreaChartFormat

Sub-Elements: 	none

Attributes:
	Name
	Definition
	Possible Values or Type

	percent1001
	Determines whether a stacking area will be charted versus an axis representing a percentage between 0 and 100.
	boolean

1Equivalent property is 100percent.

C.1.4	axis

Purpose:
Has attributes that deal with drawing of x-axes and y-axes. Note that the placementAxis name needs to match an axis of the opposite type (i.e. for an x-axis the placementAxis needs to match a y-axis name). If no match occurs, the default “xaxis” or “yaxis” is assumed.

Equivalent in
JClass Chart: 	JCAxis

Sub-Elements: 		
· anno
· grid
· axis-formula
· axis-title
· chart-interior-region
· line-style
· value-label
Attributes:

	Name
	Definition
	Possible Values or Type

	annotationMethod
	Determines the type of axis annotation.
	· Value
· Value_Labels
· Point_Labels
· Time_Labels

	Name
	Definition
	Possible Values or Type

	annotationRotation
	Determines the rotation of each axis label.
	· None
· Rotate_90
· Rotate_180
· Rotate_270
· Rotate_Other

	annotationRotationAngle
	Specifies the angle of the annotation for the currently selected axis when the annotationRotation property is set to Rotate_Other. The angle is always set in degrees.
	int

	annotationVisible
	Determines whether or not the annotation is visible.
	boolean

	dropOverlappingLabels
	Determines whether or not overlapping labels are dropped. When true, one or more of the overlapping labels are eliminated so that the remaining labels do not overlap.
	boolean

	editable
	Determines whether or not the axis can be affected by editing, translating, or zooming.
	boolean

	gap
	Determines the amount of space left between adjacent axis annotations, in pixels.
	int

	gridDefault
	Determines whether or not grid lines are drawn at the labels.
	boolean

	gridSpacing
	Controls the spacing between gridlines relative to the axis.
	double

	gridVisible
	Determines whether or not a grid is drawn for the axis.
	boolean

	logarithmic
	Determines whether or not the axis will be logarithmic.
	boolean

	max
	Controls the maximum value shown on the axis.
	double

	min
	Controls the minimum value shown on the axis.
	double

	Name
	Definition
	Possible Values or Type

	name
	Specifies a string identifier.
	String

	numSpacing
	Controls the interval between axis labels.
	double

	origin
	Controls the location of the origin along the axis.
	double

	originPlacement
	Determines where the origin is placed. Note that it is only active if origin is not set.
	· Automatic
· Zero
· Min
· Max

	placement
	Determines the method used to place the axis with respect to the placementAxis.
	· Automatic
· Max
· Min
· Origin
· Value_Anchored

	placementAxis
	Determines the axis that controls the placement of this axis.
	JCAxis

	placementLocation
	Positions the current axis object at a particular point on another axis. Used in conjunction with placementAxis.
	double

	precision
	Controls the number of zeros that appear after the decimal place in chart- generated axis labels.
	int

	reversed
	Determines if the axis direction is reversed (true) or not (false).
	boolean

	tickSpacing
	Controls the interval between tick lines on the axis.
	double

	Name
	Definition
	Possible Values or Type

	timeBase
	Defines the start time for the axis.
To use the timeBase attribute in the XML file, one must specify the attribute’s value to be a data String (for example, Feb 21, 2003 10:11:07 AM EST). The
com.klg.jclass.util.JCTypeConverter.toDate() method converts the String into a java.util.Date object, using a standard java.text.SimpleDataFormat object to parse it. The object is then set on the axis using the JCAxis.setTimeBase() method.
	java.util.Date

	timeFormat
	Controls the format used to generate time labels for time labelled axes.
To use the timeFormat attribute, one must specify the attribute’s value to be a String set directly on the axis using the JCAxis.setTimeFormat() method. For more information, see Time Format, in Chapter 6.
	String

	timeUnit
	Controls the unit of time used for labelling a time labelled axis.
To use the timeUnit attribute in the XML file, one must specify the attribute’s value to be an enum value. The String is converted into an enum value, then set on the axis using the JCAxis.setTimeUnit() method.
	· Seconds
· Minutes
· Hours
· Days
· Weeks
· Months
· Years

	timeZone
	Specifies the time zone for this axis. Use only for time-based labels.
	java.util.
TimeZone

	type
	Determines which axis is being defined. Default is XAxis.
	· XAxis
· YAxis

	Name
	Definition
	Possible Values or Type

	useAnnoTicks
	Determines if the ticks specified by JCAnno objects are drawn. This requires that a non-default tickSpacing is used, and that the annotationMethod is one of the following:
· JCAxis.VALUE_LABEL
· JCAxis.POINT_LABEL
· JCAxis.TIME_LABEL
	boolean

	useDefaultGrid
	· Determines if the default JCGrid is automatically added to the axis.
	boolean

	useDefaultLabels
	Determines if the default JCAnno label object is automatically added to the axis.
	boolean

	useDefaultTicks
	Determines if the default JCAnno tick objects is automatically added to the axis.
	boolean

	vertical
	Determines whether or not the axis is vertical.
	boolean

C.1.5	axis-formula

Purpose:
Defines a relationship between two axes. The originator attribute needs to match an existing axis name of the same axis type. If no match occurs, the default “xaxis” or “yaxis” is used.

Equivalent in
JClass Chart: 	JCAxisFormula
Sub-Elements: 	none	

Attributes:

	Name
	Definition
	Possible Values or Type

	constant
	Specifies the “c” value in the relationship
y2 = m * y + c.
	double

	multiplier
	Specifies the “m” value in the relationship
y2 = m * y + c.
	double

	originator
	Specifies an object representing the axis that is related to the current axis by the formula y2 = m * y + c. The originator is “y”.
	JCAxis

C.1.6	axis-title

Purpose:
The title for an axis.

Equivalent in
JClass Chart: 	JCAxisTitle
Sub-Elements: 	chart-interior-region	

Attributes:

	Name
	Definition
	Possible Values or Type

	adjust
	Determines how text is justified (positioned) in the label.
	· Left
· Center
· Right

	placement
	Controls where the axis title is placed relative to the “opposing” axis.
	· East
· North
· Northeast
· Northwest
· South
· Southeast
· Southwest
· West

	rotation
	Controls the rotation of the label.
	· None
· Rotate_90
· Rotate_180
· Rotate_270

	text
	A string that represents the text to be displayed inside the chart label.
	String

C.1.7	bar-format

Purpose:
Properties specific to bar and stacking bar charts.

Equivalent in
JClass Chart: 	JCBarChartFormat
Sub-Elements: 	none	

Attributes:

	
Name
	Definition
	Possible Values or Type

	clusterOverlap
	Specifies the overlap between bars.
	int

	clusterWidth
	Determines the percentage of available space which will be occupied by the bars.
	int

	percent1001
	Determines whether a stacking bar will be charted versus an axis representing a percentage between 0 and 100.
	boolean

C.1.8	bevel-border

Purpose:
Bevel or SoftBevel borders.

Equivalent in
JClass Chart: 	javax.swing.border.BevelBorder or
javax.swing.border.SoftBevelBorder

Sub-Elements: 	none	

Attributes:

	
Name
	Definition
	Possible Values or Type

	highlightColor
	The color to use for the bevel highlight.
	Color

	shadowColor
	The color to use for the bevel shadow.
	Color

	soft
	If true, this element represents a Bevel Border; otherwise, a SoftBevel Border.
	boolean

	type
	The bevel type.
	· Raised
· Lowered

C.1.9	candle-format

Purpose:
Properties specific to candle charts.

Equivalent in
JClass Chart: 	JCCandleChartFormat
Sub-Elements: 	none	

Attributes:

	
Name
	Definition
	Possible Values or Type

	complex
	Determines whether candle charts use the simple or complex display style.
	boolean

C.1.10	chart-area

Purpose:
This is the component within the chart in which the actual chart is drawn. Note that the horizActionAxis and vertActionAxis properties must match an axis name within the axis list or they will default to the primary x-axis or y-axis.

Equivalent in
JClass Chart: 	JCChartArea
Sub-Elements: 	
· component
· layout-hints
· plot-area
· axis
Attributes:

	
Name
	Definition
	Possible Values or Type

	angleUnit
	Determines the unit of all angle values.
	· Degrees
· Grads
· Radians

	axisBoundingBox
	Determines whether or not a box is drawn around the area bound by the inner axes.
	boolean

	depth
	Controls the apparent depth of a graph.
	int

	elevation
	Controls distance from the x-axes.
	int

	
Name
	Definition
	Possible Values or Type

	fastAction
	Determines whether chart actions will use an optimized mode in which it does not bother to display axis annotations or gridlines.
	boolean

	horizActionAxis
	Determines the axis used for actions (zooming, translating) in the horizontal direction.
	JCAxis

	rotation
	Controls the position of the eye relative to the y-axis.
	int

	vertActionAxis
	Determines the axis used for actions (zooming, translating) in the vertical direction.
	JCAxis

C.1.11	chart-data-file

Purpose:
Data file. If the data is in a file, use this element to reference it.

Equivalent in
JClass Chart: 	BaseDataSource or other class that implements the ChartDataModel.

Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	fileAccess
	Determines how to interpret the fileName. For more information on the values, see Overview of the LoadProperties Class, in Chapter 10. Default is Default.
	· Default
· Absolute
· Resolving_Class
· Url
· Relative_Url
· Servlet

	fileCharset
	The character set to use when reading data.
	String

	fileName
	The name of the data file.
	String

	fileType
	Determines whether the data is written in the standard chart text format or as XML. Default is Xml.
	· Text
· Xml

C.1.12	chart-data-view

Purpose:
Contains a representation of chartable data and attributes used to draw this data, like per series drawing information, chart type, and various chart type specific properties.

Equivalent in
JClass Chart: 	ChartDataView
Sub-Elements: 	
· area-format
· bar-format
· candle-format
· chart-data
· JCChartData (only if the data is specified using the old data XML format)
· chart-data-file
· chart-data-view-series
· hi-lo-open-close-format
· line-style
· marker
· pie-format
· polar-radar-format
· point-label
· threshold
Attributes:

	
Name
	Definition
	Possible Values or Type

	autoLabel
	Determines if the chart automatically generates labels for each point in each series.
	boolean

	bufferPlotData
	Controls whether plot data is to be buffered to speed up the drawing process. Only applicable for plot, scatter plot, area, Hi-Lo, Hi-Lo-Open- Close, and candle chart types.
	boolean

	chartType
	Specifies the type of chart used to plot the data. Default is Plot.
	· Area
· Area_Radar
· Stacking_Area
· Bar
· Stacking_Bar
· Plot
· Scatter_Plot
· Pie
· Hi_Lo
· Hi_Lo_Open_ Close
· Candle
· Polar
· Radar

	
Name
	Definition
	Possible Values or Type

	drawFrontPlane
	Determines whether a data view that has both axes on the front plane of a 3d chart will draw on the front or back place of that chart. If true, it will draw on the front plane; if false, it will draw on the back plane. If either axis associated with the data view is on the back plane, this property will be ignored and the data view will automatically be drawn on the back plane. This property is also ignored for 3d chart types such as bar and stacking bars that automatically appear on the front plane.
	boolean

	fastUpdate
	Controls whether column appends to the data are performed quickly, only recalculating and redrawing the newly-appended data.
	boolean

	holeValue
	A floating point number that represents a hole in the data.
	double

	inverted
	If set to true, the x-axis becomes vertical and the y-axis becomes horizontal.
	boolean

	name
	Used as an index for referencing particular chart-data-view objects.
	String

	visible
	Determines whether or not the dataview is showing.
	boolean

	visibleInLegend
	Determines whether or not the view name and its series will appear in the chart legend.
	Boolean

	xaxis
	Determines the x-axis against which the data is plotted.
	JCAxis

	yaxis
	Determines the y-axis against which the data is plotted.
	JCAxis

C.1.13	chart-data-view-series

Purpose:
Information on how and what to draw for a specific data series.

Equivalent in
JClass Chart: 	ChartDataViewSeries
Sub-Elements: 	
· chart-style
· hole-style
Attributes:

	
Name
	Definition
	Possible Values or Type

	firstPoint
	Controls the index of the first point displayed in the chart-data-view-series.
	int

	included
	Determines whether a data series is included in chart calculations.
	boolean

	label
	Controls the text that appears next to the data series inside the legend.

Note: The <data-series-label> fulfills the same purpose as setting the <chart-data- view-series> tag’s label attribute. If both are used, the <data-series-label> tag is ignored.
	String

	lastPoint
	Controls the index of the first point displayed in the chart-data-view-series.
	int

	name
	Specifies the name of this data series.
	String

	visible
	Determines whether or not the data series is showing in the chart area. Note that data series that are not showing are still used in axis calculations. See included for details on how to omit a data series from chart calculations.
	boolean

	visibleInLegend
	Determines whether or not this series will appear in the chart legend.
	boolean

C.1.14	chart-interior-region

Purpose:
A rectangular region for drawing within chart that is not a component.

Equivalent in
JClass Chart: 	ChartInteriorRegion
Sub-Elements: 	insets
Attributes:

	
Name
	Definition
	Possible Values or Type

	background
	Determines the background color of the drawing region.
	Color

	font
	Determines the font used to render text inside the drawing region.
	Font

	foreground
	Determines the foreground color used to draw inside the drawing region.
	Color

	groupingUsed
	Determines whether or not grouping will be used in formatting numbers.
	boolean

	height
	Defines the height of the drawing region.
	int

	left
	Determines the location of the left of the drawing region.
	int

	numberLocalization
	Determines whether or not numbers are localized.
	boolean

	top
	Determines the location of the top of the drawing region.
	int

	visible
	Determines whether or not the chart interior region is visible.
	boolean

	width
	Defines the width of the drawable region.
	int

C.1.15	chart-label

Purpose:
A floating label that is attached somewhere to the chart. Note that if the dataView property is missing or does not match the name property of an existing ChartDataView element, it is assumed that the chart label is associated with the first (or primary) ChartDataView.

Equivalent in
JClass Chart: 	JCChartLabel
Sub-Elements: 	
· label
· offset
· coord
· data-coord
· data-index
Attributes:

	
Name
	Definition
	Possible Values or Type

	anchor
	Specifies how the label is to be positioned relative to its attach point.
	· North
· South
· East
· West
· Northeast
· Northwest
· Southeast
· Southwest
· Center
· Auto

	attachMethod
	Specifies how the label is attached to the chart.
	· None
· Coord
· Data_Coord
· Data_Index

	connected
	Determines whether or not there is a line connecting the label to its attach point.
	boolean

	dataView
	Specifies which data view should be used for the chart label’s Data_Coord attachment. The dataView for the Data_Index attachment is specified on the data-index tag.
	ChartDataView

	dwellLabel
	When set to true, the label is only displayed when the cursor is over the point/bar/slice that the label is attached to. When set to false (the default), the label is always displayed.
	boolean

C.1.16	chart-style

Purpose:
Drawing specific properties of a series. Depending on the chart type, different aspects of the JCLineStyle, JCFillStyle and JCSymbolStyle are used.

Equivalent in
JClass Chart: 	JCChartStyle
Sub-Elements: 	
· line-style
· fill-style
· symbol-style
Attributes:	none

C.1.17	component

Purpose:
Element which contains component properties. This element is a sub-element of those elements which represent components.

Equivalent in
JClass Chart: 	javax.swing.JComponent
Sub-Elements: 	(empty-border|bevel-border|etched-border| line-border|matte-border|titled-border| compound-border)
Attributes:

	
Name
	Definition
	Possible Values or Type

	background
	Determines the background color of the component region.
	Color

	font
	Determines the font used to render text inside the component region.
	Font

	foreground
	Determines the foreground color used to draw inside the component region.
	Color

	opaque
	An opaque component paints every pixel within its rectangular bounds. A non-opaque component paints only a subset of its pixels or none at all, allowing the pixels underneath to “show through”.
	boolean

	visible
	Determines whether or not the legend is currently visible.
	boolean

C.1.18	compound-border

Purpose:
Specifies an outside border and inside border. Note that these sub-borders can also be of the type compound-border.

Equivalent in
JClass Chart: 	javax.swing.border.CompoundBorder
Sub-Elements: 	
· (empty-border|bevel-border|etched-border| line-border|matte-border|titled-border| compound-border)
· (empty-border|bevel-border|etched-border| line-border|matte-border|titled-border| compound-border)
Attributes:	none

C.1.19	coord

Purpose:
Given a chart-label whose attachMethod attribute is Coord, this is the chart coordinate (in pixels) to which the label is attached.

Equivalent in
JClass Chart: 	java.awt.Point
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	x
	The X coordinate.
	int

	y
	The Y coordinate.
	int

C.1.20	data-coord

Purpose:
Given a chart-label whose attachMethod attribute is DataCoord, this is the coordinate in data space to which the label is attached.

Equivalent in
JClass Chart: 	JCDataCoord
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	x
	The x-value.
	int

	y
	The y-value.
	int

C.1.21	data-index

Purpose:
Given a chart-label whose attachMethod attribute is DataIndex, gives the data index that lthe label is attached to.

Equivalent in
JClass Chart: 	JCDataIndex
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	dataView
	The name of the data view that is represented by this data point.
	String

	point
	The point index within the series.
	int

	series
	The index of the series within the dataview. If this attribute represents the “other” slice of a pie chart, its value is Other_Slice.
	int or Other_Slice

C.1.22	empty-border

Purpose:
Empty borders.

Equivalent in
JClass Chart: 	javax.swing.border.EmptyBorder
Sub-Elements: 	insets
Attributes:	none

C.1.23	end-line-style

Purpose:
A line sstyle for the ending value boundary line for thresholds.

Equivalent in
JClass Chart: 	JCLineStyle
Sub-Elements: 	line-style
Attributes:	none

C.1.24	etched-border

Purpose:
Etched borders.

Equivalent in
JClass Chart: 	javax.swing.border.EtchedBorder
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	highlightColor
	The color to use for the etched highlight.
	Color

	shadowColor
	The color to use to the etched shadow.
	Color

	type
	The type of etch.
	· Raised
· Lowered

C.1.25	event-trigger

Purpose:
Event triggers are used to assign predefined chart actions such as rotate the chart or popup the customized to mouse events.

Equivalent in
JClass Chart: 	EventTrigger
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	modifier
	The modifier key that needs to be pressed along with the mouse click for this event trigger. Default is None.
	· None
· Ctrl
· Shift
· Alt
· Meta

	trigger
	The type of action that gets triggered by this event trigger. Default is Customize.
	· Rotate
· Zoom
· Translate
· Edit
· Pick
· Pick_Series
· Depth
· Customize

C.1.26	explode-list

Purpose:
A list of (series, point) pairs that represent which slices on a pie have been exploded.

Equivalent in
JClass Chart: 	none
Sub-Elements: 	series-point
Attributes:	none

C.1.27	fill-style

Purpose:
Specifies a Java class that will be created and called between the creation of a chart via XML and the return of control to the calling code. This can be used for encapsulating chart settings that cannot be set with XML (for example, populating the chart with data from a database query).

The Java class must contain an empty constructor, as well as implement the com.klg.jclass.util.property.xml.ExternalCodeHandler interface. The ExternalCodeHandler interface specifies a method named handle()that is called by the JClass Chart XML parser. The contents of the body of the tag will be passed to the handle() method in the userData parameter. The value of the UserObject property in the current LoadProperties class will be passed to the handle() method when it is called. For more information on LoadProperties, see Section 12.3, Creating a Chart Using XML.

Note: When a chart that was created via XML is later saved to XML, the contents of this tag are not written out.

Equivalent in
JClass Chart: 	n/a
Sub-Elements: 	none
Attributes:

	
Name
	Definition
	Possible Values or Type

	class
	Fully qualified name of the class that will be created and called by the JClass Chart parser.
	String

C.1.28	fill-style

Purpose:
Fill specific drawing properties.

Equivalent in
JClass Chart: 	JCFillStyle
Sub-Elements: 	none

Attributes:

	
Name
	Definition
	Possible Values or Type

	background
	Determines the background color used when painting patterned fills.
	Color

	color
	Determines the color used to fill regions in chart.
	Color

	image
	Deprecated. See the image-file element. Determines the image used to paint the fill region. Either a file name or a URL.
	Deprecated. String or java.net.URL

	pattern
	Determines the fill pattern used to fill regions in chart. Default is Solid.
	· None
· Solid
· Per_25
· Per_50
· Per_75
· Horiz_Stripe
· Vert_Stripe
· Stripe_45
· Stripe_135
· Diag_Hatched
· Cross_Hatched
· Custom_Fill
· Custom_Stacked

C.1.29	footer

Purpose:
The component used as the footer for the chart.

Equivalent in
JClass Chart: 	javax.swing.JLabel
Sub-Elements: 	
· component
· layout-hints

Attributes:

	
Name
	Definition
	Possible Values or Type

	horizontalAlignment
	Determines the horizontal alignment. Default is Leading.
	· Left
· Center
· Right
· Leading
· Trailing

	text
	A string property that represents the text to be displayed in the footer.
	String

	verticalAlignment
	Determines the vertical alignment. Default is Center.
	· Top
· Center
· Bottom

	
C.1.30	grid

Purpose:
Specifies the properties that are specific to the chart’s grids.

Equivalent in
JClass Chart: 	JCGrid
Sub-Elements: 	line-style

Attributes:
	
Name
	Definition
	Possible Values or Type

	incrementValue
	Specifies the increment between grid lines.
	double

	startValue
	Specifies the start value for grid lines
	double

	stopValue
	Specifies the end value for grid lines.
	double

	
C.1.31	header

Purpose:
The component used as the header for the chart.

Equivalent in
JClass Chart: 	javax.swing.JLabel
Sub-Elements: 	
· component
· layout-hints

Attributes:

	
Name
	Definition
	Possible Values or Type

	horizontalAlignment
	Determines the horizontal alignment. Default is Leading.
	· Left
· Center
· Right
· Leading
· Trailing

	text
	A string property that represents the text to be displayed in the footer.
	String

	verticalAlignment
	Determines the vertical alignment. Default is Center.
	· Top
· Center
· Bottom

	
C.1.32	hi-lo-open-close-format

Purpose:
Properties specific to Hi-Lo-Open-Close charts

Equivalent in
JClass Chart: 	JCHLOCChartFormat
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	openCloseFullWidth
	Indicated whether the open and close tick indications are drawn across the full width of the Hi-Lo bar or just on one side.
	boolean

	showingClose
	Indicates whether or not the clock tick indication is shown. The tick appears to the right of the Hi-Lo line.
	boolean

	showingOpen
	Indicates whether or not the open tick indication is shown. The tick appears to the left of the Hi-Lo line.
	boolean

	

C.1.33	hole-style

Purpose:
Chart style used to draw hole values.

Equivalent in
JClass Chart: 	JCChartStyle
Sub-Elements: 	
· line-style
· fill-style
· symbol-style

Attributes:		none

C.1.34	image-file

Purpose:
Chart style used to draw hole values.

Equivalent in
JClass Chart: 	JCChartStyle
Sub-Elements: 	
· line-style
· fill-style
· symbol-style

Attributes:
	
Name
	Definition
	Possible Values or Type

	filename
	The name of the image file.
	String

	showingClose
	Indicates whether or not the clock tick indication is shown. The tick appears to the right of the Hi-Lo line.
	boolean

	fileAccess
	Determines how to interpret the fileName. For more information, see Overview of the LoadProperties Class, in Chapter 10. Default is Default.
	· Default
· Absolute
· Resolving_Class
· Url
· Relative_Url
· Servlet

	

C.1.35	insets

Purpose:
A representation of the borders of a container.

Equivalent in
JClass Chart: 	java.awt.Insets
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	bottom
	The bottom margin
	int

	left
	The left margin.
	int

	right
	The right margin.
	int

	top
	The top margin.
	int

C.1.36	key

Purpose:
Key elements allow a key to be bound to reset or cancel actions.

Equivalent in
JClass Chart: 	none
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	keyValue
	The key that will trigger the action.
	int

	type
	The type of action.
	· ResetKey
· CancelKey

C.1.37	label

Purpose:
The label component of a chart label.

Equivalent in
JClass Chart: 	java.swing.JLabel
Sub-Elements: 	component

Attributes:
	
Name
	Definition
	Possible Values or Type

	horizontalAlignment
	Determines the horizontal alignment for the label text. Default is Leading.
	· Left
· Center
· Right
· Leading
· Trailing

	text
	A string property that represents the text to be displayed in the chart label.
	String

	verticalAlignment
	Determines the vertical alignment for the label text. Default is Center.
	· Top
· Center
· Bottom

C.1.38	layout-hints

Purpose:
A rectangle that specifies where and at what size subcomponents of chart such as the header, footer, legend, and chart area are drawn. The chart calculates default layout rectangles for each subcomponent. Supplying layout hints allows the user to override some or all of the default values. If some attributes are not specified, they will be set to their default values.

Equivalent in
JClass Chart: 	java.awt.Rectangle
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	height
	Determines the height of the subcomponent.
	int

	width
	Determines the width of the subcomponent.
	int

	x
	Determines the X position of the subcomponent.
	int

	y
	Determines the Y position of the subcomponent.
	int

C.1.39	legend

Purpose:
This is the component with the chart with which the legend is drawn.

Equivalent in
JClass Chart: 	JCChartStyle
Sub-Elements: 	
· Component
· Layout-hints
· Legent-column
· Multi-col

Attributes:
	
Name
	Definition
	Possible Values or Type

	anchor
	Determines the position of the legend relative to the chart.
	· North
· South
· East
· West
· Northeast
· Northwest
· Southeast
· Southwest

	itemTextToolTipEnabled
	Determines whether or not tooltips are displayed when the mouse hovers over a legend item. This is usefule when the legend text has been truncated.
	boolean

	orientation
	Determines how legend information is laid out.
	· Horizontal
· Vertical

	type
	Determines the legend type
	· Grid
· MultiCol

	useEllipsisWhenTruncating
	Determines whether or not an ellipsis is used to indicate truncated legend text.
	boolean

C.1.40	legend-column

Purpose:
Defines column attributes for the legend defined by the legend tag.

Equivalent in
JClass Chart: 	com.klg.jclass.util.legend.LegendColumn
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	column
	Specifies a column within the legend to which the other attributes in this element are applied. If omitted, the other legend-column attributes apply to all columns in the legend.
	int

	itemTextAlignment
	Determines the alignment for the text in a column. Default is Leading.
	· Left
· Center
· Right
· Leading
· Trailing

	maxItemTextWidth
	Specifies the maximum width of the column in pixels. If the column text exceeds this width, the text is truncated.
	int

	truncateMode
	Determines how text is truncated when the length of the text exceeds the maximum width of the column. Default is Trailing.
	· Left
· Right
· Middle
· End
· Leading
· Trailing

C.1.41	line-border

Purpose:
Line borders.

Equivalent in
JClass Chart: 	java.swing.border.LineBorder
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	color
	Determines the color of the border.
	Color

	roundedCorners
	Determines if the border corners will be straight or rounded.
	Boolean

	thickness
	Determines how thick the border will be.
	int

C.1.42	line-style

Purpose:
Line specific drawing properties.

Equivalent in
JClass Chart: 	JCLineStyle
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	cap
	Specifies the cap style used to end a line.
	· Butt
· Round
· Squared

	color
	Determines the color used to draw a line.
	Color

	join
	Specifies the join style used to join two lines.
	· Miter
· Bevel
· Round

	pattern
	Dicatates the pattern used to draw a line. Defalut is Solid.
	· None
· Solid
· Long_Dash
· Short_Dash
· LSL_Dash
· Dash_Dot

	width
	Controls the line width.
	int

C.1.43	locale

Purpose:
Sets the locale for date, time, and number formatting. Does not affect the choice of the resource bundle used. For more information, see Section 12.6, Internationalizing Your XML-based Chart.

Equivalent in
JClass Chart: 	java.util.Locale
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	country
	Determines the country that is associated with the chart.
	String

	language
	Determines the language code that is associated with the chart.
	String

	variant
	Determines the variant code for the chart.
	String

C.1.44	marker

Purpose:
Marker properties

Equivalent in
JClass Chart: 	JCMarker
Sub-Elements: 	
· line-style
· chart-label

Attributes:
	
Name
	Definition
	Possible Values or Type

	associatedWithYAxis
	Determines the axis from which the marker radiates. When true, the marker radiates from the y-axis.
	boolean

	drawnBeforeData
	Determines whether the marker is drawn before the data is added or after.
	boolean

	endpoint
	Specifies the value on the non-associated axis at which to end the marker line. The default is the maximum value on the axis.
	double

	includedInDataBounds
	Determines whether or not the marker’s value is included when calculating the data minimum and data maximum for the data view.
	boolean

	label
	Specifies the name of the marker and the label used int eh legend (if VisibleInLegend is true)
	String

	startPoint
	Specifies the value on the non-associated axis at which to start the marker line. The default is the minimum value on the axis.
	double

	
Name
	Definition
	Possible Values or Type

	value
	Specifies the value on the associated axis at which to draw the marker line.
	double

	visibleInLegend
	Determines whether or not the marker label appears in the legend.
	boolean

C.1.45	matte-border

Purpose:
Matte borders.

Equivalent in
JClass Chart: 	javax.swing.border.MatteBorder
Sub-Elements: 	insets

Attributes:
	
Name
	Definition
	Possible Values or Type

	color
	The color of the border.
	Color

C.1.46	multi-col

Purpose:
Attributes to use when the value of the <legend> element’s type attribute is MultiCol.

Equivalent in
JClass Chart: 	com.klg.jclass.util.legend.JCMultiColLegend
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	numColumns
	The number of columns in the legend.
	int

	numRows
	The number of rows in the legend.
	int

C.1.47	offset

Purpose:
The offset from where the label is attached to the chart to where the label is drawn.

Equivalent in
JClass Chart: 	java.awt.Point
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	x
	The X offset.
	int

	y
	The Y offset.
	int

C.1.48	pie-format

Purpose:
Properties specific to pie charts.

Equivalent in
JClass Chart: 	JCPieChartFormat
Sub-Elements: 	
· fill-style
· explode-list

Attributes:
	
Name
	Definition
	Possible Values or Type

	explodeOffset
	Specifies the distance a slice is exploded from the center of a pie chart.
	int

	minSlices
	Represents the minimum number of pie slices that the chart will try to display before grouping slices into the other slice.
	int

	otherLabel
	Represents text string used on the “other pie slice.
	String

	sortOrder
	Determines the order in which pie slices will be displayed. Note that the other slice is always last in any ordering.
	· Data_Order
· Ascending
· Descending

	
Name
	Definition
	Possible Values or Type

	startAngle
	Determines the position in the pie chart where the first pie slice is drawn. A value of zero degrees represents a horizontal line from the center of the pie to the right-hand side of the pie chart; a value of 90 degrees represents a vertical line from the center of the pie to the top-most point of the pie chart; a value of 180 degrees represents a horizontal line from the center of the pie to the left-hand side of the pie chart; and so on. Slices are drawn clockwise from the specified angle. Values must lie in the range from zero degrees to 360 degrees.
	double

	thresholdMethod
	Determines how thresholdValue is used. If Slice_Cutoff, thresholdValue is used as a cutoff to determine what items are lumped into the other slice. If the method is Percentile, items are grouped into the other slice until it represents a thresholdValue percent of the pie.
	· Slice_Cutoff
· Percentile

	thresholdValue
	The is a percentage value (between 0.0 and 100.0). Howe this value is used depends on the thresholdMethod (see above).
	double

C.1.49	plot-area

Purpose:
The rectangle within the chart area into which the data is drawn.

Equivalent in
JClass Chart: 	PlotArea
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	background
	Determines the background color used to draw inside the plot area.
	Color

	bottom
	Determines the location of the bottom of the PlotArea.
	int

	foreground
	Determines the color used to draw the axis bounding box.
	Color

	left
	Determines the location of the left of the PlotArea.
	int

	right
	Determines the location of the right of the PlotArea.
	int

	
Name
	Definition
	Possible Values or Type

	top
	Determines the location of the top of the PlotArea.
	int

C.1.50	point-label

Purpose:
Labels specified on a per point basis for the data. This specification overrides any point labels specified in the data.

Equivalent in
JClass Chart: 	java.util.String
Sub-Elements: 	none

Attributes:		#PCDATA (the label)
C.1.51	polar-radar-format

Purpose:
Properties specific to radar and polar charts.

Equivalent in
JClass Chart: 	JCPolarRadarChartFormat
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	halfRange
	Determines whether the x-axis for polar charts consists of two half-ranges or one full range from 0 to 360 degrees
	boolean

	originBase
	Determines the angle of theta axis origin in polar, radar, and area radar charts. Angles are based on zero degrees pointing east (the normal rectangular x-axis direction) with positive angles going counter-clockwise.
	double

	radarCircularGrid
	Determines whether gridliens are circular or webbed for radar and area radar charts.
	boolean

	yAxisAngle
	Determines the angle fo the y-axis in polar, radar, and area radar charts. Angles are relative to the current origin base.
	double

C.1.52	series-point

Purpose:
Represents a series and point for use with other elements.

Equivalent in
JClass Chart: 	none
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	series
	The series index.
	int, All, or Other_Slice

	point
	The point index.
	int or All

C.1.53	start-line-style

Purpose:
A line style for the starting value boundary line for thresholds.

Equivalent in
JClass Chart: 	JCLineStyle
Sub-Elements: 	line-style

Attributes:		none
C.1.54	symbol-style

Purpose:
Symbol specific drawing properties.

Equivalent in
JClass Chart: 	JCSymbolStyle
Sub-Elements: 	none

Attributes:
	
Name
	Definition
	Possible Values or Type

	color
	Determines the color used to paint the symbol.
	Color

	
Name
	Definition
	Possible Values or Type

	shape
	Determines the shape or symbol that will be drawn. Default is None.
	· None
· Dot
· Box
· Triangle
· Diamond
· Star
· Vert_Line
· Horiz_Line
· Cross
· Circle
· Square

	size
	Determines the size of the symbol.
	int

C.1.55	threshold

Purpose:
Threshold properties.

Equivalent in
JClass Chart: 	JCThreshold
Sub-Elements: 	
· fill-style
· start-line-style
· end-line-style

Attributes:
	
Name
	Definition
	Possible Values or Type

	associatedWithYAxis
	Determines the axis from which the threshold radiates. When true, the threshold radiates from the y-axis.
	boolean

	endValue
	Sets the ending value of the threshold.
	int

	includedInDataBounds
	Determines whether or not the threshold’s startValue and endValue are included when calculating the data minimum and data maximum for the data view.
	boolean

	label
	Specifies the name of the threshold and the label used in the legend (if VisibleInLegend is true).
	String

	startValue
	Sets the starting value of the threshold.
	int

	visibleInLegend
	Determines whether or not the threshold label appears in the legend.
	boolean

C.1.56	title-border

Purpose:
A titled border.

Equivalent in
JClass Chart: 	javax.swing.border.TitleBorder
Sub-Elements: 	(empty-border|bevel-border|etched-border|
line-border|matte-border)

Attributes:
	
Name
	Definition
	Possible Values or Type

	color
	the border’s color
	Color

	font
	The font to use for the title.
	Font

	title
	The string for the title.
	String

	titleJustification
	The title justification. Default is Default.
	· Default
· Left
· Center
· Right
· Leading
· Trailing

	titlePosition
	The position or placement of the title. Default is Default.
	· Default
· Above_Top
· Top
· Below_Top
· Above_Bottom
· Bottom
· Below_Bottom

C.1.57	value-label

Purpose:
A value and label to be placed on an axis.

Equivalent in
JClass Chart: 	JCValueLabel
Sub-Elements: 	#PCDATA (the label)

Attributes:
	
Name
	Definition
	Possible Values or Type

	value
	Controls the position of a label in data space along a particular axis.
	double

[bookmark: _Toc534826796]C.2	JCChartData.dtd
Data can be read in by series or by point. When read in by series, a list of <data-pointlabel> elements is followed by a list of <data-series> elements. For more information, please refer to Specifying Data by Series, in Chapter 4. When read in by point, a list of <data-series-label> elements is followed by a list of <data-point> elements. For more information, please refer to Specifying Data by Point, in Chapter 4. The following is a list of each of the JCChartData.dtd elements, as well as their descriptions.

C.2.1	chart-data

Purpose:
The main element for chart data.

Equivalent in
JClass Chart: 	JCChartData
Sub-Elements: 	
· data-point
· data-point-label
· data-series
· data-sereies-label

Attributes:
	
Name
	Definition
	Possible Values or Type

	hole
	The hole value for the data.
	double

	name
	The name of the data.
	String

C.2.2	data-point

Purpose:
Specify all the series data for a given point.

Equivalent in
JClass Chart: 	none
Sub-Elements: 	
· data-point-label
· x-data
· y-data

Attributes:	none	

C.2.3	data-point-label

Purpose:
Provide a label for a given point.

Equivalent in
JClass Chart: 	java.util.String
Sub-Elements: 	#PCDATA (the point label)

Attributes:	none	

C.2.4	data-series

Purpose:
Specify all the point data for a given series.

Equivalent in
JClass Chart: 	none
Sub-Elements: 	
· data-sereies-label
· x-data
· y-data

Attributes:
	
Name
	Definition
	Possible Values or Type

	seriesImageMapURL
	Specifies information pertaining to series image maps
	String

	seriesImageMapExtra
	Specifies supplemental information pertaining to series image maps.
	String

	legendImageMapURL
	Specifies information pertaining to legend image maps.
	String

	legendImageMapExtra
	Specifies supplemental information pertaining to legend image maps.
	String

C.2.5	data-series-label

Purpose:
Provide a label for a given series. Normally seen in the Legend.

Equivalent in
JClass Chart: 	java.util.string
Sub-Elements: 	#PCDATA (the series label)

Attributes:		none
Note: The <data-series-label> fulfills the same purpose as setting the <chart-dataview-series> tag’s label attribute. If both are used, the <data-series-label> tag is ignored.

C.2.6	x-data

Purpose:
Provide a single x-data value.

Equivalent in
JClass Chart: 	double
Sub-Elements: 	#PCDATA (the x-value)

Attributes:
	
Name
	Definition
	Possible Values or Type

	clusterImageMapURL
	Specifies information pertaining to cluster image maps.
	String

	clusterImageMapExtra
	Specifies information pertaining to cluster image maps.
	String

C.2.7	y-data

Purpose:
Provide a single y-data value.

Equivalent in
JClass Chart: 	double
Sub-Elements: 	#PCDATA (the x-value)

Attributes:
	
Name
	Definition
	Possible Values or Type

	pointImageMapURL
	Specifies image map information for each point in the series.
	String

	pointImageMapExtra
	Specifies supplemental image map information for each point in the series.
	String

Appendix C XML DTD		2

Appendix C XML DTD		1

Appendix D
[bookmark: _Toc534826797]Distributing Applets and Applications

The size of the archive and its related download time are important factors to consider when deploying your applet or application.

When you create an applet or an application using third-party classes such as JClass components, your deployment archive will contain many unused class files unless you customize your JAR. Optimally, the deployment JAR should contain only your classes and the third-party classes you actually use. For example, the jcchart.jar, which you used to develop your applet or application, contains classes and packages that are only useful during the development process and that are not referenced by your application. These classes include the Property Editors and BeanInfo classes. JClass JarMaster helps you create a deployment JAR that contains only the class files required to run your application.

Using JClass JarMaster to Customize the Deployment Archive
JClass JarMaster is a robust utility that allows you to customize and reduce the size of the deployment archive quickly and easily. Using JClass JarMaster you can select the classes you know must belong in your JAR, and JarMaster will automatically search for all of the direct and indirect dependencies (supporting classes).

When you optimize the size of the deployment JAR with JClass JarMaster, you save yourself the time and trouble of building a JAR manually and determining the necessity of each class or package. Your deployment JAR will take less time to load and will use less space on your server as a direct result of excluding all of the classes that are never used by your applet or application.

For more information about using JarMaster to create and edit JARs, please consult its online documentation.

JClass JarMaster is installed automatically as part of the install process for JClass DesktopViews. For more details please refer to Quest Software’s Web site.

Appendix D Distributing Applets and Applications		2

[bookmark: _Toc534826798]Golssary

A
Abstract Class
Any class that cannot be instantiated because it contains at least one abstract method or is declared as abstract, is an Abstract Class. It is possible to extend an abstract class, or make it concrete, by implementing the abstract method.

See Abstract Method.

Abstract Method
An Abstract Method is simply a method which does not have a body, and therefore cannot have an implementation. Abstract Methods are only signature definitions.

Abstract Windowing Toolkit (AWT)
The Abstract Windowing Toolkit is a series of graphical user interface components. These components are implemented using their native-platform versions, and provide a common subset of functionality.

Annotation
An Annotation is a commentary that has been added to a chart. Annotations can be used to describe chart elements, making the chart more useful to an end-user.

Applet
An Applet is a Java program invoked from an HTML page and run in a Javaenabled browser or applet viewer.

Area Chart
An Area Chart is a type of chart that draws each data series as a connected points of data and fills in the area below the points. Each series is layered over the preceding series.

Area Radar Chart
An Area Radar Chart is a type of chart that draws each data series as connected points of data and fills the area inside the points. The points are the same as they would be for a radar chart.

Argument
The data item specified in a method call is an Argument. Also referred to as a parameter.
See Method.

Array Data
Array-formatted data shares a single series of x-data among one or more series of ydata. Array format is the recommended standard, because it works well with all of the chart types.

Array
An Array is a collection of objects of the same type. Each object has its own position, that is specified by an integer.

Attribute
An Attribute is directly associated with the entity of the instance or instances for which it exists, and is simply a named value or relationship to the entity.

Axis Bounds
Axis Bounds define which area of a generated chart will be displayed. The area of a chart within the confines of the Axis Bounds will be displayed; the area of a chart outside the Axis Bounds will not.

Axis Orientation
Axis Orientation determines how the axes are positioned on the chart, with regard to their orientation. An axis can be either horizontal or vertical; generally, the xaxis horizontal is and the y-axis is vertical.

B
Bar Chart
A Bar Chart is a type of chart that generates a rectangle bounding a bar at a data point.

Base Class
A Base Class is a basic set of properties and methods from which one can extend in order to create more specialized classes.

BeanBox
Sun’s BeanBox is a tool intended to be used as a text container and reference base.

C
Candle Chart
A Candle Chart is a type of chart that generates a rectangle bounding the Candle shape at a data point extending outward on all four sides.

Chart Area
The Chart Area contains most of the chart’s actual properties because it is responsible for charting the data; it is also where the data is displayed.

Chart Data Source
The Chart Data Source takes real-world data and puts it into a form that JClass Chart can use. The data it produces will be used to generate a chart.

Chart Label
A Chart Label is a text String that is placed on the visible area of the chart. Its purpose is to clarify the displayed chart. A Chart Label can be either static or interactive.

Chart Style
A Chart Style defines the visual attributes of how data appears in the chart. This includes the lines and points in plots and financial charts, the color of each bar in bar charts, the slice colors in pie charts, and the color of each filled area in area charts.

Chartable Data Source
See Chart Data Source.

Class
A Class is a collection of data and its methods.

Object implementations are defined in Classes, as well as the interface it implements and its superclass (which is Object by default). A Class also includes instance and class variables and methods.

Classes are arranged hierarchically so as to allow classes to inherit from their superclasses.

Classpath
A Classpath points to files, archives, and directories so that the JVM and other Java programs can find them. It is an environment variable that must be set for JClass products to function properly.

Cluster
Cluster, which is used in Bar Charts, refers to a series of bars which represent one unit of data.

For example, when displaying company earnings, you might chart three bars, where each bar represents the earnings of a different year. The three bars together form a cluster.

Clusters can be useful tools when comparing different sets of data.

Cluster Overlap
Cluster Overlap is the amount of space that the individual bars in a cluster overlap. Bars in different clusters do not overlap one another.

Cluster Width
The Cluster width is the total space used by the width of each cluster. It does not specify the width of the individual bars, but the width of the entire cluster.

Component
A Component is simply a software unit (for example, an applet). It exists at the application-level and is supported by a container. Components are configurable at deployment time.

Constructor
Constructors are instance methods that have the same name as their class, and are used to do any initialization required for new objects.

Container
A Container surrounds a component to provide it with security, deployment, runtime services, and component-specific services.

CSS
Cascading Style Sheets
CSS allow styles to be defined, and later used, in an HTML file. These styles can be stored in-line in the HTML file or in a separate CSS file.

D
Data Hole
A Data Hole is a specific location in a chart where no data is drawn. Data Holes are user defined, and the area in the chart will be left blank.

Data Loading
Data Loading is the process by which JClass Chart receives the data from the database to use in the chart.

Data Model
A Data Model is the result of physically organizing data in a logical fashion. It is used as a template or interface through which a data source is constructed. In the case of a database, a Data Model is useful because it contains information pertaining to the contents of a database, including how the database information is used and how items in the database relate to one another.

Data Series
A Data Series is a series of columns that contain numeric data.

Data Source
Data Source refers to the database from which JClass Chart has gathered the data used to draw the chart.

Data View
A Data View is a collection of series objects, one for each series of data points, used to store the visual display style of each series.

DBMS
DataBase Management System
DBMS is the software (or set of software) that controls the major functions of a database (for example, organization, storage, retrieval of data, and security).

Delimiter
A Delimiter series as an indication of the beginning and the end of a block or data.

Depth
In a 3D chart, Depth defines the dimension downward, backward, or inward of the chart.
	
Document Type Definition (DTD)
In JClass Chart, the DTD is a file, included with the installation, that defines the tags and attributes used to specify the appearance of a chart when using XML. DTD tags are built into the JClass Chart API.

Dwell Label
A Dwell Label is an interactive label, available with Flash encoding, that appears when a cursor remains over a chart and disappears when the cursor moves. Normally, the cursor would remain over a point, bar, or slice, and the label would display data referring to that point, bar, or slice.

E
Elevation
In a 3D chart, Elevation refers to the height to which the 3D elements of the chart are lifted above a point of reference.

Event
An Event is a significant occurrence in a program. For example, chart actions are Events that can take place in JClass Chart.

Event Trigger
An Event Trigger is a mapping of a mouse operation and/or a key press to a chart action.

Exception
When running a program, an Exception is something that will stop the program’s normal execution. Generally, an error will be produced.

Explode
Explode is an action that can take place in a pie chart, if exploding pie slices are enabled.

Explode refers to a pie slice that detaches from the rest of the pie when a user clicks it.

Extensible Markup Language (XML)
Extensible Markup Language is a standard information document exchange format. XML is a simplified version of SGML, which creates very structured documents that is intended for use with web documents. XML allows for the creation of customized tags; its structure is defined in a DTD file.

See Document Type Definition (DTD).

Extensible Style Sheet Language (XSL)
Extensible Style Sheet Language is a W3C standard for defining stylesheets for XML. XSL uses the XML language.

Extensible Style Sheet Language Transformation (XSLT)
Extensible Style Sheet Language Transformation is the language used to alter and manipulate documents, transforming XML documents.

F
Footer
The Footer is the text at the bottom of the chart.

Foreground
The Foreground of a chart is the part that appears the closest to the user. If there are layers to the chart, the foreground is the top layer.

G
Gap
Gap refers to the space between different axis annotations in a chart.

General Data
General-formatted data specifies a series of x-data for every series of y-data. General Format may not display data properly in Stacking Bar, Stacking Area, Pie, and Bar charts.

GIF
Graphic Interchange Format
GIF is a loss-less compression image format. GIF files use 256 colors, and are therefore most commonly used for drawings and icons.

Gridlines
Gridlines are patterns of regularly spaced horizontal, vertical, and/or circular lines that identify different X and Y points on the chart. Gridlines can be set to visible or invisible.

H
Half-Range
When using a circular grid, a Half-Range is an axis that is displayed in two ranges: one from -180 to 0 degrees, and a second from 0 to 180 degrees.
	
Header
The Header is the text at the top of the chart.

Hex Values (color)
Hex Values are a way to define colors. Hex values are presented in the format #RRGGBB, #RRRRGGGGBBBB, or #N.

Hi-Lo Chart
The Hi-Lo Chart is a type of chart that generates a chart with a line at a data point extending outwards on all four sides

Hi-Lo-Open-Close Chart
The Hi-Lo-Open-Close Chart is a type of chart that generates a chart with a rectangle bounding the Hi-Lo-Open-Close shape at a data point extending outwards on all four sides.

Hole Value
See Data Hole.

I
IDE
Integrated Development Environment
An IDE is a graphical software development interface. JClass components can be used inside many IDEs; see the JClass DesktopViews Installation Guide for details.

Inheritance
The variables and methods defined in a class are passed down, or inherited, by their subclasses. This concept is known as Inheritance.

Inheritance Hierarchy
An Inheritance Hierarchy is the diagram that represents, in a hierarchical fashion, classes and subclasses, starting with a root class.

Instantiate
Instantiating refers to the production of a particular object from its class template or definition.

Intelligent Defaults
Intelligent Defaults refers to the MultiChart Bean’s set of dynamic default settings. In the custom property editors, the default settings will automatically adjust.

Interface
An Interface is what is seen and used or manipulated on the computer screen by a user (e.g. IBM’s Visual Age).

Internationalization
Internationalization is the process of making software that is ready for adaptation to various languages and regions without engineering changes. JClass products are internationalized if you purchase the source code.

Interpreter
The Interpreter is used to invoke a Java program. It will decode and execute each statement, and runs until the end of the program.

J
JAR
Java Archive
A JAR is a compressed file which includes all classes necessary for a Java applet to work.

Java Application
A Java Application is a standalone Java program run by the Java virtual machine.

JavaBeans
Java Beans are logical, portable, platform-independent, and reusable components that are written and used by Java.

See Component.

JDK
Java Development Kit
A JDK is a development environment, created by Sun, which allows a user to create Java code.

JPEG
Joint Photographic Expert Group
JPEG is an image format with a standardized image compression mechanism (note that it has lossy compression). It is most commonly used for pictures and other complex images.

JVM
Java Virtual Machine
A JVM is a virtual machine that is used to safely execute byte code in Java class files on a microprocessor.

L
Legend
The Legend is a reference in the JClass Chart chart which explains the significance of any differences that exist on the plotted chart (for example, bar color or different lines styles).

Linear Axis
A Linear Axis is an axis where every tick representing a number has the same distance between it and the number preceding or following it in the axis. In other words, the distance between ticks is a constant.

Logarithmic Axis
A Logarithmic Axis is an axis that uses the values of N/N0, rather than linear values, to aid in the graphing of logarithmic expressions. In other words, the distance between ticks is based on a logarithmic scale.

M
Method
A Method is a function which is defined in a class and, unless otherwise specified, is not static. When a class is instantiated, its Methods will run.

Model View Controller (MVC)
MVC is a logical way of separating the different elements of interactive software. The internal workings are referred to as the Model, the visual representation portrayed to the viewer is the View, and the ways in which the user changes the View or provides input is the Controller.
	
Mouse Event
A Mouse Event is an event that has been implemented through the use of a mouse.

See Event.

O
Object
An Object is used to contain the variable data and method definitions that are needed to instantiate a class, and is the building block or object-oriented programming.

Object Collection
An Object Collection is a container that is used to hold and group objects together. Once the objects have been placed in an Object Container, they can be accessed through one variable.

Origin Base
The Origin Base is the start angle of a circular chart.

“Other” Slice
In a pie chart, the “Other Slice” refers to the grouping of unimportant values into one slice, rather than have them represented separately. The use of the “Other Slice” often makes a pie chart more effective.

P
Package
A Package is a group of classes or interfaces, and is declared with the package keyword. Often, packages are groups of classes or interfaces that have been grouped together to provide a specific type of functionality.

Parameter
A Parameter is a data item specified in a method call. Also referred to as an argument.

Parser
A Parser determines the syntactic structure of a sentence or String.

PDF
Portable Document Format
PDF allows a document to be represented in a form that is independent from the original software, hardware, and operating system that was used to create it. Adobe System’s Acrobat uses this file format, and allows PDF files to contain text, graphics, and images. PDF files are known to be versatile and well suited for distribution.

Pick
Pick is a mechanism in which allows users to determine the position, in pixels, of data points displayed on a chart.

Pie Chart
A Pie Chart is a type of chart that generates a circular graph that is divided into sections, where each section represents a portion of the entire graph. Pie charts are most often used to represent percentage data which, when added, is equal to 100%.

Plot Area
The Plot Area is the specific area of the chart where the chart data is plotted.

Plot Chart
A Plot Chart is a type of chart that generates a chart with lines and symbols.

PNG
PNG is an image format that uses loss-less compression. PNG uses 24 bits of color (including transparent colors).

Point Data
Point Data is a data type that is comprised of one or more series of points.

Point Label
A Point Label is an annotation method used to label specific points of data on the x-axis. It is used with array data only.

Polar Chart
A Polar Chart is a type of chart that generates a chart with a series of connecte points of data on a polar coordinate system.

Procedure
A Procedure is the instructions used to perform a specific task.

Property
Properties are the named method attributes of a class that can affect its appearance or behavior.

Property Parameters
Property Parameters are programming options referring to parameters.

See Parameter.

Property Sheet
A Property Sheet allows for changes to be made to the properties of the component under consideration.

R
R Value
The R value is the distance of a point from the y-axis origin in a polar chart.

Radar Chart
A Radar Chart is a type of chart that draws a chart with each data series as connected points along radar “sticks” spaced equally apart.

Rendered Chart
The Rendered Chart is the ensemble of all components of a chart, generated by JClass Chart.

Rendering
Rendering is the act of converting high-level object-based description into graphical elements for display (in this case, a chart).

RGB Value (color)
RGB Values are a way to define colors using red, green, and blue values. RGB values are presented in the format #RRGGBB.

RMI
Remote Method Invocation
RMI allows one computer running a Java program to access methods and objects that are running in a Java program on another machine.

Rotation
Rotation refers to a transformation that you can perform on a 3D chart. Specifically, it refers to the movement of the chart’s coordinate system, providing the chart with new axes with a specified angular displacement from its original position. The origin will remain fixed despite the rotation.

S
Scatter Plot Chart
A Scatter Plot Chart is a type of chart that plots series of points.

Series Label
A Series Label is an annotation method used to label a series of points of data in the legend.

Stacking Area Chart
A Stacking Area Chart is a type of chart that draws each data series as connected points of data and fills in the area below the points. Each y-series is placed on top of the last one to show the area relationships between each series and the total.

Stacking Bar Chart
A Stacking Bar Chart generates a rectangle bounding the segment of a stacking bar that represents a data point.

Start Angle
In a Pie Chart, the start angle is the position in the pie chart where the first pie slice is drawn.

Stock Data Source
A Stock Data Source is a data source that is included with your JClass Chart installation.

String
A String is a sequence of alphanumeric, punctuation, and white spaces.

Subclass
A Subclass is a class that is derived from another class. There might be one or more classes between them. A Subclass inherits the variables and methods contained in the superclass.

See Class.
	
Subcomponent
A Subcomponent is a component that is derived from another component.

See Component.

Swing
Swing is a set of classes which extend the Java AWT package and is used for creating a graphical user interface.

T
Theta
Theta is the amount of rotation from the x-axis origin in a polar chart. The angle from the x axis origin is measured counterclockwise.

Tick
A Tick object is a collection of uniformly spaced marks and labels, used to show the scale values.

Time Label
A Time Label is an annotation method used to label specific points of data on the X axis according to time.

Top-Level Object
A Top-Level-Object is a Java Object class on which other classes base themselves.

Transposed Data
Transposed Data refers to data where the meaning of the data series and points is switched.
	
V
Value Labels
A Value Label is an annotation method used to appear along an axis at userspecified values.

Z
Zooming
Zooming refers to a transformation that you can perform on a chart. Specifically, it refers to selecting an area of a chart to expand. In other words, Zooming is seeing a close-up of one area of a chart.

Glossary		2

Glossary		1

image3.emf

image74.emf

image75.emf

image76.emf

image77.emf

image78.emf

image79.emf

image80.emf

image81.emf

image82.emf

image83.emf

image84.emf

image85.emf

image86.emf

image87.emf

image88.emf

image89.emf

image90.emf

image91.emf

image92.emf

image93.emf

image94.emf

image95.emf

image96.emf

image97.emf

image98.emf

image99.emf

image100.emf

image101.emf

image102.emf

image103.emf

image104.emf

image105.emf

image106.emf

image107.emf

image108.emf

image109.emf

image110.emf

image111.emf

image112.emf

image113.emf

image114.emf

image115.emf

image116.emf

image117.emf

image118.emf

image119.emf

image120.emf

image121.emf

image122.emf

image123.emf

image124.emf

image125.emf

image126.emf

image127.emf

image128.emf

image129.emf

image130.emf

image131.emf

image132.emf

image133.emf

image134.emf

image135.emf

image136.emf

image137.emf

image138.emf

image139.emf

image140.emf

image141.emf

image142.emf

image143.emf

image144.emf

image145.emf

image146.emf

image147.emf

image148.emf

image149.emf

image150.emf

image151.emf

image152.emf

image153.emf

image154.emf

image155.emf

image156.emf

image157.emf

image158.emf

image4.emf

image159.emf

image160.emf

image161.emf

image162.emf

image163.emf

image164.emf

image165.emf

image166.emf

image167.emf

image168.emf

image5.emf

image169.emf

image170.emf

image171.emf

image172.emf

image173.emf

image174.emf

image175.emf

image176.emf

image6.emf

image177.emf

image178.emf

image179.emf

image180.emf

image181.emf

image182.emf

image183.emf

image184.emf

image7.emf

image185.emf

image186.emf

image187.emf

image188.emf

image189.emf

image190.emf

image191.emf

image192.emf

image193.emf

image194.emf

image8.emf

image195.emf

image196.emf

image197.emf

image198.emf

image199.emf

image200.emf

image201.emf

image202.emf

image203.emf

image204.emf

image9.emf

image205.emf

image206.emf

image207.emf

image208.emf

image209.emf

image210.emf

image211.emf

image212.emf

image213.emf

image214.emf

image10.emf

image215.emf

image216.emf

image217.emf

image218.emf

image219.emf

image220.emf

image221.emf

image222.emf

image223.emf

image224.emf

image11.emf

image225.emf

image226.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image40.emf

image41.png

image42.svg

image43.emf

image44.emf

image45.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.emf

image51.emf

image52.emf

image53.emf

image54.emf

image55.emf

image56.emf

image57.emf

image58.emf

image59.emf

image1.png
QUEST
SOFTWARE®

image60.emf

image61.emf

image62.emf

image63.emf

image64.emf

image65.emf

image2.png
®JClass’ DesktopViews 6.4.2

image66.emf

image67.emf

image68.emf

image69.emf

image70.emf

image71.emf

image72.emf

image73.emf

