[image:]

[image:]

Chart 3D Programmer’s Guide

[image:]

© 2009 Quest Software, Inc.
ALL RIGHTS RESERVED.
This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest Software, Inc.

If you have any questions regarding your potential use of this material, contact:
Quest Software World Headquarters
LEGAL Dept
5 Polaris Way
Aliso Viejo, CA 92656
Email: legal@quest.com
Refer to our Web site (www.quest.com) for regional and international office information.

Trademarks
Quest, Quest Software, the Quest Software logo, Aelita, Akonix, AppAssure, Benchmark Factory, Big Brother, ChangeAuditor, DataFactory, DeployDirector, ERDisk, Foglight, Funnel Web, GPOAdmin, iToken, I/Watch, Imceda, InLook, IntelliProfile, InTrust, Invertus, IT Dad, I/Watch, JClass, Jint, JProbe, LeccoTech, LiteSpeed, LiveReorg, MessageStats, NBSpool, NetBase, Npulse, NetPro, PassGo, PerformaSure, Quest Central, SharePlex, Sitraka, SmartAlarm, Spotlight, SQL LiteSpeed, SQL Navigator, SQL Watch, SQLab, Stat, StealthCollect, Tag and Follow, Toad, T.O.A.D., Toad World, vAnalyzer, vAutomator, vControl, vConverter, vDupe, vEssentials, vFoglight, vMigrator, vOptimizer Pro, VPackager, vRanger, vRanger Pro, vReplicator, vSpotlight, vToad, Vintela, Virtual DBA, VizionCore, Vizioncore vAutomation Suite, Vizioncore vEssentials, Xaffire, and XRT are trademarks and registered trademarks of Quest Software, Inc in the United States of America and other countries. Other trademarks and registered trademarks used in this guide are property of their respective owners.

Disclaimer
The information in this document is provided in connection with Quest products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest products. EXCEPT AS SET FORTH IN QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Quest does not make any commitment to update the information contained in this document.

Third Party Contributions
See Third_Party_Contributions.htm in your Quest Software License Server installation directory.

Chart 3D Programmer’s Guide
January 2009
Version 6.4.2
 		1
		1
Table of Contents
Preface	7
Introducing JClass Chart 3D	7
Assumptions	8
Typographical Conventions	8
Overview of this Guide	9
API Documentation (Javadoc)	9
Licensing	9
Related Documents	10
About Quest Software, Inc.	10
JClass Community	11
JClass Chart 3D Basics	13
1.1 	Terminology	13
1.2 	Startup checklist	14
1.3 	Instantiating a Chart in JClass Chart 3D	14
1.4 	Data Types	14
1.5 	Chart Types	15
1.6 	Loading Data	16
1.7 	Setting and Getting Object Properties	16
1.8 	Other Programming Basics	18
1.9 	Outputting JClass Chart 3D	18
1.10	JClass Chart 3D Inheritance Hierarchy	19
1.11	JClass Chart 3D Object Containment	21
1.12	UseDefault Properties	22
1.13	Batching Property Updates	22
1.14	Chart Colors	23
1.15	The JClass Chart 3D Customizer	24
1.16	Internationalization	26
Programming JClass Chart 3D: Common Functions	27
2.1 	Properties	27
2.2 	Axis Controls	28
2.3 	Setting Axis Bounds	28
2.4 	Legends	29
2.5 	Perspective	35
2.6 	Axis Scaling	36
2.7 	Axis Labelling and Annotation Methods	36
2.8 	Gridlines	41
2.9 	Header and Footer Titles	43
Programming JClass Chart 3D: Surfaces and Bars	45
3.1 	Fifteen Basic Types of Surfaces and Bars	45
3.2 	Chart Types	47
3.3 	Bar Charts and Histograms	50
3.4 	Contours and Zone Display	52
3.5 	Mesh Controls	54
3.6 	Surface Colors	55
3.7 	Solid Surface	55
Programming JClass Chart 3D: Scatter Plots	56
4.1 	Overview	56
4.2 	Three Basic Types of Scatter Plots	57
4.3 	Controlling Symbol and Drop Line Style	57
4.4 	Chart Styles	58
Data Sources	60
5.1 	Overview	60
5.2 	Pre-Built Chart DataSource	63
5.3 	Loading Data from a File	65
5.4 	Loading Data from a Swing Table Model	67
5.5 	Loading Data from an XML Source	68
5.6 	Data Binding using JDBCDataSource	70
5.7 	JCData3dUtil class	70
5.8 	Making Your Own Chart Data Source	71
5.9	HoleValueChartDataModel – Specifying Hole Values	75
5.10	Making an Updating Chart Data Source	75
5.11	Summary of JClass Chart 3D Data Interfaces	79
Advanced JClass Chart 3D Programming	80
6.1 	4D Surface Graphs	80
6.2 	4D Bar Charts	81
6.3 	Customizing the Contour Levels	82
6.4 	Customizing Contour Styles	82
Programming User Interaction	85
7.1 	Default User Interaction	85
7.2 	Listeners	90
7.3 	Mapping and Picking	90
7.4 	dragZValue Method	91
7.5 	gridValue Method	92
Interface Listing	94
A.1 	Interface Summary	94
Object Property Listing	95
B.1 	Chart 3D	95
B.2 	Chart3d.Event	108
B.3 	Chart3d.j2d	108
Additional Common JClass Chart 3D 3D Methods	109
C.1 	Chart 3D	109
C.2	Chart3d.Event	115

Contents		2
Contents		1

		2
[bookmark: _Toc531438361]Preface
Introducing JClass Chart 3D ■ Assumptions ■ Typographical Conventions
Overview of this Guide ■ API Documentation (Javadoc) ■ Licensing
Related Documents ■ About Quest Software, Inc

[bookmark: _Toc531438362]Introducing JClass Chart 3D
JClass Chart 3D is a powerful three-dimensional charting tool. It enables developers to build three-dimensional data views and interactive displays that give their applications a professional look and feel. JClass Chart 3D allows you to create stunning 3D graphics using the Java 2 API. With JClass Chart 3D, you can add 3D functionality using Java 2 technology – meaning that the heavyweight Java 3D API won’t need to be included in your applications.

JClass Chart 3D is written entirely in Java. The chart component displays data graphically in a window and can interact with a user.

The chart component can be used easily by all types of Java programmers:
· Component users for setting JClass Chart 3D properties programmatically.
· OO developers for instantiating and extending JClass Chart 3D objects.
· JavaBean developers for setting JClass Chart 3D properties using a third-party Integrated Development Environment (IDE).

JClass Chart 3D is compatible with JDK 1.4. If you are using JDK 1.4 and experience drawing problems, you may want to upgrade to the latest drivers for your video card from your video card vendor.

You can freely distribute Java applets and applications containing JClass components according to the terms of the License Agreement that appears at install time.

Feature Overivew
You can set the properties of JClass Chart 3D objects to determine how the chart will look and behave. You can control:
· Chart type (surface, bar, or scatter plot).
· Header and footer positioning, border style, text, font, and color.
· Number of data views, each having its own data, and chart type. Currently, only one data view is supported.
· Flexible data loading from files, URLs, input streams, and databases.
· Chart styles for scatter plots: line color, fill color, and point size, style, and color.
· Contour levels: Use the default linear distribution or provide your own.
· Contour styles: Contour line styles and contour zones colors are all customizable.
· Plot cube scaling in x, y, z directions.
· Legend positioning, orientation, border style, layout style, distribution range limiting, anchor, font, and color.
· Chart positioning, border style, color, width, height and axes rotation.
· Axis labelling using Data labels, Value labels, or pleasing precompiled values.
· An X, Y and Z axes, each having its own minimum and maximum, gridlines, annotation method, font, and title.
· Control of user interaction with components including picking, mapping, Chart 3D Customizer, rotation, scaling, and translation.
· Ability to add a 4th dimension to the data via color.
· Contour maps through 2D projections of data.
· Hidden-line display, surface colors, and mesh colors.
· 3D rotation and perspective.

[bookmark: _Toc531438363]Assumptions
This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and Java programming concepts such as classes, methods, and packages before proceeding with this manual. See Related Documents later in this section of the manual for additional sources of Java-related information.

[bookmark: _Toc531438364]Typographical Conventions
	Typewriter Font
	· Java language source code and examples of file contents.
· JClass Chart 3D and Java classes, objects, methods, properties, constants, and events.
· HTML documents, tags, and attributes.
· Commands that you enter on the screen.

	Italic Text
	· Pathnames, filenames, URLSs, programs, and method parameters.
· New terms as they are introduced, and to emphasize important words.
· Figure and table titels.
· The names of other documents referenced in this manual, such as Java in a Nutshell.

	Bold
	· Keyboard key neames and menu references.

[bookmark: _Toc531006357]

[bookmark: _Toc531438365]Overview of this Guide
						Part I – Using JClass Chart 3D – describes programming with JClass Chart 3D.

Chapter 1, JClass Chart 3D Basics, provides a programmer’s overview of JClass Chart 3D. This chapter covers concepts and vocabulary used in JClass Chart 3D programming, and discusses class hierarchy, object containment, terminology, and programming basics.

Chapter 2, Programming JClass Chart 3D: Common Functions, introduces properties, axis information (controls, scaling, labelling, and annotating), legends, gridlines, and header and footer titles.

Chapter 3, Programming JClass Chart 3D: Surfaces and Bars, is a guide to the basic types of surfaces and bars; meshed, shaded, and transparent plots; contoured and zoned plots; bar charts and histograms; contours and zone display; surface colors; and solid surfaces.

Chapter 4, Programming JClass Chart 3D: Scatter Plots, is all about scatter plots, including the three basic types of scatter plots (3D scatter plots, 3D scatter plots with drop lines, and 2D scatter plots), controlling symbol and drop line styles, and developing chart styles.

Chapter 5, Data Sources, introduces you to data sources (including an extensive overview), pre-built chart datasources, loading data from a file and from an XML source, data binding, specifying data from databases, and making your own chart data source and an updating chart data source.

Chapter 6, Advanced JClass Chart 3D Programming, covers advanced JClass Chart 3D topics, including 4D surface graphs, 4D bar charts, customizing the contour levels, customizing contour styles, and internationalization support. Chapter 7, Programming User Interaction, provides a look at default user interaction, listeners (data listener, Chart3d listener, and pick listener), mapping and picking, and the interpolate method.

Part II — Reference Appendices – contains detailed technical reference information.

Appendix A, Interface Listing, summarizes the commonly used JClass Chart 3D
interfaces.

Appendix B, Object Property Listing, lists the properties for all commonly used classes
for the Java 2 API.

Appendix C, Additional Common JClass Chart 3D 3D Methods, lists the most frequently used classes for JClass Chart 3D.

[bookmark: _Toc531438366]API Documentation (Javadoc)
The JClass DesktopViews API Documentation (Javadoc) is installed automatically when you install JClass PageLayout and is found in the JCLASS_HOME/docs/api/ directory.

[bookmark: _Toc531438367]Licensing
In order to use JClass Chart 3D, you need a valid license. Complete details about licensing are outlined in the JClass DesktopViews Installation Guide, which is automatically installed when you install JClass Chart 3D.

[bookmark: _Toc531438368]Related Documents
The following is a sample of useful references to Java and JavaBeans programming:
· “Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java Tutorial” at http://java.sun.com/docs/books/tutorial/index.html from Sun Microsystems
· For an introduction to creating enhanced user interfaces, see “Creating a GUI with JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html
· Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java Resource Center at http://java.oreilly.com
· Resources for using JavaBeans are at http://java.sun.com/beans/resources.html
· For a comprehensive introduction to VRML97, MPEG-4/BIFS, and X3D, see Core Web3D from Prentice Hall. See the publisher’s Web site at http://vig.prenhall.com/ or the book’s Web page at http://www.CoreWeb3D.com
· Learn about the Web3D Consortium (provides a forum for the creation of open standards for Web3D specifications) at http://www.web3d.org/
These documents are not required to develop applications using JClass Chart 3D, but they can provide useful background information on various aspects of the Java programming language.

[bookmark: _Toc531438369]About Quest Software, Inc.
Quest Software, Inc. delivers innovative products that help organizations get more performance and productivity from their applications, databases and Windows infrastructure. Through a deep expertise in IT operations and a continued focus on what works best, Quest helps more than 18,000 customers worldwide meet higher expectations for enterprise IT. Quest Software can be found in offices around the globe and at www.quest.com.

Contacting Quest Software

	Email
	info@quest.com

	Mail
	Quest Software, Inc
World headquarters
5 Plaris Way
Aliso Viejo, CA 92656
USA

	Web site
	www.quest.com

	Refer to our web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product or who have purchased a commercial version and have a valid maintenance contract. Quest Support provides around the clock coverage with SupportLink, our web self-service. Visit SupportLink at: http://support.quest.com

From SupportLink, you can do the following:
· Quickly find thousands of solutions (Knowledgebase articles/documents).
· Download patches and upgrades.
· Seek help from a Support engineer.
· Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs, online services, contact information, and policy and procedures. The guide is available at: http://support.quest.com/pdfs/Global Support Guide.pdf

Please note that many of the initial questions you may have will concern basic installation or configuration issues. Consult this product’s readme file and the JClass DesktopViews Installation Guide (available in HTML and PDF formats) for help with these types of problems.

[bookmark: _Toc531438370]JClass Community
For the latest product information, helpful resources, and discussions with the JClass
Quest team and other community members, join the JClass community at http://jclass.inside.quest.com/.
Preface		2
Preface		 2

Using JClass
Chart 3D
Part
I

		2
Ch 1 JClass Chart 3D Basics		2

1
[bookmark: _Toc531438371]JClass Chart 3D Basics
Terminology ■ Startup Checklist ■ Instantiating a Chart in JClass Chart 3D
Data Types ■ Chart Types ■ Loading Data ■ Setting and Getting Object Properties
Other Programming Basics ■ Outputting JClass Chart 3D ■ JClass Chart 3D Inheritance Hierarchy
JClass Chart 3D Object Containment ■ UseDefault Properties ■ Batching Property Updates
Chart Colors ■ The JClass Chart 3D Customizer ■ Internationalization

[bookmark: _Toc531438372]1.1 	Terminology
A JClass Chart 3D chart comprises four components: header, footer, chart area, and legend. The plot cube, contained within the chart area, contains the rendered chart.

The following illustration shows the terms used to describe the main components that make up a chart:

[image:]
Figure 1 Elements contained in a typical chart.

Plot Cube
The plot cube is defined to be the smallest cube which encloses the entire 3D scene (including the axes). Some JClass Chart 3D properties, such as those that specify axis scaling and axis font cube sizes, have definitions that depend on the plot cube size.

The plot cube has properties that include background color, foreground color, floor and ceiling properties, and x, y, and z scaling.

[bookmark: _Toc531438373]1.2 	Startup checklist
Full details of how to get started with JClass Chart 3D are provided in the JClass DesktopViews Installation Guide. The JClass DesktopViews Installation Guide is provided in PDF and HTML formats, and is automatically installed into JCLASS_HOME/docs/getstarted/ when you install JClass Chart 3D.

[bookmark: _Toc531438374]1.3 	Instantiating a Chart in JClass Chart 3D
To instantiate a chart, use the factory method in JCChart3d:
public static JCChart3d createChart3d();
The createChart3d() method creates an instance of JClass Chart 3D, which is the class
com.klg.jclass.chart.j2d.JCChart3dJava2d.

This method will return null if JClass Chart 3D could not create the desired classes.

[bookmark: _Toc531438375]1.4 	Data Types
In JClass Chart 3D, there are two types of data: point data and grid data.

Point data
Point data comprises one or more series of points. Each of these series can have its own chart style.

[image:]

Grid data
Grid data comprises an array of X-values, an array of Y-values, and a corresponding array of (x,y) values.

Note that the following figure uses grid data for plotting, and has been rotated so that the X-Y plane is vertical.

[image:]

[bookmark: _Toc531438376]1.5 	Chart Types
JClass Chart 3D contains three chart types: surface, bar, and scatter plot.

Surface Chart
A surface chart uses only grid data.

[image:]

Bar Chart
A bar chart uses only grid data.

[image:]
Scatter Plot Chart
A scatter plot chart uses either grid or point data.

[image:]

[bookmark: _Toc531438377]1.6 	Loading Data
Data is loaded into a chart by attaching one or more chart data sources to it. A chart data source is an object that takes real-world data and puts it into a form that JClass Chart 3D can use. Once your data source is attached, you can chart the data in a variety of ways.

Several stock (built-in) data sources are provided with JClass Chart 3D, enabling you to read data from an input stream, a file, and a URL, and databases. Loading data from a database is called ‘data binding’. In JClass Chart 3D, you are able to get data from a database. You can also create your own data sources. See the Data Sources, in Chapter 5, for more information on loading data and creating your own data sources.

[bookmark: _Toc531438378]1.7 	Setting and Getting Object Properties
There are three ways to set (and retrieve) JClass Chart 3D properties:
· By calling property set and get methods in a Java program.
· By using a Java IDE at design-time (JavaBeans).
· By using the JClass Chart 3D Customizer at run-time.

Each accessor method changes the chart property whose name matches the method. This manual therefore uses properties to discuss how features work, rather than using the method or Customizer tab that you might use to set that property.

Note: In most cases, you need to understand the chart’s object containment hierarchy to access its properties. Use the JClass Chart 3D Object Containment diagram later in this chapter to determine how to access the properties of an object.

1.7.1 	Setting Properties with Java Code
Every JClass Chart 3D property has a set and get method associated with it, unless it is read-only. For example, to retrieve the value of the AnnotationMethod property of the Xaxis, the getAnnotationMethod() method is called:
method = c.getChart3dArea().getAxis(JCAxis.AXIS_X).
getAnnotationMethod();

To set the AnnotationMethod property of the same axis, the setAnnotationMethod is called:
c.getChart3dArea().getAxis(JCAxis.AXIS_X).setAnnotationMethod(
JCAxis.ANNOTATION_VALUES);

These statements navigate the objects contained in the chart by retrieving the values of successive properties, which are contained objects. In the code above, the value of the Chart3dArea property is a JCChart3dArea object. The chart area has an Axes property, the value of which is a collection of JCAxis objects. The X-axis is indexed using the JCAxis.AXIS_X enum value, and the axis has the desired AnnotationMethod property. Note that for convenience, the JCChart3dArea class has a getXAxis() method.

For detailed information on the properties available for each object, consult the JClass DesktopViews API Documentation, which is automatically installed into JCLASS_HOME/docs/api/index.html when you install JClass Chart 3D.

1.7.2 	Setting Properties with Java IDE at Design-Time
JClass Chart 3D can be used with a Java Integrated Development Environment (IDE), and its properties can be manipulated at design time. Consult your IDE’s documentation for details on how to load third-party JavaBean components into the IDE.

Please refer to the JClass and Your IDE chapter in the JClass DesktopViews Installation Guide, which outlines detailed instructions and important notes. For instance, only the Java 2 version of the JClass Chart 3D JavaBean (chart3dJava2d) works in Borland JBuilder 4 or higher, and you will need to add vecmath.jar to your project. The readme file contains the most current list of supported IDEs.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the property you want to set in this list and edit its value. Again, consult your IDE’s documentation for complete details.

1.7.3 	Setting Properties Interactively at Run-Time
If enabled by the developer, end-users can manipulate property values on a chart running in your application. Right-clicking the mouse launches the JClass Chart 3D Customizer. The user can navigate through the tabbed dialogs and edit the properties displayed.

For details on enabling and using the Customizer, see Section 1.15, The JClass Chart 3D Customizer.
[bookmark: _Toc531438379]
1.8 	Other Programming Basics

1.8.1 	Working with Object Collections
If Many chart objects are organized into collections. For example, the contour styles are organized into a java.util.ArrayList. In JavaBeans terminology, these objects are held in indexed properties.
To access a particular element of a collection, you need to retrieve the collection and then specify the index that uniquely identifies this element. For example, the following code changes the line color of the third contour style to red.
import java.awt.Color;
import java.util.ArrayList;
import com.klg.jclass.chart3d.*;
ArrayList styles = c.getDataView(0).getContour().getContourStyles();
JCContourStyle cStyle = (JCContourStyle)styles.get(2);
cStyle.getLineStyle().setColor(Color.red);

Note that the index 0 refers to the first element of a collection.

1.8.2 	Calling Methods
To call a JClass Chart 3D method, access the object that defines the method. For example, the following statement uses the coordToDataCoord() method, defined by the Chart3dDataView collection, to convert a pixel value to its equivalent in data coordinates:
javax.vecmath.Point3d dc = c.getDataView(0).coordToDataCoord(10,15);
Details on each method can be found in the API documentation for each class.

[bookmark: _Toc531438380]1.9 	Outputting JClass Chart 3D
Many applications require that the user has a way to get an image or a hard copy of a chart. JClass Chart 3D allows you to output your chart as a GIF, PNG, or JPEG image, to either a file or an output stream.

Located in com.klg.jclass.util.swing.encode, the JCEncodeComponent class is used to encode components into different image file formats. When you include this class in your program, you can call one of two methods that allow you to save the chart image as a GIF, PNG, or JPEG file, sending it to either a file or an output stream.

The parameters of the two methods are the same, except for output.

1.9.1 	Encoding method
The method to output to a file is:
public static void encode(JCEncodeComponent.Encoding encoding,
Component component, File file)

The method to output to an output stream is the same, except that the last parameter is
OutputStream output, that is ...Component component, OutputStream output)

The component parameter refers to the component to encode (the chart), the encoding parameter refers to the type of encoding to use (a GIF, PNG, or JPEG), and the output parameter refers either to the file to which to write the encoding or to the stream to which to write the encoding.

1.9.2 	Encode example
The following code sample encodes a 3D chart into a JPEG file:
try {
JCEncodeComponent.Encoding encoding=JCEncodeComponent.JPEG;
JCEncodeComponent.encode(encoding, chart3d, new File(filename));
}
catch (EncoderException ee){
ee.printStackTrace();
}
catch (IOException IO){
IO.printStackTrace();
}

[bookmark: _Toc531438381]1.10	JClass Chart 3D Inheritance Hierarchy
The following profides an overview of class inheritance of JClass Chart 3D.
[image:]
Figure 2 Class hierarchy of the com.klg.jclass.chart3dpackage.
[bookmark: _Toc531438382]
1.11	JClass Chart 3D Object Containment
When you create (or instantiate) a new chart, several other objects are also created. These objects are contained in and are part of the chart. Chart programmers need to traverse these objects to access the properties of a contained object. The following diagram shows the object containment for JClass Chart 3D.

[image:]
Figure 3 Objects contained in a chart; to access properties, traverse contained objects.

[bookmark: _Toc531438383]1.12	UseDefault Properties
Three JClass Chart 3D properties have corresponding UseDefault properties:
· The max property of JCAxis.
· The min property of JCAxis.
· The levels property of JCContourLevels.
UseDefault properties are Booleans that determine whether JClass Chart 3D should calculate a default value for the property.

For example, if the minIsDefault property of a JCAxis object is true, every time the JClass Chart 3D data is changed, JClass Chart 3D will determine a reasonable default value for the axis minimum. If false, JClass Chart 3D will use the provided axis minimum.

A side effect of setting any property that has a corresponding UseDefault property is that the UseDefault property will be set to false.

The following code will freeze the value of minIsDefault at its current value. It will also have the side effect of setting minIsDefault to false.

JCAxis yAxis = c.getChart3dArea().getAxis(JAxis.Axis_Y);
yAxis.setMin(yAxis.getMin());

The following code will revert back to the default behavior, enabling JClass Chart 3D to calculate a default value for minIsDefault whenever it draws the graph.

yAxis.setMinIsDefault(true);

For the levels property of JCContourLevels, adding, removing, or setting a level directly will cause the isDefault property to be set to false. Also, when isDefault is false, the numLevels property becomes read-only.

[bookmark: _Toc531438384]1.13	Batching Property Updates
Normally property changes take effect immediately after the values are set. If you would prefer to make several changes to the chart’s properties before causing a repaint, set the setBatched() method to true. The setBatched() method sets the value of the Batched property, which controls whether chart updates are accumulated; if set to true, chart updates will accumulate, and if set to false, the accumulated updates are forced to be processed. You should normally set setBatched() to true after all your updates are made; this will initiate a repaint.

[bookmark: _Toc531438385]1.14	Chart Colors
Color can powerfully enhance a chart’s visual impact. You can customize chart colors using Java color names or RGB values. Using an interactive tool like the JClass Chart 3D Customizer makes selecting custom colors quick and easy.

Note that the area backgrounds are transparent by default. The foreground colors default to the chart foreground color. Also note that inherited properties of the chart or Chart3dArea components, such as backgroundColor, are not controlled by the Batched property.

Each of the following visual elements in the chart has a background and foreground color that you can customize:
· the entire chart
· the Header and Footer titles
· the legend
· the chart area
· the plot cube
Other chart objects have color properties too, including JCGridLines and JCChart3dStyles. You can also specify colors for the top and bottom of the mesh, for surface shading, and for the contour lines and zone fills.

Color Defaults
All chart subcomponents are transparent by default with no background color. If made opaque, the legend and the chart area will inherit background color from the parent chart. The plot cube inherits its colors from the chart area. The same objects will always inherit the foreground color from the chart.

Headers and footers are independent objects that behave according to the rules of whatever object they are.

Please note that once the application sets the colors of an element, they do not change when other elements’ colors change.

Specifying Foreground and Background Colors
Each chart element listed above has a Background and Foreground property that specifies the current color of the element. The easiest way to specify a color is to use the built-in color names defined in java.awt.Color. The following table summarizes these colors:

	Built-in Colors in java.awt.Color

	black
darkGray
lightGray
pink
	blue
gray
magenta
red
yellow
	cyan
green
orange
white

Alternately, you can specify a color by its RGB components, useful for matching another RGB color. RGB color specifications are composed of a value from 0 – 255 for each of the red, green and blue components of a color. For example, the RGB specification of Cyan is “0-255-255” (combining the maximum value for both green and blue with no red).

The following example sets the header background using a built-in color, and the footer background to an RGB color (a dark shade of turquoise):

c.getHeader().setBackground(Color.cyan);

mycolor = new Color(95,158,160);
c.getFooter().setBackground(mycolor);

Take care not to choose a background color that is also used to display data in the chart. The default ContourStyles and Chart3dStyles use all of the built-in colors in the following order: Red, Orange, Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan, Black, Pink, and White. Note that JClass Chart 3D will skip colors that math background colors. For example, if the chart area background is Red, then the line, fill, and symbol colors will start at Orange.

Transparency
If the JClass Chart 3D component is meant to have a transparent background, set the opaque property to false; then generated JPEGs, GIFs, and PNGs will also contain a transparent background.

[bookmark: _Toc531438386]1.15	The JClass Chart 3D Customizer
The JClass Chart 3D Customizer enables developers (and end-users if enabled by your program) to view and customize the properties of the chart as it runs.

[image:]
Figure 4 The JClass Chart 3D Customizer.

The Customizer can save developers a lot of time. Charts can be prototyped and shown to potential end-users without having to write any code. Developers can experiment with combinations of property settings, seeing results immediately in the context of a running application, greatly aiding chart debugging.

1.15.1	Displying the Chart Customizer at Run-time
By default, the Customizer is disabled at run-time. To enable it, you need to set the chart’s
AllowUserChanges property to true. For example:

chart3d.setAllowUserChanges(true);
chart3d.launchPropertyPage(new Point(x,y));

You can also launch the Customizer through the customize action. Please see Programming User Interaction, in Chapter 7, for information on how to do this. Installing the default user interactions via the addAllDefaultActions() method causes the Customizer to be deployed when the right mouse button is clicked.

1.15.2	Editing and Viewing Properties
1. Select the tab that corresponds to the chart element that you want to edit. Tabs contain one or more inner tabs that group related properties together. Select inner tabs to narrow down the type of property you want to edit.
2. If you are editing an indexed property, select the specific object to edit from the lists displayed in the tabs. The fields in the tab update to display the current property values.
3. Select a property and edit its value.
[image:]
Figure 5 Editing a sample chart with the Customizer.

As you change property values, the changes are immediately applied to the chart, and will be displayed immediately only if the batched checkbox is not selected. You can make further changes without leaving the Customizer. However, once you have changed a property the only way to “undo” the change is to manually change the property back to its previous value.

To close the Customizer, close its window.

[bookmark: _Toc531438387]1.16	Internationalization
Internationalization is the process of making software that is ready for adaptation to various languages and regions without engineering changes. JClass DesktopViews products have been internationalized.

Localization is the process of making internationalized software run appropriately in a particular environment.

In JClass DesktopViews, all Strings that may be seen by a typical user have been internationalized and are ready for localization. These Strings are in resource bundles in every package that requires them. You need to create additional resource bundles for each of the locales that you want to support.

Note: Localizations that are built into the Java platform – such as number and date formatting – are handled by JClass Chart 3D, without the need for you to do any extra work.

To localize your JClass Chart 3D, you need the JClass Chart 3D source code (requires a source code license). The packages that require localization have a resources subdirectory that contains the resource bundles, called LocaleInfo (or some similar variation, such as LocaleBeanInfo). You may want to perform an automated search of the package structure to find all the resource bundles.

To create a new resource bundle, copy the LocaleInfo.java file (staying within the same resources directory) and change its name to include standard language and country identifiers for the locale that you want to support. For example, if you want to support French as spoken in France, rename the copy of LocaleInfo.java to LocaleInfo_fr_FR.java. You can then replace the Strings in the copied file with the French translations.

To use a localized resource bundle, you pass the language and country identifiers to the setLocale() method. For example, setLocale(new Locale(fr, FR)) means that the Strings will be read from LocaleInfo_fr_FR.java.

For more information, including standard language and country identifiers, see http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.

Ch 1 JClass Chart 3D Basic		2
Ch 1 JClass Chart 3D Basic		1
2
[bookmark: _Toc531438388]Programming JClass Chart 3D: Common Functions
Properties ■ Axis Controls ■ Setting Axis Bounds ■ Legends ■ Perspective
Axis Scaling ■ Axis Labelling and Annotation Methods ■ Gridlines ■ Header and Footer Titles

[bookmark: _Toc531438389]2.1 	Properties
“Properties” are the named method attributes of a class that can affect its appearance or behavior. Properties that are readable have a “get” (or “is” for Booleans) method, which enables the developer to read a property’s value, and those properties that are writable have a “set” method, which enables a property’s value to be changed.

For example, the JClass Chart 3D JCAxis class has a property called annotationMethod, which is used to indicate the style of annotation used on the axis. To set the property value, the setAnnotationMethod() method is used. To get the property value, the getAnnotationMethod() method is used.

It is not necessary to remember all the properties in order to program JClass Chart 3D effectively. For most charts, many properties may be left with their default settings. A full summary of the JClass Chart 3D properties for all commonly used classes is provided in Appendix B. Scan through those tables to gather a basic understanding of the properties. Not all the properties are used for all types of charts: some are specific for Surface and Bar charts only, while others are for Scatter Plots only.

For complete details on how JClass Chart 3D’s object properties are organized, see JClass Chart 3D Object Containment and Setting and Getting Object Properties, in Chapter 1.

2.1.1	Setting JavaBean Properties at Design-Time
One of the features of any JavaBean component is that it can be manipulated interactively in a visual design tool (such as a Java IDE) to set the initial property values when the application starts. Consult your IDE’s documentation for details on how to load thirdparty JavaBean components into the IDE.

For details on JClass Chart 3D’s JavaBeans and IDEs, please refer to the JClass and Your IDE chapter in the JClass DesktopViews Installation Guide. The JClass DesktopViews Installation Guide is available in HTML and PDF formats, and is included when you purchase JClass Chart 3D. The readme file contains the most current list of supported IDEs.

Most IDEs list a component’s properties in a property sheet or dialog. Simply find the property you want to set in this list and edit its value. Again, consult the IDE’s documentation for complete details.

2.1.2	Setting Properties Interactilvely at run-Time
If enabled by the developer, end-users can manipulate property values on a chart running in your application. Clicking a mouse button launches the JClass Chart 3D Customizer. The user can navigate through the tabbed dialogs and edit the properties displayed.

For details on enabling and using the Customizer, please see The JClass Chart 3D Customizer, in Chapter 1, as well as Programming User Interaction, in Chapter 7.

[bookmark: _Toc531438390]2.2 	Axis Controls

2.2.1	Axis Show
The show property of JCAxis tells JClass Chart 3D whether it should draw the axis at all. If set to false, the axis will not be drawn.

2.2.2	Axis Font and Size
The axis annotation is rendered using the font specified by the annoFont property of JCAxis. The font is scaled to be the size specified by the annoFontCubeSize property.

The annoFontCubeSize is measured in units, which are each 1/1,000 of the plot cube length. The default annoFontCubeSize is 80, which means the characters are 8% of the length of the plot cube high. Thus, if the plot cube changes size, so does the annotation.

2.2.3	Title
The JCAxis title property may be used to specify a title for each axis. Titles are rendered using titleFont and in a size specified by titleFontCubeSize.

[bookmark: _Toc531438391]2.3 	Setting Axis Bounds
Normally a graph displays all of the data it contains. There are situations where only part of the data is to displayed. This can be accomplished by fixing axis bounds.

2.3.1	Min and Max
Use the min and max properties of JCAxis to frame a chart at specific axis values. The minIsDefault and maxIsDefault properties allow the chart to determine axis bounds automatically, based on the data bounds.

If the minIsDefault property of a JCAxis object is true, every time the JClass Chart 3D data is changed, JClass Chart 3D will determine a reasonable default value for the axis minimum. If false, JClass Chart 3D will use the provided axis minimum.

Please note that there is a restriction on the min and max properties of the Z-axis; these are not allowed inside the Z-range of the data.

A side effect of setting any property that has a corresponding UseDefault property is that the UseDefault property will be set to false.

The following code will freeze the value of minIsDefault at its current value. It will also have the side effect of setting minIsDefault to false.

JCAxis yAxis = c.getChart3dArea().getYAxis();
yAxis.setMin(yAxis.getMin());

The following code will revert back to the default behavior, enabling JClass Chart 3D to calculate a default value for minIsDefault whenever it draws the graph.
yAxis.setMinIsDefault(true);

[bookmark: _Toc531438392]2.4 	Legends
A legend itemizes the visual attributes used to identify data in the chart. You can customize the labels in the legend and the position of the legend. The legend is a JComponent, and all properties apply.

The getLegend() method of JCChart3d returns an instance of the abstract class JCLegend so that any subclass may be used as a legend. To utilize some of the 3D-specific properties described below, such as layoutStyle and distributionRange, you will need to cast the
class to JCChart3dLegend. For example:

JCChart3dLegend legend = (JCChart3dLegend) chart3d.getLegend();

2.4.1	Legend Display
JClass Chart 3D will generate a legend only when the legend’s Visible property is set to true. By default, there is no legend displayed.

If contours are drawn and zones are not, a legend listing the contour lines is generated. If zones are drawn, the legend lists the fill colors for each level. If points are drawn, the legend lists the symbols used for each series of points.

By default, JClass Chart 3D will attempt to list the legend contents vertically and position the legend to the right (that is, east) of the graph area.

2.4.2	Legend Text, Orientation, and Positioning

		Legend Text
How the legend displays the text depends on the type of chart and data being plotted. In most cases, the text is based on contour levels.

You can choose to display the entire legend item text in a tooltip whenever the mouse hovers over a legend item. The tooltip appears whether or not the legend text is truncated. To activate the tooltips, set the ItemTextToolTipEnabled property to true.
This property always applies to all columns.

If a scatter chart is plotting point data, the text is based on the label property of each series in the data view. If a scatter chart is plotting grid data with both zones and contours turned off, the text is based on the name property of the grid data object.

Legend Orientation
Use the legend Orientation property to lay out the legend horizontally or vertically.

Legend Positioning
The JCChart3dLegend class positions items in a grid wherein every row has the same height and every column the same width. JCChart3dLegend is a subclass of the abstract class JCLegend, and all of JCLegend's properties are inherited by JCChart3dLegend.

Use the legend Anchor property to specify where to position the legend relative to the chart3dArea. You can select from eight compass points around the chart3dArea.

[image:]
Figure 6 Vertically oriented legend anchored NorthEast.

2.4.3	Scatter Plot Charts

		Scatter Plots of Point Data
For scatter plots of point data, the legend labels are derived from each Chart3dPointSeries label property (found in the Chart3dPointData object). Each label’s corresponding symbol is determined from the SymbolStyle located in the series’ ChartStyle property.

Scatter Plots of Grid Data
For scatter plots of grid data, the legend style depends on whether the contouring information has been computed (that is, if either of the contoured and zoned properties of the dataView’s contour object are true, the contours are computed). If contouring information has been computed, the legend entries are the same as they would be for surface plots and bar charts (see Section 2.4.4, Surface and Bar Charts). For each contour level there is also a symbol that is plotted (retrieved from the SymbolStyle property of the contour style for this level).

If the contours are not computed, the LineStyle and SymbolStyle from the Chart3dGridData object’s ChartStyle property are used to draw a single legend entry. The label for this entry is derived from the Name property of the Chart3dGridData object.

 2.4.4	Scatter and Bar Charts
For surface and bar charts, the legend labels are determined by the value of the contours being used by the chart, while the color swatch is determined by each contour’s contourStyle object. There are also variations, depending on selected properties (detailed below) of the chart and legend.

When applicable, the LayoutStyle property of the legend determines the type of layout that the legend will use. Please see later in this section for more information.

Possible values for the LayoutStyle property are CONTINUOUS and STEPPED. CONTINUOUS is the default and displays the contour style fill colors as a continuous range, with contour level values placed at the transition points. STEPPED breaks down this continuous range into a series of smaller ranges defined by each contour level color.

[image:] [image:]
Figure 7 Continuous (left) and Stepped (right) Legends.

For example, an item in a STEPPED legend will show a box of color followed by a String of the form “min .. max”. The min and max values are determined by the values of the contour levels that bound this range. The color is determined by the fill color of the contour style of the top contour level in the range. In most cases, the existing contour ranges will be extended to the min and max of the data.

This LayoutStyle property is ignored when other properties interfere with the way things can be laid out. For example, if zones are not being drawn (isZoned()=false on the JCContour or JCProjection objects), the legend will be drawn as a series of items, each representing one contour line. The color of the line in the legend is derived from the LineStyle of the JCContourStyle of the contour being referenced.

If shading is not being done (isShaded()=false on the JCElevation object), then the items in the legend will appear as a series of lines, each representing a different contour zone. The color is determined from the FillStyle of the JCContourStyle of the contour zone.

The DistributionRange property determines the range of contour levels to be displayed in the legend. If using the default contours, the DistributionRange property has no effect. If the user has specified contour levels, a value of RANGE_DATA (the default) will restrict the contour levels in the legend to those in the range specified by the data min and max. A value of RANGE_ALL will cause all user-set contour levels to display.

There is also a modest number of small properties of JCChart3dLegend that the user can set to change the layout of legend items:
· MarginGap – the distance between the edge of the legend and the first legend item.
· GroupGap – the distance between groups of legend items; for instance, columns.
· HorizontalItemGap – the distance between legend items in a horizontal legend.
· VerticalItemGap – the distance between legend items in a vertical legend.
· InsideItemGap – the distance between the symbol and text of the legend item.

2.4.5	Overriding Labels
There are two ways a user may override the default labels generated for the legend:

In the first method, the Labels property takes a List object that contains a List object for each data view. (Currently, JClass Chart 3D supports only one data view.) Each internal List contains a series of String or JCMultiFieldString objects that are to be used to override the default legend labels.

The labels are to be placed in sequence, from bottom to top legend item. For example, the first label in the List will be used to represent the bottom item in the legend. If the user does not give enough labels to cover those needed, JCChart3dLegend will use default labels for the remainder of the unspecified labels.

In the second method, the LabelGenerator property takes any class that has implemented the JCChart3dLegendLabelGenerator interface. This interface has one method:

Object generateLegendLabel(JCChart3d chart3d, int level,
double zmin, double zmax, Object label)

where chart3d is the JCChart3d instance to which this legend is attached, level is the contour level this label represents, zmin is the minimum value of the contour level range, zmax is the maximum value of the contour level range, and label is the value of the legend item’s label so far (that is, either the default generated label or the label specified by the user with the Labels property). Please note that in some cases, zmin and zmax will be equal.

Any String or JCMultiFieldString returned by the implementor of this method will be used to label the legend item for the specified contour level. If null is returned, no legend item will be created for the specified contour level.

2.4.6	JCMultiFieldString
The JCMultiFieldString class handles multifield Strings, where each field may have a different alignment of text within its field. This class is used by the JCChart3dLegend class to manage specialized legend text.

JCMultiFieldString encapsulates a String that has multiple String fields, each with a potentially different alignment. Here is an example of how it is created:

new JCMultiFieldString("\\rRight Text\\cCenter Text\\lLeft Text");

where \r represents right alignment of the field, \c represents center alignment of the field, and \l represents left alignment of the field. Each alignment character marks the beginning of a new field.

The JCMultiFieldString class converts this encoded String into an internal representation that can be drawn by JCChart3dLegend such that all fields are aligned as indicated. Any number of fields may be present.

This object may be included in either the Labels property or the Object that is returned by the method implementing the JCChart3dLegendLabelGenerator interface.

2.4.7	JCLegend Toolkit
The JCLegend Toolkit allows you the freedom to design your own legend implementations. The options range from simple changes, such as affecting the order of the items in the legend, to providing more complex layouts.

The JCLegend Toolkit consists of a JCLegend class that can be subclassed to provide legend layout rules and two interfaces: JCLegendPopulator and JCLegendRenderer. JCLegendPopulator is implemented by classes wishing to populate a legend with data, and JCLegendRenderer is implemented by a class that wishes to help render the legend’s elements according to the user’s instructions.

JCChart3dLegendManager is the class used by JClass Chart 3D to implement both the JCLegendPopulator and JCLegendRenderer interfaces, and to provide a built-in mechanism for itemizing range objects in a legend.

Custom Legends – Layout
To provide a custom layout, override the method:

public abstract Dimension layoutLegend(List itemList, boolean,
vertical, Font useFont)

The itemlist argument is a List containing a Vector for each data view contained in the chart. Each of these sub-vectors contains one JCLegendItem instance for each series in the data view and one instance for the data view title.

The vertical argument is true if the orientation of the legend is vertical, and false if the
orientation of the legend is horizontal.

The useFont argument contains the default font to use for the legend.

Each item in the legend consists of a text portion and a symbol portion. For example, in a JCChart3d STEPPED legend, the text portion is the range between two contour levels, while the symbol portion is the box of color used to represent such values on the chart. For the title of the data view, the text portion is the name of the data view, and there is no symbol.

JCLegendItem is a class that encapsulates an item in the legend with the properties.

	
Property name
	Description

	Point pos;
Point symbolPos;
Point textPos;
Dimension dim;
Dimension symbolDim;
Dimension textDim;
Rectangle pickRectangle;
int drawType;

	Position of this legend item within the legend.
Position of the symbol within the legend item.
Position of the text portion within the legend item.
Full size of the legend item.
Size of the symbol; provided by legend populator.
Size of the text portion; provided by legend populator.
The rectangle to use for pick operations; optional.

Determines drawing type; on of CLegend.NONE,
JCLegend.BOX, JCLegend.IMAGE,
JCLegend.IMAGE_OUTLINED, JCLegend.CUSTOM_SYMBOL, JCLegend.BOX_PLAIN, JCLegend.LINE, or JCLegend.CUSTOM_ALL.

	Object itemInfo;

Object symbol;

Object contents;
	Data related to this legend item; in JCChart3d, this is an instance of the LegendEntry class, which contains information on the data represented by the legend item and the style objects used to draw it.
The symbol if other than the default type; usually null (means drawLegendItem decides).
The text portion; in JCChart3d, this is either a String or a JCMultiFieldString.

When the itemList is passed to layoutLegend, it has been filled in with JCLegendItem instances representing each data series and data view title. These instances will have the symbolDim, textDim, symbol, contents, itemInfo, and drawType already filled in.

The value of drawType will determine whether a particular default symbol type will be drawn, or whether user-provided drawing methods will be called.

The layoutLegend() method is expected to calculate and fill in the pos, symbolPos, textPos, and dim fields. Additionally, the method must return a Dimension object containing the overall size of the legend. Optionally, it may also calculate the pickRectangle member of the JCLegendItem class. The pickRectangle is used in pick operations to specify the region in the legend that is associated with the data that this legend item represents. If left null, a default pickRectangle will be calculated using the dim and pos members.

Any of the public methods in the JCLegend class may be overridden by a user requiring custom behavior. One such method is:

public int getSymbolSize()

getSymbolSize() returns the size of the legend-calculated symbols to be drawn in the legend. Default JCLegend behavior sets the symbol size to be equal to the ascent of the default font that is used to draw the legend text. It is overridable by users who wish to use a different symbol size. One possible implementation is to use a dymbol size identidal to that which appears on the actual chart.

The easiest way to change default legend behavior without implementing all of the above is to subclass the existing JCChart3dLegend class. It implements all the above methods to lay out legend items in a straightforward grid.

Custom Legends – Population
JCLegendPopulator is an interface that can be implemented by any user desiring to populate the legend with custom items. This interface comprises two methods that need to be implemented:

public List getLegendItems(FontMetrics fm)
public boolean isTitleItem(JCLegendItem item)

getLegendItems() should return a List object containing any number of Vector objects where each Vector object represents one column in the legend. Each Vector object contains the JCLegendItem objects for that column. In JClass Chart 3D, each column generally represents one data view.

isTitleItem() should return true or false depending on whether the passed JCLegendItem object represents a title for the column. This is used to determine whether a symbol is drawn for a particular legend item.

If implemented, the legend should be notified of the new populator with the setLegendPopulator() method of JCLegend.

Custom Legends – Rendering
JCLegendRenderer is an interface that can be implemented by any user desiring to custom render legend items. This interface consists of five methods that need to be implemented:

public void drawLegendItem(Graphics gc, Font useFont,
JCLegendItem thisItem)
public void drawLegendItemSymbol(Graphics gc, Font useFont,
JCLegendItem thisItem)
public Color getOutlineColor(JCLegendItem thisItem)
public void setFillGraphics(Graphics gc, JCLegendItem thisItem)
public void drawLegendItemText (Graphics gc, Font useFont,
JCLegendItem this Item);

drawLegendItem() provides a way for a user to define a custom drawing routine for an entire legend item. It is called when a legend item’s draw type has been set to JCLegend.CUSTOM_ALL.

drawLegendItemSymbol() provides a way for a user to define a custom drawing routine for a legend item’s symbol. It is called when a legend item’s draw type has been set to JCLegend.CUSTOM_SYMBOL.

getOutlineColor() should return the outline color to be used to draw the legend item’s symbol. If null is returned, the legend’s foreground color will be used.

getOutlineColor() is called when a legend item’s draw type has been set to either JCLegend.BOX or JCLegend.IMAGE_OUTLINED.

setFillGraphics() should set the appropriate fill properties on the provided Graphics object for drawing the provided legend item. setFillGraphics() is called when the legend item’s draw type has been set to JCLegend.BOX, JCLegend.BOX_PLAIN, or JCLegend.LINE.

drawLegendItemText() provides a way for the user to define drawing for custom text objects. When the legend does not recognize the object in the contents field of a JCLegendItem (that is, it is not a String), this method will be called.

If implemented, the legend should be notified of the new renderer with the setLegendRenderer() method of JCChart3dLegend.

[bookmark: _Toc531438393]2.5 	Perspective
The JCView3d class’ Perspective property controls the perspective effect observed by projecting the plot cube onto the screen (the default value is 2.5). Small values exaggerate the perspective effect, while large values diminish it. Valid values are between 1 and JCView3d.MAX_PERSPECTIVE which is 500.

Perspective = 1.5							Perspective = 10

[image:][image:]
Figure 8 Perspective Depth Measurement
[bookmark: _Toc531438394]2.6 	Axis Scaling
The JCPlotCube class can be used to adjust the X, Y and Z dimensions of the unit cube relative to one another for Surface, Bar, or Scatter Plot charts. For example, if you would like the 3D display to be twice as long in the Y direction as in the X, set the Y scale to twice the X-scale. The default value of each Scale property is 1.0.

Here is a code snippet showing how to produce the right most chart of Figure 9:

JCPlotCube plotcube=c.getChart3dArea().getPlotCube();
plotcube.setXScale(2.0);
plotcube.setZScale(0.5);

Setting the Z scale higher or lower has the effect of flattening or stretching the surface view.

1:1:1						1:1:1/2								2:1:1/2
[image:][image:][image:]
Figure 9 Axis scaling using various X: Y: Z ratios.

[bookmark: _Toc531438395]2.7 	Axis Labelling and Annotation Methods
There are several ways to annotate the chart’s axes, each suited to specific situations. The chart can automatically generate numeric annotation appropriate to the data it is displaying; you can provide a label for each grid point in the chart (X- and Y-axis for grid data only); you can provide a label for specific values along the axis.

Whichever annotation method you choose, the chart makes considerable effort to produce the most natural annotation possible, even as the data changes. You can fine-tune this process using axis annotation properties.

2.7.1	Choosing Annotation Method
A variety of properties combine to determine the annotation that appears on the axes. The JCAxis AnnotationMethod property specifies the method used to annotate the axis. The valid annotation methods are:

	JCAxis.ANNOTATION_VALUES (default)
	The chart chooses appropriate axis annotation automatically (with possible callbacks to a label generator), based on the data.

	JCAxis.ANNOTATION_DATA_LABELS
	The chart spaces the points based on the X- and Y-grid values and annotates them with text you specify (in the grid data source) for each point.

	JCAxis.ANNOTATION_VALUE_LABELS
	The chart annotates the axis with text you define for specific X-, Y-, or Z-axis coordinates.

	
		The following gtopics discuss setting up and fine-tuning each type of annotation.

2.7.2	Values Method
When the annotationMethod property is set to ANNOTATION_VALUES, JClass Chart 3D will automatically annotate the axis based on the range of data. This is the default annotation method. It is most suitable for the Z-axis, and for the X- and Y-axes when the chart type is surface.

2.7.3	Data Labels Method
If grid data is being plotted, individual lines in a surface, or a row/column of bars, can be labelled using the ANNOTATION_DATA_LABELS method.

This annotation method uses an array of Strings supplied as xLabels or yLabels through the LabelledChart3dGridDataModel interface to annotate each line from the grid. If a String in the list is null, a label is not drawn for that grid value, but the corresponding tick is drawn. The xLabels and yLabels array can also be set directly through methods provided in the Chart3dGridData class. Labels can be set as a list of Strings or as an ArrayList of objects of type String, JCValueLabel, or any other object whose toString() value is meant to be used as the label.

Data Label Clustering
Consecutive data labels can be combined into one label (in other words, when data labels are aggregated into a label cluster where only one label is displayed).

In order for this to happen, ensure that:
· the annotation method is set to JCAxis.ANNOTATION_DATA_LABELS
· the combineLabels property of the corresponding JCAxis object is set to true
· the list of data labels contains one or more sub-lists of identical labels.
If data labels are specified via a list of String objects, and m consecutive labels are identical (they must point to the exact same String), they form a cluster of m labels, from which one is used to draw the label. If m is odd, the middle label of the cluster is used as the label. If m is even, a new label is positioned at the average value of the labels. The tick marks and gridlines in the cluster range are still drawn as if there was no clustering.

If data labels are specified via a list of JCValueLabel objects, the label property of the valueLabels in the same cluster must point to the same String object. In the same way that data labels are handled with a list of String objects, if consecutive valueLabels do not contain to the same label object, they will not belong to the same cluster (even if the equals method would return true). This allows the user to have two consecutive identical Strings without forcing them to be in the same cluster.

2.7.4	ValueLabels Annotation
ValueLabels annotation displays labels at the axis coordinate specified. This is useful for displaying special text at a specific axis coordinate, or when a type of annotation that the chart does not support is needed, such as scientific notation. You can set the axis coordinate and the text to display for each ValueLabel, and also add and remove individual ValueLabels.

[image:]
Figure 10 Using ValueLabels to annotate axes.

Every label displayed on the axis is one ValueLabel. Each ValueLabel has a Value property and a Label property. Additionally, the tickDrawn, labelDrawn, and minorTick properties control the display of the label and tick of the value label. The background and foreground of each label can also be set. These are null by default (in other words, no background is drawn, and the foreground color of the plot cube is used).

If the AnnotationMethod property is set to JCAxis.ANNOTATION_VALUE_LABELS, the chart places labels at explicit locations along an axis. The ValueLabels property of JCAxis, which is a collection of ValueLabels, supplies this list of Strings and their locations. For example, the following code sets value labels at the locations 10, 20 and 30:

JCAxis x=c.getChart3dArea().getXAxis();
x.setValueLabels(0, new JCValueLabel(10, "Label"));
x.setValueLabels(1, new JCValueLabel(20, "Label 2"));
x.setValueLabels(2, new JCValueLabel(30, "Label 3"));

The ValueLabels collection can be indexed either by subscript or by value:

JCValueLabel v1
// this retrieves the label for the second Value-label
v1=c.getChart3dArea().getXAxis().
getValueLabels(1);
// this retrieves the label at chart coordinate 2.0
v1=c.getChart3dArea().getXAxis().
getValueLabels(2.0);

2.7.5	Custom Axes Labels
JClass Chart 3D will label axes by default. However, you can also generate custom labels for the axes by implementing the JCLabelGenerator interface. This interface has one method – makeLabel() – that is called when a label is required at a particular value.

To generate custom axes labels, the axis’ AnnotationMethod property, which determines how the axis is labelled, must be set to ANNOTATION_VALUES. Also, the axis’ setLabelGenerator() method must be called with the class that implements the JCLabelGenerator interface.

The makeLabel() method is called for each label and tick generated along the axis.

The makeLabel() method takes one parameter: vLabel (the internal value label that will be used to annotate the value). The user can then modify the label and the other properties of the value label.
· The tickDrawn property controls whether a tick mark is drawn for this value label.
· The labelDrawn property controls whether a label is drawn for this value label.
· The minorTick property determines whether a major or minor tick is drawn for this value label. If set to true, a minor tick is drawn. If set to false (the default value), a major tick is drawn instead. Please note that nothing is drawn if the tickDrawn property has been set to false.
· The foreground and background colors can be set for this value label.

Here is a code example showing how to customize the labels for a linear axis by implementing the JCLabelGenerator interface. In this case, Roman numeral labels are going to be generated (instead of the usual Arabic labels) for the numbers 1 through 10.

class MyLabelGenerator implements JCLabelGenerator
{
public void makeLabel(JCValueLabel vLabel) {
int intvalue = (int) vLabel.getValue();
String s = null;
switch (intvalue) {
case 1 :
s = "I";
break;
case 2 :
s = "II";
break;
case 3 :
s = "III";
break;
case 4 :
s = "IV";
break;
case 5 :
s = "V";
break;
case 6 :
s = "VI";
break;
case 7 :
s = "VII";
break;
case 8 :
s = "VIII";
break;
case 9 :
s = "IX";
break;
case 10 :
s = "X";
break;
default :
s = "";
vLabel.setTickOnly(true);
return;
}
vLabel.setLabel(s);
vLabel.setTickOnly(false);
}
}

Note that you will need to specify the label generator as follows:
axis.setLabelGenerator(new MyLabelGenerator());

Also note that JClass Chart 3D calls the makeLabel() method for each needed label and tick. Thus, if JClass Chart 3D needs n labels and ticks, the makeLabel() method is called n times.

2.7.6	Rotating Axis Labels
The annotationRotation property allows you to specify the rotation of a chart’s axis labels. The default value is ANNOTATION_ROTATION_DEFAULT. When explicitly setting the annotation rotation for an axis, please note that the number of labels may not change from the default case, even if more will fit on the axis.

Note: If the axis annotation rotation is explicitly set to horizontal or vertical, there may be overlapping labels.

	JCAxis.ANNOTATION_ROTATION_
HORIZONTAL
	The given axis annotation will be horizontal (parallel to the axis).

	JCAxis.ANNOTATION_ROTATION_
VERTICAL
	The given axis annotation will be vertical (orthogonal to the axis).

	JCAxis.ANNOTATION_ROTATION_
DEFAULT
	JClass Chart 3D determines the axis annotation orientation.
If the chart is a projection, the annotation orientation for the X-axis is horizontal and the annotation orientation for the Y-axis is vertical.
If the chart is not a projection, the annotation method plays a roll in determining the annotation orientation. If the annotation method is Values, the axis annotation will be horizontal. If the annotation method is ValueLabels or DataLabels, the orientation is horizontal when the maximum label length is 1; otherwise, the orientation is vertical.

2.7.7	Label Selection and Clustering
Users can select labels through the normal “pick” mechanism of JClass Chart 3D. If the user instantiates a pick listener (this is part of the standard user actions; please see Mapping and Picking, in Chapter 7), the chart will return a JCData3dLabelIndex object if a label has been selected. The JCData3dLabelIndex has labelIndex and valueLabel properties which respectively store the selected label's index and the internal value label corresponding to the selected label. Note that in the event of label clustering the labelIndex will be the index of the first label in the cluster.

[bookmark: _Toc531438396]2.8 	Gridlines
Gridlines can be displayed on each of the three primary planes – the XY plane, the XZ plane, and the YZ plane – using the properties of the JCGridLines class. This class specifies which gridlines are drawn for a given axis, via a plane mask. Planes are selected by “or”ing in the appropriate plane constants.

These constants of the JCGridLines class specify the possible planes:
	Constant
	Value
	Description

	XY_PLANE
XZ_PLANE
YZ_PLANE
	1
2
4
	The XY plane.
The XZ plane.
The YZ plane.

For instance, the X-axis controls gridlines that are perpendicular to the X-axis in the XY and the XZ plane.

To draw X-gridlines in all applicable planes, set JCGridLines to the value (XY_PLANE | XZ_PLANE). To remove gridlines completely, set the value to 0.

As another example, here is a code sample showing how to set a plane mask:

JCGridLines gl=c.getChart3dArea().getZAxis().getGridLines();
gl.setPlaneMask(XZ_PLANE|YZ_PLANE);

Gridlines are drawn where annotation is drawn on the axis, regardless of the annotation method.

2.8.1	Gridline Styles
The gridline’s style – color, pattern, and width – are controlled by the JCLineStyle class. A JCGridLines object initializes its lineStyle so that by default, a solid black line of width 1 is drawn. The properties of the initial default lineStyle can be changed or a new lineStyle can be set on the JCGridLines object.

Here’s an example showing the code to set the Y-axis gridlines to blue, have a dash_dot pattern, and be 4 pixels in width:

JCGridLines g1=c.getChart3dArea().getYAxis().getGridLines();
g1.setLineStyle(new JCLineStyle(4,Color.blue,JCLineStyle.DASH_DOT));

Color
To set the color of the gridlines, choose the AWT color class representing the color to be used to draw the lines. If null, the current color of the Graphics object is used. The following table summarizes the built-in color names defined in java.awt.Color:

	Built-in Colors in java.awt.Color

	black
darkGray
lightGray
pink
	blue
gray
magenta
red
yellow
	cyan
green
orange
white

Alternately, you can specify a color by its RGB components, useful for matching another RGB color. RGB color specifications are composed of a value from 0 – 255 for each of the red, green and blue components of a color. For example, the RGB specification of Cyan is “0-255-255” (combining the maximum value for both green and blue with no red).

Take care not to choose a gridline color that is also used to display data in the chart. The default JCLineStyle use all of the built-in colors in the following order: Red, Orange, Blue, Light Gray, Magenta, Yellow, Gray, Green, Dark Gray, Cyan, Black, Pink, and White. Note that JClass Chart 3D will skip colors that match background colors. For example, if the chart area background is Red, then the line, fill, and symbol colors will start at Orange.

Pattern
To set the pattern, use the Pattern property, which dictates the pattern used to draw a line. Choices for gridline pattern are:
· none
· solid
· long_dash
· short_dash
· lsl_dash
· dash_dot
You can also create a custom user-defined pattern for the gridlines. Here is a method declaration showing how to do this:

public void setPattern(float[] patternArray, float[]
legendPatternArray)

where patternArray is an array of floats representing the pattern to use when drawing this line, and legendPatternArray is an array of floats representing the pattern to use when drawing this line in the legend. A note of caution: if the values get too small, nothing will be drawn.

Width
The width of the gridlines can be set using the setWidth() method. A positive integer is required.

[bookmark: _Toc531438397]2.9 	Header and Footer Titles
JClass Chart 3D can have two titles, called the header and footer. By default they are JLabel instances and behave accordingly (a JLabel class is a Swing class). A JLabel object can display text, an image, or both.

You can specify where in the label’s display area the label’s contents are aligned by setting the vertical and horizontal alignment. By default, labels are vertically centered in their display area. Text-only labels are left-aligned, by default. Image-only labels are horizontally centered by default.

A title consists of one or more lines of text with an optional border, both of which you can customize. You can also set the text alignment, positioning, colors, and font used for the header or footer.

See “How to Use Labels” in the Java Tutorial (http://java.sun.com/docs/books/tutorial/
uiswing/components/label.html) for further information.

Adding Headers and Footers
To display a header or footer, the properties of the Header and Footer objects contained in the chart need to be set. For example, the following code sets the Text and Visible properties for the footer:

// Make footer visible
chart3d.getFooter().setVisible(true);
// By default, footer is a JLabel – set its Text property
((JLabel)chart3d.getFooter()).setText("1963 Quarterly Results");

The Visible property controls whether the header or footer is displayed. Text specifies the text displayed in the header or footer.

By default, the header and footer are instances of JLabel.

Ch 2 Programming JClass Chart 3D: Common Functions		2
Ch 2 Programming JClass Chart 3D: Common Functions		1
3
[bookmark: _Toc531438398]Programming JClass Chart 3D:
Surfaces and Bars
Fifteen Basic Types of Surfaces and Bars ■ Chart Types ■ Bar Charts and Histograms
Contours and Zone Display ■ Mesh Controls ■ Surface Colors ■ Solid Surface

[bookmark: _Toc531438399]3.1 	Fifteen Basic Types of Surfaces and Bars
One of the types of data that can be attached to JClass Chart 3D is grid data. Grid data that has been attached to the chart can be displayed in a surface, bar, or scatter plot representation. Grid data is supplied to the chart via Chart3dDataView’s elevationDataSource property. The chart then processes the data and stores it in an internal data object of type Chart3dGridData. For elevation data, this internal object can be referenced via the elevationData property. The user can retrieve this internal object, query it for data values, and set certain properties on it.

The chart uses elevation data to draw a surface plot, bar plot, or scatter plot, depending on the chartType, which will be SURFACE, BAR, or SCATTER.

An elevationDataSource must implement the Chart3dDataModel interface. To be grid data, it must also implement the Chart3dGridDataModel interface. This promises the chart that it can supply an xGrid array, a yGrid array, and a doubly indexed zValues array. If the datasource wants to provide X- and Y-data labels to the chart, it should implement the LabelledChart3dGridDataModel interface. Similarly, a hole value, other than the default, can be provided through the HoleValueChart3dDataModel. Data values can be edited through the EditableChart3dDataModel and data changes can be monitored if the datasource implements the Chart3dDataManager interface.

The elevationDataSource can also take points as its data type. This type of data can only be used for scatter plots.

Note that using a data set of type point with a chart type of SURFACE or BAR will produce a blank plot.

When grid data is used and the chart type is either SURFACE or BAR, JClass Chart 3D’s four basic display Boolean properties — Meshed, Shaded, Contoured, and Zoned — combine to create 15 differrent basic surface and bar displays. No graph is displayed when all for Booleans are false.

3.1.1	JCElevation: Meshed, Shaded, and Transparent Plots
The JCElevation object determines whether surface and bar plots are Meshed, Shaded, or Transparent. The JCElevation constructor initializes the Meshed, Shaded, and Transparent properties (each of which takes a Boolean value). The defaults for each of these are Meshed=true, Shaded=false, and Transparent=false.

Meshed
Surfaces: When Meshed is true, JClass Chart 3D displays the X-Y grid projected onto the 3D surface in a 3D view with a Z-axis. You can use the xMeshShow and yMeshShow properties of JCSurface to individually control whether the X- and Y-mesh lines are showing.

The xMeshFilter and yMeshFilter properties of JCSurface allow every nth mesh line to be drawn. By default, the chart chooses a pleasing filtering. The meshTopColor and meshBottomColor properties allow the user to control the top and bottom colors of the mesh lines.

Bars: When Meshed is true, JClass Chart 3D will draw the outline of all the bars. All bars with a value greater than or equal to the origin of the Z-axis will be outlined using the meshTopColor, and all bars with a value less than the origin will be outlined using the meshBottomColor. When Transparent is true, all the lines of every bar will be visible.

Shaded
Surfaces: When Shaded is true, JClass Chart 3D displays the data as a flat shaded surface in a 3D view with a Z-axis. The surface color is controlled with the shadedTopColor and the shadedBottomColor properties.

Bars: When Shaded is true, JClass Chart 3D draws each bar as a solid bar. All bars with a value greater than or equal to the origin of Z-axis will be drawn using the shadedTopColor, while all bars with a value less than the origin will be drawn using the surfaceTopColor.

The following code snippet shows setting these properties:

JCElevation elevation=c.getDataView(0).getElevation();
elevation.setMeshed(true);
elevation.setShaded(true);
elevation.setTransparent(false);

3.1.2	JCContour: Contoured and Zoned Plots
The JCContour class deals with information about contours and zones. Two of its properties are Contoured and Zoned. Both default to false.

Contoured
Surfaces: When Contoured is true, JClass Chart 3D examines the distribution of the data, using the JCContourLevels class, and draws contour lines demarcating each of the contour levels. The contour line style, thickness, and color are controlled with the contourStyles property.

Bars: When Contoured is true, JClass Chart 3D examines the distribution of the data, using the JCContourLevels class, and draws contour lines around the bars, demarcating each of the contour levels. The contour line style, thickness, and color are controlled with the contourStyles property.

Zoned
Surfaces: When Zoned is true, JClass Chart 3D examines the distribution of the data, using the JCContourLevels class, and fills each level with a solid color. (Unless Meshed is true and Shaded is false, in which case the fill color is used to draw each level’s mesh lines.) The color for each level is specified with the contourStyles property.

Bars: When Zoned is true, JClass Chart 3D examines the distribution of the data, using the JCContourLevels class, and fills each level within each bar with a solid color. (Unless Meshed is true and Shaded is false, in which case the fill color is used to draw each level’s mesh lines.) The color for each level is specified with the contourStyles property. If zoneDataSource is supplied to the data view, each bar is filled with a solid color. Otherwise, the bar is segmented by height according to the contour levels.

[bookmark: _Toc531438400]3.2 	Chart Types
The following table shows the 15 basic graph types:

	GraphChart Type
	Meshed
	Shaded
	Contoured
	Zoned
	Surface Example
	Bar Example
	Comments

	1
	T
	F
	F
	F
	[image:]
	[image:]
	Meshed.
Displays surface as a mesh and bars in outline.

	2
	F
	T
	F
	F
	[image:]
	[image:]
	Shaded.
Displays surface and bars in a flat shade. Top and bottom colors may be set.

	3
	F
	F
	T
	F
	[image:]
	[image:]
	Contoured.
Contour lines are automoatically drawn between distribution levels in the data.

	4
	F
	F
	F
	T
	[image:]
	[image:]
	Zoneda.
Similar to Contoured, except that each distribution level is displayed in a solid color.

	GraphChart Type
	Meshed
	Shaded
	Contoured
	Zoned
	Surface Example
	Bar Example
	Comments

	5
	T
	T
	F
	F
	[image:]
	[image:]
	Meshed, Shaded.
Draws surface as a mesh and bars in outline. Surface and bars are flat shaded.

	6
	T
	F
	T
	F
	[image:]
	[image:]
	Meshed, Contoured. Displys surface as a mesh and bars in outline. Also draws contour lines along borders between distribution levels in the data.

	7
	T
	F
	F
	T
	[image:]
	[image:]
	Meshed, Zoned. Displays surface as a mesh and bars in outline. Uses zoning colors for mesh and bar outlines.

	8
	F
	T
	T
	F
	[image:]
	[image:]
	Shaded, Contoured. Displays a flat-shaded surface or bars with contour lines superimposed.

	9
	F
	T
	F
	T
	[image:]
	[image:]
	Shaded, Zoned. Zone colors are used to flat shade the surface or bars.

	GraphChart Type
	Meshed
	Shaded
	Contoured
	Zoned
	Surface Example
	Bar Example
	Comments

	10
	F
	F
	T
	T
	[image:]
	[image:]
	Contoured, Zoneda. Displays contour lines and flat shaded zone colors to demarcate levels in the data.

	11
	T
	T
	F
	T
	[image:]
	[image:]
	Meshed, Shaded, Zoned.
Similar to Shaded, Zoned, but with a mesh or bar outlines superimposed.

	12
	T
	T
	T
	F
	[image:]
	[image:]
	Meshed, Shaded, Contoured.
Similar to Meshed, Shaded, but contour lines are superimposed.

	13
	F
	T
	T
	T
	[image:]
	[image:]
	Shaded, Contoured, Zoned.
Similar to Shaded, Zoned, but contour lines are superimposed.

	14
	T
	F
	T
	T
	[image:]
	[image:]
	Meshed, Contoured, Zoned.
Similar to Meshed, Zoned, but with contours superimposed.

	15
	T
	T
	T
	T
	[image:]
	[image:]
	Meshed, Shaded, Contoured, Zoned.
The sum of all basic options.

a. In this release, Zoned is the same as Zoned and Shaded for bar charts. Application developers are urged to use the Zoned and Shaded combination for this view, since the interpretation of the Zoned combination may change in a future release.
[bookmark: _Toc531438401]3.3 	Bar Charts and Histograms
When chartType is BAR, the elevation data will be displayed as a bar chart (if grid data is supplied). Each data point will be represented by a single bar. The spacing between adjacent elements in the grid is honored.

Bar Z Origin
Bars start from the z Axis origin, which can be controlled through JCAxis’ origin property. The default value of the origin is 0.0. When Shaded is true, bars that have values greater than the origin are rendered in the shadedTopColor property of the JCElevation class. Negative bars (that is, bars with values less than the origin) are rendered in the shadedBottomColor.

Bar Spacing
The amount of space occupied by a bar, as a percentage of the maximum amount possible, is controlled through the xSpacing and ySpacing properties of the JCBar class. The default is 80%. Setting it smaller results in thinner bars. Setting bar spacing to 100% (themaximum) results in bars that about one another.

[image:]
Figure 11 fixed Bar Chart with X-Spacing set to 1% and Y spacing set to 100%.

Histograms
To display a histogram, set both the xFormat and yFormat properties of JCBar to HISTOGRAM (default is FIXED). Thus, the X-axis and Y-axis can be independently switched between fixed and histogram formats.

If the X-axis is switched to a histogram, each bar’s left edge will be drawn aligned with corresponding X-values in the data. The width of each bar will be the distance between subsequent X-values in the data. Since the width of each bar is derived from the spacing between its neighbors, there is always one fewer bar along a histogram axis than there is if the same data is displayed along a fixed axis.

Histograms usually make good use of data whose grid values are not equally spaced. This gives control over spacing in the data grid.

[image:][image:]
Figure 12 Fixed versus Histogram Display of Identical Data.

Grid Colors
If Shaded is true and Zoned is false, the colors of the individual bars can be controlled. Normally, all bars with a value below the origin are colored with shadedBottomColor, and all others are colored with shadedTopColor. However, in some situations, it is useful to color a row, column, or individual bar in the chart with a distinct color.

The JCGridColor class is used to specify the fill color of a group of bars, or of an individual bar. The Chart3dDataView class’ gridColors property stores a list of JCGridColor objects.

The JCGridColor class has a dataIndex property and a color property. The dataIndex is a reference to a JCData3dGridIndex object which stores an index to a bar or group of bars. The color property indicates what color to make the bars referenced by the dataIndex.

An individual bar can be colored by specifying its indices in the dataIndex object. For example, to set the bar in the third X-data line, second point to red, set the xIndex property of the dataIndex to 2, the yIndex to 1, and the color to Color.red.

To specify the color of an entire row of bars, set the other index to JCData3dIndex.ALL. For instance, the entire fifth X line of bars is set to green by setting the xIndex property of the dataIndex to 4, the yIndex to JCData3dIndex.ALL, and the color to Color.green. To set the color of all the bars, set both the xIndex and yIndex of the dataIndex to JCData3dIndex.ALL.

Chart3dDataView has several convenience methods for manipulating the list of JCGridColors. It has addGridColor() and removeGridColor() for adding and removing grid colors. It also has a findGridColor() method which retrieves the first grid color that matches a given (xIndex, yIndex) index starting from the end of the list; this is what the chart uses to determine the color of a given bar. If findGridColor() returns null, the bar color falls back to either the shadedTopColor or the ShadedBottomColor.

JClass Chart 3D’s Chart3dDataView will only maintain one entry per (xIndex, yIndex) combination. Whenever a second entry for the same indices is supplied, the first entry is removed. Later entries take precedence over earlier entries.

The following code created the bar coloring in Figure 13:
dataView.addGridColor(JCData3dIndex.ALL, JCData3dIndex.ALL,
new Color(255, 208, 0));
dataView.addGridColor(1, JCData3dIndex.ALL, Color.blue);
dataView.addGridColor(JCData3dIndex.ALL, 1, new Color(176, 32, 240));
dataView.addGridColor(1, 1, Color.red);

[image:]
Figure 13 3D Chart demonstrating numerous grid colors.

Note that even though the index of the bar at (1, 1) matches every entry in the list, the bar is colored red because it matches the last entry in the list.

[bookmark: _Toc531438402]3.4 	Contours and Zone Display
When Contoured or Zoned is true, JClass Chart 3D marks each contour level from an array of 100 built-in contour styles.

Each contour style contains information about the contour line style, width, pattern, color, and zone color (used to mark each level). Contour styles can be customized by an application. Please see Customizing Contour Styles, in Chapter 6 for details.

Contour Styles Used
JClass Chart 3D determines which contour style to use for a particular level automatically, evenly distributing the styles through the number of levels, as shown by Figure 14.

[image:]
Figure 14 A Sampling of Supplied Contour Styles Used as Needed.

By implementing the JCContourMapping interface and using the setContour.Mapping() method of the JCContour class, you can override the default level to contour style mapping.

Also, by using the JCContourLevels class, you can specify your own contour levels (such as an array of doubles). You can also use your own contour styles by setting the contourStyles property of the JCContour class. For further information, please see Advanced JClass Chart 3D Programming, in Chapter 6.

Contour/Zone Projection
The JCProjection class specifies information about the Contoured and Zoned projections on the top and bottom of the plot cube. For instance, you can use the setContoured method to set the projection to be Contoured, and you can use the setZoned method to set the projection to be Zoned.

The JCPlotCube floor property is a JCProjection that indicates whether a projection should be drawn on the bottom of the plot cube. If either the Contoured or Zoned property of the floor projection is true, a projection is drawn. Similarly, the ceiling projection controls what type of projection is drawn on the top of the plot cube.

These properties do not depend on the values of Contoured and Zoned of the JCContour class. However, any other property that affects contour generation or rendering affects projected ccontours/zones. Floor ceiling projections are ignored in 2D graphs, bar charts, and scatter plots.

[image:]
Figure 15 Projecting Contours and Zones.

Zone Method
An application can control the method used to fill each zone region by leveraging the ZoneMethod property of the JCContour class. By default, JClass Chart 3D fills between each contour interval (ZONE_CONTOURS). When set to ZONE_CELLS_AVERAGE, JClass Chart 3D fills entire cells in the grid based on the average of the four corners of the cell. Figure 16 illustrates the difference visually. When set to ZONE_CELLS_CORNER, entire cells are filled using the value at the bottom left corner of the cell.

Cell zoning produces a coarser-looking surface, but offers significant performance advantages over contour zoning. However, the visual difference between the two types of zoning diminishes with larger grids.

[image:][image:]
Figure 16 Contour Zoning (left) and Cell Average Zoning (right).

[bookmark: _Toc531438403]3.5 	Mesh Controls
Mesh Colors
Mesh colors are controlled by methods in the JCElevation class.

The bottom and top colors of the mesh drawn when Meshed is true can be set with
setMeshTopColor and setMeshBottomColor. They are both “black” by default. See Chart
Colors, in Chapter 1 for details on setting colors.

Mesh Filtering
Methods in the JCSurface class control mesh filtering. This class contains properties that
pertain to surface plots.

The xMeshFilter and yMeshFilter properties specify how the mesh is filtered before being displayed. By default, no filtering is performed. When set to 0, JClass Chart 3D automatically filters the mesh to provide a pleasing display, and changes the filter as the graph is scaled or the data changes.

You can hard-code a mesh filter by setting these properties to any positive integer. For example, a value of 5 filters the mesh so that every 5th line is drawn.

Filter = 1				Filter = 0				Filter = 10
[image:]		[image:]		[image:]
Figure 17 Effect of Mesh Filtering.

Hidden Mesh Lines
When Meshed is true and Shaded is false, grid and contour lines that are obscured from view by intervening portions of the scene are not displayed by default. To display these lines, set the Transparent property of JCElevation is to true.

[image:][image:]
Figure 18 Hidden line removal.

[bookmark: _Toc531438404]3.6 	Surface Colors
The bottom and top colors of the shaded surface drawn when Shaded is true can be set with shadedTopColor and shadedBottomColor of the JCElevation class. By default the bottom color is “dim grey” or RGB(112,112,112) and the top color is “light grey” or RGB(211,211,211). See Chart Colors, in Chapter 1 for details on setting colors.

[bookmark: _Toc531438405]3.7 	Solid Surface
Setting the Solid property of JCSurface to true will cause JClass Chart 3D to draw a skirt around the data, thereby joining the edge of the surface to a plane at the minimum Z value, as shown in Figure 19.

[image:]
Figure 19 Setting Solid Surface On and Off.

Ch 3 Programming JClass Chart 3D: Surface and Bars		2
Ch 3 Programming JClass Chart 3D: Surfaces and Bars		1
4
[bookmark: _Toc531438406]Programming JClass Chart 3D:
Scatter Plots
Overview ■ Three Basic types of Scatter Plots
Controlling symbol and Drop Line Style ■ Chart Styles

[bookmark: _Toc531438407]4.1 	Overview
As noted in the previous chapter, if grid data is provided to the chart via the elevationDataSource property of the Chart3dDataView class, then surface, bar, or scatter plots can be drawn. The previous chapter dealt with surface charts and bar charts; this
chapter deals with scatter plots.

A scatter plot can be drawn using grid data, but the most usual way of providing data to a scatter plot is to provide the elevationDataSource with point data. This type of data supports an arbitrary number of series, each containing an arbitrary number of points.

An object can be a point data source if it implements the Chart3dPointDataModel. When a point data source is passed to a Chart3dDataView object, the data is extracted and stored in an internal point data object of type Chart3DPointData. This object can be retrieved via the elevationData property of Chart3dDataView.

More sophisticated point data sources can implement the LabelledChart3dPointDataModel, EditableChart3dDataModel, HoleValueChart3dDataModel, and the Chart3dDataManager interfaces.

Please see Data Sources, in Chapter 5, for further details.

Each series can have a symbol that makes it distinct from that of the other series. When a chart of type SCATTER is used in conjunction with grid data, each grid point will define a point in the scatter plot.

[bookmark: _Toc531438408]4.2 	Three Basic Types of Scatter Plots
JClass Chart 3D offers three basic types of scatter plots: 3D scatter plots, 3D scatter plots with drop lines, and 2D scatter plots.

3D Scatter Plot			3D Scatter Plot with Drop Lines			2D Scatter Plot
[image:][image:][image:]
			Figure 20 Scatter Plot examples.

Drop lines are lines drawn from each point on the 3D scatter plot down to the matching (x,y) position on the Z-axis origin of the plot cube. The drop line joins the point (x, y, z) to the matching point (x, y, origin). Drop lines are not used for 2D scatter plots. To draw drop lines on 3D scatter plots, set the dropLines property of the JCScatter class to true.

2D scatter plots use only the X- and Y-values, and ignore the z components. They are “flat” charts. These plots are created by setting both the meshed and the shaded properties of the JCElevation object to false.

[bookmark: _Toc531438409]4.3 	Controlling Symbol and Drop Line Style
4.3.1	Point Data
The style of symbols and drop lines used in scatter plots is determined on a per series basis. The chartStyle property of the Chart3dPointSeries specifies the line and symbol style information for a series.

A list of Chart3dPointSeries objects can be obtained from the series property of the internal point data object. This object, of type Chart3dPointData, can be retrieved via the data view’s elevationData property.

Here is a code sample that changes the line style of the third series of a scatter plot. This code sample assumes that a point data source has already been set on the data view.

Chart3dPointData pointData=(Chart3dPointData)dataView.getElevationData();
ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries)series.get(2);
JCChartStyle chartStyle=pointSeries.getChartStyle();
chartStyle.setLineStyle(new JCLineStyle(2, color.blue, JCLineStyle.SOLID));

Line pattern, color, and width are controlled by the chart style’s LineStyle property, and symbol color, size, and pattern by the chart style’s SymbolStyle property.

[bookmark: _Toc531438410]4.4 	Chart Styles
In a scatter plot, how a data value looks when it is displayed (for instance, color, line pattern, symbol style, line thickness, and so forth) depends on the chart style that has been defined for that data value. For example, the values in the third series of data will be rendered on screen using the chart style associated with the third series of the point data.

4.4.1	Default Chart Styles
When a new Chart3dPointSeries object is created, a default chartStyle is created that possesses default line and symbol styles. The defaults are cycled, so consecutive calls will return different chart styles. A user may choose to override these defaults.

The JCChartStyle class has two main components: a JCSymbolStyle object that stores symbol information and a JCLineStyle object that stores line style information. For convenience, the user can either set or get the symbolStyle or lineStyle properties of the JCChartStyle class, or the user can set the individual symbolStyle or lineStyle properties directly on the chartStyle.

For example, the following line of code:

chartStyle.setLineWidth(2);

will change the line width of the chartStyle’s lineStyle object.

The JCChart3dStyle data structure contains all the information about how a set of data will be represented graphically. The properties are broken down as follows:

	symbol color
	The color used when drawing symbols.

	symbol size
	The size is the diameter in pixels of the scatter symbol. It must be greater than or equal to 1.

	symbol shape
	The shape of the symbol. For example, JCSymbolStyle.DOT. Available shapes are dot, box, triangle, diamond, star, vertical line, horizontal line, cross, circle, square, and rectangle.

	line pattern
	The line pattern used fro drop lines. Available line patterns are none, solid, long dash, short dash, long-short-long dash, and dash-dot. Default is solid. Custom patterns are also possible.

	line color
	The color used when drawing drop lines.

	line width
	The line width used for drop lines. Must be great than or equal to 1.

The following method will print out the symbol size being used for the series of data, and double it:

public void double SymbolSize (Chart3dDataView dataView, int seriesIndex)
{
Chart3dPointData pointData=(Chart3dPointData)dataView.
getElevationData();
ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries)series
(seriesIndex);
JCChartStyle chartStyle=pointSeries.getChartStyle();
system.out.println("symbol size:"+chartStyle.getSymbolSize());
chartStyle.setSymbolStyle(2*chartStyle.getSymbolSize());
}

4.4.2	Grid Data
For grid data, the JCSymbolStyle object and the JCLineStyle object that determine how each point is drawn are obtained from either a JCContourStyle object or a JCChartStyle object. See Grid Data, in Chapter 4, for more information.

Ch 4 Programming JClass Chart 3D: Scatter Plots		2
Ch 4 Programming JClass Chart 3D: Scatter Plots		1
5
[bookmark: _Toc531438411]Data Sources
Overivew ■ Pre-Built Chart DataSources ■ Loading Data from a File
 Loading Data from a Swing TableModel ■ Loading Data from an XML Source
Data Binding using JDBCDataSource ■ JCData3dUtil class ■ Making Your Own Chart Data Source
HoleValueChartDataModel – Specifying Hole Values
Making an Updating Chart Data Source ■ Summary of JClass Chart 3D Data Interfaces

[bookmark: _Toc531438412]5.1 	Overview
Data is loaded into a chart by attaching one or more data sources to it. A chartable data source is an object that takes real-world data and puts it into a form that JClass Chart 3D can use. Once your data source is attached, you can chart the data in a variety of ways.

The design of JClass Chart 3D makes it possible to chart data from virtually any realworld source. There is a toolkit you can use to create custom chartable objects (data sources) for your real-world data.

Creating your own data sources can be time-consuming. For that reason, JClass Chart 3D provides pre-built chartable data sources for most common real-world data: files, XML sources, and databases.

To understand data sources better, it is important to differentiate between point data and grid data. To refresh your understanding, please review Data Types, in Chapter 1.

This chapter describes how to use the pre-built data sources and how to create your own.

Before delving into how to use the pre-built data sources and how to create your own, a quick review of key elements is important. Please read all of this overview section before proceeding.

				5.1.1	Nomenclature
A data model is an abstract model, ie, an interface. A data source is an implementation of the data model. It is the object that actually creates and manipulates the data.

5.1.2	Chart Data Model Hierarchy
[image:]

5.1.3	Responsibility for Data
It is the application’s responsibility to create and manage all required data objects.

The application creates a data source by implementing a data model or set of data models. The application then sets the data source on the Chart3dDataView via either its elevationDataSource or zoneDataSource property. The data view then extracts the data from the data source and stores references to it in an internal data object. The data is not copied.

The application can then get a reference to the internal data object through the data view’s elevationData and zoneData properties. The application can then query the internal object for its data values and set certain properties on it.

Grid Data Versus Point Data
A grid data source must implement the Chart3DGridDataModel. When it is set on the data view, an internal data object of type Chart3dGridData is created. A Chart3dGridData object allows you to query its data values and to set certain properties, such as the xLabels, yLabels, and chartStyle.

A point data source must implement the Chart3DPointDataModel. When it is set on the data view, an internal data object of type Chart3dPointData is created. A Chart3dPointData object allows you to query its data values (stored in Chart3dPointSeries objects) and to set certain properties on the Chart3dPointSeries objects, such as its label and its chartStyle.

Note that the elevationDataSource property can take either a grid data source or a point data source, whereas the zoneDataSource property can take only a grid data source. Also, if you set the zoneDataSource property, it must have the same number of X- and Y-values as the elevationDataSource property.

5.1.4	Changing data
Changing data uses an event mechanism. There are two ways to alert the chart to changes:
· use the setElevationDataSource and setZoneDataSource methods (the recommended way)
· through the Chart3dDataEvent mechanism
In the first method, you change the data in the data source object and then reset the data on the data view. The data is re-extracted and the chart will update.

The second option uses the Chart3dDataEvent mechanism. In the data source, when the data changes, a data event is sent to a data listener, and a reaction to the event occurs. Chart3dDataView is registered as a data listener for all the data sources it currently references via the elevationDataSource or the zoneDataSource. Your data source must implement the Chart3dDataManager interface for this mechanism to work.

(As an aside, while you can change the data reference to the data source without setting the data source [without calling a listener], it is strongly not recommended, in that the effects will not be known until a redraw is done.)

5.1.5	Internal data
Internal data is meant as a read-only object. You should not set data values through internal data objects. However, you may use internal data to:
· set chart styles
· set data labels – (x,y) for grid data; (series) for point data

5.1.6	Chart3DDataModel interface
In order for a data source object to work with JClass Chart 3D, it must implement the Chart3dDataModel interface. The simplest of these are the Chart3dPointDataModel interface and the Chart3dGridDataModel interface.

Chart3dPointDataModel interface
The Chart3dPointDataModel interface is the core point data model interface for JClass Chart 3D. In JClass Chart 3D, point data is specified in terms of a doubly subscripted array of Point3d objects.

The Chart3dPointDataModel interface has a single method: getPoints(), which retrieves a doubly subscripted array of Point3d objects (arranged by series):
import javax.vecmath.Point3d;
public Point3d[][] getPoints();

Thus, if:
Point3d[][] points=getPoints();

then the third point of the second series is referred to by:
points[1][2]

When the data view extracts data from the data source, it creates a Chart3dPointSeries for each series of points and stores a singly subscripted array of points in each one.

Here is a code sample that gets the point list for the second series from the internal data object.

Chart3dPointData pointData=(Chart3dPointData) dataView.getElevationData();
ArrayList series=pointData.getSeries();
Chart3dPointSeries pointSeries=(Chart3dPointSeries) series.get(1);
Point3d[] pointSecond=pointSeries.getPoints();

Chart3dGridDataModel interface
The Chart3dGridDataModel interface is the core grid data model interface for JClass Chart 3D. In JClass Chart 3D, grid data is specified in terms of an X-array of grid values, a Y-array of grid values, and a doubly subscripted array of z data values.

There are three methods associated with the Chart3dGridDataModel interface:
· getXGrid() – retrieves the X-grid values array, returning an array of double values representing X-grid points. The values in this array must be strictly increasing.
· getYGrid() – retrieves the Y-grid values array, returning an array of double values representing Y-grid points. The values in this array must be strictly increasing.
· getZValues() – retrieves the z values -- one for each (x,y) grid point, returning doubly subscripted array of double values representing the z values

When the data view extracts data from a grid data source, references to the xGrid, yGrid, and zValue arrays are stored in a Chart3dGridData object. The application can retrieve these from a Chart3dGridData object if desired.

The following table outlines the differences between point and grid data – this concept is crucial in working with JClass Chart 3D.

	Point Data
	JClass Chart 3D Data
	Grid Data

	Chart3DPointData
	Base data model
	Chart3DGridData

	Chart3DPointDataModel
	Interface
	Chart3DGridDataModel

	series, points
	Basic elements
	X grid, Y-grid, Z values

	Point3DD[][]points
	Data Types
	double [] xGrid
double [] yGrid
double [][] zValues

	elevationData
elevationDataSource
	Relevant
Chart3DDataView properties
	elevationData
elevationDataSource
zoneData
zoneDataSource

	Chart3DPointData
	Internal data
	Chart3DGridData

	Chart3DPointSeries
--> chartStyle
-->label
	Internal data setable properties
	charStyle
xLabels
yLabels
xLabelsArrayList
yLabelsArrayList

	Scatter chart
	Chart types
	Bar, surface, or scatter chart

[bookmark: _Toc531438413]5.2 	Pre-Built Chart DataSource
The pre-built DataSources for JClass Chart 3D are located in the com.klg.jclass.chart3d.data package. Their names and descriptions follow.

	DataSource name
	Description

	Base3dDataSource
	Empty base class that implements the Chart3dDataModel and the HoleValueChart3dDataModel. It extends the Chart3dDataSupport class which implements the Chart3dDataManager interface.

	Base3dGridDataSource
	Base for any data source that chooses to store data internally using the data arranged in a grid. It implements the Chart3dGridDataModel.

	Base3dPointDataSource
	Base for any data source that chooses to store data internally using a series of points. It implements Chart3dPointDataModel.

	JCDefault3dGridDataSource
	Extends Base3dGridDataSource to create a more useful default container for JClass Chart 3D data.

	DataSource name
	Description

	JCDefault3dPointDataSource
	Extends Base3dPointDataSource to create a more useful default container for JClass Chart 3D data.

	JCEditable3dGridDataSource
	Extends JCDefault3dGridDataSource with convenience methods that permit data editing. It implements EditableChart3dDataModel.

	JCEditable3dPointDataSource
	Extends JCDefault3dPointDataSource with convenience methods that permit editing of data. It implements EditableChart3dDataModel.

	JCFile3dDataSource
	Convenience class that parses data from a file.

	JCSwing3dDataSource
	A 3d DataSource that converts a Swing TableModel into a form usable by JClass Chart 3D. Extends the JCEditable3dGridDataSource.

	JCXML3dDataSource
	Parses data from an XML file. Extends the JCDefault3dGridDataSource.

	JDBC3dDataSource
	Extends JCDefault3dDataSource to create a data source for use with JDBC.

[bookmark: _Toc531438414]5.3 	Loading Data from a File
Data that is read from a files is read as regular grid data or irregular grid data.

5.3.1	Regular and Irregular Grid Data
Basically, regular grid data has X- and Y-values at regular intervals. Irregular grid data does not.

[image:]

An easy way to bring data into a chart is to load it from a formatted file using JCFile3dDataSource. To load data this way, you create a data file that follows JClass Chart 3D’s standard format, as outlined in Section 5.3.2, Standard file format.

Then you call JCFile3dDataSource’s static createDataSourceFromFile method to create a data source from a file. Here’s a code snippet showing this action:
Chart3dDataModel dataSource=JCFile3dDataSource.createDataSourceFromFile
("file.dat"));
or

chart3d.getDataView(0).setElevationDataSource(JCFile3dDataSource.create
createDataSourceFromFile ("igrid.dat"));

5.3.2	Standard file format
The JCFile3dDataSource class is a convenience class that parses data from a file. Do not
create an instance of this class; rather, use the static method createDataSourceFromFile(String fileName) as described in the previous section.

This method returns an object of type Base3dDataSource which must be cast to the appropriate type (either JCEditable3dGridDataSource or JCEditable3dPointDataSource). The input file can either contain an irregular or regular grid data or point data. The key words GRID, IGRID, or POINT identify the data format the file contains.

A regular grid file has the following format:
Comments use the # sign
For this example the grid has 5 by 3 points
The grid dimensions are optionally followed by xLabels and yLabels
GRID
5 'A A' 'B' 'C' 'D' 'E'

3 'Y1' 'Y2' Y3'

Holes have value 100.0
The Grid increases in
X steps of 1.0 and Y steps of 2.0
The origin of the Grid is x = -20.0 and y = 50.0
100.0 1.0 2.0 -20.0 50.0

15 data points would follow, 1 for each point
49.875000 43.765625 38.50000 33.984375 30.12400
26.828125 24.0000 21.656875 19.375000 17.39062 16.222 18.444 23.555
58.664 37.894564

An Irregular Grid would supply all the X- and Y-values as well as the data points. An irregular grid file has the following format:
Irregular grid has 5 by 3 points
The grid dimensions are optionally followed by xLabels and yLabels
IGRID
5 'A A' 'B' 'C' 'D' 'EE'

3 'Y1' 'Yahoo' 'Y3'

Holes have value 100.0
100.0

5 x values are given
3 y values are given
20 21.1 22.3 23 24.4
50.3 51.3 52.6

15 Data values follow
23.34343 12.89239 11.99423 15.781212 18.18989
26.828125 24.0000 21.656875 19.375000 17.39062 16.222 18.444 23.555
58.664 37.894564

A point data file would look like this:
There are 3 series
The series number is optionally followed by series labels
The hole value is -1000
POINT 3 'Series 1' 'Series 2' 'Series 3'
-1000

The are 5 points in series 1
5 points follow in (x, y, z) format
5
5.65 6.24 1.78
7.41 7.26 4.21
5.45 5.44 1.43
0.97 9.66 3.41
3.86 1.42 0.20

The are 4 points in series 2
4
6.57 7.43 8.37
3.79 3.63 2.65
7.89 3.48 5.65
0.78 7.03 0.65

The are 6 points in series 3
6
9.91 7.54 1.74
6.53 4.62 1.99
8.41 3.49 5.06
7.85 9.16 0.64
6.96 9.18 8.95
3.47 3.19 6.29

[bookmark: _Toc531438415]5.4 	Loading Data from a Swing Table Model
The JCSwing3dDataSource class enables you to use any data object that implements Swing’s TableModel interface as a JClass Chart 3D data source. The TableModel interface is typically used for Swing JTable components, so your application may already have created a data object of this type.

JCSwing3dDataSource “wraps” around a TableModel object, so that the data appears to the chart in the format it understands.

This data source is available through the elevationSwingDataModel1 and the zoneSwingDataModel1 properties in JClass Chart 3D’s JavaBeans. To use them, prepare your data in a Swing TableModel object and set the SwingDataModel property to that object.

[bookmark: _Toc531438416]5.5 	Loading Data from an XML Source

5.5.1	XML Primer
XML – eXtensible Markup Language – is a scaled-down version of SGML (Standard Generalized Markup Language), the standard for creating a document structure. XML was designed especially for Web documents, and allows designers to create customized tags (“extensible”), thereby enabling common information formats for sharing both the format and the data on the Internet, intranets, and so on.

XML is similar to HTML in that both contain markup tags to describe the contents of a page or file. But HTML describes the content of a Web page (mainly text and graphic images) only in terms of how it is to be displayed and interacted with. XML, however, describes the content in terms of what data is being described. This means that an XML file can be used in various ways. For instance, an XML file can be utilized as a convenient way to exchange data across heterogeneous systems. As another example, an XML file can be processed (for example, via XSLT [Extensible Stylesheet Language Transformations]) in order to be visually displayed to the user by transforming it into HTML.

Here are links to more information on XML.
· http://www.w3.org/XML/ – another W3C site; contains exhaustive information on standards. Of particular note are the XML schema 1 (structures) and XML schema 2 (datatypes) working drafts. They make up an extension that specifies how to constrain XML documents to particular schema. This is important if you want to represent database data or object-oriented data as XML.
· http://www.java.sun.com/docs/index.html – Sun’s XML site
· http://www.oasis-open.org/cover/xml.html – thorough list of links to XML papers and ongoing work

5.5.2	Using XML in JClass
In order to work with XML in your programs or even to compile the JClass XML examples, you will need to have jaxp.jar in your CLASSPATH. Additionally, you will need at least a DOM level 2 parser, such as crimson.jar. Both of these JAR files are distributed with JClass Chart 3D – you can find them in JCLASS_HOME/lib/.

Please note that XML may be used for grid data only, not point data.

The JCXML3dDataSource class parses data in XML format. Specification for the XML data
can be found in the chart3d.dtd file (JCLASS_HOME/com/klg/jclass/xml-dtd/).

Example of XML in JClass
For an XML data source example, the XML Chart example is in
JCLASS_HOME/examples/chart3d/j2d/data. This example uses the 3d.xml data file.

XML Constructor
The JCXML3dDataSource constructor takes an InputStream in XML form and may also
take a Reader that contains XML, a file, a String, or other input source.

Example XML data file
Here is an example of an XML data file specifying chart data according to the supported .DTD file. Labels are optional, as are hole and name. Grids are required, and each must contain at least one val element.

<?xml version="1.0"?>
<!DOCTYPE data SYSTEM "chart3d.dtd">
<data hole="-100" name="my data">
<xgrid>
<xval>0.78</xval>
<xval>1.565</xval>
<xval>2.00</xval>
</xgrid>
<ygrid>
<yval>1.00</yval>
<yval>2.0</yval>
<yval>3.0</yval>
<yval>4.0</yval>
<yval>5.0</yval>
/ul>
</ygrid>

<zgrid>
<zval>15.64</zval>
<zval>23.4546</zval>
<zval>45.4545</zval>
<zval>20.4546</zval>
<zval>14.4545</zval>
</zgrid>

<zgrid>

<zval>18.5656</zval>
<zval>23.884</zval>
<zval>35.6454</zval>
<zval>21.47</zval>
<zval>37.45</zval>
</zgrid>

<zgrid>
<zval>16.58</zval>
<zval>10.5656</zval>
<zval>17.65</zval>
<zval>19.645</zval>
<zval>34.4561</zval>
</zgrid>

<xlabel>January</xlabel>
<xlabel>February</xlabel>
<xlabel>March</xlabel>

<ylabel>Orcs</ylabel>
<ylabel>Zombies</ylabel>
<ylabel>Skeletons</ylabel>
<ylabel>Vampires</ylabel>
<ylabel>Werewolves</ylabel>
</data>

[bookmark: _Toc531438417]5.6 	Data Binding using JDBCDataSource
JDBC3dDataSource is not a full data binding solution. It is a data source that you can use to chart data from an SQL Result Set. It does not perform any binding operations such as connecting to or querying the database. You will have to provide that functionality in your application.

To use it, you just attach an instance of JDBC3dDataSource to your chart and pass it a Result Set from your application, as follows:
chart.getDataView(0).setElevationDataSource(new JCDBC3dDataSource
(myResultSet));

[bookmark: _Toc531438418]5.7 	JCData3dUtil class
The JCData3dUtil class (com.klg.jclass.chart3d.data.JCData3dUtil) is a utility class that contains convenience methods for manipulating, filtering, and copying JClass Chart 3D data models.

The source for all of the following methods is the Chart3dGridDataModel class.

· Use the createDataCopy() method to create a copy of Chart3dGridDataModel's Xgrid, Y-grid, and Z values.
· Use the dataCopy() method to copy the xGrid, yGrid and zValues from a source to a destination data model.
· Use createShadedDataModel (double sweepAngle, double riseAngle, double brightness, double ambient) to create a data model that simulates light reflecting off the surface of the source data model with Z values ranging from 0 (no reflection) to 1 (full reflection), as well as an ambient light source. The data model returned from this method may then be used as zone data for the source to produce a grey scale effect. See the Shaded demo, which comes with your JClass Chart 3D distribution, for an example of how to use this method.
· Use createSmoothedDataModel (double centerWeight) to create a “smoothed” data model based on the source data model. The amount of smoothing may be controlled by varying the centerWeight argument. When it is 0, the “smoothed” Z value of a data point is based entirely on the weighted average of its neighbors. When it is 1, no smoothing takes place. When it is between 0 and 1, the result is influenced by its neighbors in proportion to the centerWeight.
· Use createCubicSampledDataModel (double[] xSamples, double[] ySamples) to create a data model which is a subset of source using cubic Interpolation with an xGrid described by xSamples and a yGrid described by ySamples. An alternative to this method is to use createLinearSampledDataModel (double[] xSamples, double[] ySamples) method since the linear interpolation method used to calculate the Z values is generally faster, though it usually produces a coarser approximation of the source data. These last two methods are also available in several other flavours. Please refer to the JClass Chart 3D API for more examples.

[bookmark: _Toc531438419]5.8 	Making Your Own Chart Data Source
5.8.1	The Simplest Chart Data Source Possible
In order for a data source object to work with JClass Chart 3D, it must implement the Chart3dDataModel interface. The EditableChart3dDataModel interface can be used in conjunction with the Chart3dDataModel when you want to allow the data source to be editable. The LabelledChart3dDataModel and the HoleValueChart3dDataModel interfaces can also be used in conjunction with ChartData3dModel to extend its functionality to allow for label values (via the LabelledChart3dDataModel interface) and hole values (via the HoleValueChart3dDataModel interface). The LabelledChart3dDataModel has an extension for grid data and for point data, which calls methods specific to the type of data.

The Chart3dDataModel interface is intended for use with existing data objects. If a data object implements its extensions, Chart3dGridDataModel and Chart3dPointDataModel, it provides a way for the Chart to extract the data from the data source. For example, the Chart3dGridDataModel allows JClass Chart 3D to ask the data source for the x-grid values, y-grid values, and for z values. The interface looks like this:

public double[] getXGrid();
public double[] getYGrid();
public double[][] getZvalues();

The values returned by getXGrid() and getYGrid() do not have to be equally spaced, but they must be in strictly increasing order. The length of the first dimension of the doubly subscripted array returned by getZvalues() should be the same as the length of the xGrid array. Also, the length of each array that makes up the second dimension of zValues should be the same as the yGrid array. If this is not true, the shortest length will be used for all related arrays.

As an example, consider the following code snippets, taken from JCChart3d.java. This is the actual default data source for JClass Chart 3D.

The following three methods would allow an object to implement the Chart3dGridDataModel.

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>x</i> grid values
 *
 * @return array of double values representing <i>x</i> grid points
 */
public double[] getXGrid()
{
double xarray[] = new double[11];
for (int i = 0; i < xarray.length; i++) {
xarray[i] = (double)i;
}
return(xarray);
}

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>y</i> grid values
 *
 * @return array of double values representing <i>y</i> grid points
 */
public double[] getYGrid()
{
double yarray[] = new double[11];
for (int i = 0; i < yarray.length; i++) {
yarray[i] = (double)i;
}
return(yarray);
}

/**
 * Method required to implement Chart3dGridDataModel interface.
 * Retrieves the <i>z</i> values -- one for each (<i>x</i>,<i>y</i>)
 * grid point
 *
 * @return doubly subscripted array of double values representing
 * <i>z</i> values
 */

public double[][] getZValues()
{
double zvals[][] = new double[11][11];
for (int i = 0; i < zvals.length; i++) {
for (int j = 0; j < zvals[i].length; j++) {
double xval = (double)(i-5);
double yval = (double)(j-5);
zvals[i][j] = xval*xval + yval*yval;
}
}
return(zvals);
}

The following method would allow an object to implement the Chart3dPointDataModel.

/**
 * Method required to implement Chart3dPointDataModel interface.
 * Retrieves a list of points for a scatter plot.
 */
public Point3d[][] getPoints()
{
Point3d[][] series = new Point3d[5][];
int sizes[] = {3, 5, 6, 4, 2};

for (int i = 0; i < series.length; i++) {
Point3d[] points = new Point3d[sizes[i]];
for (int j = 0; j < points.length; j++) {
points[j] = new Point3d((double)(20 + 2*i),
(double)(30 + j), (double)(10*i + j));
}
series[i] = points;
}
return(series);
}

5.8.2	LabelledChartDataModel – Labelling Your Chart
Sometimes it is important to label each data series and each point in a graph. This information can be added to a data source using the LabelledChart3dDataModel interface. For grid data, one should implement the LabelledChart3dGridDataModel, and for point data, the LabelledChart3dPointDataModel. Both extend the LabelledChart3dDataModel.

The LabelledChart3dDataModel interface contains one method:
public String getDataSourceName();

The getDataSourceName() returns the name of the data source. This appears in the chart as the title of the legend.

LabelledChart3dGridDataModel and LabelledChart3dPointDataModel
The LabelledChart3dGridDataModel interface specifies X-labels and Y-labels for a JClass Chart 3D data model. xlabels and ylabels are used for the X- and Y-axis respectively if the annotation type of the axis is JCAxis.ANNOTATION_DATA_LABELS. This interface also specifies the number of X-grid and Y-grid values.

The LabelledChart3dPointDataModel interface specifies the number of series and the series labels for a JClass Chart 3D data model. Series labels are displayed in the legend.

Note that both interfaces are used only in conjunction with the Chart3dDataModel interface, which means that, in order for an object to be recognized as a chart data source, it needs to implement the Chart3dDataModel interface.

The Base3dGridDataSource class – the base for any data source that chooses to store data internally using data arrayed in a grid – implements the LabelledChart3dGridDataModel interface. The Base3dPointDataSource class – the base for any data source that chooses to store data internally using a series of points – implements the LabelledChart3dPointDataModel interface.

5.8.3	EditableChartDataModel – Modifying Your Data
If you want users to modify data using the edit action in JClass Chart 3D, your data source must implement the EditableChart3dDataModel interface. This interface is used in conjunction with a Chart3dGridDataModel or a Chart3dPointDataModel, and the data object must also implement one of these interfaces to be recognized as a data source. The EditableChart3dDataModel has a single method:
public boolean setZValue(JCData3dIndex index, double newValue);

For grid data, the index will be of type JCData3dGridIndex and the X- and Y-indices of the newValue can be extracted from the index object. For point data, the index will be of type JCData3dPointIndex and the series and point indices can again be extracted from the index object. Note that the EditableChart3dDataModel only allows for Z values to be changed. In other words, newValue is a z value.

Here is a code example showing how to set the zValue of a point for a given series and point index for a point data array (stored in points):

/**
 * Sets the zValue of a point for a given series and point index. This
 * series and point index is retrieved from the passed in data index,
 * which must be of type JCData3dPointIndex.
 * @param index The data index from which the series and point indices
 * of the point to be edited is obtained.
 * @param newValue <code>Point3d</code> object for that position
 * @return Whether the edit succeeded
 */
public boolean setZValue(JCData3dIndex index, double newValue)
{
if (index == null || !(index instanceof JCData3dPointIndex)) {
return(false);
}
JCData3dPointIndex pointDataIndex = (JCData3dPointIndex)index;
int seriesIndex = pointDataIndex.getSeries();
int pointIndex = pointDataIndex.getPoint();

if (seriesIndex < 0 ||
seriesIndex >= points.length ||
pointIndex < 0 ||
pointIndex >= points[seriesIndex].length)
{
return(false);
}
Point3d point = points[seriesIndex][pointIndex];
point.z = newValue;
int type = Chart3dPointDataEvent.RELOAD_POINT;
fireChart3dDataEvent(new Chart3dPointDataEvent(this, type,
pointDataIndex));
return(true);
} //setZValue

Here is a code example showing how to set the zValue for a given data index for grid data
(stored in the zValues array):

/**
 * Sets the point for a given data index which must be of type
 * JCData3dGridIndex.
 *
 * @param index The data index from which the x and y indices of the
 * point to be edited is obtained.
 * @param newValue The new z value for the point
 * @return Whether edit succeeded
 */
public boolean setZValue(JCData3dIndex index, double newValue)
{
if (index == null || !(index instanceof JCData3dGridIndex)) {
return(false);
}
JCData3dGridIndex gridIndex = (JCData3dGridIndex)index;
int xIndex = gridIndex.getX();
int yIndex = gridIndex.getY();
if (xIndex < 0 ||
xIndex >= zValues.length ||
yIndex < 0 ||
yIndex >= zValues[xIndex].length)
{
return(false);
}
zValues[xIndex][yIndex] = newValue;
int type = Chart3dGridDataEvent.RELOAD_ZVALUE;
fireChart3dDataEvent(new Chart3dGridDataEvent(this, type,
gridIndex));
return(true);
} //setDataValue

In this example, the value is saved back into the zValues array from JCDefault3dGridDataSource, using the xIndex and yIndex values to index to the appropriate array member.

The EditGrid and EditPoint examples (found in the JCLASS_HOME/examples/chartd3d/j2d/data directory) demonstrate how to use the EditableChartDataModel interface.

[bookmark: _Toc531438420]5.9	HoleValueChartDataModel – Specifying Hole Values
If you want to supply a specific hole value along with your data, your data source must implement the HoleValueChart3dDataModel interface.

A hole value is a particular value for which the chart will not draw anything each time the hole value is encountered in the data. For a surface chart, the facets surrounding the value are not drawn. For a bar chart, that particular bar is not drawn. For a scatter plot, the point is not drawn.

The HoleValueChart3dDataModel interface has one method, getHoleValue(). This method retrieves the hole value for the data source.

[bookmark: _Toc531438421]5.10	Making an Updating Chart Data Source
Quite often, the data shown in JClass Chart 3D is dynamic. This kind of data requires creation of an updating data source. An updating data source is capable of informing a chart that a portion of the data has been changed. JClass Chart 3D can then act on the change.

JClass Chart 3D uses the standard AWT/Swing event/listener mechanism for passing changes between the chart data source and JClass Chart 3D. At a very high level, JClass Chart 3D is a listener to data source events that are fired by the data source.

5.10.	Chart Data Source Support Classes
There are a number of data source related support classes included with JClass Chart 3D. These classes make it easier to build updating data sources.

Chart3dDataEvent and Chart3dDataListener
The Chart3dDataListener interface is implemented by objects interested in receiving Chart3dDataEvents. Most often, the only Char3dDataListener is JClass Chart 3D itself. Chart3dDataEvent and Chart3dDataListener give data sources a way to send update messages to JClass Chart 3D.

The Chart3dDataListener interface has only one method:
public void chart3dDataChange(Chart3dDataEvent e);

Thus, this mechanism uses the Chart3dDataEvent class to inform the listener of a change. In most systems, only JClass Chart 3D need implement this interface. The Chart3dDataView is the class that implements the Chart3dDataListener interface within JClass Chart 3D.

The Chart3dGridDataEvent class, which extends Chart3dDataEvent, is used to encapsulate a JClass Chart 3D grid data change event. This class has two methods: getX and getY. getX returns the X-index of the affected data, returning JCData3dIndex.ALL if all X-values are affected. getY returns the Y-index of the affected data, returning JCData3dIndex.ALL if all Y-values are affected.

The Chart3dPointDataEvent class, which also extends Chart3dDataEvent, retrieves the point index associated with the event. This class has two methods: getPoint and getSeries. getPoint returns the index of the point affected, returning JCData3dIndex.ALL if all points are affected. getSeries retrieves the series index associated with the event, returning JCData3dIndex.ALL if all points are affected.

The Chart3dDataEvent has a type property that indicates the message type of the event. The message type delineates what type of update the data source has made.

Properties of the Chart3dDataEvent class – note that these properties are relevant for both grid and point data:

	Message Type
	Meaning

	RELOAD_DATA_SOURCE_NAME
RESET

RELOAD
RELOAD_HOLE_VALUE
	Enum value indicating the data source name is attached.
Enum indicating that everything – data, labels, name etc – has changed.
Enum indicating that the data needs to be reloaded.
Enum value indicating the hole value is affected.

Properties in the Chart3dGridDataEvent class:
	Message Type
	Meaning

	RELOAD_ALL_XLABELS
RELOAD_ALL_YLABELS
RELOAD_XGRID
RELOAD_XLABEL
RELOAD_XVALUE
RELOAD_YGRID
RELOAD_YLABEL
RELOAD_YVALUE
RELOAD_ZALL
	Enum value indicating all xLabels are affected.
Enum value indicating all yLabels are affected.
Enum value indicating all X-values are affected.
Enum value indicating a particular xLabel is affected.
Enum value indicating a given X-value is affected.
Enum value indicating all Y-values are affected.
Enum value indicating a particular yLabel is affected.
Enum value indicating a given Y-value is affected.
Enum value indicating the entire doubly indexed array of zValues is affected.

	Message Type
	Meaning

	RELOAD_ZARRAY
RELOAD_ZVALUE
	Enum value indicating one array of zValues is affected.
Enum value indicating one z Value is affected.

Properties in the Chart3dPointDataEvent class:

	Message Type
	Meaning

	ADD_SERIES

INSERT_SERIES

RELOAD_ALL_SERIES_LABELS

RELOAD_POINT
RELOAD_SAERIES
RELOAD_SERIES_LABEL

REMOVE_SERIES
	Enum value indicating a data series has been added to the end of the set of data series.
Enum value indicating a data series has been inserted at a particular index in the set of data series.
Enum value indicating all series labels need to be reloaded.
Enum value indicating a single data value has changed.
Enum value indicating a data series has changed.
Enum value indicating a particular series label needs to be reloaded.
Enum value indicating a data series has been removed.

Chart3dDataManager
The Chart3dDataManager interface is used by a data source to tell JClass Chart 3D that it will be sending a Chart3dDataEvent to JClass Chart 3D. Without this interface, there is no way for JClass Chart 3D to know that it has to attach itself as a Chart3dDataListener to the data source.

The two methods involved to add and remove a JClass Chart 3D data listener:
· addChart3dDataListener(Chart3dDataListener n) – adds a chart 3D data listener.
· removeChart3dDataListener(Chart3dDataListener n) – removes a chart 3D data listener.

A Chart3dDataManager is an object that knows how to register and deregister Chart3dDataListeners. Chart uses this object to register itself as a listener to events from the data source.

The quickest way to get such a data source set up is to extend or use the Chart3dDataSupport class.

Chart3dDataSupport
Chart3dDataSupport provides a default implementation of Chart3dDataManager. It will manage a list of Chart3dDataListeners. It also provides two convenience methods for firing events to the listeners.

The first fireChart3dDataEvent method fires a chart data event to any registered listeners. This version of fireChart3dDataEvent will create a Chart3dDataEvent object out of the message and a JCData3dIndex. For example:
public void fireChart3dDataEvent(int type, JCData3dIndex index)

where type is a valid message type from Chart3dDataEvent, Chart3dGridDataEvent, or Chart3dPointDataEvent, and index is the data index which tells which (x, y) or (series,
point) to which this event refers.

If you already have a Chart3dDataEvent, the second fireChart3dDataEvent method fires this event to any registered listeners. For example:
public void fireChart3dDataEvent(Chart3dDataEvent evt)

where evt is the event to send to registered listeners.

Creating an Updating Data Source
If your datasource either extends or contains Chart3dDataSupport, sending updates from the data source to the chart is easy. Simply call fireChart3dDataEvent() with the event you wish to send.
fireChart3dDataEvent(Chart3dDataEvent.RESET,
new JCData3dGridIndex(x,y));

To have JClass Chart 3D automatically added as a listener, your data source needs to implement the Chart3dDataManager interface.

If you do implement this interface, then the Chart3dDataView object will automatically register itself as a listener when you set the data source on either its elevationDataSource or zoneDataSource. Note that the listener will remove itself when another data source replaces your data source in the data view.

[bookmark: _Toc531438422]5.11	Summary of JClass Chart 3D Data Interfaces
	Characteristic
	Base
	Grid Data
	Point Data

	Data
	Char3dDataModel
	Chart3dGridDataModel
	Chart3dPointDataModel

	Hole value
	HoleValueChart3dDataModel
	none
	none

	Labels – data source name
	LabelledChart3dDataModel
	LabelledChart3dGridDataModel
	LabelledChart3dPoint
DataModel

	Setting new Z values
	editableChart3dDataModel
	none
	none

	Managing listeners
	Chart3dDataManager
	none
	none

	Listening for data events
	Chart3dDataListener
	none
	none

Ch 5 Data Sources		2
Ch 5 Data Sources		1
6
[bookmark: _Toc531438423]Advanced JClass Chart 3D Programming
4D Surface Graphs ■ 4D Bar Charts ■ Customizing the Contour Levels
 Customizing Contour Styles

[bookmark: _Toc531438424]6.1 	4D Surface Graphs
For surface and bar charts, JClass Chart 3D can be used to display 4D charts using color as a fourth dimension. The additional color information is provided to JClass Chart 3D as a second data source using the Chart3dDataView class’ zoneDataSource property.

A full description of data sources, including grid data sources, is provided in Data Sources, in Chapter 5.

For zone data, use the Chart3dGridDataModel interface. The Chart3dGridDataModel interface, which extends Chart3dDataModel, is the core grid data model interface. In JClass Chart 3D, grid data is specified in terms of an X-array of grid values, a Y-array of grid values, and a doubly subscripted array of z data values.

To create a 4D chart:
· Set the Zoned property of the JCContour class and the Shaded property of the JCElevation class to true.
· Set a grid data source in the Chart3dDataView’s elevationDataSource property.
· Set a grid data source in the Chart3dDataView’s zoneDataSource property; this will be used for deriving the zoning and contouring colors as zone data.
· Ensure that the data array sizes of the two data sources match up. The xGrid and yGrid arrays of the two data sources should be identical. The zValues array should have exactly the same number of values in both the X- and Y-dimensions (that is, the same number of rows and columns).

Note: If any of these conditions are not met, a 4D chart will not be displayed.

If the zone data has a hole that is not in the surface data, the surface in the region of the hole will be displayed as if the zone data were not attached.
[image:]
Figure 21 4D chart – zone/contourdata is different from surface data..

[bookmark: _Toc531438425]6.2 	4D Bar Charts
When a zone data source is supplied for a bar chart, the values in the zone data are used in conjunction with the contour levels to apply zone colors to the bars in the grid.

When zone data is supplied and the Zoned property of the JCContour class is true, the bar is not broken up into separate colored segments. Rather, each bar is individually colored according to the zoned height of the bar. Contours are never drawn when zone data is supplied. Figure 22 gives an example of a 4D bar chart.

[image:]
Figure 22 A 4D Bar Chart.

In a bar chart, the zone data structure is only referenced when Zoned is true. A legend is generated based on the contour levels. The legend labels can be replaced by supplying a list of labels to the JCChart3dLegend class via its labels property.

Please see Legends, in Chapter 2 for full details on legend Strings.
[bookmark: _Toc531438426]6.3 	Customizing the Contour Levels
To customize contour levels, manipulate the JCContourLevels class. This object deals with contour levels; it calculates default levels (if isDefault is true) but also allows users to set their own levels.

The JCContourLevels class has five properties:
· isDefault – ascertains whether linear contour levels are generated automatically (based on numLevels)
· levels – a strictly increasing array of contour levels
· max – the contour maximum, calculated from the data (read only)
· min – the contour minimum, calculated from the data (read only)
· numLevels – the number of contour levels

To specify your own contour levels, set the levels property to a new array of doubles. This array must be in strictly increasing order. You can also manipulate the levels using the addlevel() and removeLevel() methods. Changing the levels in any of the above ways has the side effect of setting the isDefault property to false. When isDefault is false, the numLevels property automatically takes on the value of the length of the levels array and hence becomes read only. If isDefault is set to true, the numLevels property can be changed to specify the number of default levels to calculate.

In user-specified contour levels, the default is to display just the range of data that is spanned by the data (JCChart3dLegend.RANGE_DATA). If the distributionRange property of the JCChart3dLegend class is set to JCChart3dLegend.Range_ALL, the entire contour level array is shown in the legend.

[bookmark: _Toc531438427]6.4 	Customizing Contour Styles
To customize contour styles, manipulate the contourStyles property of the JCContour class. The contourStyles property reference an ArrayList of JCContourStyle objects. The JCContourStyle class defines the style used to draw contours and zones. The JCContourStyle class has three properties:
· fillStyle – the JCFillStyle object to be used for this contour style; used to draw the contour zones
· lineStyle – the JCLineStyle object to be used for this contour style; used to draw the contour lines
· symbolStyle – the JCSymbolStyle object to be used for this contour style; used to draw symbols for contoured grid scatter plots

6.4.1	Default Contour Styles
By default, for surface and bar charts, JClass Chart 3D provides an array of 100 contour styles. By default, the fill styles are solid, the contour lines are black lines of width 1, and the symbols are of type JCSymbolStyle.DOT of size 6. The fill colors and symbol colors are chosen from a predefined array of colors chosen to provide a pleasing color distribution.

You will need to provide custom contour styles if:
· it is important to your application to specify the precise contour style for any particular level;
· you want to display more than 100 levels; or
· you want to uniquely identify contour lines. The JClass Chart 3D default contour styles use only black solid lines of width 1.
It is usually easiest to specify more contour styles than will be needed for the number of contour levels. If nstyles contour styles are provided, and the number of contour levels is nlevels, JClass Chart 3D will calculate the index into the contour styles array for level i (0 ≤ i ≤ nlevels) as follows:

(int)Math.round(i * (nstyles - 1)/nlevels)

If you wish to change this index calculation, implement the JCContourMapping interface
by creating the method:
	public int contourIndex(int level);

Then set the object that implements the interface on the contourMapping property of the JCContour class.

The JCContourStyle class contains information about how JClass Chart 3D should display contour style objects. The fields are broken down as follows:

	fillcolor
	The color used to demarcate the level when zoned is true.

	fillpattern
	The pattern used to fill the zones. Valid values include JCLineStyle.NONE, JCLineStyle.SOLID, JCLineStyle.LONG_DASH, JCLineStyle.SHORT_DASH, JCLineStyle.LSL_DASH, and JCLineStyle.DASH_DOT.

	linecolor
	The color used to demarcate the level’s contour line when contoured is true.

	linewidth
	The line width used to demarcate the level’s contour line when contoured is true. Must be greater than or equal to 0. When linewidth is zero, no line is drawn.

	linepattern
	The line pattern used to demarcate the level’s contour line when contoured is true. Line patterns are only honored for surface plots that are 2D projections (available in the Java 2 API version of JClass Chart 3D by setting the meshed and shaded properties of the JCElevation class to false). The line pattern must be one of the patterns listed in Figure 23.

[image:]
Figure 23 Different Line Patterns.

Here is a code sample that doubles the line width of the 50th contour style.

JCContour contour=dataView.getContour();
ArrayList contourStyles=getContourStyles();
JContourStyle style=(JCContourStyle)contourStyles.get(49);
style.setLineWidth(2*style.getLineWidth());

Ch 6 Advanced JClass Chart 3D Programming		2
Ch 6 Advanced JClass Chart 3D Programming		1
7
[bookmark: _Toc531438428]Programming User Interaction
Default User Interaction ■ Listeners ■ Mapping and Picking
dragZValue Method ■ gridValue Method

This chapter describes the user-interaction features of JClass Chart 3D — how a user can interact with the chart and how an application can control interaction.

[bookmark: _Toc531438429]7.1 	Default User Interaction
By default, an end-user can rotate, translate, scale, and zoom into the plot cube. The rotate action is implemented by manipulating the three rotation angles of the JCView3d class. Scaling, translating, and zooming are achieved by appropriately setting the scale, horizontal shift, and vertical shift properties of the JCViewport class.

Figure 24 shows the user interactions enabled by JClass Chart 3D’s default translations.
[bookmark: _GoBack]
[image:]
Figure 24 JClass Chart 3D’s default user interactions (MB1 Mouse Button 1).

Note that the blank preview cube gets drawn only if the previewMethod property of the JCViewport class is set to PREVIEW_CUBE and you are using the Java 2 version of JClass Chart 3D.

7.1.1	JCViewport class
The JCViewport class stores information concerning the viewport through which the user views the plot cube. The default viewport is determined by JClass Chart 3D. The user can modify this default by scaling it and translating it within the JCChart3dArea. JCViewport
comprises these properties:
· horizontalShift – indicates horizontal shift as a multiple of the original viewport size.
· verticalShift – indicates vertical shift as a multiple of the original viewport size.
· normalized – indicates whether the viewport is normalized (that is, is the scale equal to 1 and the shift equal to 0).
· previewMethod – controls what is drawn as the user rotates scales, or translates the cube interactively; can either be PREVIEW_CUBE (displays a wireframe cube [default]) or PREVIEW_FULL (displays the entire surface).
· scale – zoom factor. A value less than 1 means a viewport smaller than the default. A value greater than 1 means a viewport greater than the default. The scale value must be between MIN_VIEW_SCALE and MAX_VIEW_SCALE.

Rotation
The rotate actions manipulate the xRotation, yRotation, and zRotation properties of the JCView3d class in various ways. The standard rotation (no selected axis) implements a track ball type rotation. This causes the chart to rotate in the direction of the mouse. You can also rotate about one of the three standard axes (X, Y, or Z). There is also one more type of rotation, called eye rotation, that allows you to rotate about a line from the center of the cube to the user’s eye position.

7.1.2	JCActionTable Class
The JCActionTable class is responsible for keeping track of the mappings from a user input event to a JClass Chart 3D action. For example, an association can be made to map from the Shift+left mouse button set of events to the Translate action.

JClass Chart 3D has a rich set of predefined associations that handle scaling, translation, rotation, and many other functions. To enable the standard set of actions, add the following line of code to your program:

chart3d.getActionTable().addAllDefaultActions();

JCActionTable stores a set of mappings between an ActionInitiator and the name of a class that implements the JCAction interface. An ActionInitiator captures the essence of a user input event via its subclasses – KeyActionInitiator and MouseActionInitiator. A MouseActionInitiator defines the mouse button and modifiers that the chart will recognize when the user presses a mouse button. For example, JClass Chart 3D’s Rotate method is invoked when the user presses the left mouse button, while holding down the Ctrl key.

You can define a MouseActionInitiator for this combination:

MouseActionInitiator mai = new MouseActionInitiator(MouseEvent.
BUTTON1_MASK, InputEvent.CTRL_MASK);

You can associate the Rotate method with the initiator by specifying its pathname as a String; the pathname is com.klg.jclass.chart3d.j2d.actions.RotateAction.

Both of the above RotateAction classes implement the JCAction interface, with the most important methods being the start(), animate(), and end() methods. These correspond to the user’s mouse button down, drag, and release events.

When JClass Chart 3D detects that the user has pressed the left mouse button, it will dynamically instantiate the specified class, and use it to handle the user’s mouse events. To minimize memory usage, this class will be created only once and then be reused for
subsequent interactions.

Adding and removing individual actions
JClass Chart 3D’s JCActionTable defines all of the commonly used interactions, so individual actions can be added or removed, and custom actions can be added. For example, to add the above Rotate method, simply use:

JCActionTable at = chart3d.getActionTable();
at.addAction(JCActionTable.DEFAULT_MOUSE_ROTATE_ANY_ACTION,
at.getDefaultRotateActionClass());

A KeyActionInitiator defines the keyCode and modifiers that JClass Chart 3D will recognize when the user presses a key. For example, if you want to detect when the user presses the Shift-r key combination, create a KeyActionInitiator with the following code:

KeyActionInitiator key = new KeyActionInitiator(KeyEvent.VK_R,
InputEvent.SHIFT_MASK);

To make this key combination invoke the Reset action, use:

JCActionTable at = chart3d.getActionTable();
at.addAction(key, at.getDefaultResetActionClass());

Custom actions
Custom actions can be added by writing a class that implements the JCAction interface, and associating it with an ActionInitiator by using the addAction() method and specifying its name as a String. For example, if you wanted to associate the above key with your own action handler that existed in com.yourcompany.yourproduct.Reset.class, you would specify:

JCActionTable at = chart3d.getActionTable();
at.addAction(key, "com.yourcompany.yourproduct.Reset");

If you later wanted to remove this specific action, use:

chart3d.getActionTable().removeAction(key);

To remove all actions, including default and custom actions, use:

chart3d.getActionTable().removeAllActions();

The full set of default actions and mouse and key combinations are described in the JCActionTable class description in the API Reference Javadocs, which are included when you purchase JClass Chart 3D.

For an overview of JClass actions, please review the following table. Note that except for the Edit action, these are the actions that get set on the chart when the addAllDefaultActions method is called.

	Action Name
	Defalut Binding
	Description

	
	Mouse Button (MB)
	Key
	

	Cancel
	-
	c
	Cancel the current action.

	Customize
	MB3
	Alt + Enter
	Show the Customizer

	Edit
	MB1
	-
	Edit the chart. Must be explicity added. Overrides Pick.

	Pick
	MB1
	-
	Call thee chart’s Pick method.

	Reset*
	-
	r
	Read the viewport to default.

	Rotate
	Ctrl + MB1
	Left, Right, Up, Down
	Rotate using a trackball mechanism.

	RotateEye*
	Ctrl + MB1
	-
	Rotate abou the eye.

	RotateX*
	Ctrl + MB1
	-
	Rotate constrained to an XAxis rotation.

	RotateY*
	Ctrl + MB1
	-
	Rotate constrained to a YAxis rotation.

	RotateZ*
	Ctrl + MB1
	-
	Rotate constrained to a ZAxis rotation.

	Scale
	Alt + MB1
	Page Up, Page Down
	Scale the chart interactively.

	SwitchRotateAny*
	-
	n
	Switch Rotate type to trackball rotation.

	SwitchRotateEye*
	-
	e
	Switch Rotate type to eye rotation.

	SwitchRotateX*
	-
	x
	Switch Rotate type to X-rotation.

	SwitchRotateY*
	-
	y
	Switch Rotate type to Y-rotation.

	SwitchRotateZ*
	-
	z
	Switch Rotate type to Z rotation.

	Translate
	Shift + MB1
	Shift + Left, Shift + Right, Shift + Up,
Shift + Down
	Shift the plot clube left, right, up, down.

	Zoom*
	Ctrl + Shift + MB1
	-
	Scale using a rubber banded rectangle.

7.1.3	JCChart3dEvent class
The JCChart3dEvent class is used to encapsulate an action (for example, rotate, zoom, or scale) on a JClass Chart 3D. It holds the chart that was acted upon. The JCChart3dEvent class gets sent to all Chart3D listeners through the changeChart() method (see below).

[bookmark: _Toc531438430]7.2 	Listeners
JClass Chart 3D uses the standard AWT/Swing event/listener mechanism to tell an application that certain events have happened on the chart. A listener is called when these events have completed.

There are three listeners in JClass Chart 3D, each of which is discussed below:
· data
· chart3d
· pick

Data Listener
The Chart3dDataListener interface is a template for event listener interfaces for chart data events. Its method, chart3dDataChange, is called whenever the JClass Chart 3D data has changed; interested listeners should implement this method and register the object with a data source that implements the Chart3dDataManager interface.

Chart3d Listener
The JCChart3dListener interface is the event listener interface for JClass Chart 3D events. It has two methods. The changeChart method is called whenever the chart has been changed through a user action. The sendEvent() method of the JCChart3d class tells interested listeners that the chart has changed once the action is completed. Interested listeners should implement this method and register the object with JClass Chart 3D. The paintChart method is called whenever the paint method of the JCChart3d object is called.

Pick Listener
The JCPick3dListener interface is the event listener interface for chart pick events. It has a single method called pick, which is called whenever a JClass Chart 3D has been picked. Interested listeners should implement this method and register the object with JClass Chart 3D.

[bookmark: _Toc531438431]7.3 	Mapping and Picking
Mapping
The map() method of the Chart3dDataView object takes (x, y) pixel coordinates and maps them to a point in data space. For grid data, this is a point interpolated from the nearest grid values. For point data, it is the nearest data point. If the pixel point is not within the chart, a point with its x, y, and z values set to Double.MAX_VALUE is returned. The user can also call the Chart3dDataView’s coordToDataCoord() method which is a wrapper around the map() method.

Unmapping
Unmapping is the opposite of mapping. It maps from data space coordinates to pixel coordinates. It basically applies the current data transformation that JClass Chart 3D uses to transform the data point to pixels. Chart3dDataView’s dataCoordToCoord method is a wrapper around its unmap() method.

JCData3dIndex class
The JCData3dIndex class contains a unique index to an object in JClass Chart 3D consisting of either an (x,y) grid data value, a (series, point) point data value, a label, or a contour range depending on whether the index is of type JCData3dGridIndex, JCData3dPointIndex, JCData3dLabelIndex, or JCData3dContourIndex, respectively. This class is used by the JClass Chart 3D’s pick() and unpick() methods and contains information related to these operations.

Picking
The pick() method of JClass Chart 3D takes an (x, y) pixel position and selects the internal component in which it is contained. This could be the header, the footer, the chart3dArea, or the legend. The object property of the returned JCData3dIndex indicates which component has been selected. If the pixel position is not contained in any of these components, null is returned. Note that the pixel position is assumed to be relative to the JClass Chart 3D component, not the internal components.

If the chart3dArea is selected, pick returns the index of the point closest to the specified pixel position via the returned JCData3dIndex object. This object also contains the distance from the pixel position to the selected point. If the pixel position misses the chart, the index returned will have each of its indices set to -1.

If a label is selected, pick returns a JCData3dLabelIndex which contains the internal value label of the selected label, as well as the index of that label within the internal value labels array. (See Label Selection and Clustering, in Chapter 2 for more information.)

If the legend is selected, pick returns a JCData3dContourIndex if contour level element appears in the legend (grid data only). For point data, a JCData3dPointIndex object with the selected series is returned.

Chart3dDataView’s coordToDataIndex method is a convenient wrapper for picking on the chart3dArea.

Unpicking
The unpick method is the opposite of pick. It determines the pixel position for a given JCData3dGridIndex or JCData3dPointIndex object (the type of the index needs to match the type of the current elevationData). Chart3dDataView’s dataIndexToCoord method is a convenient wrapper for the unpick method.

[bookmark: _Toc531438432]7.4 	dragZValue Method
The dragZValue method in the Chart3dDataView class finds a new Z value for a given point index based on a given pixel position. Given a start point A (for grid data, the index refers to a point on the grid; for point data, it refers to one of the points in the list of series) and a point P on the screen, project the line AP (in 3D-space) onto the line through A parallel to the Z axis to find the Z value that corresponds to P on the projected line.

The dragZValue method returns the new computed z-value. This method takes several parameters:
· data – the data for which this operation is to take place (an instance of either Chart3dGridData or Chart3dPointData).
· index – the data index of the point; for grid data, this must be an instance of JCData3dGridIndex, which corresponds to an X- and Y-grid position specification, while for point data, this must be an instance of JCData3dPointIndex which corresponds to the series and point number of the point.
· both the X- and Y-value of the screen position (in relation to the chart component, not the chart3dArea component).

This procedure can be used to support the interactive modification of a grid or point value. For example, when the user clicks somewhere on the chart, it calls the pick() method of the JCChart3d object to determine the index of the closest point. Then as the mouse is dragged, new pixel values are passed along with the chosen index to dragZValue(), which returns the new Z value for the index. The new Z value can be set on the data source and the chart updated. The edit action contains a built-in implementation of this mechanism.

[bookmark: _Toc531438433]7.5 	gridValue Method
The gridValue method in the Chart3dDataView class returns an estimate of the surface value at (x, y) calculated using bilinear interpolation. The method finds the four closest grid points, interpolates, and returns the estimated Z value. The parameters are:
· data – the internal data object for which this operation is to take place. The data must be grid data (an instance of Chart3dGridData).
· x – the data space X-value.
· y – the data space Y-value.

Ch 7 Protramming User Interaction		2
Ch 7 Programming User Interaction		1

Part
II
Reference
Appendices

 		2
Appendix A JClass PageLayout Design Elements		1
Appendix A
[bookmark: _Toc531438434]Interface Listing
Interface Summary

This appendix summarizes the commonly used JClass Chart 3D interfaces, in alphabetical order.

[bookmark: _Toc531438435]A.1 	Interface Summary

	Name
	Description

	Chart3dDataListener
	A template for event listener interfaces for chart data events.

	Chart3dDataModel
	The core data model interface for JClass Chart 3D.

	Chart3dGridDataModel
	The core grid data model interface for JClass Chart 3D.

	Chart3dPointDataModel
	The core point data model interface for JClass Chart 3D.

	Editable3dDataModel
	Indicates to interested classes that this datamodel is editable.

	HoleValueChart3dDataModel
	An interface used to specify hole values for a JClass Chart 3D data model.

	JCChart3dListener
	Event listener interface for chart events.

	JCContourMapping
	Allows the user to change the default contour level to contour style mapping.

	LabelledChart3dGridDataModel
	An interface used to specify X- labels and Y- labels for a JClass Chart3dGrid data model.

	LabelledChart3dPointDataModel
	An interface used to specify series labels for a JClass Chart3dPoint data model.

Appendix A Interface Listing 		2
Appendix B
[bookmark: _Toc531438436]Object Property Listing
Chart3D ■ Chart3d.Event ■ Chart3d.j2d

This appendix summarizes the JClass Chart 3D properties for all commonly used classes, in alphabetical order.

[bookmark: _Toc531438437]B.1 	Chart 3D

B.1.1	Chart3dData

	Name
	Description

	DataOk
	The DataOk property asks: Is the data passed in through the data source in a state in which it can be drawn?

	DataSource
	The DataSource property represents the data source for the internal data object.

	HoleValue
	The HoleValue property holds a special data value which determines where holes are drawn.

	Name
	The Name property, which is optional, holde the name of this data source.

B.1.2	Chart3dDataView

	Name
	Description

	ChartType
	The ChartType property holds the chart type of this dataView.

	Contour
	The Contour property references the JCContour object, which handles contouring and zoning.

	Elevation
	The Elevation property controls the JCElevation object, which determines meshing, shading, ang transparency.

	GridColors
	The GridColors property allows certain facets or bars to have different colors.

	Name
	Description

	Name
	The Name property represents the name of this dataView.

	ZoneData
	The ZoneData property represents the internal zone data object.

	ZoneDataSource
	The ZoneDataSource property represents the zone data source for this dataView.

B.1.3	Chart3dData

	Name
	Description

	ChartStyle
	The ChartStyle property contains the chart style used if the chart type is a scallter plot; contoured and zoned are false.

	NumX
	The NumX property represents the number of X- grid values used. This is a read-only property.

	NumY
	The NumY property represents the number of Y-grid values used. This is a read-only property.

	xGrid
	The xGrid property represents the array of X- grid values. This is a read-only property.

	xLabels
	The xLabels property represents the X- data labels for this gridData object.

	yGrid
	The yGrid property represents the array of Y-grid values. This is a read-only property.

	yLabels
	The yLabels property represents the Y-data labels for this gridDataobject.

	ZValues
	The ZValues property represents the grid of Z values. This is a read-only property.

B.1.4	Chart3dPointData

	Name
	Description

	NumSeries
	The NumSeries property determines the number of series. This is a read-only property.

	Series
	The Series property contains the list of series for this point data object. This is a read-only property.

B.1.5	Chart3dPointSeries

	Name
	Description

	ChartStyle
	The ChartStyle property contains the chart style for this series.

	Label
	The Label property controls the data label for this series and is used in the legend.

	NumPoints
	The NumPoints property represents the number of points for this series. This is a read-only property.

	Points
	The Points property represents the array of points for this series. This is a read-only property.

B.1.6	JCAxis

	Name
	Description

	AnnoFont
	The AnnoFont property represents the annotation font and size for this axis.

	AnnoFontCubeSize
	The AnnoFontCubeSize property represents the annotation font cube size for this axis (this size is measured in thousands of the unit cube size and must be between 0 and 1000).

	AnnotationMethod
	The AnnotationMethod property determines the annotation method.

	AxisId
	The AxisId property determine the axis id number. Usually one of the AXIS_X, AXIS_Y, or AXIS_Z. You can only set this property on creation.

	GridLines
	The GridLines property determine the gridlines on a per plane basis for this axis.

	LabelGenerator
	The LabelGenerator property holds a reference to an object that implements the JCLabelGenerator interface. This interface is used to externally generate labels if the AnnotationMethod property is set to JCAxis.VALUE. Default value is null.

	Max
	The Max property controls the axis maximum value.

	MaxIsDefault
	The MaxIsDefault property determines whether Chart3d is responsible for calculating the maximum axis values. If true, Chart3d calculates the axis max. If false, Chart3d uses the provided axis max.

	Name
	Description

	Min
	The Min property controls the axis minimum value.

	MinIsDefault
	The MinIsDefault property determines whether Chart3d is responsible for calculating the minimum axis value. If true, Chart3d will calculate the axis min. If false, Chart3d will use the provided axis min.

	Origin
	The Origin property is used for Z axis only (for bars and scatter plot drop lines).

	Showing
	The Showing property asks: Is the axis showing?

	Title
	The Title property controls the axis title.

	TitleFont
	The TitleFont property controls the title font and size for this axis.

	TitleFontCubeSize
	The TitleFontCubeSize property controls the title font cube size for this axis (this size is measured in thousandths of the unit cube size and must be between 0 and 1000).

	ValueLabels
	The ValueLabels property is an indexed property containing a list of all annotation specified by the user for an axis.

B.1.7	JCBar

	Name
	Description

	xFormat
	The xFormat property represents the X- bar format.

	xSpacing
	The xSpacing property represents the X- bar spacing.

	xFormat
	The yFormat property represents the Y-bar format.

	ySpacing
	The ySpacing property represents the Y-bar spacing.

B.1.8	JCChart3d

	Name
	Description

	About
	The About property displays contact information for Quest Software in the bean box.

	AllowUserChanges
	The AllowUserChanges property determines whether the user viewing the chart can modify chart values. Used to allow edits to values and changes to parameters via the Customizer.

	Batched
	The Batched property controls whether chart updates are accumulated.

	CancelKey
	The CancelKey property specifies the key used to cancel the current action.

	Chart3dArea
	The Chart3dArea property controls the component that manages the area where thee chart is drawn.

	CustomizerName
	The CustomizerName property specifies the name of the Customizer (used for instantiation).

	DataView
	The DataView property contains a list of dataViews for this chart.

	Footer
	The Footer property controls the footer for this chart.

	FooterLayoutHints
	The FooterLayoutHints property is used to give the layout manager information about the position and size of the footer.

	Header
	The Header property controls the header for this chart.

	HeaderLayoutHints
	The HeaderLayoutHints property is used to give the layout manager information about the position and size of the header.

	Legend
	The Legend property controls the legend for this chart.

	LegendLayoutHints
	The LegendLayoutHints property is used to give the layout manager information abou the position and size of the legend.

	LegendManager
	The LegendManager property controls the default implementation of the legen populator and renderer.

	Pick3dListener
	The Pick3dListener property represents the current list of Pick3dListener’s for this chart.

	Name
	Description

	ResetKey
	The ResetKey property specifies the key used to reset the drawing viewport to its default value.

	WarningDialog
	The WarningDialog property controls whether a doalog will appear when the chart has warning messages.

B.1.9	JCChart3dArea

	Name
	Description

	ActionHandler
	The ActionHandler property is the handler that’s handling any action in progress.

	Axes
	The Axes property contains a list of the X, Y, and Z axis objects.

	Bar
	The Bar property represents the object that controls bar chart only properties.

	InAction
	The InAction property asks: Are we currently in action?

	PlotCube
	The PlotCube property controls the object that controls properties of the plot cube.

	PreferredSize
	The PreferredSize property asks: What is our preferred size? If null, a default size is used.

	Scatter
	The Scatter property controls the object that controls scatter plot-only properties.

	Surface
	The Surface property controls the object that controls surface-only properties.

	View3d
	The View3d property represents an object that controls the X, Y, Z rotation.

	Viewport
	The Viewport property represents an object that allows the user to control the drawing viewport.

	xAxis
	The xAxis represents the axis in the X- direction.

	yAxis
	The yAxis represents the axis in the Y-direction.

	zAxis
	The zAxis represents the axis in the Z direction.

B.1.10	JCChart3dLegend

	Name
	Description

	ContinuousLayout
	The ContinuousLayout property asks: Is layout really continuous?

	DistRange
	The DistRange property controls the constrainsts to place upon the data ranges that appear in the legend.

	GroupGap
	The GroupGap property represents the space between groups in a legend. (Columns when the legend is vertical; row when the legend is horizontal.)

	HorizItemGap
	The HorizItemGap property represents the space between items.

	InsideItemGap
	The InsideItemGap property represents the space between symbol and String inside item.

	LabelGenerator
	The LabelGenerator property holds a reference to the label generator class.

	LayoutStyle
	The LayoutStyle property represents the style to use when layout out ranges.

	MarginGap
	The MarginGap property represents the space between outside and inside of legend.

	UserLabels
	The UserLabels property represents the list of user-specified legend labels.

B.1.11	JCChart3dLegendManager

	Name
	Description

	FieldGap
	The FiledGap property defines the gap between fields in JCMultiColumnStrings.

	OutlineColor
	The OutlineColor property determines the user-specified outline color for legen items.

B.1.12	JCChart3dStyle

	Name
	Description

	LineStyle
	The LineStyle property controls the line style to be used for this chart style.

	SymbolStyle
	The SymbolStyle property controls the sumbol style to be used for this chart style.

B.1.13	JCContour

	Name
	Description

	Contoured
	The Contoured property asks: Draw the contour lines?

	ContourLevels
	The ContourLevels property represents a list of contour levels.

	ContourMapping
	The ContourMapping property represents a mapping of contour levels to contour styles.

	ContourStyles
	The ContourStyles property represtnes a list of contour styles which determine how zones and contour lines are drawn.

	Zoned
	The Zoned property asks: Draw contour zones?

	ZoneMethod
	The ZoneMethod property represents a zoning filling method.

B.1.14	JCContourLevels

	Name
	Description

	IsDefault
	The Default property asks: Are linear contour levels generated automatically (based on numLevels)?

	Levels
	The Levels property represents a strictly increasing array of contour levels.

	NumLevels
	The NumLevels property represents the number of contour levels.

B.1.15	JCContourStyles

	Name
	Description

	FillStyle
	The FillStyle property controls the fill style to be used for this contour style.

	LineStyle
	The LineStyle property controls the line style to be used for this contour style.

	SymbolStyle
	The SumbolStyle property controls the symbol style to be used for this contour style.

B.1.16	JCData3dContourIndex

	Name
	Description

	ContourStyleIndex
	The ContourStyleIndex property controls the index of the contour style selected.

	LowerContour
RangeValue
	The LowerContourRangeValue property represents the lower value of the range for the selected contour.

	UpperContour
RangeValue
	The UpperContourRangeValue property represents the upper value of the range for the selected contour.

B.1.17	JCData3dGridIndex

	Name
	Description

	x
	The X- property controls the X-index of selected data point.

	y
	The Y-property controls the Y-index of the selected data point.

B.1.18	JCData3dIndex

	Name
	Description

	DataView
	The DataView property represents the data view object for the data point that this index references.

	Distance
	The Distance property controls the distance of a selected point from a pixel position.

	Obj
	The Obj property represents the component picked. It could be one of the Chart3Area, Legend, Header or Footer component.

B.1.19	JCData3dPointIndex

	Name
	Description

	Point
	The Point property controls the point index of the selected point.

	Series
	The Series property controls the series index of the selected point.

B.1.20	JCElevation

	Name
	Description

	MeshBottomColor
	The MeshBottomColor property controls the mesh bottom color, in certain cases.

	Meshed
	The Meshed property asks: Are mesh lines drawn?

	MeshTopColor
	The MeshTopColor property controls the mesh top color, which is only drawn in certain cases.

	Shaded
	The Shaded property asks: are facets shaded?

	ShadedBottomColor
	The ShadedBottomColor property controls the shaded bottom color, which is only drawn in certain cases.

	ShadedTopColor
	The ShadedTopColor property controls the shaded top color, which is only drawn in certain cases.

	Transparent
	The Transparent property asks: Are surface/bars transparent? or equivalently: Are hidden lines drawn?

B.1.21	JCGridColor

	Name
	Description

	Color
	The Color property determines the color to give selected bars.

	DataIndex
	The DataIndex property represents the grid index of the selected bar (or row/column or bars).

B.1.22	JCGridLines

	Name
	Description

	LineStyle
	The LineStyle property controls the gridline color, width, and pattern.

	PlaneMask
	The PlaneMask property controls the plane mask.

B.1.23	JCLineStyle

	Name
	Description

	Cap
	The Cap property dictates the cap style to use at the ends of a line.

	Color
	The Color property determines the color used to draw the line.

	Join
	The Join property dictates the join style to use when joining two lines.

	Pattern
	The Pattern property dictates the pattern used to drawn a line.

	Width
	The Width property controls line width.

B.1.24	JCPlotCube

	Name
	Description

	Background
	The Background property determines the plotCube’s background color. If null, the chart3dArea’s background color is used.

	Ceiling
	The Ceiling property determines the plotCube’s ceiling projection.

	Floor
	The Floor property determines the plotCubes’s floor projection.

	Foreground
	The Foreground property determines the plotCubes’s foreground color. If null, the chart3dArea’s foreground color is uses.

	xScale
	The xScale property determines the scale in the X direction.

	yScale
	The yScale property determines the scale in the Y direction.

	zScale
	The zScale property determines the scale in the z direction.

B.1.25	JCProjection

	Name
	Description

	Contoured
	The Contoured property asks: Are contour lines drawn for this projection?

	Zoned
	The Zoned property asks: Are contour zones drawn for this projection?

B.1.26	JCScatter

	Name
	Description

	DropLines
	The DropLines property asks: Are dop lines drawn?

B.1.27	JCSurface

	Name
	Description

	Solid
	The Solid property asks: Should solid “skirts” under the surface be drawn?

	xMeshFilter
	The xMeshFilter property represents the filter value for X mesh lines.

	xMeshShowing
	The xMeshShowing property asks: Are X mesh lines showing?

	yMeshFilter
	The yMeshFilter represents the filter value for Y mesh lines.

	yMeshShowing
	The yMeshShowing property asks: Are Y mesh lines showing?

B.1.28	JCSymbolStyle

	Name
	Description

	Color
	The Color property determines the color used to paint the symbols.

	Shape
	The Shape property determines the shape of symbol that will be drawn.

	Size
	The Size property determines the size of the symbols. Note that a value of zero size means the symbol will not be drawn.

B.1.29	JCValueLabel

	Name
	Description

	Label
	The Label property specifies the text displayed inside the value label.

	TickOnly
	The TickOnly property specifies that only a minor tick is drawn for this label if true.

	Value
	The Value property controls the position of a label in data space along a particular axis.

B.1.30	JCView3d

	Name
	Description

	Perspective
	The Perspective property determines the plot cube perspective value.

	xRotation
	The xRotation property represents the X-rotation angle.

	yRotation
	The yRotation property represents Y-rotation angle.

	zRotation
	The zRotation property reprsetns the Z rotation angle.

B.1.31	JCViewport

	Name
	Description

	HorizontalShift
	The HorizontalShift property controls the horizontal shift as a multiple of the original viewport size.

	Normalized
	The Normalized property asks: Is the viewport normalized?

	PreviewMethod
	The PreviewMethod property controls the preview method.

	Scale
	The Scale property represents the zoom factor.

	VerticalShift
	The VerticalShift property controls the vertical shift as a multiple of the original viewport size.

[bookmark: _Toc531438438]B.2 	Chart3d.Event
 B.2.1	Chart3dDataEvent

	Name
	Description

	Index
	The Index property controls the index object which gives information about which grid or point index affected.

	Type
	The Type property contains the type of change that has happened to the chart data.

[bookmark: _Toc531438439]B.3 	Chart3d.j2d
B.3.1	JCChart3dJava2d

	Name
	Description

	JCChart3dJava2d
	Default constructor, required by Java Beans.

Appendix B Object Property Listing 		2
Appendix B Object Property Listing		1
Appendix C
[bookmark: _Toc531438440]Additional Common JClass Chart 3D
3D Methods
Chart3D ■ Chart3d.Event

This appendix summarizes the 3D properties for all commonly used classes, in alphabetical order.

[bookmark: _Toc531438441]C.1 	Chart 3D

C.1.1	Chart3dDataView

	Name
	Description

	coordToDataCoord
	Same as map(). Converts pixel coordinates to data space coordinates.
Parameters:
x – x value in screen pixels.
y – y value in screen pixels.
Returns:
Point3d instance.

	dataCoordToCoord
	Same as unmap(). Converts data coordinates to pixel coordinates.
Parameter:
point – The point in 3d data space to be transformed.
Returns:
AWT Point object representing the location in screen pixels (relative to the Chart 3D component).

	dataIndexToCoord
	Similar to unpick() for a specific this specific data view.
Converts a JCData3dIndex instance (containing a data view and a point index for either grid data or point data) to pixel values relative to the Chart 3D component.
Parameter:
index – Object representing the index of the point to unpick. This is either a JCData3dGridIndex representing the (x, y) index of grid data point or a JCData3dPointIndex representing the (series, point) index of a point in a point data set.
Returns:
AWT Point object representing the location is screen pixels relative to the Chart 3D component.

	Name
	Description

	coordToDataIndex
	Similar to pick() for a specific data view. Converts pixel values relative to the Chart 3D component to a JCData3dIndex instance representing the index of the picked point. This is either a JCData3dGridIndex representing the (x, y) index of grid data point or a JCData3dPointIndex representing the (series, point) index of a point in a point data set.
Parameters:
x –The X value of screen position.
y – The Y value of screen position.
Returns:
The JCData3dIndex object representing the index of the picked point.

	dragZValue
	Finds a new z value for a given point based on a given pixel position. Given a start point A (for grid data a point on the grid; for point data one of the points in the list of series) and a point P on the screen, project the line AP (in 3D-space) onto the line through A parallel to the z axis and find the z value that corresponds to P on the projected line.
Parameters:
data – The data for which this operation is to take place. It is either an instance of Chart3dGridData or Chart3dPointData.
index – The data index of the point. For grid data, this must be an instance of JCData3dGridIndex, which corresponds to an X- and Y-grid position specification. For point data, this must be an instance of JCData3dPoint index which corresponds to the series and point number of the point.
x – The X- value of screen position.
y – The Y-value of screen position.
Returns:
The new computed z value.

	gridValue
	Given grid data and an (x,y) point on the visible xy plane within the grid, do bilinear interpolation using the four closest grid points and return the corresponding z value.
Parameters:
data – The internal grid data object. This can be retrieved from
a Chart3dDataView object via getElevationData() or
getZoneData().
x – The X- data-space value
y – The Y-data-space value
Returns:
The interpolated z value. Returns the data's hole value if an error occurs.

C.1.2	Chart3dGridData

	Name
	Description

	getX
	Return the X- value at the specified index.

	getXClosest
	Returns the index that contains the X- value xlosest to the specified value.
Parameter:
x – The value for which the closest index should be found.

	getY
	Returns the Y-value at the specified index.

	getYClosest
	Returns the index that contains the Y-value closest to the specified value.
Parameter:
y – The value for which the closest index should be found.

C.1.3	Chart3dPointData

	Name
	Description

	getPoint
	Returns the point indexed by pointNum in the series indexed by seriesNum.
Parameters:
seriesNum – The series index of the point wanted.
pointNum – The point index of the point wanted.
Returns:
The point indexed by series and point.

C.1.4	Chart3dPointSeries

	Name
	Description

	getPoint
	Returns the point in the points array indexed by point.
Parameters:
point – The index of the point to be returned.
Returns:
The point indexed by point.

C.1.5	JCAxis

	Name
	Description

	getValueLabel
	Retrieves the value label for the specified value from the list of user-specified value labels.
Parameters:
value – Data value corresponding to the value label.
Returns:
JCValueLabel instance.

C.1.6	JCChart3d

	Name
	Description

	addChart3d
Listener
	Adds listener to changes in JClass Chart 3D. Called after zoom, translate, scale, rotate, or edit (interactive only).
Parameter:
l – The listener to be added.

	getDrawingArea
	Gets the drawing area represented by this chart.
Returns:
Rectangle object containing drawing area.

	getDrawingArea
Height
	Gets the height of the drawing area represented by this chart.
Specified by:
getDrawingAreaHeight in interface
com.klg.jclass.util.legend.LegendComponent
LayoutUser.
Returns:
The height of the drawing area.

	getDrawingArea
Width
	Gets the width of the drawing area represented by this chart.
Specified by:
getDrawingAreaWidth in interface com.klg.jclass.util.legend.LegendComponent
LayoutUser.
Returns:
The width of the drawing area.

	getLayoutHints
	Sets and gets layout hints for chart children. Hints are rectangle objects. A value of Integer.MAX_VALUE in the rectangle's members indicates to calculate default values during layout. Other values indicate to the layout to use that value. For example, a rectangle with members x=5, y=10, width=MAX_VALUE, and height=200, would indicate to the layout mechanism that the chart child should be placed at (5,10), have a height of 200, and use the default width. Layout hints are only used by the DefaultChartLayout layout manager.
Parameter:
child – Chart child – either the chart3dArea, legend, header, or footer.
layoutHints – Rectangle object containing the desired layout hints.

	getUI
	Returns and sets the UI for JCChart3d.
Overrides:
setUI in class javax.swing.JComponent.
Parameter:
newUI – The new user interface object.

	getUIClassId
	Returns the UIClass ID for JCChart3d.
Overrides:
getUIClassID in class javax.swing.JComponent.

	Name
	Description

	isProjection
	Is the surface represented by the first dataView a 3d view or a 2d projection?
Returns:
A Boolean indicating whether the first dataView is a 2D projection or not.

	pick
	Given a screen position in pixels, returns a JCData3dIndex object that represents the index of the closest point in the elevation data set of the specified ChartData3dView instance. If no data view is supplied, all data views are considered when finding the closest point (only one dataView is currently supported). If the data in a data view is being updated when pick() is called, the result may be incorrect.
Parameters:
p – Pick point in pixels relative to the JCChart3d object
dataView – Data view on which to perform pick; if null, all data views are used (only one dataView is currently supported).
Returns:
The JCData3dIndex object representing the index of the picked point. This is either a JCData3dGridIndex representing the (x, y) index of grid data point, a JCData3dPointIndex representing the (series, point) index of a point in a point data set, or a JCData3dContourIndex representing a contour range.

	printAll
	Prints this component and all of its subcomponents.
Overridden from java.awt.Component, but should be used in the same way.
Overrides:
printAll in class javax.swing.JComponent.
Parameter:
g – The graphics object used to paint.

	recalc
	Recalculates the entire chart if it has been marked for recalculation.

	removeChart3d
Listener
	Removes listener to changes in JClass Chart 3D from list of listeners.
Parameter:
l – The listener to be removed.

	reset
	Performs a reset on the chart. Returns to the chart3d its default dataport.

	snapshot
	Takes a snapshot of the current chart and places it in an image of the specified type. The image types are as specified in the BufferedImage class. ufferedImage.TYPE_INT_ARGB is a good default for representing many possible colors. If using fewer than 256 colors, BufferedImage.TYPE_BYTE_INDEXED may prove to generate faster and smaller images.
Parameter:
imagetype – The type of image to write to, as defined in the java.awt.image.BufferedImage class.
Returns:
Image object containing snapshot of chart.

	Name
	Description

	upick
	Returns the position in screen pixels of a particular point in a particular data set (grid data or point data).
Parameters:
dataView – The data view containing the specified series.
index – The data index of the point. This is either a JCData3dGridIndex representing the (x, y) index of grid data point or a JCData3dPointIndex representing the (series, point) index of a point in a point data set.
Returns:
AWT Point object representing position in screen pixels relative to the JCChart3d object or null if the point does not exist.

	update
	Forces the chart to re-layout and recalculate.

	updateUI
	Updates for UI for JCChart3d.
Overrides:
updateUI in class javax.swing.JComponent.

C.1.7	JCChart3dArea

	Name
	Description

	getAxis
	Sets and returns the axis based on the given axisId.
Parameter:
axisId – The axis ID (either AXIS_X, AXIS_Y, or AXIS_Z).

	getDrawingArea
	Gets the bounding rectangle of the component's drawing area(its area minus the shadows and insets).
See Also:
JComponent.setBorder(javax.swing.border.Border).

	getMinimumSize
	Returns the minimum size for the chart area.
Overrides:
getMinimumSize in class javax.swing.JComponent.
Returns:
A Dimension object containing the minimum size.

	recalc
	If necessary, forces recalculation of the chart area.

	reset
	Returns the chart back to the default viewport settings.

C.1.8	JCContour

	Name
	Description

	contourIndex
	Returns the contour style index that corresponds to this level. This mapping is based on an even distribution of contour styles through the number of levels.
Specified by:
contourIndex in interface JCContourMapping.

C.1.9	JCContourLevels

	Name
	Description

	getLevelFromValue
	Calculates the contour level for this value.
Note that we return a value between 0 and numLevels (inclusive - there should be one more contourStyle than contour level).
Parameter:
value – The data value from which a contour level is calculated.

C.1.10	JCPlotCube

	Name
	Description

	hasCeilingProjection
	Does this PlotCube have a ceiling projection?

	hasFloorProjection
	Does this PlotCube have a floor projection?

	hasProjections
	Does this PlotCube have any projections?

[bookmark: _Toc531438442]C.2	Chart3d.Event
C.2.1	Chart3dGridDataEvent

	Name
	Description

	getX
	Method which returns the X-index of the affected data. Returns -100, if all X- values are affected.
Returns:
index the X-index affected.

	getY
	Method which returns the Y-index of the affected data. Returns -100, if all Y-values are affected.
Returns:
index the Y-index affected.

C.2.2	Chart3dPointDataEvent

	Name
	Description

	getPoint
	Retrieves the point index associated with the event.
Returns:
int the index of the point affected. Returns -100 if all points are affected.

	getSeries
	Retrieves the series index associated with the event.
Returns:
int the index of the series affected. Returns -100 if all series are affected.

Appendix C Additional Common JClass Chart 3D 3D Methods 		2
Appendix C Additional Common JClass Chart 3D 3D Methods		1
image3.emf

image74.emf

image75.png
Rotation

* Pressxy.z e orntose-
lect an axis. Selected axis
defaults to none (or).

« Press Ctl and hold down
BT

« Move mouse counter-clock-
wise to rotate view clock-
wise f no X- or Yoaxs is
selected. Otherwise move
mouse perpendicular to the
selected axis.

Translation

« Press Shiftand
hold down MBiboth mouse
buttons.

« Move mouse to
shiftthe chart

Scaling
* Press Altand
hold down MB1both mouse
buttons:
* Move mouse down
fozomin
* Move mouse up
1o z00m out

Return to Default

 Press T

« Allscaling, translation,
‘and zooming removed

Zoom

" Press Cirl and Shiftand
hold down MBileft mouse:
button

« Move mouse to select
the area to zoom o

7300]
1009

| oo

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image31.emf

image32.emf

image33.emf

image34.emf

image35.emf

image36.emf

image37.emf

image38.emf

image39.emf

image40.emf

image41.emf

image42.emf

image43.emf

image44.emf

image45.emf

image46.emf

image47.emf

image48.emf

image49.emf

image50.emf

image51.emf

image52.emf

image53.emf

image54.emf

image55.emf

image56.emf

image57.emf

image58.emf

image59.emf

image1.png
QUEST
SOFTWARE®

image60.emf

image61.emf

image62.emf

image63.emf

image64.emf

image65.emf

image66.emf

image67.emf

image2.png
®JClass’ DesktopViews 6.4.2

image68.emf

image69.emf

image70.emf

image71.emf

image72.emf

image73.emf

