
How to aggregate your Nipper Audit
Reports in Elasticsearch and Explore
the Data in Kibana

titania.com

Published May 2022

© Titania Limited 2022, All Rights Reserved

This document is intended to provide advice and assistance for the installation
and running of Nipper software. While Titania takes care to ensure that all the
information included in this document is accurate and relevant, customers are
advised to seek further assistance from our support staff if required.

No part of this documentation may be copied or otherwise duplicated on any
medium without prior written consent of Titania Limited, publisher of this work.

The use of Nipper software is subject to the acceptance of the license agreement.

Titania Limited
Security House
Barbourne Road
Worcester
WR1 1RS

Telephone: (+44)1905 888 785
Technical Support: support@titania.com
Licensing: enquiries@titania.com
Nipper Support: https://www.titania.com/support/nipper-support

Nipper and Elastic Integration

Reducing your mean time to detect misconfigurations
and vulnerabilities in firewalls, switches and routers,
Titania Nipper accurately audits network devices,
prioritizes risks and provides exact technical fixes to
help remediate issues.

Nipper’s accurate audit data – such as your detailed
compliance posture against standards including DISA
STIG, DHS CDM/NIST 800-53 and PCI – can now be
injected into the Elastic Stack via JSON, where the
combined solution provides greater scope to analyze
and remediate large numbers of your machines on a
daily basis.

The Kibana dashboard then gives you the power to
examine your security posture from different angles,
filtering by categories of error and drilling down to
precise detail about devices/models impacted and
how to mitigate risks.

This user guide shows you step-by-step how to
aggregate your Nipper audit reports in Elasticsearch
and use your Kibana dashboard to explore the data.

Table of Contents
Contents

Prerequisites for Aggregating Nipper Audit
Reports in Elasticsearch

Step 1
Configuring Nipper to Emit JSON in the Correct Format

Step 2
Running an Audit

Step 3
Creating the Elastic Index

Step 4
Use Logstash to Inject Nipper Output into the Elasticsearch Index

Step 5
Creating a Kibana Index Pattern

Step 6
Exploring the Data

Conclusion and Further Help

3

4

4

5

6

7

8

11

12

3

Prerequisites for Aggregating Nipper Audit Reports in Elasticsearch

Before you begin, please ensure you have completed
the prerequisite technical set up:

 » Download the digital version of this guide from the
support section of the Titania website for a link to
scripts you will need to download (a zip file called
Nipper_Elastic_Ingest),

 » Nipper (v 2.6.3 or above) is licensed and installed
on your local Windows 10 machine,

 » WSL is configured and available to run Logstash,

 » Elastic and Kibana are installed and running on
your local machine*, there is no security on the Elastic
Index, and

 » Docker Desktop is installed on Windows 10 (a
powershell script is provided in the Nipper_Elastic_
Ingest zip file to pull and run the containers).

Logstash expects JSON in NDJSON. This means that each
JSON Object appears on a separate line in the file, and not
encapsulated in an array.

In order to configure Nipper to emit the JSON in the correct
format you need to:

 » Open Nipper and click ‘Settings’
 » Click the ‘Logging’ icon and open the ‘File’ tab
 » Ensure that:

 » ‘Enable logging to File’ is checked
 » The file path to the output file is OK
 » ‘Compact JSON’ is selected from the dropdown
 » ‘Stream output’ is checked, and
 » ‘Select All’ Logging Trigger Levels is checked

 » Finally, click ‘OK’ to confirm the settings.

Step 1
Configuring Nipper to Emit JSON in the
Correct Format

New to Nipper?
You can download the Nipper Beginner’s Guide
from the Titania website: titania.com

» If you need to install Nipper:

» Go to the ‘Downloading Nipper’ section of the
Nipper Beginner’s Guide

» If you need to install your license:

» Go to the ‘Downloading your license’ section of the
Nipper Beginner’s Guide

» To audit your devices and generate reports:

» Open Nipper and select ‘New Report’ on the Nipper
homepage. Step-by-step guides to generating each
report can also be found on the website:
www.titania.com/support

* If Elastic and Kibana are installed remotely, the URLs provided in the digital version of
this guide will need to be updated accordingly, and the Logstash conf script adjusted to
connect to the instance. An example file ‘ls_with_creds.conf’ is provided in the Nipper_
Elastic_Ingest zip file.

For further information on installing the Elastic stack, please
refer to the Elastic website: elastic.co

Step 2
Running an Audit

* Note there is no ‘[‘ opening bracket. Just a ‘{‘ opening bracket, and the JSON record is all on one line.

The contents of nipper.json should look similar to the fragment below, which is shown as an example:

 » Now click the ‘Reports’ icon to choose the audit you
wish to run

 » Follow the onscreen instructions to choose the
network device configurations you wish to include in
your reports scope

 » Click ‘Finish’
 » The file will now appear in the specified directory.

If there are lots of devices being audited and/or lots of
audit types being conducted, it can take time to write out
the file after the audit is complete.

Listing the size of the file a few times until it stops
growing in size ensures that the process is complete.

Please note Nipper will append to this file if further
audits are performed, so you may wish to move/delete
the file before performing a subsequent audit.

5

 » Navigate to your Kibana dashboard:
http://localhost:5601/app/kibana#/home?_g=()

PUT /nipper
{
 “settings”: {
 “index”: {
 “number_of_shards”: 1,
 “number_of_replicas”: 0,
 “mapping.depth.limit”: 500,
 “mapping.total_fields.limit” : 50000,
 “mapping.nested_fields.limit” : 50000
 }
 },
 “mappings”: {
 “properties”: {
 “date_time”: {
 “type”: “date”,
 “format”: “EEE MMM d[d] HH:mm:ss yyyy”
 },
 “references”: {
 “type” : “object”,
 “enabled” : “false”
 },
 “advisories”: {
 “type” : “object”,
 “enabled” : “false”
 },
 “findings”: {
 “type” : “object”,
 “enabled” : “false”
 },
 “summary”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 },
 “check”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 },
 “fix”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 },
 “description”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 },
 “impact”: {
 “properties”: {
 “description”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 }
 }
 },
 “reccomendation”: {
 “properties”: {
 “description”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 }
 }
 },
 “ease”: {
 “properties”: {
 “description”: {
 “type”: “text”,
 “fields”: {
 “keyword”: {
 “type”: “keyword”,
 “ignore_above”: 8192
 }
 }
 }
 }
 }
 }
 }
}

 » Select the ‘Dev Tools’ icon from the left hand toolbar
 » Now configure the index and apply a mapping.
The mapping extends the index length of some fields, and
masks out those not needed.

This action creates an index called ‘nipper’ with the correct
mappings to accept the data from the tool.

If the index already exists, then you will get an error in the right
hand pane after clicking ‘Run’.

Step 3
Creating the Elastic Index

Locate the .txt file script (shown right) in the
Nipper_Elastic_Ingest zip file to copy and paste into the
Console panel.

 » Once the text has been pasted into the console,
click anywhere inside the text, then click the ‘Run’ arrow in the
top right hand corner.

 » If you wish to start afresh, issue a ‘DELETE /nipper’ on the
Console pane, and then try again.

 » Locate the .exe file named ‘I.conf’ (shown right) in the
Nipper_Elastic_Ingest zip file.

 » Now invoke Logstash:
cat nipper.json | logstash -f l.conf

 » The nipper.json data is now in Elastic.

input { stdin{} }
filter {
 json {
 source => “message”
 }
}
output {
 elasticsearch {
 hosts => [“localhost:9200”]
 index => “nipper”
 }
}

cat nipper.json | logstash -f l.conf --path.data . -l .
OpenJDK 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by com.headius.backport9.modules.Modules (file:/usr/share/logstash/logstash-core/lib/jars/jruby-complete-9.2.8.0.jar) to field java.io.FileDescriptor.fd
WARNING: Please consider reporting this to the maintainers of com.headius.backport9.modules.Modules
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
Thread.exclusive is deprecated, use Thread::Mutex
WARNING: Could not find logstash.yml which is typically located in $LS_HOME/config or /etc/logstash. You can specify the path using --path.settings. Continuing using the defaults
Could not find log4j2 configuration at path /usr/share/logstash/config/log4j2.properties. Using default config which logs errors to the console
[INFO] 2020-01-31 18:01:44.570 [main] writabledirectory - Creating directory {:setting=>”path.queue”, :path=>”./queue”}
[INFO] 2020-01-31 18:01:44.593 [main] writabledirectory - Creating directory {:setting=>”path.dead_letter_queue”, :path=>”./dead_letter_queue”}
[WARN] 2020-01-31 18:01:45.367 [LogStash::Runner] multilocal - Ignoring the ‘pipelines.yml’ file because modules or command line options are specified
[INFO] 2020-01-31 18:01:45.386 [LogStash::Runner] runner - Starting Logstash {“logstash.version”=>”7.5.2”}
[INFO] 2020-01-31 18:01:45.428 [LogStash::Runner] agent - No persistent UUID file found. Generating new UUID {:uuid=>”5b1127a5-1139-4949-aec4-c18a3e88fbfa”, :path=>”./uuid”}
[INFO] 2020-01-31 18:01:47.634 [Converge PipelineAction::Create<main>] Reflections - Reflections took 66 ms to scan 1 urls, producing 20 keys and 40 values
[INFO] 2020-01-31 18:01:49.890 [[main]-pipeline-manager] elasticsearch - Elasticsearch pool URLs updated {:changes=>{:removed=>[], :added=>[http://localhost:9200/]}}
[WARN] 2020-01-31 18:01:50.199 [[main]-pipeline-manager] elasticsearch - Restored connection to ES instance {:url=>”http://localhost:9200/”}

[INFO] 2020-01-31 18:01:50.475 [[main]-pipeline-manager] elasticsearch - ES Output version determined {:es_version=>7}

[WARN] 2020-01-31 18:01:50.482 [[main]-pipeline-manager] elasticsearch - Detected a 6.x and above cluster: the `type` event field won’t be used to determine the document _type {:es_version=>7}
[INFO] 2020-01-31 18:01:50.563 [[main]-pipeline-manager] elasticsearch - New Elasticsearch output {:class=>”LogStash::Outputs::Elasticsearch”, :hosts=>[“//localhost:9200”]}

[INFO] 2020-01-31 18:01:50.647 [Ruby-0-Thread-5: :1] elasticsearch - Using default mapping template
[WARN] 2020-01-31 18:01:50.714 [[main]-pipeline-manager] LazyDelegatingGauge - A gauge metric of an unknown type (org.jruby.specialized.RubyArrayOneObject) has been create for key: cluster_uuids.
This may result in invalid serialization. It is recommended to log an issue to the responsible developer/development team.
[INFO] 2020-01-31 18:01:50.726 [[main]-pipeline-manager] javapipeline - Starting pipeline {:pipeline_id=>”main”, “pipeline.workers”=>8, “pipeline.batch.size”=>125, “pipeline.batch.delay”=>50, “pipeline.
max_inflight”=>1000, “pipeline.sources”=>[“/c/example/l.conf”], :thread=>”#<Thread:0x6dd7bd2c run>”}

[INFO] 2020-01-31 18:01:50.768 [Ruby-0-Thread-5: :1] elasticsearch - Attempting to install template {:manage_template=>{“index_patterns”=>”logstash-*”, “version”=>60001, “settings”=>{“index.
refresh_interval”=>”5s”, “number_of_shards”=>1}, “mappings”=>{“dynamic_templates”=>[{“message_field”=>{“path_match”=>”message”, “match_mapping_type”=>”string”, “mapping”=>{“type”=>”text”,
“norms”=>false}}}, {“string_fields”=>{“match”=>”*”, “match_mapping_type”=>”string”, “mapping”=>{“type”=>”text”, “norms”=>false, “fields”=>{“keyword”=>{“type”=>”keyword”, “ignore_above”=>256}}}}}],
“properties”=>{“@timestamp”=>{“type”=>”date”}, “@version”=>{“type”=>”keyword”}, “geoip”=>{“dynamic”=>true, “properties”=>{“ip”=>{“type”=>”ip”}, “location”=>{“type”=>”geo_point”}, “latitude”=>{“type”=>”half_
float”}, “longitude”=>{“type”=>”half_float”}}}}}}}
[INFO] 2020-01-31 18:01:50.965 [[main]-pipeline-manager] javapipeline - Pipeline started {“pipeline.id”=>”main”}
The stdin plugin is now waiting for input:
[INFO] 2020-01-31 18:01:51.130 [Agent thread] agent - Pipelines running {:count=>1, :running_pipelines=>[:main], :non_running_pipelines=>[]}
[INFO] 2020-01-31 18:01:51.792 [Api Webserver] agent - Successfully started Logstash API endpoint {:port=>9600}
[INFO] 2020-01-31 18:01:57.911 [LogStash::Runner] runner - Logstash shut down.

Below it is invoked on a WSL (windows subsystem for Linux)
Ubuntu instance. Note the output to the console issues
some warnings, but completes successfully:

Step 4
Use Logstash to Inject Nipper Output into the
Elasticsearch Index

There is no need to replace the index creation text, just
append it in the Console window, click on it, then click ‘Run’.
Once the index is deleted, you can return to the creation text,
click that, and press ‘Run’ again.

You now have an index with the correct mapping to accept
Titania data.

The next step is to get the data into the index. An easy way
to do this is using Logstash from the Elastic ELK stack. To
do this, Logstash needs a config file.

7

 » Firstly, click on the ‘Settings’ icon in the Kibana
dashboard

 » And click on the ‘Index Patterns’ link

 » Click on the blue ‘Create Index Pattern’ button

 » Now type the name of the index you created into the
index pattern box

 » Click the ‘Next Step’ button

 » Select date_time from the drop down box, and click
the ‘Create Index’ pattern.

Step 5
Creating a Kibana Index Pattern

You don’t have to type the complete name - you
can use wild cards (this helps if you want Kibana
to look over multiple Elastic indexes) - but in this
case, typing nipper* works.

It will tell you Kibana has matched with the Elastic
index called nipper*.

The date_time is the field you mapped to contain
the date of the events in the Nipper JSON output.

You will now see that the index has been created.

 » Next, click on the ‘Discover’ icon on the
left toolbar.

 » Now you should see the data loaded into Elastic.
In this case there are 3221 records.

 » Load in the dashboard

 » And select the ‘Settings’ menu again

If the data you are analysing wasn’t created in the
last 15 minutes, it is likely you will need to change
the time window with the calendar item to see the
data.

9

 » Select the ‘Saved Objects’ link

 » Click the ‘Import Objects’ button

 » Now from the requester, import the
nipper_kibana_dashboard.ndjson provided
in the Nipper_Elastic_Ingest zip file.

 » Select the ‘Dashboard’ icon

 » And finally, click on the Nipper dashboard link.

This file contains the definitions of example
visualisations, as well as a dashboard containing those
visualisations.

 » You will now be presented with a dashboard like this
allowing you to click and filter on the results in the
usual Kibana manner

 » Scroll down the dashboard to see heat maps and
detailed audit findings and vulnerabilities

Step 6
Exploring the Data

Here you can explore your security posture from different
angles, filtering by categories of error and drilling down to
precise detail about devices/models impacted and how
to mitigate risks...

11

If you have followed this guide, you will see how quick
and easy it is to aggregate your Nipper audit reports in
Elasticsearch.

Now you can explore your data in Kibana, prioritize
your risks and use Nipper’s exact technical fixes to help
remediate any vulnerabilities or issues on your network.

Our solution advisors will be more than happy to help
walk you through this or any other auditing processes
with our Nipper software.

Example analytics shows the prioritization of remediation
that can be achieved when audit data is combined with
value chain data on the mission criticality of the device/
network.

 Stay secure and complaint
with Nipper. Find out more.
titania.com/products/nipper/

Conclusion and Further Help

If you would like any help or advice about the steps
or scripts included in this guide, simply contact our
dedicated Support team on:

Tel: (+44)1905 888 785
Email: support@titania.com

About Nipper
Nipper accurately audits the security of firewalls, switches
and routers to detect exploitable misconfigurations that
pose risk to the network, prioritized by criticality. Applying
Nipper’s compliance lens to the findings also provides
the evidence needed to assure compliance with RMFs
including DISA RMF, NIST 800-53/171, STIG, CMMC and
PCI. All findings are output as an easy-to-read report, or
a JSON for integration with SIEM, GRC and other data
visualization systems.

Nipper’s risk remediation advice and exact technical fixes
for misconfigurations also support and accelerate the
process of becoming secure and compliant.

About Titania
Protecting over 25 million people globally, Titania software
is trusted to secure the world’s most critical networks
against preventable attacks. Nipper intelligently automates
configuration auditing to analyze misconfigurations and
validate your network security against the latest risk
management frameworks, assurance and compliance
standards.

titania.com

