
Introduction to eBPF and XDP
support in Suricata
By Éric Leblond, Peter Manev

Stamus Networks

Stamus Networks has created a Network Traffic Analyzer (NTA), which uses network

communications as a foundational data source for detecting security events and married it

with an Intrusion Detection System (IDS), which provides deep packet inspection of network

traffic using a rules-based engine. The combination of these two approaches performed

simultaneously in a single solution provides a level of correlated data never previously

achieved. We then added a Threat Hunting interface to allow security practitioners the ability

to quickly and efficiently search through this security data to examine, validate, and resolve the

security incidents that they face daily.

Suricata

Suricata is a free, open source, mature, fast and robust network threat detection engine. The

Suricata engine is capable of real time intrusion detection (IDS), inline intrusion prevention

(IPS), network security monitoring (NSM) and offline pcap processing. Suricata inspects the

network traffic using a powerful and extensive rules and signature language and has powerful

Lua scripting support for detection of complex threats.

Suricata’s fast paced, community driven, development focuses on security, usability and

efficiency. The Suricata project and code is owned and supported by the Open Information

Security Foundation (OISF), a non-profit foundation committed to ensuring Suricata’s

development and sustained success as an open source project.

CONTEXT

https://www.stamus-networks.com/?utm_source=Scirius-DS&utm_medium=PDF&utm_campaign=Digital-Collateral

22

INTRODUCTION to eBPF and XDP

eBPF stands for extended Berkeley Packet Filter but you probably already knew that. The old

BPF system is used to filter packets on raw sockets and it has been extended to increase its

area of usage. It is indeed now possible to plug an eBPF filter in various places of the Linux

kernel to extract information or act on kernel behavior (See Brendan Gregg's page for more

information). eBPF renders this possible by adding multiple kernel and userspace exchange

methods. The main one is called maps. A map is a data structure shared between the kernel

and the userspace. Both the kernel and userspace can access the map making this a powerful

way to exchange information. Another capability of the eBPF filter is action. Depending on

where it is run, it can tell the kernel to accept a system call or data transfer.

As you can guess, if the kernel can act based on eBPF filter content, it means it can be

programmed in some way. eBPF is in fact a pseudo machine with a custom set of instructions.

As it is not convenient to develop in machine language, a subset of C can be used and the

Clang compiler (and soon gcc) has a special mode that can be used to generate eBPF

bytecode from C code. In terms of code, the kernel passes various data as a parameter

(depending on the hook) to a function and the function implements the wanted algorithm

using, and updating maps if needed, and returns a decision.

eBPF and XDP support was added to Suricata 4.1 thanks to work by your servitor (Eric Leblond)

and contributions from Jesper Dangaard Brouer (RedHat Principal Engineer). This work has

been completed for Suricata 5.0 with the addition of some powerful features.

There are 3 ways eBPF can be used in Suricata. In all of them, the eBPF filter can access the

packet data and parse them to extract information. The first way is eBPF load balancing. The

eBPF filter contains a load balancing function that will be used to dispatch a packet coming on

an interface between all the sockets listening on that interface (fanout). The second way is

eBPF filtering. Instead of using a traditional Berkeley Packet Filter, the kernel will use an eBPF

filter instead. This offers an interesting perspective as maps can be used to introduce dynamic

components into the filtering. We will detail that later. The third usage is XDP for eXtreme Data

Path. In XDP, a eBPF filter is attached to a network interface and it is run against all received

datagrams. The main point here is that it is done before the regular networking that will not be

reached if the eBPF filter asks for a drop.

In Suricata, the main use case is currently to implement a bypass on a Linux raw socket but

some other meaningful use cases can also be implemented.

http://www.brendangregg.com/ebpf.html

33

PACKET FILTERING and eBP

eBPF socket filtering

In this case, the eBPF filter is attached to the raw socket and is deciding what packets need to

be dropped or accepted. The flexibility of eBPF is one of the key points. Programmatic access

to the packet data allows any single pass analysis to be done. Things that were impossible with

traditional BPF can be done easily via eBPF with some C code. One example provided in

Suricata is filtering following a list of VLANs; that was impossible via BPF.

eBPF filtering really shines by leveraging maps. A typical map is a hash table that contains a set

of keys and values. Length in bytes of the keys and values have to be unique in a map and is

defined at declaration. This is really flexible and allows arbitrary keys and values to be used.

Maps can be updated from the eBPF code making it possible to build persistence in the

implemented algorithm. Additionally, the userspace can also dynamically update the maps,

making it possible to completely change the behavior of the filter. One example, with Suricata,

is a filter that blocks all traffic coming from IPv4 addresses stored in the maps. By using a

Linux kernel feature, named pinned maps, it is possible to access the map content via an

external tool. It is thus possible to manage the list of IP address to drop via an external tool

like bpfctrl developed and made public by Stamus Networks.

This is just an example, some more interesting features can be implemented, such as

maintaining a list of services to monitor (IPv4:protocol:port). This could be used to monitor a

farm of containers on a subset of the provided services.

XDP filtering

With XDP filtering, we enter a different dimension. The eBPF code runs in various places

depending on the configuration. If software is just an emulation, the performance advantages

come from driver and hardware modes. In the case of driver mode, the filtering is done inside

the driver code before the Linux networking stack. An early drop is thus really performant. In

the case of hardware, the eBPF code is run inside the network card. This is currently only

supported by a few cards including Netronome.

All the techniques described in the previous section are still valid, the only real change is the

efficiency with which packets are dropped. Primary this process is done before any heavy

treatments are performed on the packet. Suricata 5.0 supports almost all XDP features

including hardware mode.

https://github.com/StamusNetworks/bpfctrl

4

SURICATA FLOW BYPASS with eBPF and XDP

Motivations and concept

Let's start this subject with something pretty self-evident, Suricata is CPU intensive. Tasks such

as analyzing data on 30,000 different signatures is a highly consuming task despite traditional

optimization methods. So, in most cases, the bottleneck is the CPU computation. By

consequence, one core is only able to handle a limited bandwidth, traditional numbers are

around 250mbps to 500mbps per core. Furthermore, as part of its work, Suricata is

reconstructing flow as seen by the hosts. This has an implication with respect to threading. A

packet treatment thread must handle all the packets of a single flow to avoid out of order

packets that would cause the reconstruction to be invalid. If you combine the two elements,

you come to the conclusion that Suricata cannot properly handle a flow that is faster than the

cores supported bandwidth (between 250mbps and 500mbps). We named these flows,

elephant flows. On top of that, the elephant flows are also breaking other flows because it

causes overflow in various ring buffers linked to packet acquisition.

To limit the impact of elephant flows, Eric Leblond and the Stamus Networks team,

implemented a flow bypass (See Stamus Networks blog post announcing the feature). The

concept is to speed up the process for packets locally from bypassed flows or to collaborate

with the capture method to bypass certain packets.

In the case of Linux raw socket, eBPF maps are the technology that can be used to maintain a

table containing the flows to be bypassed. As filtering can be done on a socket (via eBPF filter)

or on the interface via XDP, there are two different mechanisms even if they share some part

of the implementation such as maps management.

Bypass strategy

Suricata comes with a set of bypass trigger methods. One consists of bypassing as soon as the

stream reassembly depth has been reached (which means when Suricata is stopping full

inspection of a stream). The second method is bypassing encrypted packets. Suricata parses

the beginning of the TLS session doing a handshake analysis, once the session switches to

encrypted it triggers a bypass.

eBPF and XDP are greatly extending the capabilities of packet filtering but it requires a certain

degree of C coding skills. Hopefully some use cases will be directly implemented in Suricata

source code to enable some of the benefits from this technology without having to invest

time and effort into C coding.

https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/

5

One other method is based on the `bypass` keyword. A rule can be written to trigger a bypass

when it matches allowing greater flexibility, for instance, only bypassing for certain websites or

for services such as a backup service or Netflix. In the later case, it is possible to use Suricata

traffic ID ruleset to bypass all flows coming from a service like Netflix.

eBPF bypass

Initial implementation of eBPF bypass was done via socket filtering that occurred after the

network stack handles the packet. There isn’t much to be said about this method. It works but

it is not optimal as the filtering is done in a late step as shown on the following figure:

Figure 1. eBPF bypass in Suricata

The kernel has already done a complete treatment of the packet creating internal data

structure. This single step is costly at high rate and can even be a bottleneck. Thus

performance could be improved by doing the filtering at an earlier stage of packet

ingestion inside the kernel.

Network Interface

Driver

Network Stack

AFP_PACKET Socket
eBPF

Suricata

Kernel

Userspace

Query
Accounting

Manage

Flow
Table

https://github.com/OISF/suricata-trafficid

6

XDP bypass

This is what is done via XDP bypass as shown on the following figure:

If socket mode is not interesting, the driver and moreover the hardware bypass are really

interesting. Driver mode is supported for all network cards with XDP support (this includes

Intel, Mellanox, Netronome). The only cards supporting the bypass code in hardware mode are

Netronome cards. Getting it to work requires a custom eBPF filter but it can be obtained via

the code provided in Suricata 5.0 and beyond via the define settings in eBPF source code.

Figure 2. XDP bypass in Suricata

Network Interface

Driver

Network Stack

AFP_PACKET Socket

eBPF

Suricata

Kernel

Userspace

Query
Accounting

Manage

Flow
Table

7

XDP bypass and IPS mode

Suricata can create a software bridge between two interfaces.

Figure 3. Suricata IPS mode in AF_PACKET

Figure 4. Suricata IPS mode with XDP Bypass

This method is performant and often used to provide high speed IPS capabilities. As dropping a

packet in IPS mode has much more impact than in IDS mode, getting the help of the bypass

technology seems really tempting but there is a problem. Suricata is doing the copy from one

interface to another so as eBPF is dropping the packet this will not work.

XDP supports a special decision to send a packet to another interface. By updating the eBPF

code to forward instead of dropping, we manage to have bypass in XDP mode. What is even

more interesting is that we get super high-speed forwarding that bypasses the kernel and

realize, in fact, a direct transfer from one network card to another card.

Packet

Packet

Packet

Packet

Detection
Detection

eth0
eth1

RX

RXTX

TX

AF_Packet

AF_Packet

Raw
Socket

Raw
Socket

Packet

Packet

Packet

Packet

Detection
Detection

eth0
eth1

RX

RXTX

TX

AF_Packet

AF_Packet

Raw
Socket

Raw
Socket

Bypass path

Bypass path

8

One of the problems of Suricata in AF_PACKET IPS mode is that without running Suricata the

bridge is not active anymore and traffic is blocked. Thus, stopping or even restarting Suricata

will result in a service interruption. To fix this issue, a global switch in the XDP filter can be

activated via a pinned map. When the value in the map is not zero, the XDP filter transfers all

packets from card to card. When the value is 0, the packets are sent to Suricata if they are not

part of a bypassed flow. A tool like bpfctrl can be used to change the value in the global switch

map allowing a watchdog process to limit the impact of a failing Suricata.

ADVANCED XDP USAGES in SURICATA

Pinned maps and XDP bypass

When Suricata starts, it only sniffs the end of the flows already in progress. This means there

are a bunch of incomplete flows that will not be fully understood by Suricata. This is

something we want to avoid as this will cause some unnecessary work by Suricata. If we look

at that problem from a bypass perspective, we clearly see that it would be useful for Suricata

to have bypassed flows surviving a Suricata restart. This is in fact possible with XDP because

the XDP filter is attached to the interface and does not disappear with Suricata process exit.

The only problem is that we will end up with ghost flows if Suricata does not have a way to

restore the flow table. It is currently done in Suricata 5.0 by using pinned maps and by

dumping the flow tables at start to reconstruct the internal state inside Suricata. Doing so,

Suricata manages to keep the flow table upon restart and avoid getting really confused at start.

Content bypass

One of the bypass methods relies on bypassing a TLS session as soon as it switches to

encrypted mode. This allows Suricata to analyze the TLS handshake properties and to avoid

seeing encrypted packets where not much can be done. Furthermore, thanks to the counters

available in the flow table, Suricata is not losing the accounting of the bypassed TLS sessions.

This is quite convenient and at least for long flows, really efficient.

Efficiency is really lower for short TLS flows because they mostly fit into the socket ring buffer.

A partial fix consists of programming a basic TLS parser in the eBPF code to detect encrypted

messages and drop them in XDP. This allows early drop and releases pressure on the ring

buffer. This method needs to be used with care as it offers a way to bypass by using a traffic

pattern. Limiting that to a list of trusted servers may be a nice idea.

https://github.com/StamusNetworks/bpfctrl

9

CPU redirect

Network cards can do flow load

balancing based on a hash

method. This mechanism is

known as Receive Side Scaling

(RSS) and is used to distribute the

packets on different queues thus

splitting the workload in multiple

units. The issue here is that the

flow load balancing designed in

the network card is not properly

structured for Suricata. This

methodology uses asymmetric

load balancing whereas Suricata

requires symmetric load balancing

to get all the packets of a single

flow handled within a single

thread. The result is that "NIC

default" RSS load balancing cannot

be used on most cards. Figure 5. Problem of asymmetric hashing

By getting only one queue this means one single CPU will do the whole kernel work on the

incoming packet. This will be a problem.

Jesper Dangaard Brouer came up with a solution for this problem by introducing a new

feature in XDP named CPU redirect. By using this feature the eBPF code can distribute the raw

datagram to selected CPUs that will handle the kernel tasks. Consequently, the CPU that

receives the packet from the NIC is not the bottleneck anymore as it is now only dispatching

the work to other cores.

From
client

Other
flows

Other
flows

Other
flows

Other
flows

Other
flows

To
client

To
client

Thread 1 Thread 2

To
client

To
client

From
client

O r d e r i n s t r e a m e n g i n e

Netronome RSS load balancing

The Netronome card allows RSS load balancing to be programmatically done in the eBPF

code. This is used in Suricata to realize an IP pair load balancing. The advantage of this load

balancing is that it is fragmentation resistant as even IP fragmented packets will have the same

hash. This avoids the issue seen with IP port load balancing where fragments do not have the

same hash. The efficiency of the load balancing may be lower than the one with port but at

least we don't end up with packets on wrong threads.

10

Tunnel decapsulation

This feature is also related to load balancing. In some cases, the network is using tunnel like

GRE or similar to transport traffic from a set of flows. This results in elephant flows that cannot

be properly load balanced by Suricata. XDP offers the capacity to shift the start of a packet. By

doing that we manage to strip out the tunnel part in XDP and directly send to the kernel the

inner packets. The result is that load balancing is done on the inner flows and the elephant

flow is not seen anymore. This technique is currently implemented for the GRE protocol via a

dedicated XDP filter, but other protocols could be implemented too.

eBPF and XDP are a way to fix some problems associated with high performance. It is not the

magical answer to every performance issue, and it requires some work. It is, however, a key

component to redesign the way traffic capture is built. This area is evolving fast and the next

big step will be the new AF_XDP capture method that provides a fast and efficient capture

method. It is currently lacking some important features for Suricata capture but they should be

added soon to the Linux kernel and this new capture method should be available in a coming

release of Suricata.

Technical details and configuration information can be found in the eBPF and XDP page of the

official Suricata documentation.

eBPF and XDP features present in Suricata 5.0 introduce interesting possibilities in terms of

dynamic behavior and they will help Suricata to behave more correctly when under stress. A

lot of use cases are yet to reveal themselves; we hope this document will give you some ideas.

Don't hesitate to contact us at contact@stamus-networks.com if you wish for more

information about the subject or want to discover Stamus Networks products.

CONCLUSION

https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html

11

Éric Leblond

Chief Technology Officer

Éric is an active member of the security and open source

communities. He is a Netfilter Core Team member working mainly

on communications between kernel and userland. He works on

the development of Suricata, the open source IDS/IPS since 2009

and he is currently one of the Suricata core developers.

Peter Manev

Chief Strategy Officer

Peter has 15 years of experience in the IT industry, including

enterprise-level IT security practice. He is an adamant admirer and

explorer of innovative open source security software. He is the

Lead QA on the development of Suricata, the open source

IDS/IPS.

ABOUT the AUTHORS

1212

https://www.stamus-networks.com/?utm_source=Scirius-DS&utm_medium=PDF&utm_campaign=Digital-Collateral
https://www.stamus-networks.com/?utm_source=Scirius-DS&utm_medium=PDF&utm_campaign=Digital-Collateral
mailto:contact@stamus-networks.com

