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Executive Summary 
 
This white paper seeks to quantify the impacts of large flexible data center loads located in 
West Texas on the overall carbon emissions of the Texas electricity grid. A capacity expansion 
model of the Texas electricity grid was utilized to examine how the grid would evolve out to 
2030 under four scenarios; 1) a base case with no data centers, 2) 5 GW of inflexible data 
centers, 3) 5 GW of flexible data centers, and 4) 5 GW of more flexible data centers. The results 
of this analysis indicate that: 
 

• Adding additional data center load to the grid incentivizes more wind and solar to be 

built than the base case of no data centers. 

 

• If the additional data center load is inflexible, the model also builds more natural gas 

than the base case, but if the data centers are flexible, less natural gas is built. 

 

• Operating the data centers in an inflexible manner results in more carbon emissions 

than the base case. 

 

• Operating the data centers in a flexible manner can result in a net-reduction of carbon 

emissions from the base case. 

 

• This analysis estimates that, to reduce carbon emissions, data centers will have to shed 

at least 13-15% of their load annually in an intelligent way. 

 

• Beyond the possible carbon emissions reductions, this analysis also found that the 

additional flexibility of the data centers can increase the resiliency of the grid by 

reducing demand during high-stress times (low reserves) on the grid. 
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Introduction 
With the growth of the digital services industry comes increased demand for data center 
operations, including even faster recent growth related to increased teleworking during the 
COVID-19 pandemic. While efficiency gains and hyperscale technologies have lowered some of 
the initial data center energy growth estimates, data centers still consume roughly 3% [1] of 
total delivered electricity globally, and close to 2%1 in the US [2].  
 
While data center operations drive many of the real-time needs of modern life, other 
operations, such as cryptocurrency mining have received significant criticism for their large 
amount of energy use and resulting carbon emissions [3]. All things equal, increasing energy 
use will increase carbon emissions, unless the additional energy consumed is met by, or offset 
with, carbon-free energy.  
 
This analysis seeks to understand the carbon emissions tradeoffs of additional data center 
operations on an electric grid. In particular, we test how adding flexible load shed capabilities to 
these additional demands impacts the evolution of an existing electric grid and its associated 
total emissions and emissions intensity of its electricity. We present this analysis as a case study 
and utilize the Texas grid as the testbed.  
 
The deregulated electricity grid of Texas is dynamic and evolves quickly. Texas consumes almost 
twice as much electricity as the next-highest state [4], and while overall electricity growth in the 
US has been relatively flat, Texas is expected to see considerable growth in the electricity 
sector. The Electric Reliability Council of Texas (ERCOT), the grid that serves roughly 90% of 
Texas, expects electricity consumption to increase over 25% from 2018 to 2033 [5].  
 
Texas is also home to multiple data-driven companies and include massive campuses for 
Facebook, Apple, Amazon, Tesla, among others. Companies often find it advantageous to move 
operations to Texas given the relatively lower cost of living and the ease of procuring low-cost, 
wholesale, and renewable and clean energy through the deregulated market structure.  

Methodology 
The following is a brief description of the model and methodology description used for the 
analysis in this report. A more detailed description of each can be found in Appendix A. 
 

The model 
This analysis modeled the ERCOT grid by utilizing a customized version of the SWITCH 2.0 open-
source capacity expansion model [6]. A capacity expansion model is an optimization program 
that makes decisions about the operation, retirement, and construction of power plants, 
transmission lines, and other electric grid assets. It accomplishes this on both short (grid 
operations) and long (system planning) timescales. On the short time scale, the model 
dispatches the power plant fleet so that electricity generation and electricity demand are 

 
1 As of 2014. 
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balanced for each hour of the simulation. On the long-time scale, the model builds new power 
plant and transmission capacity to 1) provide enough power plants so that electricity 
generation and demand can be balanced in future years, and 2) enable the composition of the 
power plant fleet to evolve in ways that minimize the total system cost.  
 
To increase the level of detail in the final results, the power plant capacities from the SWITCH 
capacity expansion model are used to run an 8,760-hour unit-commitment and dispatch 
simulation for each of the simulated years using the PyPSA open-source dispatch model [7]. By 
increasing the time resolution to include every hour of the year, the PyPSA output provides 
greater detail about the power plant dispatch, production cost, transmission development, 
transmission congestion, renewables curtailment, emissions, and other data. 
 

ERCOT-specific data 
The baseline year for the grid optimization analysis was 2018. Baseline year data include both 
spatial load and renewable generation profiles from the same year, which is important because 
the same meteorological conditions that drive renewable generation also impact load. All data, 
including the existing power plant fleet, used in this analysis are based on public ERCOT reports. 
Future fuel price and technology costs are based on the National Renewable Energy 
Laboratory’s NREL Annual Technology Baseline (ATB) and the US Energy Information 
Administration’s (EIA) Annual Energy Outlook. 

 

Transmission 
Figure 1 shows the 16 zone ERCOT model and transmission network used in this analysis. These 
types of reduced-order transmission models are commonly used in these types of analyses to 
keep the problem tractable [8]. The transmission limits between each of the connected zones 
were calculated based on physical infrastructure, historical power flows, and Generic 
Transmission Constraints [9]. While not the focus of this analysis, the ability to build new 
transmission capacity is important when considering how other aspects of the grid might 
evolve.  
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Figure 1: The 16-zone ERCOT model and transmission network used in this analysis. 

Time horizon 
Given the relative uncertainty about the costs of different technologies the further into the 
future one gets, this analysis analyzed the impacts out to 2030. This time horizon followed 
closely with the most recent ERCOT Long-Term System Assessment (LTSA) [5], from which load 
forecast data were utilized to model the evolution of the ERCOT grid in three time periods 
(2021-2024, 2025-2028, 2029-2032).  
 

Data center scenarios 
This analysis analyzed four (4) scenarios of data center growth in ERCOT;  

1) no additional data center growth (Scenario 1, S1),  
2) 5 GW of inflexible data center growth (Scenario 2, S2),  
3) 5 GW of flexible data center growth (Scenario 3, S3), and  
4) 5 GW of more flexible data center growth (Scenario 4, S4).  

These additional loads (scenarios 2-4) were added to the demand growth assumptions already 
in place out to 2030. The data centers were assumed to be flexible based on wholesale market 
prices and would reduce operations when those prices exceeded a certain price. Table 1 shows 
a breakdown of the locations of each of the four date center locations, their size, number of 
load reduction tiers, the ERCOT real-time price at which the tier comes into effect, and the 
amount of load reduction at that tier. 
 
 
 
 
Table 1: Table showing the data center locations (Texas cities), size, number of flexibility tiers, the price at which each tier comes 
into effect, and the size of demand reduction at each tier. The North Texas 1 data center is located in Figure 1’s region 11, the 
Central Texas data center is located in Figure 1’s region 10, the North Texas 2 data center is located in Figure 1’s region 12, and 

110

11

12

13

14

15
16

2 3

4

5

6

7

8 9

Dallas (1)

San Antonio (2)

Houston (3)

Corpus Christi (4)

McAllen (5)

Laredo (6)

Delrio (7)

San Angelo (8)

San Saba (9)

Abilene (10)

Wichita Falls (11)

Amarillo (12)

Lubbock (13)

Midland (14)

Fort Stockton (15)

Pecos (16)
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West Texas data center is located in Figure 1’s region 8. These energy price tiers are based on future projections of 
cryptocurrency mining efficiencies and were provided to IdeaSmiths by Lancium, see Appendix B. 

 
 

The process 
The model was fed the ERCOT-specific data, the transmission network, and the time horizon to 
allow the model to determine the power system architecture that will minimize system costs 
overtime. To accomplish this task, the model simulated the dispatch and retirement of existing 
power plants, as well as the construction of new generation, energy storage systems, and 
transmission capacity to meet future demand growth. The model will not build new 
infrastructure unless it reduces overall system costs. For example, new energy storage could 
create an opportunity to build newer, more affordable generation resources or allow existing 
resources to be dispatched in a way that reduces system costs enough to offset the additional 
capital investment requirements for the new infrastructure. 
 
This analysis did not include any goals or targets for any particular type of technology, such as a 
Renewable Portfolio Standard, or a tax on any type of pollutant, such as CO2. The analysis also 
did not include any subsidies, such as the Production Tax Credit.  
 

Location
Date center 

size (MW)
Tier

Tier cutoff 

($/MWh)

Tier demand 

reduction (MW)

1 $35 363

2 $95 363

1 $35 848

2 $95 848

1 $35 363

2 $95 363

1 $35 848

2 $95 848

1 $24 242

2 $41 242

3 $82 242

1 $24 565

2 $41 565

3 $82 565

1 $24 242

2 $41 242

3 $82 242

1 $24 565

2 $41 565

3 $82 565

750

750

1750

750

1750

Scenario 3 (S3)

Scenario 4 (S4)

1750

750

1750

North Texas 1

Central Texas

North Texas 2

West Texas

North Texas 1

Central Texas

North Texas 2

West Texas
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Resiliency analysis 
Because a grid model is inherently deterministic and “knows” the future, it designs systems that 
will not fail, under the circumstances that it is given. In reality, grid components (power plants, 
fuel supply chains, transmission lines, etc.) break (have outages) and actual experiences will 
differ from modeled ones. In general, grid modelers force models to not only match supply and 
demand, but also carry a certain level of reserves designed to cover any expected or  
unexpected outages. These levels of reserves are not sized to reduce the chances of scarcity 
and blackouts to zero, but to some acceptable level, generally such that you only have one lost 
load event every ten years [10]. 
 
After the grid modeling analysis was complete, we ran a Monte Carlo analysis using probability 
distributions that any power plant might be offline due to maintenance, planned outages, or 
forced outages based on NERC Generating Availability Data System (GADS) data [11]. Outages 
were calibrated such that 100 out of 1,000 annual simulations yielded levels of operating 
reserves would fall below 1,375 MW, thus resulting in firm load shed [12]. We then assess the 
impact of any additional load reduction (non-dispatched price-sensitive data center load) on 
the levels of reserves available to the system operator.  

Results 
The crux of this analysis focused on how differently the ERCOT grid would evolve given how 
flexible the future data centers in question were willing to be. The results of this analysis are 
presented below in three subsections: 1) generation capacity and energy evolution, 2) carbon 
emissions, and 3) resiliency.  
 

Capacity and generation  
As demand increases and prices change through time (see Appendix A), so does the optimal 
grid mix. Figure 2 compares the 2018 capacities of each type of generation with the 2030 
capacities for each scenario.  
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Figure 2: ERCOT generation capacity mix in 2018 and 2030 for all scenarios (GW). 

Across all scenarios, wind, solar, and storage capacity increases while natural gas and coal 
capacity decreases. The additional loads introduced by the data centers further increase the 
amount of wind and solar built, but the inflexible data center scenario (S2) does result in more 
natural gas capacity than the base (no data center) case (S1). Both flexible data center cases 
(S3-S4) result in less natural gas capacity than the base case. Figure 3 shows the amount of 
energy generated by each type.  
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Figure 3: ERCOT energy mix in 2018 and 2030 for all scenarios (TWh). 

As compared to 2018, all future scenarios get more overall energy from wind, natural gas, and 
solar and less energy from coal. As compared to the 2030 base case (no data centers, S1), each 
of the data center scenarios (S2-S4) see more energy generated from wind and solar. The 
inflexible data center scenario (S2) sees more energy from natural gas than the base case (S1) in 
2030, but the flexible data center cases (S3-S4) see less. 
 

Data center operations 
The differences in scenario results are a direct result of the flexibility of the data centers 
themselves (see Data center scenarios). Each of the scenarios led to the data centers being 
dispatched (temporarily turned down) differently. The inflexible data center (S2) was modeled 
as having no flexibility and thus achieved an uptime of 100%2.  
 
The four data centers that in the flexible data center scenario (S3) are dispatched down 
(curtailed) slightly differently depending on their location in the ERCOT grid and range in 
uptimes of 85%-87%, meaning that, on average across the fleet, 14% of their capacity has been 
dispatched down. The actual dispatch has periods where the data centers are operating at full 
capacity and others where they are operating lower, depending on the real-time price of 
electricity. Figure 4 shows an example week in which the data center fleet is responding to 
ERCOT market prices.   
 

 
2 We did not consider outages of the data centers themselves and assumed across all scenarios that the only reason for downtime would be if 
they voluntarily turned down.   
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Figure 4: Example week of the data center load responding to real-time ERCOT prices for Scenario 3. 

In general, the data centers operate at high or full capacity when prices are low (most summer 
mornings in Figure 4) and then reduce their operations as prices increase (most summer 
afternoons). When prices go very high (above $95/MWh in Scenario 3), the datacenters 
dispatch down to their minimum operating level, approximately 3% of their nameplate 
capacity. 
 
If the four data centers are operated more flexibly (S4), they are also dispatched down 
(curtailed) more often. On average over the year, the data center fleet in Scenario 4 achieves a 
70% uptime. This additional flexibility has a negligible impact on wind, solar, and natural gas 
capacity, but it does reduce the amount of energy generated by natural gas power plants.     
 

Carbon emissions 
How the data centers are operated impacts how much energy is generated from each type of 
fuel (see Section Capacity and generation) as well as the carbon emissions associated with the 
electricity grid. Figure 5 shows the differences in million tonnes of carbon emissions per year (in 
2030), relative to the base case (S1) for Scenarios 2-4.   
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Figure 5: The difference in carbon emissions from the base case for each of the data center scenarios, in 2030. A positive value 
means that carbon emissions are higher than the base case (no data centers) and a negative number indicates that the carbon 

emissions for that scenarios are lower than the base case. 

 
Figure 5 shows that, in 2030, we estimate that deploying the inflexible data centers (S2) would 
result in more carbon emissions than the no data center base case (S1). However, the flexibility 
of the data centers (cases S3 & S4) results in lower overall carbon emissions, even with the 
additional load added to the system to power the data centers.  
 
In this analysis, the inflexible data center scenario (S2) adds approximately 43.8 million MWhs 
of energy consumption to the Texas Grid, while supporting the deployment of an additional 27 
million MWhs of wind and solar energy and 17.1 million MWh of natural gas (than the base 
case, S1).  
 
However, for an additional load to result in lower carbon emissions, the additional energy 
consumed by the load must be more than offset by zero carbon energy. The flexible data 
centers in scenario (S3) consume about 35.5 million MWh, but support the deployment of an 
additional 39.5 million MWhs of wind and solar energy. The data centers in the more flexible 
case (S4) consume about 30.6 million MWhs of energy while supporting the deployment of an 
additional 39.2 million MWhs of wind and solar. In both cases, the energy generated by natural 
gas power plants is lower than in the base case (S1).  
 
The flexibility of the datacenters is key to these results and can be seen through the differences 
in the inflexible (S2) and flexible (S3, S4) data center cases. The flexibility of the demand 
reduces the need for firm generation. This allows the model to build more wind and solar 
energy providing capacity but less natural gas capacity to maintain the target reserve margin of 
13.25%. 
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This analysis only considered a small number of flexibility scenarios. It is likely that a data center 
with less flexibility than S3 (i.e., higher bids) would result in net positive CO2 emissions.  
Thus, for a data center to have a net negative impact on CO2 emissions, it needs to operate its 
load shed strategically. Using these scenarios as a guide, it is likely that such a data center could 
expect to shed about 13-15% of their annual load. 
 

Resiliency 
Even with adequate reserve margins, higher levels of generation outages can impact the ability 
of any system to reliably match supply and demand. This analysis sought to assess the resiliency 
impact of high levels of demand flexibility by assessing how much additional flexible data center 
capacity would be available to mitigate low levels of reserves based on a Monte Carlo analysis 
of power plant failures.  
 
ERCOT goes into an Energy Emergency Alert – Level 3 with firm load shed when operational 
reserves cannot be maintained above 1,375 MW. The grid strives to keep these situations to a 
minimum, with a target of it only happening once in ten years. Giving each power plant a 
probability of an outage, we tuned the levels of outages such that, for the base case (S1), only 
100 out of 1,000 simulations resulted in reserves dipping below 1,375 MW [12]. We then took 
these same runs and (hour by hour) added back any additional flexible data center capacity that 
had not already been taken offline based on prices to see how many runs out of the original 
1,000 still dipped below the 1,375 MW threshold.  
 
Results for the flexible data center cases (S3 & S4) were similar and resulted in a lower number 
of simulations where reserves dropped to critical levels. For the flexible data center scenario 
(S3), the percentage of “years” reaching critical levels dropped (from 10% in the base case) to 
about 3.4% and for the more flexible data center case (S4) to 3.2%3. 

Additional Discussion 
This section discusses additional aspects of controllable load, such as data centers, but was not 
considered in the above summarized analysis.  
 

Additionality  
This analysis assumed that the data center load considered was new. It is possible that, if 
existing data center load were moved from a currently carbon-intensive grid to the EROCT grid, 
the scenarios considered could result in an even greater reduction in global overall carbon 
emissions. However, we did not consider that as part of this analysis, so our estimates could be 
conservative depending on if the data center load considered is new or existing.   
 

 
3 We recognize that this comparison is not perfect as each scenario evolves differently with different capacities of different types of generation, 
but it does indicate that high levels of flexible demand contribute to greater levels of grid reliability.  
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Nodal pricing considerations  
This analysis assumed that the data centers were acting based on the wholesale price of 
electricity at their location. In reality in ERCOT, load pays for electricity at the load zone 
whereas generation is compensated at the resource node. Loads such as the data centers 
considered in this analysis could qualify as Controllable Load Resources (CLRs), which have the 
ability of curtailing demand and providing energy and ancillary services. CLRs are able to 
function as generators, so it would be advantageous to have them responding to nodal instead 
of zonal prices. Also, if these controllable resources were able to receive nodal prices, it could 
encourage them to be sited in congested locations that have historically depressed prices. This 
optimal, price-based siting could reduce congestion and reduce the original need to build new 
transmission to alleviate it, further reducing overall system costs.  

Conclusions 
This analysis sought to assess the energetic and environmental impacts of deploying 5,000 MW 
of data centers in the ERCOT grid by 2030. The results indicate that operating the data centers 
in an inflexible manor spurs the deployment of more wind and solar than in the base case of no 
data centers, but results in a net increase in carbon emissions. However, operating the data 
centers in a flexibile manor during times of high grid prices could lead to the deployment of 
even more wind and solar and—if they are operated with enough flexibility—could result in 
lower overall carbon emissions. This analysis indicates that a data center in ERCOT would need 
to be willing to ramp down about 13-15% of its capacity per year, like Scenario 3 above, to 
achieve such a goal. A post grid modeling Monte Carlo analysis of grid operating reserves levels 
further indicates that the higher levels of flexible demand results in a lower probability of the 
grid reaching critical levels of reserves that would require firm load shed. While this work 
focused on the ERCOT grid, it is possible that other grids with a low cost of entry for new 
generation resources could see similar results. 
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Appendix A  
 

1. General Model Summary: Capacity Expansion Modeling in Switch 
 

The analysis for this project is completed using the capacity expansion model called, “SWITCH” 
[6] and the unit-commitment and dispatch (UC&D) model called, “PyPSA” [7]. We use SWITCH 
to optimize the construction of power plants over multiple forecasted time periods that may 
span many years or decades. We use PyPSA to model the dispatch of those forecasted power 
plant fleets at a greater time-resolution and to determine optimal transmission capacities 
during each of those future time periods. 
 
A capacity expansion model is an optimization program that makes decisions about the 
operation and construction of power plants, transmission lines, and other electric grid assets. It 
accomplishes this at two different time scales: 

 Short Time Scale: the model dispatches the power plant fleet so that electricity 
generation and electricity demand are balanced for each hour of the simulation. 

 Long Time Scale: the model builds new power plant capacity to 1) provide enough 
power plants so that electricity generation and demand can be balanced in future years, 
and 2) enable the composition of the power plant fleet to evolve in ways that minimize 
the total system cost.  

 
The model solves for the Short and Long Time Scales simultaneously to meet the modeling 
objective. The objective for this model is to minimize the net present value of all investment 
and operation costs. Thus, the model will 

 dispatch power plants in the Short Time Scale so that the least expensive power plants 
are turned on first, to balance the hourly generation and demand at the lowest possible 
cost, and 

 build new power plants if the upfront investment cost of constructing those power 
plants will reduce the total net present value by reducing the cost of the Short Time 
Scale power plant operation during future time periods.  

 
This objective is subject to a number of constraints and input variables. For example, power 
plant operational characteristics, fuel prices, power plant construction costs, renewable energy 
generation profiles, transmission capacity, and many other variables described in the following 
sections constrain the model’s solution. 
 
“Switch” is a unique grid planning model that is built using capacity expansion modeling theory. 
Switch is developed and maintained by Professor Matthias Fripp at the University of Hawaii, 
and has been in development since 2012. It is an open source model built on the Python 
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programming language. For more details about the model, its validation, calibration, and 
equations, see [6].  
 
A UC&D model is an optimization program that makes decisions about the operation of power 
plants. When compared to a capacity expansion model, a unit-comment and dispatch model 
operates at short time scales only, but at greater time resolution, simulating every hour of the 
year.  
 
“PyPSA” is a unique UC&D model that is build using UC&D modeling theory. PyPSA is developed 
and maintained by T. Brown and a team of other developers. It has been in development since 
2018. PyPSA is also able to determine optimal capacities for a given transmission grid. For more 
details about the model, its validation, and equations, see [7]. 
 
 

2. Time Series 
Because a UC&D model operates at only Short Time Scales, it can solve for every hour of the 
year. In the PyPSA model, we solve the power plant commitment and dispatch for all 8,760 
hours of the year. 
 
Because a capacity expansion model operates at both Short and Long Time Scales, it must use 
simplified time series so that the model is tractable and can be solved. For example, a capacity 
expansion model that solves a 2020-2050 scenario will not solve for all 8,760 hours of all 30 
analysis years. Instead it will use a few representative days for each year, and a few 
representative years for the whole 30-year time scope.  
 
In the SWITCH model, we use 9 representative days and 4 representative years. 
 

2.1. Representative Days 
This model uses 9, 24-hour periods to represent the annual electricity market. Those 24-hour 
periods include: 

 Annual Peak:  we use the 24-hour profile of the day with the greatest instance of hourly 
system demand. The Annual Peak time series is scaled up to represent 3 of 365 days for 
each model year. 

 Annual Net Peak: we use the 24-hour profiles of the two days with the greatest instance 
of hourly net system demand—i.e. demand minus renewables output. Each of the two 
Annual Net Peak time series is scaled up to represent 3 of 365 days for each model year. 

 Seasonal and Monthly Averages: the electricity demand for each of these 6 profiles 
equals the average electricity demand of all of the days in that season/month. For 
example, hour 1 of the March/April profile is equal to the average demand of the first 
hour of the day for all 61 days in the March/April data. The model uses average profiles 
for the following seasons and months: 

 July – represents a high-demand summer profile. Scaled up to represent 30 of 
365 days for each model year. 
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 June/August – represents the bulk of summer energy needs. Scaled up to 
represent 59 of 365 days for each model year. 

 January – represents a high-demand winter profile. Scaled up to represent 30 of 
365 days for each model year. 

 February/November/December – represents the bulk of winter energy needs. 
Scaled up to represent 89 of 365 days for each model year. 

 March/April – represents spring energy needs. Scaled up to represent 59 of 365 
days for each model year. 

 May/September/October – represents summer shoulder season energy needs. 
Scaled up to represent 89 of 365 days for each model year. 

 
When compared to a complete, 8,760-hour demand profile, the 9 representative days outlined 
above have 5% greater annual energy consumption. Figure 6 below compares the 8,760 and 9-
representative-day time series using a duration curve—where the demand for each hour of the 
year is sorted in decreasing order. The peak demand of the 5-representative-day curve is 98.5% 
of the peak of the 8,760 hour curve. When compared to the 8,760-hour series, the 9-
representative-day series has higher demand for the lowest-demand hours of the year but is 
otherwise very similar. 
 

 

 
Figure 6: Duration curve of 8,760-hour time series (Historical ERCOT Load) and the 5-representative-day time series used in this 

model. 

2.2. Representative Years 
The model simulates these 9 representative days a total of four times each. Each of the four 
time periods represents a 5-year span: 2020-2025, 2025-2030, 2030-2035, and 2035-2040.   
 
For each of these 5-year time periods, we average the input values across those years. For 
example, the natural gas price for the 2020-2025 time period equals the average of the 2020, 
2021, 2022, 2023, and 2024 forecasted natural gas prices. 
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3. Generator Data 
Our model represents each individual power plant in the ERCOT system. To parameterize each 
of these power plants, we compile data from a variety of sources as outlined below.  
 

3.1. ERCOT Capacity Demand and Reserve Report, 2018 [13] 
Twice a year, ERCOT releases a report that includes some data for all of the operating 
generators in the ERCOT market. We use this report to gather data on each existing 
generator’s: 

 capacity, 

 construction year, and 

 county. 
 

3.2. Emissions & Generation Resource Integrated Database (eGRID), 2018 [14] 
eGRID is maintained by the EPA and contains information about the existing U.S. power plant 
fleet. We use it to gather data on each ERCOT generator’s:  

 fuel type, and 

 technology type. 
 

3.3. Annual Technology Baseline (ATB), 2019 [15] 
The ATB is published annually by NREL and contains a set of assumptions and futures to inform 
electric sector analyses in the U.S. The data provides operational and cost characteristics for 
different types of generators projected from 2018-2050. We use it to gather data for each 
generator’s: 

 scheduled outage rates,  

 forced outage rates, and 

 fixed operation and maintenance cost. 
 

We also use the ATB to provide the following data for characterizing new generators: 

 capital cost of construction, 

 fixed operation and maintenance cost, 

 heat rate, and 

 roundtrip efficiency for battery charge/discharge cycles. 
 

3.4. Garrison Dissertation, 2014 [16] 
In addition to the sources above, which are used broadly for modeling the U.S. power sector 
across many different regions, we also refer to the dissertation of Dr. Jared Garrison, which 
contains data compiled specifically for modeling the ERCOT region. Those data include the 
following. 

3.4.1. Heat Rates 
Heat rates for existing generators are calculated by diving each generator’s monthly fuel 
consumption by its monthly electricity generation. These data come from the US EIA 923 
database. We average these monthly heat rates over multiple years to approximate each 
generator’s full load heat rate.   
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3.4.2. Startup Costs 
Startup costs for existing and new generators are based on data from the Power Plant Cycling 
Costs report. This report lists startup cost for cold, warm, and hot startups. For the ERCOT 
power plants, the startup costs for each generator type were selected based on whether that 
generator type tends to startup from warm or cold conditions. 

3.4.3. Min Up and Down Time, Min Output, and Variable Operation & Maintenance Costs 
These characteristics come from the assumptions that ERCOT uses for the capacity expansion 
model used to create the ERCOT Long Term System Assessment report. Based on conversations 
with different stakeholders, Garrison updated some of these original data for a few of the 
generator types.  
 

3.5. Coal Retirements 
Based on age, the majority of coal plants are expected to retire in Texas by 2035, we force coal 
retirements for any coal plants that have been operating for 43 years or longer, based on 
historical lifetimes and recent retirement rates. This requirement has the following impact on 
overall coal capacity: 

• 2018:   13.1 GW 

• 2020-2025:  11.5 GW 

• 2025-2030:   5.5 GW 

• 2030-2035:   3.3 GW 

• 2035-2040:   3.0 GW 
 
 

4. Wind and Solar 
4.1. Profiles 

We use hourly wind and solar generation profiles for hundreds of sites around ERCOT. These 
generation profiles were developed by AWS TruePower for ERCOT and are available for public 
download [17].  
 
The hourly profiles are simulated using historical weather data. A generation profile is created 
for each existing wind and solar site in ERCOT along with many potential sites where wind and 
solar capacity have not yet been installed.  
 
For developing future wind capacity, we let the model expand the capacity of simulated sites 
(modeled at a hub height of 90m) and existing sites with hub heights of 80m or greater. For 
existing sites with hub heights below 80m, we use their profiles to represent existing wind 
generation resources available for dispatch, but do not let the model expand their capacity. For 
counties without existing or simulated wind generation, we average the profiles of sites with 
similar wind resources in neighboring counties.  
 
For developing future solar capacity, we let the model expand the capacity of the simulated 
sites. Texas solar resources [18] generally improve as one travels west. We observe this trend in 
the capacity factors of the simulated solar sites, but not consistently in the capacity factors of 
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the existing solar sites. Thus, we use the profiles of existing sites to represent existing solar 
capacity resources available for dispatch, but do not let the model expand their capacity.  
 

4.2. Site Limits for Wind and Solar Capacity 
Since wind and solar plants require a significant amount of real estate, we limit the amount of 
wind and solar development that the model can build in each Texas county.  
 
For solar, we assume single-axis tracking arrays built at a density of 30 MW/km2 (77.7 MW/mi2). 
[19]  
 
For wind, we use the appendix data from [20] to divide the total Texas wind capacity by the 
total developed land area of that wind capacity to get a density of 7.14 MW/mi2.  
 
We then multiply these development densities by the square mileage of land in each county 
that is available for development6. The result is the maximum amount (MW) of wind and solar 
capacity that could be built in the developable land in each county.  
 
The wind limit is, on average, 6.5 GW per county. But that capacity can only be realized if all of 
the county’s available land area has suitable wind resources. However, in most counties, the 
wind resource quality varies across the county’s geography. To account for this, we use data 
from [21] to estimate the amount of land in each county that has wind resources with wind 
speeds of 7.0-7.5, 7.5-8.0, and 8.0+ m/s. We use those estimates to cap the amount of capacity 
that each wind site may develop, depending on its capacity factor. 
 
The solar limit is, on average, 70.4 GW per county. In practice, this solar limit never constrains 
the model. Thus, we assume that, because of its density, solar development has little impact on 
wind development—i.e., if a county builds many GW of solar capacity, this requires a relatively 
small amount of land and we assume that it does not meaningfully diminish the county’s wind 
capacity limit. 
 

4.3. Annual Limits for Wind and Solar Capacity Growth 
Wind and solar development are also limited by materials supply chains, manufacturing 
capabilities, and construction capabilities. To capture this, we impose an annual limit on how 
much wind and solar can be built in the model.  
 
For both wind and solar, we establish a baseline limit on GW/year that can be installed. Then, 
assuming that these limitations will increase with GDP, we scale the installation limits up 
according to the forecasted Texas GDP growth through 2050 [22]. 
 
For the baseline wind limit, we take data on annual wind development in Texas from 2009-2019 
[23] [24]. We take the average of these numbers—1.45 GW/year—as the baseline for the wind 
development limit. 

 
6 Personal communication with the University of Texas at Austin Bureau of Economic Geology. 
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We assumed the same deployment rate for utility-scale solar.   
 

4.4. Land Lease Rates for Wind and Solar 
The fixed operating cost of each wind and solar site varies depending on which county it is built 
in. To accomplish this, we first compile a lease rates for rangeland, native pasture, and hunting 
leases in 33 Texas regions [25]. Then we normalize those lease rates, multiply them by wind and 
solar lease costs from [26], and assign them to the counties contained in each region. Note that 
wind land lease costs vary from 1,100 to 24,500 $/MW-year with an average of 8,960 and solar 
land lease costs vary from 630 to 14,400 $/MW-year with an average of 8,960. 
 
We then use these land costs to adjust the fixed operation and maintenance costs from section 
3.3 by: 

• for wind sites: subtracting the average wind land lease cost from the wind FOM. Then 
adding back the county-specific wind land lease cost. 

• for solar sites: because the ATB does not include solar land lease costs in its solar FOM, 
we simply add the county-specific solar land lease cost to the ATB FOM. 

 
4.5. Tax Credits 

We give solar an investment tax credit of 10% by reducing its overnight capital costs by 10%.  
 
 

5. Transmission 
As electricity travels from region to region it incurs losses and must not exceed the capacity of 
the transmission lines. The model can increase the capacity of the existing transmission lines by 
paying the capital cost to build new lines.  
 

5.1. Losses 
We assume losses of 1% per 100 miles of transmission. This aligns with the assumption used by 
the National Renewable Energy Laboratory’s ReEDS model [27]—a capacity expansion model of 
the continental United States.  

 
5.2. Regions and Capacities 

The model comprises 16 regions with transmission capacity between many of the regions’ 
borders. The regions and transmission locations were determined using geographic 
transmission data from the Department of Homeland Security [28].  
 
Existing transmission capacities were determined by running the historical 2018 hourly load and 
generation in a power flow model [29].  

• Hourly Load: see section 7.1 and 7.2. 

• Hourly Thermal Generation: comes from aggregating CEMS data to the county level, and 
the aggregating those county-level generation profiles up to the transmission-region 
level 

• Hourly Wind and Solar Generation: see section 4.1 
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• Nuclear Generation: we assume constant nuclear generation at 95% of total capacity to 
match the annual nuclear generation capacity factors.  

• Existing transmission: we connect regions with transmission lines if they have existing 
transmission connections already. And we add multiple lines between regions when 
there are multiple 345-kV lines that connect those regions in the existing transmission 
grid. For example, we connect the 1Dallas—10WichitaFalls regions with (3) 345-kV lines 
based on their existing transmission connections, but connect the 15FortStockton—
16Pecos regions with (1) 345kV line.  

 

 
Figure 7: The 16-zone ERCOT model and transmission network used in this analysis. 

 
5.3. Construction Cost 

Transmission construction costs are based on data from the Competitive Renewable Energy 
Zones (CREZ) project—a large-scale transmission construction project carried out in ERCOT 
from 2008-2013. We use a transmission construction cost of 1500 $/MW-mile (932 $/MW-km) 
as described in [8]. 
 
 

6. Fuel Prices 
Fuel price data come from the EIA’s 2020 Annual Energy Outlook (AEO) [30]. This report 
contains future projections out to 2050 of energy consumption, emissions, and fuel prices. We 
use the  

 forecasted AEO coal prices for our model’s subbituminous coal prices, 

 forecasted AEO coal prices plus 0.72 $/mmBtu for our model’s lignite coal prices, and 

 forecasted AEO natural gas prices for our model’s natural gas prices.  
The lignite prices are increased by 0.72 $/mmBtu so that the average of the forecasted 2020-
2030 prices equal the average of the historical 2015-2020 Texas lignite prices [31]. 
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7. Load 
7.1. Load Data 

We use 2018 hourly load data provided by ERCOT [32]. This load data is separated out for each 
ERCOT’s 8 weather regions. 
 

7.2. Scaling Load Data by Region 
We scale this 8-region ERCOT data to our 16-region transmission model in two steps.  
 
First, we distributed the ERCOT load down to the county level by assuming that county 
population is directly related to energy consumption. That is, if Region 1 has a demand of 
12,000 MWh in a specific hour, and County 1—one of a number of counties in Region 1—has 
15% of the population of Region 1, then we assume that County 1 also represents 15% of that 
hourly demand—or 1,800 MWh. The result is an hourly 2018 load profile for each Texas county. 
 
Second, we aggregate these county-level load profiles up the regional level using the region 
boundaries in our model. The result is an hourly 2018 load profile for each of our 15 
transmission regions. 
 

7.3. Load Growth 
We assume that load increases at a rate of 1.8% annually. This load growth rate was 
determined by calibrating the model’s future loads against the energy forecasts in Figure 2 of 
the 2020 ERCOT System Planning Forecast [33].  
 
We implement this load growth assumption by starting with our baseline hourly 2018 load 
profiles for each region and multiplying every hourly demand datum by 101.8% for each year 
after 2018. 
 

7.4. Electric Vehicles 
We include electric vehicle energy demand using the following steps.  
 
First, we use a 24-hour profile from the LTSA that forecasts ERCOT electric vehicle charging 
behavior in 2033. We assume that electric vehicles will charge according to this 24-hour pattern 
for each day of the year. 
 
Second, we scale the profile up and down for different model years. We assume that the 
charging pattern scales linearly, where the electric vehicle load in 2015 equals zero. Under this 
assumption, the electric vehicle load in 2015 is zero, in 2024 is 50% of the 2033 ERCOT profile, 
in 2042 is 150% of the 2033 ERCOT profile, etc. 
 
Third, we distribute the total electric vehicle charging profile amongst the 16 transmission 
regions. We take the 2018 population for each of the transmission regions and divide by the 
total Texas population to calculate that region’s load fraction. Then we multiply each region’s 
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load fraction by the total EV charging profile for each year to produce each region’s hourly EV 
profile for each year.  
 
Finally, we add the EV charging profile to each region’s hourly load profile. 
 

7.5. Distributed Solar 
We simulate distributed solar generation for each region and subtract it from that region’s 
hourly load. That is, the model does not treat distributed solar as power plant that can be 
dispatched, but as a distributed resource that reduces the amount of load that the model’s 
power plants must provide.  
 
First, we create hourly 2018 solar generation profiles for the largest city in each region using 
the NREL System Advisor Model (SAM) [34]. The SAM model uses historical weather and solar 
insolation data to calculate the hourly electricity generation of a photovoltaic panel depending 
on that panel’s orientation, tilt, efficiency, and other parameters. We use the default SAM 
settings for the solar panel—180 degree azimuth, 20 degree tilt, 96% inverter efficiency, and 
14.08% system losses. The result is a normalized, hourly 2018 solar generation profile for each 
of the 16 transmission regions. 
 
Second, we scale these solar profiles up to match the forecasted capacities of distributed solar 
in each region. We calculate the forecasted solar capacities in two steps: 
 

Step 1: we forecast the total amount of distributed solar in all of ERCOT. We use 5 GW 
of distributed solar for 2033, based on Table I.1 of the ERCOT 2018 Long Term System 
Assessment (LTSA) [5]. Similar to the method used for electric vehicles, we assume that 
the distributed solar profile scales linearly, where the distributed solar in 2015 equals 
zero. Under this assumption, the distributed solar in 2015 is zero, in 2024 is 2.5GW (50% 
of the 2033 ERCOT profile), in 2042 is 7.5GW (150% of the 2033 ERCOT profile), etc. 

 
Step 2: we spread the distributed solar capacity amongst the 16 transmission regions. As 
for electric vehicles, we take the 2018 population for each of the transmission regions 
and divide by the total Texas population to calculate that region’s fraction. Then we 
multiply each region’s fraction by the total distributed solar capacity for each year to 
produce each region’s distributed solar capacity for each year.  

 
 
8. Financial 

The Switch model uses an interest rate and discount rate for various financial calculations. We 
assume a discount rate equal to a weighted average cost of capital (WACC) of 7.17% and an 
interest rate of 6.01%. These align with the assumptions of the NREL ATB [15]. 
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Appendix B 
 

 
 
 

Scenario 3 Scenario 4

Bitcoin Assumptions Today 2030 2030

Bitcoin Price USD/BTC 37,500.0                        150,000.0                     150,000.0                     

Global Hashrate EX/s 120.0                                2,000.0                           2,000.0                           

Reward per Block BTC 6.25                                   1.56                                   1.56                                   

Fees per Block BTC 0.70                                   0.60                                   0.60                                   

Bitcoins per Day # 1,000.8                           311.4                                311.4                                

ExaHash per Bitcoin # 10,359.71                     554,913.29                  554,913.29                  

Value per ExaHash USD $3.62 $0.27 $0.27

Scenario 3 Scenario 4

W/Th W/Th

Tier 1 ASIC - Newest Generation EX/MWh 9.40 10.75

Tier 2 ASIC - Older Generation EX/MWh 22.40 19.75

Tier 3 ASIC - Oldest Generation EX/MWh 31.75
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