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ABSTRACT
Objectives: To compare the ability of standard versus
enhanced models to predict future high-cost patients,
especially those who move from a lower to the upper
decile of per capita healthcare expenditures within 1
year—that is, ‘cost bloomers’.
Design: We developed alternative models to predict
being in the upper decile of healthcare expenditures
in year 2 of a sample, based on data from year
1. Our 6 alternative models ranged from a standard
cost-prediction model with 4 variables (ie, traditional
model features), to our largest enhanced model
with 1053 non-traditional model features. To
quantify any increases in predictive power that
enhanced models achieved over standard tools, we
compared the prospective predictive performance
of each model.
Participants and Setting: We used the population of
Western Denmark between 2004 and 2011 (2 146 801
individuals) to predict future high-cost patients and
characterise high-cost patient subgroups. Using the
most recent 2-year period (2010–2011) for model
evaluation, our whole-population model used a cohort
of 1 557 950 individuals with a full year of active
residency in year 1 (2010). Our cost-bloom model
excluded the 155 795 individuals who were already
high cost at the population level in year 1, resulting in
1 402 155 individuals for prediction of cost bloomers
in year 2 (2011).
Primary outcome measures: Using unseen data
from a future year, we evaluated each model’s
prospective predictive performance by calculating the
ratio of predicted high-cost patient expenditures to the
actual high-cost patient expenditures in Year 2—that
is, cost capture.
Results: Our best enhanced model achieved a
21% and 30% improvement in cost capture over a
standard diagnosis-based model for predicting
population-level high-cost patients and cost bloomers,
respectively.
Conclusions: In combination with modern statistical
learning methods for analysing large data sets, models
enhanced with a large and diverse set of features led to
better performance—especially for predicting future
cost bloomers.

INTRODUCTION
A small fraction of individuals account for
the bulk of population healthcare expendi-
tures in the USA, Denmark and other indus-
trialised countries.1–4 Although many
high-cost patients show consecutive high-cost
years, the majority experience a ‘cost bloom’,
or a surge in healthcare costs that propels
them from a lower to the upper decile of
population-level healthcare expenditures
between consecutive years.4

Proactively identifying and managing care
for high-cost patients—especially cost bloom-
ers, who may disproportionately benefit from
interventions to mitigate future high-cost

Strengths and limitations of this study

▪ We conducted a population-based study of high-
cost patients, using Danish National Health
Service and Civil Registration System data
sources linked at the individual level and cover-
ing all residents of Western Denmark from 2004
to the end of 2011.

▪ We demonstrated that pairing large population
health data sets and modern statistical learning
methods can improve prediction of future high-
cost patients, compared to standard tools that
are widely used in the USA and internationally.

▪ We developed a novel framework for predicting
future cost bloomers, who account for majority
of high-cost patients in the USA and in Denmark
every year.

▪ Accurate prediction of cost bloomers is only the
first step in a process that must be coupled with
evidence-based interventions, in order to achieve
the ultimate effect we seek—improvements in
healthcare value.

▪ Given differences between residents, insurance
status (or lack thereof ), follow-up times and
other national health systems characteristics, our
findings may not be generalisable to other
national health systems.
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years—can be an effective way to simultaneously
improve quality and reduce population health costs.5–16

However, since the Centers for Medicare and Services
(CMS) commissioned the Society of Actuaries to
compare leading prediction tools more than 10 years
ago, scant progress has been made in improving cost-
prediction tools.17 18 To the extent that they fail to make
accurate predictions of cost blooms, standard models
leave healthcare organisations held accountable for the
total cost of care, to unfair performance assessments
and/or financial penalties.18–21 Overcoming these and
other challenges associated with the management and
care of high-cost patients is essential to achieving a
higher value healthcare system.
We sought to create more accurate models for predict-

ing high-cost patients, especially cost bloomers, who are
more challenging for standard tools to predict accur-
ately.22–24 Also, we wished to gain new insights into the
antecedents of high-cost years that distinguish cost
bloomers from persistent high-cost patients, who have
two or more consecutive high-cost years. Our hypothesis
was that technological advances in the last decade allow
improvement in prediction ability over current
approaches. Recent progress in statistical methods for
analysing large data sets has been driven by develop-
ment of new learning algorithms and by the ongoing
explosion in the availability of large observational data
sets and low-cost computation.25–27 Paired with large and
diverse health data sets available at the population level,
modern statistical learning methods may present new
opportunities to advance methods underlying healthcare
cost-prediction tools.5 28 29

Drawing from individual-level data for the entire popu-
lation of Western Denmark from 2004 to 2011, we ana-
lysed high-cost spending trends and evaluated the
prospective predictive performance of six alternative
models designed for the commonly executed prediction
of high-cost patients and for our novel cost-bloom pre-
diction task. Our models ranged in size from a baseline
logistic regression model with four variables (ie, fea-
tures) to a very large enhanced prediction model with
over 1000 non-traditional cost-prediction features. For
our larger models, we used elastic-net penalised logistic
regression, which is a modern statistical learning
method designed to address some of the issues asso-
ciated with applying a standard stepwise regression pro-
cedure to select a best-fitting model from a plethora of
choices.25 26 30 31

MATERIALS AND METHODS
Participants and setting
Our longitudinal population-based study draws from the
entire population of Western Denmark from 2004 to
2011 (2 146 801 individuals), which is representative of
Denmark more broadly. The Danish National Health
Service provides tax-supported healthcare for all Danish
citizens.

Our prediction study considered only those indivi-
duals with a full year of active Danish residency in year
1, to predict high-cost patients in year 2. Our whole-
population high-cost analysis used all residents who satis-
fied our Danish residency criteria. Similar to previous
studies, we defined a ‘high-cost’ patient as an individual
in a sample who is in the upper decile of annual health-
care expenditures.11 32–34 For prediction of the cost
bloomers, our cost-bloom analysis additionally excluded
individuals who already had a high-cost status in year 1,
who thus could not show a cost bloom.
In addition to our prediction study, we performed a

descriptive analysis of multiyear expenditure trends and
high-cost patient characteristics. For the whole popula-
tion, we conducted an 8-year trend analysis of indivi-
duals with one or more high-cost years, based on data
from 2004 to 2011. For high-cost patients in 2011, we
performed a 3-year trend analysis, using expenditure
data from 2009 to 2011, and examined 2010 data to
characterise meaningful distinctions among persistent
and newly high-cost patients. Specifically, we repur-
posed the demographic, healthcare cost and diagnostic
features from our models to compare the age distribu-
tion, mortality rate and the chronic condition to
profile of persistent high-cost patients and cost
bloomers.

Patient involvement
We analysed deidentified population healthcare data.
Thus patients were not involved in the development of
the research question, the outcome measures or the
study design.

Data sources
We obtained demographic information from the Danish
Civil Registration System, including age, gender and resi-
dency status, as well as geographic district of residence
and social relationship data.35–39 The Danish registries
used in our study are described in more detail in the
Supplementary data.
The Primary and Specialist Care Files and the Danish

National Patient Registry were the sources of our health-
care utilisation data.40 The Primary and Specialist Care
Files specified each visit type (ie, primary care or special-
ist), the total cost of each visit, and whether a visit
occurred during weekday business hours or during one
of the two off-hours time periods. The Danish National
Patient Registry provided ICD-10 diagnostic codes
(adopted in 1994) assigned to each patient in the
inpatient hospital setting or at a hospital outpatient
clinic, NOMESCO codes for surgeries and procedures
associated with inpatient visits, and healthcare costs.41

Our source of prescription data was the Health Service
Prescription Database. For each drug prescribed to a
patient, this Database provided Anatomical Therapeutic
Chemical (ATC) class information and the cost.36 42

The Department of Clinical Epidemiology at Aarhus
University, Denmark, provided data for our study. The
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Danish Data Protection Agency (Record 2013-41-1924)
approved this investigation.

Alternative prediction models
Healthcare cost-prediction tools can be broadly cate-
gorised as diagnosis-based (eg, Ambulatory Care Groups
(ACGs) and Diagnostic Cost Groups (DCGs)),
pharmacy-based (eg, MedicaidRx and RxGroups), or
diagnosis and pharmacy-based (eg, Episode Risk Groups
(ERGs) and Impact Pro).36 Detailed descriptions of
standard tools and their features can be found in a
number of reviews of health risk assessment.7 18 20 21 24

Standard diagnosis-based tools are the most widely used
type of cost-prediction model in the USA and inter-
nationally. They consist of traditional cost-prediction fea-
tures such as a diagnostic risk score, adjusted for age
and gender, and use regression-based learning
methods.7 18 20 24

Table 1 provides an overview of the types and number
of traditional and non-traditional model variables—that
is, model features—that were used to create high-cost
patient prediction models. Our approach to creating
enhanced models was to create a richer and more
informative individual-level profile for high-cost patient
prediction. We built on previous work in healthcare cost
prediction, involving the development of enhanced pre-
diction models and their evaluation.7 14 32–34 43 44 Our
custom features were based on those available in our
Danish population health data set.
Overall, we developed 1053 non-traditional features.

We used data from the clinical registries and medical
coding systems to transform our diagnosis-based risk
scores into component disease groups and chronic and
non-chronic indicators by organ system, as well as to rep-
resent sparse drug and procedural information in suc-
cinct and meaningful categories, and to incorporate cost
information by setting. We constructed new features to
capture utilisation patterns, including the number of off-
hours primary care visits, total length of inpatient stays,
and utilisation statistics such as the quarterly moving
average of ED visits and linked data from the Danish
Civil Registration System (CRS). As shown in table 1, the
CRS allowed us to assign a social relationship status to
each resident that was fixed (eg, ‘Married’ for all years)
or dynamic (eg, ‘Married-Widowed’ for widowed in the
year prior to prediction).
We created a total of six alternative prediction models:

two standard models with traditional features and four
enhanced models with traditional and non-traditional
features. Table 2 provides a description of each model’s
feature types, logistic regression method and the
number of traditional and non-traditional features. We
developed our standard models based on their descrip-
tion in the literature.20 24 32 Standard model 1, our base-
line model, is representative of a standard
diagnosis-based cost-prediction model that includes age,
gender, diagnostic risk score and chronic condition risk
score. We estimated disease risk scores for each resident,
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based on the Agency for Healthcare Research and
Quality (AHRQ) Clinical Classification Software (CCS)
and Chronic Condition Indicator (CCI) coding
systems.32 45 46 Building on the baseline model, standard
model 2 is representative of a diagnosis and pharmacy-
based prediction tool and included inpatient and out-
patient specialist costs and drug costs as features.
Our simplest enhanced model, enhanced model 1,

builds on standard model 2 with the addition of
primary care costs. Enhanced model 2 extends
enhanced model 1 with an additional 71 social relation-
ship features. To quantify the performance of an
enhanced model in lieu of cost data, we used our full
feature set and excluded all cost features (25 in total)
to create enhanced model 3. Finally, all 1059 traditional
and non-traditional healthcare utilisation, diagnostic,
prescription and civil registry-derived features were used
to create enhanced model 4.
With inclusion of many features, regression problems

require statistical model selection to identify a parsimo-
nious model. For enhanced models 2 through 4,
ranging from 77 to 1059 cost-prediction features, we
used elastic-net penalised logistic regression, which
addresses some of the issues associated with applying a
standard stepwise regression procedure to select a best-
fitting model from a plethora of choices.26 30 47

Penalised regression is a prominent statistical learning
methods for analysing large high-dimensional data sets
and has been successfully used in scientific and business
applications. For our larger enhanced models, the main
advantage penalised logistic regression offered over a
standard approach was the ability to simultaneously
conduct feature selection and model fitting.25 29 31 A
detailed description of stepwise and penalised regression
can be found in the work of Taylor and Tibshirani.31

An overview of our model development and evalu-
ation framework appears in figure 1. For our penalised
regression models, the process involved three steps:
step 1: training on 2008 data to predict high-cost
patients for the year 2009; step 2: tuning on 2009 data

to predict high-cost patients for the year 2010 and step
3: testing our model from step 2 on unseen data from
2010 to predict high-cost patients in 2011 (ie, prospect-
ive model validation). We learnt the initial parameters
for each model in the training step, commonly called
model calibration in the health risk-assessment litera-
ture. For penalised logistic regression models, tuning
was used to refine the final model based on the 2010
classification error of predicted to actual high-cost
patients. Since standard regression models cannot be
refined by tuning—as there are no free parameters to
set beyond the initial parameters learnt in training—
the tuning step was not performed. For standard
regression models, the process involved two steps: step
1: training on 2009 data to predict high-cost patients
for year 2010; and step 2 testing on the model fitted in
step 1 using 2010 data for prediction of high-cost
patients in 2011.

Model evaluation
Using unseen data from the most recent 2-year period
in our data set (2010–2011), we evaluated models by cal-
culating the ratio of predicted high-cost patient expendi-
tures to the actual high-cost patient expenditures in year
2—that is, cost capture. Cost capture has been reported
in previous studies and is based on the ‘predictive ratio’,
commonly used to evaluate cost-prediction models in
the health risk-assessment literature and in actuarial
reports.11 20 24

The formula for cost capture is shown in figure 1.
Given a model with a prediction sample of 10 000 indivi-
duals, cost capture is calculated from year 2 data by: step
1: estimating the size of the upper decile, k, where k=N/
10, and N is the sample size, step 2: identifying the pre-
dicted high-cost group by selecting the 1000 (k=10 000/
10) individuals predicted to be high-cost in 1 year with
the highest probability (ie, the top-k predictions), step 3:
aggregating the year 2 expenditures accrued by the 1000
individuals in the predicted high-cost group and the
1000 individuals in the actual high-cost group and step

Table 2 Description of alternative standard and enhanced high-cost patient prediction models, presenting the feature types

included, the statistical method used for prediction and the number of traditional, non-traditional and total model features

Feature count

Model Feature description

Regression

method Traditional Non-traditional Total

Standard model 1 Age+gender+disease risk scores Standard 4 0 4

Standard model 2 Age+gender+disease risk scores+hospital

inpatient and specialist+Rx costs

Standard 6 0 6

Enhanced model 1 Age+gender+disease risk scores+hospital

inpatient and specialist+Rx costs+primary

care costs

Standard 6 1 7

Enhanced model 2 Age+gender+disease risk scores+hospital

inpatient and specialist+Rx costs+social

relationship status

Penalised 6 71 77

Enhanced model 3 Full feature set without costs Penalised 6 1028 1034

Enhanced model 4 Full feature set Penalised 6 1053 1059

4 Tamang S, et al. BMJ Open 2017;7:e011580. doi:10.1136/bmjopen-2016-011580
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5: dividing the year 2 healthcare expenditures of the
predicted high-cost group by that of the actual high-cost
group’s.
We report the area under the receiver operating char-

acteristic curve (AUC) as a secondary outcome for com-
paring our population-level models with prior studies
that do not report cost capture or a comparable
measure. However, given the highly skewed nature of
per capita spending in the upper decile it is important
to consider relative costliness. For example, the upper
decile accounts for 65% and the upper centile accounts
for 22% of US healthcare spending. From a cost-
prediction perspective, it is better to correctly predict
one high-cost patient who accrued $350 000 than three
high-cost patients with $35,000. The main limitation of
AUC as a sole evaluation metric for high-cost patient
prediction is that, unlike cost capture and standard pre-
dictive ratios, is does not impose a penalty proportional
to the misclassified individual’s future costliness, which
is key for performance characterisation.

RESULTS
Our 8-year trend analysis of 2 146 801 individuals
showed that 314 989 had one or more years of high-cost
spending from 2004 to 2011. Within this group, figure 2
shows the per cent of patients (y-axis) by their total
high-cost years (x-axis) and their longest duration of
consecutive high-cost persistence (saturation scale). The
majority (51%) showed only one high-cost year. Among
the individuals with multiple high-cost years, many did
not experience them consecutively. However, the more
consecutive high-cost years a patient experienced, the
more likely they were to remain high-cost the following
year.
Our 3-year trend analysis of high-cost patients in our

evaluation year, 2011, included 155 795 high-cost
patients, who collectively accrued 73% of Western
Denmark’s total healthcare expenditures in 2011.
Among the high-cost group, 68% (105 904 individuals)
were cost bloomers in 2011 and half (77 897 individuals)
did not have a high-cost year in either 2009 or 2010.

The remaining 32% (49 855 individuals) of high-cost
patients in 2011 also had a high-cost year in 2010; in this
group, 21% (10 470 individuals) had a third year of
high-cost persistence in 2009.
Using year 1 features to examine differences between

the cost bloomers and the persistent high-cost patients,
our analysis revealed that cost bloomers in 2011 were
more likely to have zero inpatient hospital costs than
persistent high-cost patients (47% vs 7%). We also found

Figure 1 Overview of our model development and evaluation framework. Three independent panel data sets were used for

training (model fitting), tuning and testing steps. To evaluate alternative models, we calculated the ratio of predicted high-cost

patient expenditures to actual high-cost patient expenditures in year 2.

Figure 2 High-cost persistence in Western Denmark

(N=2 146 801). Among the 314 989 individuals with any

high-cost years, the bars show the per cent of high-cost

patients by total high-cost years; colour saturation increases

proportionally to the longest duration of consecutive high-cost

years for each individual from 2004 to 2011.
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that relative to persistent high-cost patients, cost bloom-
ers showed more than four times fewer chronic condi-
tions and were less likely to be diagnosed with chronic
conditions related to the circulatory system, neoplasms
or the respiratory system. Figure 3 illustrates the propor-
tion of AHRQ CCI chronic condition indicators among
cost bloomers and persistent high-cost patients in 2010.
Finally, we found that cost bloomers in 2011 were on

average younger (55 vs 59 years) and had a lower
median age than persistent high-cost patients (58 vs 62).
Figure 4 shows the age distribution among high-cost
patients by high-cost status. Cost bloomers had lower
1-year mortality rates (5% vs 9%) and 2-year mortality
rates (8% vs 16%).

Prediction performance
Our whole-population analysis included 1 557 950 indivi-
duals with a full year of active residency in 2010. After
excluding the 155 795 individuals who already had high-
cost status at the whole-population level in 2010, our
cost-bloom model included 1 402 155 individuals.
We compare the performance of our alternative

models for prediction of high-cost patients (155 795
individuals) at the population level and cost bloomers
(140 216 individuals) in table 3. Our best-performing
model captured 60% of the costs attributed to high-cost
patients at the whole-population level and 49% of costs
attributed to cost bloomers. Overall, we observed a 21%
and 30% improvement in cost capture over baseline for

Figure 3 Proportion of chronic

condition indicators among

persistent high-cost patients

(N=49 855) and cost bloomers

(N=105 904). Bars show the per

cent of patients with each

indicator in the prior year, 2010;

colour identifies the high-cost

group.

Figure 4 Age distribution of

2011 high-cost patients by

high-cost status (N=155 756).

Lines show the per cent of

patients by age; colour

distinguishes persistent high-cost

or cost-bloom status. Persistent

high-cost patients and cost

bloomers had mean and median

interquartile age ranges of 30 and

34, respectively.
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population-level high-cost and cost-bloom prediction,
respectively.
Focusing on the cost-blooming population, in figure 5,

we show the per cent increase in predictive performance
that each model achieved over our baseline model,
standard model 1, with a total of four features. With the
addition of two standard cost-prediction features, patient
and outpatient specialist costs and drug costs, standard
model 2 achieved a 17% increase over the baseline.
Predictive power continued to increase to 21% over the
baseline with the addition of the first non-traditional
feature, primary care costs, in enhanced model 1, and
again to 23% in enhanced model 2, which also included
71 social relationship status features. Enhanced model 3
used all available features, with the exception of 25 fea-
tures derived from cost data, and showed a 24% increase
in predictive power over the baseline. Our full feature
set of 1059 features, enhanced model 4, achieved a 30%
increase over the baseline model and was consistently
our best model, independent of prediction task.

DISCUSSION
Our study makes three key contributions. Taken
together, they provide future directions for improving
prediction of high-cost patients, who drive the majority
of population healthcare spending in the USA,
Denmark and other industrialised countries.
First, we provide additional evidence for the import-

ance of accurately identifying cost bloomers, which is
underscored by their prevalence among high-cost
patients, and their potential for intervention. Similar to
the USA, we found that cost bloomers represented the
majority of all high-cost patients. Compared to indivi-
duals with more persistent high-cost years, we found that
cost bloomers were younger, showed less morbidity,
lower mortality and, based on their year 1 data, had
fewer chronic conditions on average; also, cost bloomers
were less likely to be diagnosed with the types of chronic
condition indicators commonly associated with high
healthcare costs—for example, diseases of the circula-
tory system and neoplasms.

Table 3 Comparison of alternative models for predicting future high-cost patients at the population level and cost bloomers

Alternative high-cost patient prediction models

Standard

model 1

Standard

model 2

Enhanced

model 1

Enhanced

model 2

Enhanced

model 3

Enhanced

model 4

Number of model features

Prediction sample Metric 4 (Baseline) 6 7 77 1034 1059

Whole-population analysis

(N=1 557 950)

AUC 0.775 0.814 0.825 0.823 0.823 0.836

Cost capture 0.495 0.559 0.577 0.579 0.578 0.600

Cost-bloom analysis

(N=1 402 155)

AUC 0.719 0.748 0.772 0.765 0.771 0.786

Cost capture 0.376 0.443 0.455 0.461 0.466 0.487

Column headers indicate each model and the number of model features appears in parentheses. Results with the highest cost capture value
are shown in bold.

Figure 5 Performance of

alternative cost-bloom prediction

models by cost capture and

relative improvement over the

baseline. Bars show cost capture

for each model; lines show the

per cent increases in predictive

power. More details on each

model are provided in table 2.

Tamang S, et al. BMJ Open 2017;7:e011580. doi:10.1136/bmjopen-2016-011580 7

Open Access

group.bmj.com on July 17, 2017 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/
http://group.bmj.com


Second, we demonstrate the ability of modern statis-
tical learning methods and diverse population health-
care data to advance methods underlying healthcare
cost-prediction tools. Our framework for the develop-
ment and evaluation of enhanced models can be
described as a machine learning approach to prediction.
Machine learning is a field at the intersection of com-
puter science and statistics, with a fast growing literature
on statistical learning methods for analysing large and
complex data sets.12 27 29 48 A typical prediction frame-
work involves the use of a training data, in which the
outcome and feature measurements for a set of objects
are used to build a prediction model, or ‘learner’, which
will enable prediction of the outcome for new unseen
objects. A good learner is one that accurately predicts
the outcome of interest.25 The notable improvement
our best model achieved over standard tools suggests
that data-intensive machine learning methods warrant
further study.
Our third contribution is an enhanced model for pre-

diction of cost blooms, which produced a 30% improve-
ment in cost capture over a standard diagnosis-based
model. Since our cost bloom prediction task is novel, we
have no external model comparison. However, prior
studies have been conducted on the traditional high-cost
patient prediction task at the population
level.11 32 33 34 43 Using an enhanced model that was
developed using the AHRQ’s Medical Expenditure
Panel Survey (MEPS) data set, the top performance on
a nationally representative data set was reported by
Fleishman et al, showing an AUC of 0.84.
While our best population level model also achieved

an AUC of 0.84, there are key distinctions. For example,
Fleishman et al’s AUC measure is not a prospective
measure of predictive performance like the AUC
reported in our work. Retrospective measures of model
fit, such as reported by Fleishman et al, are known to be
overly optimistic relative to predictions based on
out-of-sample data.25 Also, in contrast to our population
health data sources, which serve a secondary purpose
for research, Fleishman et al used primary study data.
Although the MEPS enables rich longitudinal data to be
collected for research purposes, it consists of multiple
face-to-face interviews conducted with participants and
their family members over a 2-year period. Such an
extensive primary data collection process can be
resource prohibitive for providers to administer for their
entire patient population. Finally, our best model
showed higher positive predictive value (PPV) (33% vs
29%).
There are several policy and practice implications for

our work. More accurate cost-prediction tools can be
used by providers to proactively identify patients at high
risk of a cost bloom. However, many providers lack
access to the type of comprehensive healthcare and cost
data available in Denmark. In the USA, recent legisla-
tion in support of data-sharing among Accountable Care
Organizations and the growth of population registries

will facilitate individual-level linkages across settings and
providers; however, this now remains impossible for most
practices. To provide utility in a setting where only some
of our feature categories are available for prediction of
cost bloomers, we demonstrated that our simplest
enhanced model achieved a 21% increase in predictive
performance over the baseline (see figure 5) with only
seven model features. Also, we found that our full
feature set without cost features resulted in a 24%
increase over the baseline model, suggesting the benefit
of our modelling approach for providers who cannot
link cost information.
The generalisability of our findings to other national

health systems is a limitation of our study. Similar to the
USA, the bulk of Denmark’s annual health cost is driven
by hospital-based services and annual healthcare costs
are highly concentrated among a small fraction of the
population. Since the distribution of national health
costs, medical visits and disease profiles in Denmark is
consistent with that of other industrialised countries
(see Figures e1–e4 in Supplementary data), our findings
should be relevant in other similar settings. However, we
acknowledge that there are differences among residents,
insurance status (or lack thereof), follow-up times and
other national health system characteristics. In the
absence of access to a comparably large sample, repre-
sentative of the US population, for studying high-cost
patients, a future direction for our work is the external
validation of our models using private insurance market
data from the USA.
Finally, the ability to accurately predict future high-cost

patients is an important first step to improving the value
of their care. However, high-performing models are only
as beneficial as the evidence-based practices in place for
managing the care of future high-cost patients. Our
diverse set of cost-prediction features resulted in
improvements over standard models and allowed us to
characterise some distinctions between persistent high-
cost patients and cost bloomers; however, our approach
to prediction emphasises performance over interpret-
ability—that is, a key limitation of our models is that
they are not designed to provide a meaningful ‘explan-
ation’ of why someone will bloom. Accurate prediction is
the first step, but to inform the development of interven-
tions or polices related to compensation for the care
and management of patients who are likely to experi-
ence a cost bloom in the near future, additional analyses
to characterise more specific disease profiles and their
healthcare utilisation patterns are warranted.

CONCLUSIONS
We carried out the commonly performed prediction of
high-cost patients at the population level and described
a new framework for predicting cost bloomers. We dem-
onstrate that diverse population health data, in conjunc-
tion with modern statistical learning methods for
analysing large data sets, can improve prediction of
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future high-cost patients over standard diagnosis-based
tools, especially for our cost-bloom prediction task. Our
best-performing enhanced model captured 60% of high-
cost patient expenditures and 49% of cost bloomer
expenditures. It also achieved 21% and 30% improve-
ments in cost capture over a standard diagnosis-based
claims model for predicting future high-cost patients
and cost bloomers, respectively. We expect our study to
inform providers and payers, who need better strategies
to address the differential risks posed by the small frac-
tion of patients who account for the bulk of population
healthcare spending.
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