
Jenkins High Availability Clustering Using LINBIT SDS in EKS

Matt Kereczman (LINBIT®), with contributions from James Bland (AWS) and Welly Siauw (AWS)
Version 8.1, 2023-10-16

Table of Contents

1. Introduction . 1
1.1. Architectural Diagram . 2

2. Prerequisites . 3
3. Deploying the Solution . 4

3.1. Create an EC2 Launch Template . 4
3.2. Create the EKS cluster using eksctl . 7
3.3. Install LINSTOR Operator Using Kustomize. 8
3.4. Install Jenkins via Helm 3 . 11

4. Validating the Solution. 13
4.1. Failover Verification . 13
4.2. Performance Expectations . 15

5. Maintaining the Solution . 17
5.1. Snapshot Shipping to S3 . 17
5.2. Health Monitoring with Prometheus Operator . 23
5.3. Routine Maintenance. 26

6. Support for the Solution. 29
Appendix A: Additional Information and Resources . 30
Appendix B: Legalese . 31

B.1. Trademark Notice . 31
B.2. License Information . 31

Chapter 1. Introduction

LINBIT SDS is the product name for LINBIT’s LINSTOR® software and the various plugins that surround it. In this
reference architecture, LINBIT SDS will be referenced as "LINSTOR".

LINSTOR is an open source management tool designed to manage block storage devices for Linux server clusters. Its
primary use-case is to provide Linux block storage for Kubernetes and other public and private cloud platforms.

LINSTOR layers various storage software native to Linux to provide tailored feature sets for the volumes it creates.
LINSTOR uses LVM, ZFS, or both for pooling and partitioning physical storage as well as enabling snapshots and caching
layers. LINSTOR can layer LUKS for encrypted volumes, and VDO for compression and deduplication. The most
important storage software LINSTOR manages is DRBD®. Layering DRBD enables block level replication, as well as
remote attachment of volumes to hosts without a physical replica of a volume, which are both very useful features in
cloud solutions like Amazon’s EKS (Elastic Kubernetes Service).

EKS provides AWS users with Kubernetes clusters that are both scalable and highly available. Out of the box, EKS
clusters will have a default storageClass backed by EBS (Elastic Block Store) for stateful Kubernetes workloads.
EBS volumes can only be attached to instances in the same AZ (availability zone).

EKS can also use EFS (Elastic File System) backed storage. EFS volumes can be concurrently accessed across AWS AZs,
but concurrent access means locking overhead, and therefore isn’t as performant as EBS. Stateful workloads with
demanding IO requirements, like some Jenkins deployments, will suffer from poor storage performance on EFS.

The gap between performant storage and storage accessible across AZs is where LINSTOR fits into the EKS ecosystem.
LINSTOR can be configured to consume unused EBS volumes attached to your EKS worker nodes. LINSTOR will
partition them to size using LVM or ZFS, and replicate them synchronously using DRBD to EBS volumes attached to EKS
workers in different AZs.

If there is an AZ outage where your Jenkins pod is currently running, the pod will automatically be rescheduled in a
different AZ where there is an identical replica of your LINSTOR volume.

The following reference architecture is specific to deploying HA Jenkins pods onto LINSTOR backed persistent storage
in EKS stretching across multiple AZs, but could be adapted for other workloads that need cross AZ replication without
sacrificing performance.

The estimated time to deploy the reference architecture outlined in this white paper is 45 minutes.

While LINSTOR is open source, this reference architecture describes the deployment of LINSTOR from LINBIT’s
container image repository (http://drbd.io) which is only available to LINBIT customers or through LINBIT customer
trial accounts. Contact LINBIT for information on pricing or to begin a trial. Alternatively, you can use LINSTOR SDS'
upstream project named Piraeus, without being a LINBIT customer.

Declarative configurations created in this guide can be found in the GitHub repository linked here.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: Chapter 1. Introduction

1

http://drbd.io
https://linbit.com/contact-us/
https://github.com/piraeusdatastore/piraeus-operator
https://github.com/kermat/linstor-jenkins-eks-assets

1.1. Architectural Diagram

The reference architecture described in this document is depicted in the diagram below.

The diagram shows a singleton Jenkins pod running in an EC2 instance within a single AWS Availability Zone. It writes its
persistent data to a LINSTOR volume, which is synchronously replicated to its LINSTOR peer volumes, each in their own
different AZ. LINSTOR’s control and data planes communicate over private or public subnets attached to each AZ and
routed by AWS.

LINSTOR’s volumes are backed by EBS volumes in each instance’s AZ, which are always identical to each other thanks to
LINSTOR’s synchronous replication. In case of an AZ outage, LINSTOR’s High Availability controller for StatefulSets will
kick in and move the Jenkins workload to another AZ within a few minutes.

The EKS managed load balancer will transparently reroute users to the active AZ whenever the Jenkins pod is migrated.

LINSTOR supports snapshot shipping of volumes to Amazon’s S3 to satisfy disaster recovery requirements. The
Amazon S3 bucket should be created in a different AWS region than the EKS cluster.

No user data is stored anywhere outside of the EBS volumes used to back LINSTOR’s storage pools
in this reference architecture.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 1.1. Architectural Diagram

2

Chapter 2. Prerequisites

To follow this reference architecture line for line, you’re going to need some AWS EKS related tools installed on your
workstation, or be familiar enough with AWS services that you can replicate the desired infrastructure without them.

The following tools need to be installed and configured:

• eksctl: installation doc

• kubectl: installation doc

• aws cli v2: installation doc

• helm 3: installation doc

It is highly recommended that you do not use your AWS account’s root user’s access to deploy this
reference architecture. Instead, readers should create IAM accounts with least privileges granted.
For more information, consult the AWS IAM Security best practices guide.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: Chapter 2. Prerequisites

3

https://eksctl.io/introduction/#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://helm.sh/docs/intro/install/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Chapter 3. Deploying the Solution

The following chapter is broken into sections that will describe how the solution is deployed.

3.1. Create an EC2 Launch Template

LINSTOR requires an additional unused block device for its storage pools, as well as kernel-devel packages present
on each EC2 instance for compiling the DRBD kernel module for the Amazon Linux 2.0 kernel. The DRBD kernel module
will replicate Jenkins' block device (persistent data) across AWS AZs.

We can use an EC2 launch template to satisfy these requirements.

Log in to the AWS Management Console and browse to the EC2 Dashboard. In the navigation bar you should see a link
to "Launch Templates" nested under the "Instances" drop down; click this link.

Click the "Create launch template" button in the Launch Template console. Only set the options pictured below, as the
rest will be configured elsewhere, and duplicated settings will cause failures when launching new instances.

Name and description for launch template

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.1. Create an EC2 Launch Template

4

https://console.aws.amazon.com/

Instance type for launch template

LINSTOR itself is not resource intensive. Memory utilization for a DRBD resource scales with the
size of volume and number of replicas. The formula is roughly 32KiB of memory per 1GiB of storage
multiplied by the number of peers (other nodes with replicas). Size your instances according to
your application’s requirements.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.1. Create an EC2 Launch Template

5

Storage settings for launch template

The larger volume will be used by LINSTOR when provisioning persistent volumes (PVs) from its
storage classes. The smaller volume will be used as an external metadata pool for LINSTOR’s DRBD
devices. Set the size of the larger volume according to your deployment’s storage requirements.
The smaller volume should be sized relative to the size of your larger volume; the ratio of 32MiB
(metadata) per 1TiB (data), per peer. 4GiB is the smallest volume allowed by EBS, which will work
for data volumes up to 64 TiB in size with 3 replicas of each volume.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.1. Create an EC2 Launch Template

6

Advanced settings for launch template

The only advanced setting that needs modification is the "User data" field. This is where we add the
kernel-devel package to the EKS bootstrapping. You can copy and paste this text from the
code block below.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="

MIME-Version: 1.0

--==BOUNDARY==

Content-Type: text/x-shellscript; charset="us-ascii"

#!/bin/bash

echo "Running custom user data script"

sudo yum install kernel-devel-`uname -r` -y

--==BOUNDARY==--\

Finally, click the "Create template version" button to save the launch template. You should see that your launch
template was created successfully.

Follow the link to view your launch template and note the "Launch Template ID" which should be formatted like this:
lt-0123456789abcdefg. You will need this when creating your EKS cluster configuration.

3.2. Create the EKS cluster using eksctl

Write the cluster’s configuration changing the settings where appropriate; specifically: name, region,
launchTemplate.id.

cat << EOF > eksctl-cluster.yaml

apiVersion: eksctl.io/v1alpha5

kind: ClusterConfig

metadata:

 name: linbit-eks

 region: us-west-2

 version: "1.27"

managedNodeGroups:

- name: lb-mng-0

 launchTemplate:

 id: lt-0123456789abcdefg

 version: "1"

 desiredCapacity: 3

EOF

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.2. Create the EKS cluster using eksctl

7

There are some AWS regions that have less than three AZs. LINSTOR’s high-availability controller
does rely on quorum for decision making, so choosing a region with three or more AZs is a
requirement for HA failover during AZ outages. If you cannot deploy into three separate AZs,
deploying three EKS instances will still provide HA during host or rack level outages within an AZ.

Create the cluster using the YAML manifest.

eksctl create cluster -f eksctl-cluster.yaml

The cluster creation will take some time. You should see that eksctl is configuring resources spread across AZs in
your configured region.

3.3. Install LINSTOR Operator Using Kustomize

LINSTOR Operator v2 is deployed using the kustomize tool that is integrated with the kubectl command.

Create the LINSTOR Operator deployment kustomization.yaml using your LINBIT portal (customer or trial)
credentials. If you don’t have this, you can reach out to LINBIT to start a trial by filling out the Contact Us form.
Alternatively, you can use LINSTOR’s upstream - community supported but LINBIT developed - named Piraeus
Datastore.

cat << EOF > kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namespace: linbit-sds

resources:

 - https://charts.linstor.io/static/v2.2.0.yaml ①
generatorOptions:

 disableNameSuffixHash: true

secretGenerator:

 - name: drbdio-pull-secret

 type: kubernetes.io/dockerconfigjson

 literals:

 - .dockerconfigjson={"auths":{"drbd.io":{"username":"MY_LINBIT_USER","password":"MY_LINBIT_PASSWORD"}}} ②
EOF

① Replace v2.2.0.yaml with the latest release manifest from charts.linstor.io.

② Replace MY_LINBIT_USER and MY_LINBIT_PASSWORD with your my.linbit.com credentials.

Next, apply the kustomization.yaml file to your Kubernetes cluster by entering the following command, in the
same directory as your kustomization.yaml file:

kubectl apply -k .

Output from the command should show that a new namespace, linbit-sds, has been created, as well as other
various assets that are needed to deploy the LINSTOR Operator in your Kubernetes cluster.

Next, create a LINSTOR cluster configuration file named linstor-cluster.yaml and apply it to create the
LinstorCluster resource:

cat << EOF > linstor-cluster.yaml

apiVersion: piraeus.io/v1

kind: LinstorCluster

metadata:

 name: linstorcluster

spec: {}

EOF

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.3. Install LINSTOR Operator Using Kustomize

8

https://my.linbit.com/
https://www.linbit.com/contact-us/
https://github.com/piraeusdatastore/piraeus-operator
https://github.com/piraeusdatastore/piraeus-operator
https://charts.linstor.io

kubectl create -f linstor-cluster.yaml

After creating the resource, wait for the pods in the linbit-sds namespace to be up and running, by entering the
following command:

kubectl wait pod --for=condition=Ready -n linbit-sds --timeout=3m --all \

 && echo "LINBIT SDS installed and ready!"

You should now have the LINSTOR cluster running in your EKS cluster.

The last thing to do to configure LINSTOR in EKS is configure the LINSTOR Satellites to use their attached EBS devices
as storage pools for provisioning LINSTOR volumes. Additionally, instruct the LINSTOR satellites to compile DRBD from
source rather than using pre-packaged DRBD modules. This is a good practice to ensure DRBD is always built for the
running kernel version, and is made possible because the kernel-devel tools were installed on the EKS instances
during bootstrapping as configured by the launch template.

Create a linstor-satellite.yaml configuration file, and apply it to the cluster to make both of the
aforementioned LINSTOR satellite configurations:

cat << EOF > linstor-satellite.yaml

apiVersion: piraeus.io/v1

kind: LinstorSatelliteConfiguration

metadata:

 name: storage-pool

spec:

 storagePools:

 - name: lvm-thin

 lvmThinPool:

 volumeGroup: drbdpool

 thinPool: thinpool

 source:

 hostDevices:

 - /dev/nvme2n1

 - name: ext-meta-pool

 lvmThinPool:

 volumeGroup: metapool

 thinPool: thinpool

 source:

 hostDevices:

 - /dev/nvme1n1

apiVersion: piraeus.io/v1

kind: LinstorSatelliteConfiguration

metadata:

 name: compile-drbd-module-loader

spec:

 patches:

 - target:

 kind: Pod

 name: satellite

 patch: |

 apiVersion: v1

 kind: Pod

 metadata:

 name: satellite

 spec:

 initContainers:

 - name: drbd-module-loader

 env:

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.3. Install LINSTOR Operator Using Kustomize

9

 - name: LB_HOW

 value: compile

EOF

kubectl apply -f linstor-satellite.yaml

Many things can be configured here. The best source of information is the LINSTOR User’s Guide,
as well as the upstream Piraeus Documentation.

We will also use the LINSTOR Affinity Controller to update the Jenkins PV’s node affinity when needed. This is
important because EKS worker nodes can be deleted and automatically reprovisioned. The affinity controller for
LINSTOR will make sure that Kubernetes knows it is able to schedule Jenkins on a node that was added to the cluster
after the creation of the PV. Helm is used to install the LINSTOR Affinity Controller from LINBIT’s LINSTOR charts
repository:

helm repo add linstor https://charts.linstor.io

helm repo update

helm install -n linbit-sds linstor-affinity-controller linstor/linstor-affinity-controller

Finally, create storageClass definitions for LINSTOR using the examples below:

cat << EOF > linstor-sc.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: "linstor-csi-lvm-thin-r1"

provisioner: linstor.csi.linbit.com

parameters:

 allowRemoteVolumeAccess: "false"

 autoPlace: "1"

 storagePool: "lvm-thin"

 DrbdOptions/Disk/disk-flushes: "no"

 DrbdOptions/Disk/md-flushes: "no"

 DrbdOptions/Net/max-buffers: "10000"

 DrbdOptions/auto-quorum: suspend-io

 DrbdOptions/Resource/on-no-data-accessible: suspend-io

 DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary

 DrbdOptions/Net/rr-conflict: retry-connect

 property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: "linstor-csi-lvm-thin-r2"

provisioner: linstor.csi.linbit.com

parameters:

 allowRemoteVolumeAccess: "false"

 autoPlace: "2"

 storagePool: "lvm-thin"

 DrbdOptions/Disk/disk-flushes: "no"

 DrbdOptions/Disk/md-flushes: "no"

 DrbdOptions/Net/max-buffers: "10000"

 DrbdOptions/auto-quorum: suspend-io

 DrbdOptions/Resource/on-no-data-accessible: suspend-io

 DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary

 DrbdOptions/Net/rr-conflict: retry-connect

 property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.3. Install LINSTOR Operator Using Kustomize

10

https://www.linbit.com/drbd-user-guide/linstor-guide-1_0-en/#_configuring_storage
https://github.com/piraeusdatastore/piraeus-operator/blob/master/doc/

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: "linstor-csi-lvm-thin-r3"

provisioner: linstor.csi.linbit.com

parameters:

 allowRemoteVolumeAccess: "false"

 autoPlace: "3"

 storagePool: "lvm-thin"

 DrbdOptions/Disk/disk-flushes: "no"

 DrbdOptions/Disk/md-flushes: "no"

 DrbdOptions/Net/max-buffers: "10000"

 DrbdOptions/auto-quorum: suspend-io

 DrbdOptions/Resource/on-no-data-accessible: suspend-io

 DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary

 DrbdOptions/Net/rr-conflict: retry-connect

 property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"

reclaimPolicy: Retain

allowVolumeExpansion: true

volumeBindingMode: WaitForFirstConsumer

EOF

kubectl apply -f ./linstor-sc.yaml

These example storageClass definitions will work for the LINSTOR storage pools we’ve created.
Most tuning of LINSTOR resources happens in the storageClass definitions.

The LINSTOR HA Controller is enabled by default in v2 of the LINSTOR operator. This requires the
following parameters on the storageClass configurations:

• DrbdOptions/auto-quorum: suspend-io

• DrbdOptions/Resource/on-no-data-accessible: suspend-io

• DrbdOptions/Resource/on-suspended-primary-outdated: force-
secondary

• DrbdOptions/Net/rr-conflict: retry-connect

Omit these settings from the storageClass definitions found in this guide if the LINSTOR’s HA
Controller will be disabled.

3.4. Install Jenkins via Helm 3

To simplify the deployment of Jenkins, we’ll use Helm to deploy Jenkins.

Create a namespace for Jenkins in your EKS cluster.

kubectl create namespace jenkins

Add the Jenkins repository to helm.

helm repo add jenkinsci https://charts.jenkins.io

helm repo update

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.4. Install Jenkins via Helm 3

11

https://www.linbit.com/drbd-user-guide/linstor-guide-1_0-en/#s-kubernetes-basic-configuration-and-deployment

We will need to override some of the default values for our environment in Jenkins' Helm chart. Specifically, we’ll
configure the following options and values:

• persistence.storageClass: linstor-csi-lvm-thin-r3

• persistence.size: "20Gi"

• controller.serviceType: LoadBalancer

• list of required Jenkins plugins (installPlugins)

 Adjust the persistence.size="20Gi" value according to your requirements.

Create the Jenkins configuration override file:

cat << EOF > jenkins-op-vals.yaml

persistence:

 storageClass: linstor-csi-lvm-thin-r3

 size: "20Gi"

controller:

 serviceType: LoadBalancer

 installPlugins:

 - configuration-as-code:latest

 - kubernetes:latest

 - workflow-aggregator:latest

 - git:latest

EOF

Install Jenkins with the override options using helm:

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

Once running, you should be able to get the admin password and the DNS address for the load balancer using the steps
output by helm after installation. The commands should look something like this:

kubectl exec --namespace jenkins -it svc/jenkins -c jenkins \

 -- /bin/cat /run/secrets/additional/chart-admin-password && echo

export SERVICE_IP=$(kubectl get svc --namespace jenkins jenkins \

 --template "{{ range (index .status.loadBalancer.ingress 0) }}{{ . }}{{ end }}")

echo http://$SERVICE_IP:8080/login

The DNS address of your load balancer is publicly accessible. Be sure to follow your organization’s
security practices when hardening your Jenkins deployment.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 3.4. Install Jenkins via Helm 3

12

Chapter 4. Validating the Solution

The following chapter contains sections that will describe validation tests and their expected outcomes.

4.1. Failover Verification

The general idea here is to fail (terminate) the EC2 instance that is currently running the singleton Jenkins pod. It should
be migrated to another AZ without user interaction, with access to the persistent data as the pod in the original AZ.

Log in to the Jenkins instance using the outputs from the helm installation. From there, create a job to validate that
your persistent data remains intact after an instance or AZ failure.

Here’s an example job for completeness, but feel free to test however you see fit.

Create a new item as a Freestyle project

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 4.1. Failover Verification

13

Give it some description and add an "Execute shell" build step to the, "Build", section of the project. I’m writing a 10MiB
file from /dev/urandom/ and taking a sha1sum of it in my example.

Add an execute shell build step

Save the project, then click on "Build Now" to start a build. Once complete, view and note the "Console output" from
the successful job. Near the bottom you’ll see output similar to this:

...snip...

[validation] $ /bin/sh -xe /tmp/jenkins5820634365303503379.sh

+ dd if=/dev/urandom of=./validation.dump bs=1M count=10

10+0 records in

10+0 records out

10485760 bytes (10 MB, 10 MiB) copied, 0.402937 s, 26.0 MB/s

+ sha1sum ./validation.dump

683df872bb28d55c449914957b635c34f65719d8 ./validation.dump

Finished: SUCCESS

The above output is what we want to see once a pod is moved to another AZ. To simulate an instance failure, we can
terminate the instance running our singleton Jenkins pod. Retrieve the node name using the following command:

kubectl get pods -n jenkins jenkins-0 -o jsonpath='{.spec.nodeName}'

ip-192-168-32-202.us-west-2.compute.internal

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 4.1. Failover Verification

14

Browse to your AWS Management Console, find the EC2 instance with the DNS name output by the command above,
and terminate the instance.

Terminate EC2 instance running jenkins-0

Use something like the following command to view the status of the pods and nodes in the cluster. You should see the
jenkins-0 pod Terminating shortly after the node failure is noticed by the EKS control plane. Shortly after that,
the node is being rescheduled on a worker in a different AZ.

watch "kubectl get pods -n jenkins -o wide; kubectl get nodes"

Once the pod is running again, you’ll be able to log back into the Jenkins dashboard and see your persistent data has
survived the AZ migration.

4.2. Performance Expectations

Replicating writes synchronously between AZs does have some performance overhead. However, that overhead is
minimal due to Amazon’s low-latency fiber networks that connect the data centers comprising any of the AWS
Regions.

IO performance will differ depending on the type of EBS storage selected when creating the launch template. In this
reference architecture, 100GiB gp3 (general purpose SSD) volumes were used, which have a baseline performance of
3000 IOPS and 125MB/s of throughput at any volume size. IOPS and throughput on gp3 volumes can be scaled up to
16,000 and 1,000MB/s respectively.

Using fio, an open source IO workload generator, performance was measured while simulating various IO patterns and
block sizes on LINSTOR volumes. Those same workloads were tested against EBS volumes without LINSTOR as a
baseline for comparison in our benchmarks.

Pure read test results are omitted below. This is because LINSTOR provisions thin volumes in this
reference architecture, and reads that would be pulled from an unallocated block return
immediately, which unrealistically inflates the results.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 4.2. Performance Expectations

15

https://console.aws.amazon.com/

Table 1. EBS Baseline Results

4k 16k 32k 64k

randrw 3024 3024 3024 2065

randwrite 3025 3025 3025 2065

readwrite 3025 3025 4132 2065

write 3025 3025 4133 2066

Table 2. LINSTOR Single Replica (no replication) Results

4k 16k 32k 64k

randrw 3461 3361 3055 2929

randwrite 2389 2253 1890 1990

readwrite 3254 3308 3919 2093

write 3029 3015 3206 2010

Table 3. LINSTOR Two Replica Results

4k 16k 32k 64k

randrw 3461 3365 2659 2924

randwrite 2398 2243 1880 1981

readwrite 3252 3232 3890 2182

write 3292 2984 3192 2001

Table 4. LINSTOR Three Replica Results

4k 16k 32k 64k

randrw 3452 3338 3014 2931

randwrite 2355 2207 1843 1988

readwrite 3343 3204 3901 2176

write 3207 2959 3168 2011

EBS Baseline and LINSTOR Replication Results Graphs

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 4.2. Performance Expectations

16

Chapter 5. Maintaining the Solution

The following chapter’s sections provide guidance for Day 2 operations that will help the reader maintain the solution
once deployed.

5.1. Snapshot Shipping to S3

Starting with LINSTOR operator 1.8.0, you can configure LINSTOR VolumeSnapshotClasses in Kubernetes that are
backed by Amazon’s S3. This enables out-of-region snapshot shipping for LINSTOR volumes, therefore protecting your
data from AWS region outages or natural disasters that might span an entire AWS region.

5.1.1. Installing snapshot-controller into EKS

EKS does not provide a snapshot-controller in their Kubernetes distribution. This is required for CSI drivers that
support snapshots, therefore one must be installed.

LINSTOR’s upstream project, Piraeus, provides Helm charts to assist users with installing the external-snapshotter from
the Kubernetes Storage SIG.

Create a namespace for the snapshot-controller.

kubectl create namespace snapshot-controller

Add the Helm chart repository from the Piraeus project, and deploy the snapshot-controller into the newly created
namespace.

helm repo add piraeus-charts https://piraeus.io/helm-charts/

helm repo update

helm install -n snapshot-controller snapshot-validation-webhook \

 piraeus-charts/snapshot-validation-webhook

helm install -n snapshot-controller snapshot-controller \

 piraeus-charts/snapshot-controller --wait

Once Helm returns control, you should see you have the snapshot-controller as well as the necessary
snapshot-validation-webhook pods running in your snapshot-controller namespace.

kubectl get pods -n snapshot-controller

NAME READY STATUS RESTARTS AGE

snapshot-controller-685b89b4fc-trrzz 1/1 Running 0 39m

snapshot-validation-webhook-9866866dc-794rr 1/1 Running 0 41m

snapshot-validation-webhook-test-invalid-body 0/1 Completed 0 40m

snapshot-validation-webhook-test-valid-body 0/1 Completed 0 40m

5.1.2. Create an S3 Bucket

Create an S3 bucket for LINSTOR’s Jenkins snapshots. When you create the bucket, it’s recommended to use the
default settings "ACL disabled" and "Block all public access".

You will need to know the name and region of the S3 bucket when configuring your VolumeSnapshotClass.

5.1.3. Create IAM User with S3 Access

LINSTOR requires programmatic access to an AWS user with sufficient privileges for reading and writing to S3. The
access key and secret access key must be stored in a Kubernetes secret that LINSTOR can access. It’s best practice to

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

17

https://github.com/kubernetes-csi/external-snapshotter/
https://github.com/kubernetes-csi/external-snapshotter/

create an IAM user with least privilege for this type of access.

Browse to IAM in your AWS console, then select "Users" under "Access management". Click the "Add users" button to
begin creation.

Name the user something obvious, and select the option for "Access key - Programmatic access", click next to
proceed.

Create New AWS User for LINSTOR

Create a new group and apply only the "AmazonS3FullAccess" policy.

Create New Group Limited to S3 Access

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

18

You can add the user to an existing group if one already exists with the appropriate policies under
your account.

Optionally, you can add tags to the user. Finally, review and create the new user making sure to securely store the new
users access key and secret access keys.

5.1.4. Add IAM User as Kubernetes Secret

Using the access key and secret access key for the IAM account created for LINSTOR’s S3 access, create the
Kubernetes secret for LINSTOR.

kubectl create secret generic linstor-csi-s3-access -n linbit-sds \

 --type=linstor.csi.linbit.com/s3-credentials.v1 \

 --from-literal=access-key=REDACTED \

 --from-literal=secret-key=REDACTED

kubectl patch secrets linstor-csi-s3-access -n linbit-sds \

 --type=merge -p '{"immutable":true}'

5.1.5. Add LINSTOR Volume Snapshot Class

Add a VolumeSnapshotClass to Kubernetes using information specific to your S3 bucket.

cat << EOF > linstor-s3-snapclass.yaml

kind: VolumeSnapshotClass

apiVersion: snapshot.storage.k8s.io/v1

metadata:

 name: linstor-csi-snapshot-class-s3

driver: linstor.csi.linbit.com

deletionPolicy: Delete

parameters:

 snap.linstor.csi.linbit.com/type: S3

 snap.linstor.csi.linbit.com/remote-name: s3-us-west-2

 snap.linstor.csi.linbit.com/allow-incremental: "false"

 snap.linstor.csi.linbit.com/s3-bucket: name-of-bucket-123

 snap.linstor.csi.linbit.com/s3-endpoint: http://s3.us-west-2.amazonaws.com

 snap.linstor.csi.linbit.com/s3-signing-region: us-west-2

 snap.linstor.csi.linbit.com/s3-use-path-style: "false"

 # Secret to store access credentials

 csi.storage.k8s.io/snapshotter-secret-name: linstor-csi-s3-access

 csi.storage.k8s.io/snapshotter-secret-namespace: linstor

EOF

kubectl apply -f linstor-s3-snapclass.yaml

Service Endpoints in AWS generally follow the convention of, protocol://service-code
.region-code.amazonaws.com. S3 utilizes HTTP(S). Therefore, our bucket in the us-west-2
region from the example above uses the s3-endpoint: http://s3.us-west-2.amazonaws.com

5.1.6. Create a Volume Snapshot of Jenkins PVC

Finally, you can create snapshots of your Jenkins volume using Kubernetes native patterns. Jenkins Helm charts deploy
Jenkins onto a PVC named "jenkins". Create an S3 snapshot of this PVC:

cat << EOF > jenkins-s3-snap.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

19

http://s3.us-west-2.amazonaws.com

metadata:

 name: jenkins-dr-snapshot-0

 namespace: jenkins

spec:

 volumeSnapshotClassName: linstor-csi-snapshot-class-s3

 source:

 persistentVolumeClaimName: jenkins

EOF

kubectl apply -f jenkins-s3-snap.yaml

After a short while, depending on the size of your volume, you should see that the snapshot has become "Ready", at
which point you should be able to see the snapshot in your S3 bucket via the AWS S3 management console.

5.1.7. Restore a Volume Snapshot from S3

When restoring a volume from a snapshot stored in S3 there are two possible scenarios you will find yourself in.

You might be restoring Jenkins' PVC into a foreign cluster, which is any cluster other than Jenkins' origin cluster. This
would be the case if you’ve redeployed your EKS cluster into a new region, or simultaneously lost all instances
comprising the original cluster.

Alternatively, you might be restoring Jenkins' PVC into the origin cluster as a way to roll Jenkins' state back to a
previous point in time.

Restoring Snapshots into Foreign Cluster

If you’ve redeployed the solution into a new cluster, there are steps that must be performed "manually" within the
LINSTOR controller pod before restoring will be possible.

We must create a remote object within LINSTOR that references the S3 bucket containing our snapshots. To do this,
use the commands below making the appropriate substitutions for your S3 bucket.

set the LINSTOR controller pod name to a variable

linstor_k8s=$(kubectl get pods -n linbit-sds \

 -l app.kubernetes.io/instance=linstor-op-cs \

 -o custom-columns=":metadata.name" --no-headers)

create the LINSTOR remote object referencing your S3 bucket

kubectl exec -it -n linbit-sds $linstor_k8s -- linstor \

 remote create s3 s3-origin \

 http://s3.<AWS_REGION>.amazonaws.com \

 <S3_BUCKET_NAME> <AWS_REGION> \

 <ACCESS_KEY> <SECRET_KEY>

Recreate your LINSTOR snapshot-class and LINSTOR S3 secret referencing your IAM user as described in the respective
sub-section of this section of this guide.

List the snapshots available in your S3 remote:

kubectl exec -it -n linbit-sds $linstor_k8s -- linstor \

 backup list s3-us-west-2-origin

We will need to reference the snapshot name using the portion following the ^. You can use regular expressions and
grep to filter for the portion that is needed using the command below.

kubectl exec -it -n linbit-sds $linstor_k8s -- linstor \

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

20

 backup list s3-us-west-2-origin | grep -o snapshot[a-Z0-9\-]*

Use the truncated name to populate the VolumeSnapshotContent below, and apply the YAML to import the
snapshot from S3 into Kubernetes.

cat << EOF > snap-from-s3.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotContent

metadata:

 name: restored-snapshot

 namespace: jenkins

spec:

 deletionPolicy: Delete

 driver: linstor.csi.linbit.com

 source:

 snapshotHandle: <PLACE_BACKUP_NAME_HERE>

 volumeSnapshotClassName: linstor-csi-snapshot-class-s3

 volumeSnapshotRef:

 apiVersion: snapshot.storage.k8s.io/v1

 kind: VolumeSnapshot

 name: restored-snapshot

 namespace: jenkins

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: restored-snapshot

 namespace: jenkins

spec:

 source:

 volumeSnapshotContentName: restored-snapshot

 volumeSnapshotClassName: linstor-csi-snapshot-class-s3

EOF

kubectl apply -f snap-from-s3.yaml

You should then see that you have a VolumeSnapshot within Kubernetes which you can use to populate a new PVC
using standard Kubernetes patterns.

cat << EOF > restore-snap-to-pvc-foreign.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: jenkins-restored

 namespace: jenkins

spec:

 storageClassName: linstor-csi-lvm-thin-r3

 accessModes:

 - ReadWriteOnce

 dataSource:

 name: restored-snapshot

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

 resources:

 requests:

 storage: 20G

EOF

kubectl apply -f restore-snap-to-pvc-foreign.yaml

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

21

With the snapshot restored into a PVC named, jenkins-restored, you can deploy Jenkins with the restored PVC
by setting the persistence.existingClaim key in the Jenkins chart values.

cat << EOF > jenkins-op-vals.yaml

persistence:

 storageClass: linstor-csi-lvm-thin-r3

 existingClaim: jenkins-restored

 size: "20Gi"

controller:

 serviceType: LoadBalancer

 installPlugins:

 - configuration-as-code:latest

 - kubernetes:latest

 - workflow-aggregator:latest

 - git:latest

EOF

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

Restoring Snapshots into Origin Cluster

Restoring snapshots from a remote into the origin cluster is far simpler as the VolumeSnapshot and
VolumeSnapshotContent objects are already present. Therefore, you can use the typical Kubernetes patterns for
restoring a snapshot to a PVC.

Identify the snapshot you’d like to restore from.

kubectl get -n jenkins volumesnapshot

Use the name of the snapshot above to populate the YAML below.

cat << EOF > restore-snap-to-pvc-origin.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: jenkins-restored

 namespace: jenkins

spec:

 storageClassName: linstor-csi-lvm-thin-r3

 accessModes:

 - ReadWriteOnce

 dataSource:

 name: jenkins-dr-snapshot-0

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

 resources:

 requests:

 storage: 20G

EOF

kubectl apply -f restore-snap-to-pvc-origin.yaml

With the snapshot restored into a PVC named, jenkins-restored, you can deploy Jenkins with the restored PVC
by setting the persistence.existingClaim key in the Jenkins chart values.

cat << EOF > jenkins-op-vals.yaml

persistence:

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.1. Snapshot Shipping to S3

22

 storageClass: linstor-csi-lvm-thin-r3

 existingClaim: jenkins-restored

 size: "20Gi"

controller:

 serviceType: LoadBalancer

 installPlugins:

 - configuration-as-code:latest

 - kubernetes:latest

 - workflow-aggregator:latest

 - git:latest

EOF

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

If the original Jenkins deployment is still installed, you can use the helm upgrade to move the deployment onto the
restored PVC.

helm upgrade -n jenkins jenkins jenkinsci/jenkins --reuse-values \

 --set persistence.existingClaim=jenkins-restored

5.2. Health Monitoring with Prometheus Operator

Starting with LINSTOR operator v1.5.0, you can use Prometheus to monitor LINSTOR components. The operator will set
up monitoring containers alongside the existing components and make them available as a Service in Kubernetes.

If you use the Prometheus Operator, the LINSTOR Operator will also set up the ServiceMonitor instances. The
metrics will automatically be collected by the Prometheus instance associated to the operator, assuming you configure
the Prometheus Operators access to the LINSTOR namespace.

Detailed steps for building and customizing the Prometheus Operator can be found in the Project’s README.md on
Github. The steps below will deploy the Prometheus Operator and Grafana dashboards specifically for this reference
architecture.

5.2.1. Building Prometheus Operator

You need go installed and in your path to install the build dependencies. Once you have go, prepare your build
environment and install build dependencies using go:

mkdir my-kube-prometheus; cd my-kube-prometheus

go get github.com/jsonnet-bundler/jsonnet-bundler/cmd/jb

go get github.com/brancz/gojsontoyaml

go get github.com/google/go-jsonnet/cmd/jsonnet

jb init

jb install github.com/prometheus-operator/kube-prometheus/jsonnet/kube-prometheus@release-0.8

jb update

release-0.8 of the Prometheus Operator or better is required as it deploys Grafana 7.5.4 which
is a requirement of LINBIT’s Grafana Dashboard.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.2. Health Monitoring with Prometheus Operator

23

https://prometheus-operator.dev/
https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus

Create a customized .jsonnet configuration, download the build script and build the manifests:

cat << EOF > linstor-jenkins-ns.jsonnet

local kp = (import 'kube-prometheus/main.libsonnet') + {

 values+:: {

 common+: {

 platform: 'eks',

 namespace: 'monitoring',

 },

 prometheus+:: {

 namespaces: ["default", "kube-system", "linstor", "jenkins"],

 },

 kubePrometheus+: {

 platform: 'eks',

 },

 },

};

{ ['00namespace-' + name]: kp.kubePrometheus[name] for name in std.objectFields(kp.kubePrometheus) } +

{ ['0prometheus-operator-' + name]: kp.prometheusOperator[name] for name in std.objectFields(kp.prometheusOperator) } +

{ ['node-exporter-' + name]: kp.nodeExporter[name] for name in std.objectFields(kp.nodeExporter) } +

{ ['kube-state-metrics-' + name]: kp.kubeStateMetrics[name] for name in std.objectFields(kp.kubeStateMetrics) } +

{ ['alertmanager-' + name]: kp.alertmanager[name] for name in std.objectFields(kp.alertmanager) } +

{ ['prometheus-' + name]: kp.prometheus[name] for name in std.objectFields(kp.prometheus) } +

{ ['grafana-' + name]: kp.grafana[name] for name in std.objectFields(kp.grafana) }

EOF

wget https://raw.githubusercontent.com/prometheus-operator/kube-prometheus/release-0.8/build.sh -O build.sh

chmod +x ./build.sh

./build.sh linstor-jenkins-ns.jsonnet

You should now have a manafests directory full of the YAML manifests needed to deploy the Prometheus Operator
to monitor LINSTOR. Deploy the Prometheus Operator into EKS:

kubectl apply -f manifests

If any of the manifests fail to apply, simply run the command above again. Some resources need to
start before others can be applied.

After deploying, forward ports to Prometheus and Grafana to test and configure:

kubectl --namespace monitoring port-forward svc/prometheus-k8s 9090 &

kubectl --namespace monitoring port-forward svc/grafana 3000 &

Point your web browser at http://localhost:3000, and set a secure password for Grafana. Add a dashboard by
importing LINBIT’s Grafana dashboard for DRBD.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.2. Health Monitoring with Prometheus Operator

24

http://localhost:3000
https://grafana.com/grafana/dashboards/14339

If everything was done correctly, you should see a dashboard similar to the one depicted below:

This is a good starting point for configuring alerts. In a healthy cluster, you would never see a DRBD device become
out-of-sync, a DRBD device Without Quorum, or a DRBD device in the Standalone state.

If you want to access Grafana’s dashboard without the port forward, expose the deployment to create a LoadBalancer
service and retrieve the public DNS name of the LoadBalancer:

kubectl expose deployment -n monitoring grafana --type=LoadBalancer --name=grafana-lb

export GRAF_IP=$(kubectl get svc -n monitoring grafana-lb --template \

 "{{ range (index .status.loadBalancer.ingress 0) }}{{ . }}{{ end }}")

echo http://$GRAF_IP:3000

Exposing Grafana makes it publicly accessible unless you have tightened up the VPC security
group.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.2. Health Monitoring with Prometheus Operator

25

5.3. Routine Maintenance

The following tasks should be performed on a regular basis following your organization’s policies for such things, or to
address critical events such as bug fixes or security breaches.

5.3.1. Creating LINSTOR Controller Backups

LINSTOR stores its internal state within Kubernetes CRDs. You might want to take backups of this internal state as a
part of your backup or upgrade strategies.

Since version v1.8.0, the LINSTOR operator will create a snapshot of all LINSTOR internal resources
before changing the controller image (for example, during upgrades). The backup is available as a
secret named linstor-backup-<hash>. To copy this type of backup to your local machine,
you can use the following command:

kubectl -n linbit-sds get secret linstor-backup-<hash> \

 -o 'go-template={{index .data ".binaryData.backup.tar.gz" | base64decode}}' \

 > linstor-backup.tar.gz

Manually Backup LINSTOR Internal Resources

1. Stop the current controller:

kubectl -n linbit-sds patch linstorcontroller linstor-op-cs "{"spec":{"replicas": 0}}"

kubectl -n linbit-sds rollout status --watch deployment/linstor-op-cs-controller

2. The following command will create a file crds.yaml, which stores the current state of all LINSTOR Custom
Resource Definitions:

kubectl get crds | grep -o ".*.internal.linstor.linbit.com" \

 | xargs kubectl get crds -o yaml > crds.yaml

3. In addition to the definitions, the actual resources must be backed up as well:

kubectl get crds | grep -o ".*.internal.linstor.linbit.com" \

 | xargs -i{} sh -c "kubectl get {} -o yaml > {}.yaml"

4. Store your crds.yaml somewhere secure.

Restoring from Backup of LINSTOR Internal Resources

1. If you retrieved your backup from a Kubernetes secret, unpack the crds.yaml, otherwise skip this step:

tar xvf linstor-backup.tar.gz

crds.yaml

...

2. Stop the current controller:

kubectl -n linbit-sds patch deployments.apps linstor-controller --patch '{"spec":{"replicas": 0}}'

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.3. Routine Maintenance

26

kubectl -n linbit-sds rollout status --watch deployment/linstor-controller

3. Delete existing resources:

kubectl get crds | grep -o ".*.internal.linstor.linbit.com" \

 | xargs --no-run-if-empty kubectl delete crds

4. Apply the LINSTOR CRDs from backup:

kubectl apply -f crds.yaml

5. Apply the LINSTOR resource state from backup:

kubectl apply -f *.internal.linstor.linbit.com.yaml

6. If you’re restoring LINSTOR’s internal state from a failed upgrade, re-apply the kustomization.yaml
referencing the old LINSTOR version’s chart:

kind: Kustomization

namespace: linbit-sds

resources:

 - https://charts.linstor.io/static/v2.2.0.yaml

[snip]

7. If you’re restoring LINSTOR’s internal state for some other reason, simply scale the LINSTOR controller’s replica
count back up to 1:

kubectl -n linbit-sds patch deployments.apps linstor-controller --patch '{"spec":{"replicas": 1}}'

kubectl -n linbit-sds rollout status --watch deployment/linstor-controller

5.3.2. Upgrading LINSTOR

A LINSTOR deployment on Kubernetes can be upgraded using kubectl to apply an updated kustomization.yaml
referencing the target release’s manifests found on charts.linstor.io.

Before upgrading to a new release, you should ensure you have an up-to-date backup of the LINSTOR database as
described in the Backup and Recovery section of this document.

Upgrades will update to new versions of the following components:

• LINSTOR Operator Deployment

• LINSTOR Controller

• LINSTOR Satellite

• LINSTOR CSI Driver

Some versions require special steps, please consult LINBIT’s LINSTOR User Guide’s section on release specific upgrades
before proceeding.

If there are no special steps for the current upgrade path, simply apply an updated kustomization.yaml as
outlined in the Installing LINSTOR section of this document.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.3. Routine Maintenance

27

https://charts.linstor.io
https://linbit.com/drbd-user-guide/linstor-guide-1_0-en/#s-kubernetes-upgrade

cat << EOF > kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1

kind: Kustomization

namespace: linbit-sds

resources:

 - https://charts.linstor.io/static/v2.2.0.yaml ①
generatorOptions:

 disableNameSuffixHash: true

secretGenerator:

 - name: drbdio-pull-secret

 type: kubernetes.io/dockerconfigjson

 literals:

 - .dockerconfigjson={"auths":{"drbd.io":{"username":"MY_LINBIT_USER","password":"MY_LINBIT_PASSWORD"}}} ②
EOF

kubectl apply -k .

① Replace v2.2.0.yaml with the latest release manifest from charts.linstor.io.

② Replace MY_LINBIT_USER and MY_LINBIT_PASSWORD with your my.linbit.com credentials.

5.3.3. Rotating drbd.io Secret

LINBIT will not force a password reset on the drbd.io account used to pull LINSTOR’s container images. However, it’s a
best practice to rotate passwords on a regular basis. Additionally, LINBIT can reset your password upon request.
Regardless of the case, you’ll need to update the respective Kubernetes secret.

The best way to do so is using the following approach:

kubectl create secret docker-registry drbdio-pull-secret -n linbit-sds \

 --docker-server=drbd.io --docker-username=<lb-username> \

 --docker-email=<lb-email> --docker-password=<lb-password> \

 --dry-run=client -o yaml | kubectl apply -f -

Following this approach will allow kubectl to record its annotation for tracking changes to the resource in its spec.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: 5.3. Routine Maintenance

28

https://charts.linstor.io

Chapter 6. Support for the Solution

To receive support for the solution if you haven’t already contact LINBIT’s sales team via the Contact Us page on
LINBIT’s website. Someone will be in contact with you during US or EU business hours depending on which country
you’re located in.

If you already have support through LINBIT you can open a ticket by emailing support@linbit.com. You will receive a
confirmation email stating your ticket has been created, and within which SLAs you should expect a response from
LINBIT’s engineering team.

Generally speaking, LINBIT SDS (LINSTOR) is only sold with LINBIT’s Enterprise support tier. Our Enterprise support tier
includes:

• LINSTOR & DRBD update support (certified binary repository and container registry)

• Unlimited incidents covered

• 24/7 email and telephone service desk availability

• 1 hour maximum emergency initial response time[1]

• 4 hours maximum initial response time

• 30 day installation support

• Remote installation, troubleshooting, and performance tuning via SSH or VPN[2]

• Optional - Remote installation by Zoom, Teams, etc.[3]

• Access to all necessary software components from LINBIT managed repositories and registries

[1] “Emergency” is defined as an incident involving a production system down or unresponsive, with no workaround available.

[2] Login, troubleshooting, and performance tuning on customer systems all require remote maintenance infrastructure on the
customer’s end, and the customer’s prior consent for every incident that requires remote system access.

[3] Public SSH keys available. Zoom, Teams, etc. can not be used as an exploratory training session.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: Chapter 6. Support for the Solution

29

https://linbit.com/contact-us
mailto:support@linbit.com

Appendix A: Additional Information and Resources

• LINBIT’s GitHub Organization: https://github.com/LINBIT/

• Join LINBIT’s Community on Slack: https://www.linbit.com/join-the-linbit-drbd-linstor-slack/

• The DRBD® and LINSTOR® User’s Guide: https://docs.linbit.com/

• The DRBD® and LINSTOR® Mailing Lists: https://lists.linbit.com/

◦ drbd-announce: Announcements of new releases and critical bugs found

◦ drbd-user: General discussion and community support

◦ drbd-dev: Coordination of development

Jenkins High Availability Clustering Using LINBIT SDS in EKS: Appendix A: Additional Information and Resources

30

https://github.com/LINBIT/
https://www.linbit.com/join-the-linbit-drbd-linstor-slack/
https://docs.linbit.com/
https://lists.linbit.com/
https://lists.linbit.com/listinfo/drbd-announce
https://lists.linbit.com/listinfo/drbd-user
https://lists.linbit.com/listinfo/drbd-dev

Appendix B: Legalese

B.1. Trademark Notice

LINBIT®, the LINBIT logo, DRBD®, the DRBD logo, LINSTOR®, and the LINSTOR logo are trademarks or registered
trademarks of LINBIT in Austria, the EU, the United States, and many other countries. Other names mentioned in this
document may be trademarks or registered trademarks of their respective owners.

B.2. License Information

The text and illustrations in this document are licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
license ("CC BY-SA").

• A summary of CC BY-NC-SA is available at http://creativecommons.org/licenses/by-nc-sa/3.0/.

• The full license text is available at http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode.

• In accordance with CC BY-NC-SA, if you modify this document, you must indicate if changes were made. You
may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Jenkins High Availability Clustering Using LINBIT SDS in EKS: B.1. Trademark Notice

31

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

	Jenkins High Availability Clustering Using LINBIT SDS in EKS
	Table of Contents
	Chapter 1. Introduction
	1.1. Architectural Diagram

	Chapter 2. Prerequisites
	Chapter 3. Deploying the Solution
	3.1. Create an EC2 Launch Template
	3.2. Create the EKS cluster using eksctl
	3.3. Install LINSTOR Operator Using Kustomize
	3.4. Install Jenkins via Helm 3

	Chapter 4. Validating the Solution
	4.1. Failover Verification
	4.2. Performance Expectations

	Chapter 5. Maintaining the Solution
	5.1. Snapshot Shipping to S3
	5.2. Health Monitoring with Prometheus Operator
	5.3. Routine Maintenance

	Chapter 6. Support for the Solution
	Appendix A: Additional Information and Resources
	Appendix B: Legalese
	B.1. Trademark Notice
	B.2. License Information

