
Highly Available Jenkins AWS EKS Architecture
Matt Kereczman (LINBIT), with contributions from James Bland (AWS) and Welly Siauw (AWS)

Version 6.2, 2022-11-03

Table of Contents
1. Introduction. Ê1

1.1. Architectural Diagram. Ê2
2. Prerequisites. Ê3
3. Deploying the Solution. Ê4

3.1. Create an EC2 Launch Template. Ê4
3.2. Create the EKS cluster using eksctl . Ê7
3.3. Install LINSTOR via Helm 3. Ê8
3.4. Install Jenkins via Helm 3. Ê11

4. Validating the Solution. Ê13
4.1. Failover Verification. Ê13
4.2. Performance Expectations. Ê15

5. Maintaining the Solution. Ê17
5.1. Snapshot Shipping to S3. Ê17
5.2. Health Monitoring with Prometheus Operator. Ê24
5.3. Routine Maintenance. Ê27

6. Support for the Solution. Ê31
Appendix A: Additional Information and Resources. Ê32
Appendix B: Legalese. Ê33

B.1. Trademark Notice. Ê33
B.2. License Information. Ê33

Chapter 1. Introduction
LINBIT SDS is the product name for LINBITÕs LINSTOR software and the various plugins that surround it. In this
reference architecture, LINBIT SDS will be referenced as "LINSTOR".

LINSTOR is an open source management tool designed to manage block storage devices for Linux server clusters. Its
primary use-case is to provide Linux block storage for Kubernetes and other public and private cloud platforms.

LINSTOR layers various storage software native to Linux in order to provide tailored feature sets for the volumes it
creates. LINSTOR uses LVM and/or ZFS for pooling and partitioning physical storage as well as enabling snapshots and
caching layers. LINSTOR can layer LUKS for encrypted volumes, and VDO for compression and deduplication. The most
important storage software LINSTOR manages is DRBD. Layering DRBD enables block level replication, as well as
remote attachment of volumes to hosts without a physical replica of a volume, which are both very useful features in
cloud solutions like AmazonÕs EKS (Elastic Kubernetes Service).

EKS provides AWS users with Kubernetes clusters that are both scalable and highly available. Out of the box, EKS
clusters will have a default storageClass backed by EBS (Elastic Block Store) for stateful Kubernetes workloads.
EBS volumes can only be attached to instances in the same AZ (availability zone).

EKS can also use EFS (Elastic File System) backed storage. EFS volumes can be concurrently accessed across AWS AZs,
but concurrent access means locking overhead, and therefore isnÕt as performant as EBS. Stateful workloads with
demanding IO requirements, like some Jenkins deployments, will suffer from poor storage performance on EFS.

The gap between performant storage and storage accessible across AZs is where LINSTOR fits into the EKS ecosystem.
LINSTOR can be configured to consume unused EBS volumes attached to your EKS worker nodes. LINSTOR will
partition them to size using LVM or ZFS, and replicate them synchronously using DRBD to EBS volumes attached to EKS
workers in different AZs.

If there is an AZ outage where your Jenkins pod is currently running, the pod will automatically be rescheduled in a
different AZ where there is an identical replica of your LINSTOR volume.

The following reference architecture is specific to deploying HA Jenkins pods onto LINSTOR backed persistent storage
in EKS stretching across multiple AZs, but could be adapted for other workloads that need cross AZ replication without
sacrificing performance.

The estimated time to deploy the reference architecture outlined in this white paper is 45 minutes.

While LINSTOR is open-source, this reference architecture describes the deployment of LINSTOR from LINBITÕs
container image repository (http://drbd.io) which is only available to LINBIT customers or through LINBIT customer
trial accounts. Contact LINBIT for information on pricing or to begin a trial. Alternatively, you may use LINSTOR SDS'
upstream project named Piraeus, without being a LINBIT customer.

Declarative configurations created in this guide can be found in the GitHub repository linked here.

Highly Available Jenkins AWS EKS Architecture: Chapter 1. Introduction

1

http://drbd.io
https://linbit.com/contact-us/
https://github.com/piraeusdatastore/piraeus-operator
https://github.com/kermat/linstor-jenkins-eks-assets

1.1. Architectural Diagram
The reference architecture described in this document is depicted in the diagram below.

The diagram shows a singleton Jenkins pod running in an EC2 instance within a single AWS Availability Zone. It writes its
persistent data to a LINSTOR volume, which is synchronously replicated to its LINSTOR peer volumes, each in their own
different AZ. LINSTORÕs control and data planes communicate over private or public subnets attached to each AZ and
routed by AWS.

LINSTORÕs volumes are backed by EBS volumes in each instanceÕs AZ, which are always identical to each other thanks to
LINSTORÕs synchronous replication. In the event of an AZ outage, LINSTORÕs High Availability controller for StatefulSets
will kick in and move the Jenkins workload to another AZ within a few minutes.

The EKS managed load balancer will transparently reroute users to the active AZ whenever the Jenkins pod is migrated.

LINSTOR supports snapshot shipping of volumes to AmazonÕs S3 to satisfy disaster recovery requirements. The
Amazon S3 bucket should be created in a different AWS region than the EKS cluster.

! No user data is stored anywhere outside of the EBS volumes used to back LINSTORÕs storage pools
in this reference architecture.

Highly Available Jenkins AWS EKS Architecture: 1.1. Architectural Diagram

2

Chapter 2. Prerequisites
To follow this reference architecture line for line, youÕre going to need some AWS EKS related tools installed on your
workstation, or be familiar enough with AWS services that you can replicate the desired infrastructure without them.

The following tools need to be installed and configured:

¥ eksctl: installation doc

¥ kubectl: installation doc

¥ aws cli v2: installation doc

¥ helm 3: installation doc

"
It is highly recommended that you do not use your AWS accountÕs root userÕs access to deploy this
reference architecture. Instead, readers should create IAM accounts with least privileges granted.
For more information, consult the AWS IAM Security best practices guide.

Highly Available Jenkins AWS EKS Architecture: Chapter 2. Prerequisites

3

https://eksctl.io/introduction/#installation
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://helm.sh/docs/intro/install/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Chapter 3. Deploying the Solution
The following chapter is broken into sections that will describe how the solution is deployed.

3.1. Create an EC2 Launch Template
LINSTOR requires an additional unused block device for its storage pools, as well as kernel-devel packages present
on each EC2 instance for compiling the DRBD kernel module for the Amazon Linux 2.0 kernel. The DRBD kernel module
will replicate Jenkins' block device (pvcdata) across AWS AZs.

We can use an EC2 launch template to satisfy these requirements.

Log in to the AWS Management Console and browse to the EC2 Dashboard. In the navigation bar you should see a link
to "Launch Templates" nested under the "Instances" drop down; click this link.

Click the "Create launch template" button in the Launch Template console. Only set the options pictured below, as the
rest will be configured elsewhere, and duplicated settings will cause failures when launching new instances.

Name and description for launch template

Highly Available Jenkins AWS EKS Architecture: 3.1. Create an EC2 Launch Template

4

https://console.aws.amazon.com/

Instance type for launch template

"
LINSTOR itself is not resource intensive. Memory utilization for a DRBD resource scales with the
size of volume and number of replicas. The formula is roughly 32KiB of memory per 1GiB of storage
multiplied by the number of peers (other nodes with replicas). Size your instances according to
your applicationÕs requirements.

Highly Available Jenkins AWS EKS Architecture: 3.1. Create an EC2 Launch Template

5

Storage settings for launch template

"
The larger volume will be used by LINSTOR when provisioning PVs from its storage classes. The
smaller volume will be used as an external metadata pool for LINSTORÕs DRBD devices. Set the size
of the larger volume according to your deploymentÕs storage requirements. The smaller volume
should be sized relative to the size of your larger volume; the ratio of 32MiB (metadata) per 1TiB
(data), per peer. 4GiB is the smallest volume allowed by EBS, which will work for data volumes up
to 64 TiB in size with 3 replicas of each volume.

Highly Available Jenkins AWS EKS Architecture: 3.1. Create an EC2 Launch Template

6

Advanced settings for launch template

"
The only advanced setting that needs modification is the "User data" field. This is where we add the
kernel-devel package to the EKS bootstrapping. You can copy and paste this text from the
code block below.

Content-Type: multipart/mixed; boundary="==BOUNDARY=="
MIME-Version: 1.0

--==BOUNDARY==
Content-Type: text/x-shellscript; charset="us-ascii"
#!/bin/bash
echo "Running custom user data script"
sudo yum install kernel-devel-`uname -r` -y

--==BOUNDARY==--\

Finally, click the "Create template version" button to save the launch template. You should see that your launch
template was created successfully.

Follow the link to view your launch template and note the "Launch Template ID" which should be formatted like this:
lt-0123456789abcdefg. You will need this when creating your EKS cluster configuration.

3.2. Create the EKS cluster using eksctl
Write the clusterÕs configuration changing the settings where appropriate; specifically: name, region,
launchTemplate.id.

cat << EOF > eksctl-cluster.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
Ê name: linbit-eks
Ê region: us-west-2
Ê version: "1.21"
managedNodeGroups:
- name: lb-mng-0
Ê launchTemplate:
Ê id: lt-0123456789abcdefg
Ê version: "1"

Highly Available Jenkins AWS EKS Architecture: 3.2. Create the EKS cluster using eksctl

7

Ê desiredCapacity: 3
EOF

!
There are some AWS regions that have less than three AZs. LINSTORÕs high-availability controller
does rely on quorum for decision making, so choosing a region with three or more AZs is a
requirement.

Create the cluster using the yaml definition.

eksctl create cluster -f eksctl-cluster.yaml

The cluster creation will take some time. You should see that eksctl is configuring resources spread across AZs in
your configured region.

3.3. Install LINSTOR via Helm 3
Create a namespace for LINSTOR in your EKS cluster.

kubectl create namespace linstor

Create a Kubernetes secret using the credentials for your LINBIT portal (customer or trial). If you donÕt have this, you
can reach out to LINBIT to start a trial by filling out the Contact Us form. Alternatively, you can use LINSTORÕs
upstream - community supported but LINBIT developed - named Piraeus Datastore.

kubectl create secret docker-registry drbdiocred -n linstor \
Ê --docker-server=drbd.io --docker-username=<lb-username> \
Ê --docker-email=<lb-email> --docker-password=<lb-password>

Add the LINSTOR repository to helm.

helm repo add linstor https://charts.linstor.io
helm repo update

Configure LINSTORÕs options in a values file that will be passed to helm during installation.

cat << EOF > linstor-op-vals.yaml
operator:
Ê controller:
Ê dbConnectionURL: k8s
Ê satelliteSet:
Ê storagePools:
Ê lvmThinPools:
Ê - name: ext-meta-pool
Ê thinVolume: metapool
Ê volumeGroup: ""
Ê devicePaths:
Ê - /dev/nvme1n1
Ê - name: lvm-thin
Ê thinVolume: thinpool
Ê volumeGroup: ""

Highly Available Jenkins AWS EKS Architecture: 3.3. Install LINSTOR via Helm 3

8

https://my.linbit.com/
https://www.linbit.com/contact-us/
https://github.com/piraeusdatastore/piraeus-operator

Ê devicePaths:
Ê - /dev/nvme2n1
Ê kernelModuleInjectionMode: Compile
etcd:
Ê enabled: false
stork:
Ê enabled: false
csi:
Ê enableTopology: true
EOF

"
Many things can be configured here. The best source of information for the current and complete
list of settings is in the LINSTOR UserÕs Guide as well as the upstream Piraeus Helm Reference
Table.

Use helm to install LINSTOR and watch the LINSTOR stack become ready.

helm install -n linstor -f ./linstor-op-vals.yaml linstor-op linstor/linstor
watch kubectl get pods -n linstor -o wide

For faster failover of Jenkins we will also deploy the LINSTOR High Availability Controller for Kubernetes. This will
monitor the quorum state of the replicated volume and reschedule Jenkins if the active worker loses connection to the
rest of the cluster.

helm install -n linstor linstor-ha-controller linstor/linstor-ha-controller

We will also use the LINSTOR Affinity Controller to update the Jenkins PVÕs node affinity when needed. This is
important because in EKS, workers can be deleted and automatically reprovisioned. The affinity controller for LINSTOR
will make sure that Kubernetes knows it is able to schedule Jenkins on a node that was added to the cluster after the
creation of the PV.

helm install -n linstor linstor-affinity-controller linstor/linstor-affinity-controller

! In earlier versions of the LINSTOR Operator, LINSTORÕs high availability controller and affinity
controller were not managed by their own deployments.

Create storageClass definitions for LINSTOR using the examples below:

cat << EOF > linstor-sc.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
Ê name: "linstor-csi-lvm-thin-r1"
provisioner: linstor.csi.linbit.com
parameters:
Ê allowRemoteVolumeAccess: "false"
Ê autoPlace: "1"
Ê storagePool: "lvm-thin"
Ê DrbdOptions/Disk/disk-flushes: "no"
Ê DrbdOptions/Disk/md-flushes: "no"
Ê DrbdOptions/Net/max-buffers: "10000"
Ê DrbdOptions/auto-quorum: suspend-io

Highly Available Jenkins AWS EKS Architecture: 3.3. Install LINSTOR via Helm 3

9

https://www.linbit.com/drbd-user-guide/linstor-guide-1_0-en/#s-kubernetes-storage
https://github.com/piraeusdatastore/piraeus-operator/blob/master/doc/helm-values.adoc
https://github.com/piraeusdatastore/piraeus-operator/blob/master/doc/helm-values.adoc

Ê DrbdOptions/Resource/on-no-data-accessible: suspend-io
Ê DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary
Ê DrbdOptions/Net/rr-conflict: retry-connect
Ê property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
Ê name: "linstor-csi-lvm-thin-r2"
provisioner: linstor.csi.linbit.com
parameters:
Ê allowRemoteVolumeAccess: "false"
Ê autoPlace: "2"
Ê storagePool: "lvm-thin"
Ê DrbdOptions/Disk/disk-flushes: "no"
Ê DrbdOptions/Disk/md-flushes: "no"
Ê DrbdOptions/Net/max-buffers: "10000"
Ê DrbdOptions/auto-quorum: suspend-io
Ê DrbdOptions/Resource/on-no-data-accessible: suspend-io
Ê DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary
Ê DrbdOptions/Net/rr-conflict: retry-connect
Ê property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
Ê name: "linstor-csi-lvm-thin-r3"
provisioner: linstor.csi.linbit.com
parameters:
Ê allowRemoteVolumeAccess: "false"
Ê autoPlace: "3"
Ê storagePool: "lvm-thin"
Ê DrbdOptions/Disk/disk-flushes: "no"
Ê DrbdOptions/Disk/md-flushes: "no"
Ê DrbdOptions/Net/max-buffers: "10000"
Ê DrbdOptions/auto-quorum: suspend-io
Ê DrbdOptions/Resource/on-no-data-accessible: suspend-io
Ê DrbdOptions/Resource/on-suspended-primary-outdated: force-secondary
Ê DrbdOptions/Net/rr-conflict: retry-connect
Ê property.linstor.csi.linbit.com/StorPoolNameDrbdMeta: "ext-meta-pool"
reclaimPolicy: Retain
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
EOF

kubectl apply -f ./linstor-sc.yaml

" These example storageClass definitions will work for the LINSTOR storage pools weÕve created.
Most tuning of LINSTOR resources happens in the storageClass definitions.

Highly Available Jenkins AWS EKS Architecture: 3.3. Install LINSTOR via Helm 3

10

https://www.linbit.com/drbd-user-guide/linstor-guide-1_0-en/#s-kubernetes-basic-configuration-and-deployment

3.4. Install Jenkins via Helm 3
To simplify the deployment of Jenkins, weÕll use Helm to deploy Jenkins.

Create a namespace for Jenkins in your EKS cluster.

kubectl create namespace jenkins

Add the Jenkins repository to helm.

helm repo add jenkinsci https://charts.jenkins.io
helm repo update

We will need to override some of the default values for our environment in Jenkins' Helm chart. Specifically, weÕll
configure the following options and values:

¥ persistence.storageClass: linstor-csi-lvm-thin-r3

¥ persistence.size: "20Gi"

¥ controller.serviceType: LoadBalancer

¥ list of required Jenkins plugins (installPlugins)

" Adjust the persistence.size="20Gi" value according to your requirements.

Create the Jenkins configuration override file:

cat << EOF > jenkins-op-vals.yaml
persistence:
Ê storageClass: linstor-csi-lvm-thin-r3
Ê size: "20Gi"
controller:
Ê serviceType: LoadBalancer
Ê installPlugins:
Ê - configuration-as-code:latest
Ê - kubernetes:latest
Ê - workflow-aggregator:latest
Ê - git:latest
EOF

Install Jenkins with the override options using helm:

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

Once running, you should be able to get the admin password and the DNS address for the load balancer using the steps
output by helm after installation. The commands should look something like this:

kubectl exec --namespace jenkins -it svc/jenkins -c jenkins \
Ê -- /bin/cat /run/secrets/chart-admin-password && echo

export SERVICE_IP=$(kubectl get svc --namespace jenkins jenkins \
Ê --template "{{ range (index .status.loadBalancer.ingress 0) }}{{ . }}{{ end }}")

Highly Available Jenkins AWS EKS Architecture: 3.4. Install Jenkins via Helm 3

11

echo http://$SERVICE_IP:8080/login

"
The DNS address of your load balancer is publicly accessible. Be sure to follow your organizationÕs
security practices when hardening your Jenkins deployment (e.g. limiting source IP ranges on the
load balancerÕs security group to those of your organization).

Highly Available Jenkins AWS EKS Architecture: 3.4. Install Jenkins via Helm 3

12

Chapter 4. Validating the Solution
The following chapter contains sections that will describe validation tests and their expected outcomes.

4.1. Failover Verification
The general idea here is to fail/terminate the EC2 instance that is currently running the singleton Jenkins pod. It should
be migrated to another AZ without user interaction, with access to the persistent data as the pod in the original AZ.

Log in to the Jenkins instance using the outputs from the helm installation. From there, create a job to validate that
your persistent data remains intact after an instance or AZ failure.

HereÕs an example job for completeness, but feel free to test however you see fit.

Create a new item as a Freestyle project

Highly Available Jenkins AWS EKS Architecture: 4.1. Failover Verification

13

Give it some description and add an "Execute shell" build step to the, "Build", section of the project. IÕm writing a 10MiB
file from /dev/urandom/ and taking a sha1sum of it in my example.

Add an execute shell build step

Save the project, then click on "Build Now" to start a build. Once complete, view and note the "Console output" from
the successful job. Near the bottom youÕll see output similar to this:

...snip...
[validation] $ /bin/sh -xe /tmp/jenkins5820634365303503379.sh
+ dd if=/dev/urandom of=./validation.dump bs=1M count=10
10+0 records in
10+0 records out
10485760 bytes (10 MB, 10 MiB) copied, 0.402937 s, 26.0 MB/s
+ sha1sum ./validation.dump
683df872bb28d55c449914957b635c34f65719d8 ./validation.dump
Finished: SUCCESS

The above output is what we want to see once a pod is moved to another AZ. To simulate an instance failure, we can
terminate the instance running our singleton Jenkins pod. Retrieve the node name using the following command:

kubectl get pods -n jenkins jenkins-0 -o jsonpath='{.spec.nodeName}'
ip-192-168-32-202.us-west-2.compute.internal

Highly Available Jenkins AWS EKS Architecture: 4.1. Failover Verification

14

Browse to your AWS Management Console, find the EC2 instance with the DNS name output by the command above,
and terminate the instance.

Terminate EC2 instance running jenkins-0

Use something like the following command to view the status of the pods and nodes in the cluster. You should see the
jenkins-0 pod Terminating shortly after the node failure is noticed by the EKS control plane. Shortly after that,
the node is being rescheduled on a worker in a different AZ.

watch "kubectl get pods -n jenkins -o wide; kubectl get nodes"

Once the pod is running again, youÕll be able to log back into the Jenkins dashboard and see your persistent data has
survived the AZ migration.

4.2. Performance Expectations
Replicating writes synchronously between AZs does have some performance overhead. However, that overhead is
minimal due to AmazonÕs low-latency fiber networks that connect the data centers comprising any of the AWS
Regions.

IO performance will differ depending on the type of EBS storage selected when creating the launch template. In this
reference architecture, 100GiB gp3 (general purpose SSD) volumes were used, which have a baseline performance of
3000 IOPS and 125MB/s of throughput at any volume size. IOPS and throughput on gp3 volumes can be scaled up to
16,000 and 1,000MB/s respectively.

Using fio, an open source IO workload generator, performance was measured while simulating various IO patterns and
block sizes on LINSTOR volumes. Those same workloads were tested against EBS volumes without LINSTOR as a
baseline for comparison in our benchmarks.

!
Pure read test results are omitted below. This is because LINSTOR provisions thin volumes in this
reference architecture, and reads that would be pulled from an unallocated block return
immediately, which unrealistically inflates the results.

Highly Available Jenkins AWS EKS Architecture: 4.2. Performance Expectations

15

https://console.aws.amazon.com/

Table 1. EBS Baseline Results

4k 16k 32k 64k
randrw 3024 3024 3024 2065
randwrite 3025 3025 3025 2065
readwrite 3025 3025 4132 2065
write 3025 3025 4133 2066

Table 2. LINSTOR Single Replica (no replication) Results

4k 16k 32k 64k
randrw 3461 3361 3055 2929
randwrite 2389 2253 1890 1990
readwrite 3254 3308 3919 2093
write 3029 3015 3206 2010

Table 3. LINSTOR Two Replica Results

4k 16k 32k 64k
randrw 3461 3365 2659 2924
randwrite 2398 2243 1880 1981
readwrite 3252 3232 3890 2182
write 3292 2984 3192 2001

Table 4. LINSTOR Three Replica Results

4k 16k 32k 64k
randrw 3452 3338 3014 2931
randwrite 2355 2207 1843 1988
readwrite 3343 3204 3901 2176
write 3207 2959 3168 2011

EBS Baseline and LINSTOR Replication Results Graphs

Highly Available Jenkins AWS EKS Architecture: 4.2. Performance Expectations

16

Chapter 5. Maintaining the Solution
The following chapterÕs sections provide guidance for day-2 operations that will help the reader maintain the solution
once deployed.

5.1. Snapshot Shipping to S3
Starting with LINSTOR operator 1.8.0, you can configure LINSTOR VolumeSnapshotClasses in Kubernetes that are
backed by AmazonÕs S3. This enables out-of-region snapshot shipping for LINSTOR volumes, therefore protecting your
data from AWS region outages or natural disasters that might span an entire AWS region.

5.1.1. Installing snapshot-controller into EKS

EKS does not provide a snapshot-controller in their Kubernetes distribution. This is required for CSI drivers that
support snapshots, therefore one must be installed.

LINSTORÕs upstream project, Piraeus, provides Helm charts to assist users with installing the external-snapshotter from
the Kubernetes Storage SIG.

Since Helm does not support management of CRDs, we need to manually create these in preparation for Helm
deployment of the external-snapshotter.

using this variable to "split" a long URL for PDF readability
EXT_SNAP_URL="https://raw.githubusercontent.com/kubernetes-csi/external-snapshotter"

create the CRDs
kubectl apply -f \
Ê ${EXT_SNAP_URL}/v5.0.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml
kubectl apply -f \
Ê ${EXT_SNAP_URL}/v5.0.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml
kubectl apply -f \
Ê ${EXT_SNAP_URL}/v5.0.1/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yaml

Create a namespace for the snapshot-controller.

kubectl create namespace snapshot-controller

Add the Helm chart repository from the Piraeus project, and deploy the snapshot-controller into the newly created
namespace.

helm repo add piraeus-charts https://piraeus.io/helm-charts/
helm repo update
helm install -n snapshot-controller snapshot-validation-webhook \
Ê piraeus-charts/snapshot-validation-webhook
helm install -n snapshot-controller snapshot-controller \
Ê piraeus-charts/snapshot-controller --wait

Once Helm returns control, you should see you have the snapshot-controller as well as the necessary
snapshot-validation-webhook pods running in your snapshot-controller namespace.

kubectl get pods -n snapshot-controller
NAME READY STATUS RESTARTS AGE

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

17

https://github.com/kubernetes-csi/external-snapshotter/
https://github.com/kubernetes-csi/external-snapshotter/

snapshot-controller-685b89b4fc-trrzz 1/1 Running 0 39m
snapshot-validation-webhook-9866866dc-794rr 1/1 Running 0 41m
snapshot-validation-webhook-test-invalid-body 0/1 Completed 0 40m
snapshot-validation-webhook-test-valid-body 0/1 Completed 0 40m

5.1.2. Create an S3 Bucket

Create an S3 bucket for LINSTORÕs Jenkins snapshots. When you create the bucket, itÕs recommended to use the
default settings "ACL disabled" and "Block all public access".

You will need to know the name and region of the S3 bucket when configuring your VolumeSnapshotClass.

5.1.3. Create IAM User with S3 Access

LINSTOR requires programmatic access to an AWS user with sufficient privileges for reading and writing to S3. The
access key and secret access key must be stored in a Kubernetes secret that LINSTOR can access. ItÕs best practice to
create an IAM user with least privilege for this type of access.

Browse to IAM in your AWS console, then select "Users" under "Access management". Click the "Add users" button to
begin creation.

Name the user something obvious, and select the option for "Access key - Programmatic access", click next to
proceed.

Create New AWS User for LINSTOR

Create a new group and apply only the "AmazonS3FullAccess" policy.

Create New Group Limited to S3 Access

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

18

" You can add the user to an existing group if one already exists with the appropriate policies under
your account.

Optionally, you can add tags to the user. Finally, review and create the new user making sure to securely store the new
users access key and secret access keys.

5.1.4. Add IAM User as Kubernetes Secret

Using the access key and secret access key for the IAM account created for LINSTORÕs S3 access, create the
Kubernetes secret for LINSTOR.

kubectl create secret generic linstor-csi-s3-access -n linstor \
Ê --type=linstor.csi.linbit.com/s3-credentials.v1 \
Ê --from-literal=access-key=REDACTED \
Ê --from-literal=secret-key=REDACTED
kubectl patch secrets linstor-csi-s3-access -n linstor \
Ê --type=merge -p '{"immutable":true}'

5.1.5. Add LINSTOR Volume Snapshot Class

Add a VolumeSnapshotClass to Kubernetes using information specific to your S3 bucket.

cat << EOF > linstor-s3-snapclass.yaml
kind: VolumeSnapshotClass
apiVersion: snapshot.storage.k8s.io/v1
metadata:
Ê name: linstor-csi-snapshot-class-s3
driver: linstor.csi.linbit.com
deletionPolicy: Delete
parameters:
Ê snap.linstor.csi.linbit.com/type: S3
Ê snap.linstor.csi.linbit.com/remote-name: s3-us-west-2
Ê snap.linstor.csi.linbit.com/allow-incremental: "false"

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

19

Ê snap.linstor.csi.linbit.com/s3-bucket: name-of-bucket-123
Ê snap.linstor.csi.linbit.com/s3-endpoint: http://s3.us-west-2.amazonaws.com
Ê snap.linstor.csi.linbit.com/s3-signing-region: us-west-2
Ê snap.linstor.csi.linbit.com/s3-use-path-style: "false"
Ê # Secret to store access credentials
Ê csi.storage.k8s.io/snapshotter-secret-name: linstor-csi-s3-access
Ê csi.storage.k8s.io/snapshotter-secret-namespace: linstor
EOF

kubectl apply -f linstor-s3-snapclass.yaml

"
Service Endpoints in AWS generally follow the convention of, protocol:// service-code
.region-code.amazonaws.com. S3 utilizes HTTP(S). Therefore, our bucket in the us-west-2
region from the example above uses the s3-endpoint: http://s3.us-west-2.amazonaws.com

5.1.6. Create a Volume Snapshot of Jenkins PVC

Finally, you can create snapshots of your Jenkins volume using Kubernetes native patterns. Jenkins Helm charts deploy
Jenkins onto a PVC named "jenkins". Create an S3 snapshot of this PVC:

cat << EOF > jenkins-s3-snap.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
Ê name: jenkins-dr-snapshot-0
Ê namespace: jenkins
spec:
Ê volumeSnapshotClassName: linstor-csi-snapshot-class-s3
Ê source:
Ê persistentVolumeClaimName: jenkins
EOF

kubectl apply -f jenkins-s3-snap.yaml

After a short while, depending on the size of your volume, you should see that the snapshot has become "Ready", at
which point you should be able to see the snapshot in your S3 bucket via the AWS S3 management console.

5.1.7. Restore a Volume Snapshot from S3

When restoring a volume from a snapshot stored in S3 there are two possible scenarios you will find yourself in.

You may be restoring Jenkins' PVC into a foreign cluster, which is any cluster other than Jenkins' origin cluster. This
would be the case if youÕve redeployed your EKS cluster into a new region, or simultaneously lost all instances
comprising the original cluster.

Alternatively, you may be restoring Jenkins' PVC into the origin cluster as a way to roll Jenkins' state back to a previous
point in time.

Restoring Snapshots into Foreign Cluster

If youÕve redeployed the solution into a new cluster, there are steps that must be performed "manually" within the
LINSTOR controller pod before restoring will be possible.

We must create a remote object within LINSTOR that references the S3 bucket containing our snapshots. To do this,
use the commands below making the appropriate substitutions for your S3 bucket.

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

20

http://s3.us-west-2.amazonaws.com

set the LINSTOR controller pod name to a variable
linstor_k8s=$(kubectl get pods -n linstor \
Ê -l app.kubernetes.io/instance=linstor-op-cs \
Ê -o custom-columns=":metadata.name" --no-headers)
create the LINSTOR remote object referencing your S3 bucket
kubectl exec -it -n linstor $linstor_k8s -- linstor \
Ê remote create s3 s3-origin \
Ê http://s3.<AWS_REGION>.amazonaws.com \
Ê <S3_BUCKET_NAME> <AWS_REGION> \
Ê <ACCESS_KEY> <SECRET_KEY>

Recreate your LINSTOR snapshot-class and LINSTOR S3 secret referencing your IAM user as described in the respective
sub-section of this section of this guide.

List the snapshots available in your S3 remote:

kubectl exec -it -n linstor $linstor_k8s -- linstor \
Ê backup list s3-us-west-2-origin

We will need to reference the snapshot name using the portion following the ^. You can use regex and grep to filter for
the portion that is needed using the command below.

kubectl exec -it -n linstor $linstor_k8s -- linstor \
Ê backup list s3-us-west-2-origin | grep -o snapshot[a-Z0-9\-]*

Use the truncated name to populate the VolumeSnapshotContent below, and apply the yaml to import the
snapshot from S3 into Kubernetes.

cat << EOF > snap-from-s3.yaml
apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshotContent
metadata:
Ê name: restored-snapshot
Ê namespace: jenkins
spec:
Ê deletionPolicy: Delete
Ê driver: linstor.csi.linbit.com
Ê source:
Ê snapshotHandle: <PLACE_BACKUP_NAME_HERE>
Ê volumeSnapshotClassName: linstor-csi-snapshot-class-s3
Ê volumeSnapshotRef:
Ê apiVersion: snapshot.storage.k8s.io/v1
Ê kind: VolumeSnapshot
Ê name: restored-snapshot
Ê namespace: jenkins

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
Ê name: restored-snapshot
Ê namespace: jenkins
spec:
Ê source:

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

21

Ê volumeSnapshotContentName: restored-snapshot
Ê volumeSnapshotClassName: linstor-csi-snapshot-class-s3
EOF

kubectl apply -f snap-from-s3.yaml

You should then see that you have a VolumeSnapshot within Kubernetes which you can use to populate a new PVC
using standard Kubernetes patterns.

cat << EOF > restore-snap-to-pvc-foreign.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
Ê name: jenkins-restored
Ê namespace: jenkins
spec:
Ê storageClassName: linstor-csi-lvm-thin-r3
Ê accessModes:
Ê - ReadWriteOnce
Ê dataSource:
Ê name: restored-snapshot
Ê kind: VolumeSnapshot
Ê apiGroup: snapshot.storage.k8s.io
Ê resources:
Ê requests:
Ê storage: 20G
EOF

kubectl apply -f restore-snap-to-pvc-foreign.yaml

With the snapshot restored into a PVC named, jenkins-restored, you can deploy Jenkins with the restored PVC
by setting the persistence.existingClaim key in the Jenkins chart values.

cat << EOF > jenkins-op-vals.yaml
persistence:
Ê storageClass: linstor-csi-lvm-thin-r3
Ê existingClaim: jenkins-restored
Ê size: "20Gi"
controller:
Ê serviceType: LoadBalancer
Ê installPlugins:
Ê - configuration-as-code:latest
Ê - kubernetes:latest
Ê - workflow-aggregator:latest
Ê - git:latest
EOF

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

Restoring Snapshots into Origin Cluster

Restoring snapshots from a remote into the origin cluster is far simpler as the VolumeSnapshot and
VolumeSnapshotContent objects are already present. Therefore, you may use the typical Kubernetes patterns for
restoring a snapshot to a PVC.

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

22

Identify the snapshot youÕd like to restore from.

kubectl get -n jenkins volumesnapshot

Use the name of the snapshot above to populate the yaml below.

cat << EOF > restore-snap-to-pvc-origin.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
Ê name: jenkins-restored
Ê namespace: jenkins
spec:
Ê storageClassName: linstor-csi-lvm-thin-r3
Ê accessModes:
Ê - ReadWriteOnce
Ê dataSource:
Ê name: jenkins-dr-snapshot-0
Ê kind: VolumeSnapshot
Ê apiGroup: snapshot.storage.k8s.io
Ê resources:
Ê requests:
Ê storage: 20G
EOF

kubectl apply -f restore-snap-to-pvc-origin.yaml

With the snapshot restored into a PVC named, jenkins-restored, you can deploy Jenkins with the restored PVC
by setting the persistence.existingClaim key in the Jenkins chart values.

cat << EOF > jenkins-op-vals.yaml
persistence:
Ê storageClass: linstor-csi-lvm-thin-r3
Ê existingClaim: jenkins-restored
Ê size: "20Gi"
controller:
Ê serviceType: LoadBalancer
Ê installPlugins:
Ê - configuration-as-code:latest
Ê - kubernetes:latest
Ê - workflow-aggregator:latest
Ê - git:latest
EOF

helm install -n jenkins -f ./jenkins-op-vals.yaml jenkins jenkinsci/jenkins

If the original Jenkins deployment is still installed, you can use the helm upgrade to move the deployment onto the
restored PVC.

helm upgrade -n jenkins jenkins jenkinsci/jenkins --reuse-values \
Ê --set persistence.existingClaim=jenkins-restored

Highly Available Jenkins AWS EKS Architecture: 5.1. Snapshot Shipping to S3

23

5.2. Health Monitoring with Prometheus Operator
Starting with LINSTOR operator v1.5.0, you can use Prometheus to monitor LINSTOR components. The operator will set
up monitoring containers alongside the existing components and make them available as a Service in Kubernetes.

If you use the Prometheus Operator, the LINSTOR Operator will also set up the ServiceMonitor instances. The
metrics will automatically be collected by the Prometheus instance associated to the operator, assuming you configure
the Prometheus Operators access to the LINSTOR namespace.

Detailed steps for building and customizing the Prometheus Operator can be found in the ProjectÕs README.md on
Github. The steps below will deploy the Prometheus Operator and Grafana dashboards specifically for this reference
architecture.

5.2.1. Building Prometheus Operator

You need go installed and in your path in order to install the build dependencies. Once you have go, prepare your build
environment and install build dependencies using go:

mkdir my-kube-prometheus; cd my-kube-prometheus
go get github.com/jsonnet-bundler/jsonnet-bundler/cmd/jb
go get github.com/brancz/gojsontoyaml
go get github.com/google/go-jsonnet/cmd/jsonnet
jb init
jb install github.com/prometheus-operator/kube-prometheus/jsonnet/kube-prometheus@release-0.8
jb update

" release-0.8 of the Prometheus Operator or better is required as it deploys Grafana 7.5.4 which
is a requirement of LINBITÕs Grafana Dashboard.

Highly Available Jenkins AWS EKS Architecture: 5.2. Health Monitoring with Prometheus Operator

24

https://prometheus-operator.dev/
https://github.com/prometheus-operator/kube-prometheus
https://github.com/prometheus-operator/kube-prometheus

Create a customized .jsonnet configuration, download the build script and build the manifests:

cat << EOF > linstor-jenkins-ns.jsonnet
local kp = (import 'kube-prometheus/main.libsonnet') + {
Ê values+:: {
Ê common+: {
Ê platform: 'eks',
Ê namespace: 'monitoring',
Ê },
Ê prometheus+:: {
Ê namespaces: ["default", "kube-system", "linstor", "jenkins"],
Ê },
Ê kubePrometheus+: {
Ê platform: 'eks',
Ê },
Ê },
};

{ ['00namespace-' + name]: kp.kubePrometheus[name] for name in std.objectFields(kp.kubePrometheus) } +
{ ['0prometheus-operator-' + name]: kp.prometheusOperator[name] for name in std.objectFields(kp.prometheusOperator) } +
{ ['node-exporter-' + name]: kp.nodeExporter[name] for name in std.objectFields(kp.nodeExporter) } +
{ ['kube-state-metrics-' + name]: kp.kubeStateMetrics[name] for name in std.objectFields(kp.kubeStateMetrics) } +
{ ['alertmanager-' + name]: kp.alertmanager[name] for name in std.objectFields(kp.alertmanager) } +
{ ['prometheus-' + name]: kp.prometheus[name] for name in std.objectFields(kp.prometheus) } +
{ ['grafana-' + name]: kp.grafana[name] for name in std.objectFields(kp.grafana) }
EOF

wget https://raw.githubusercontent.com/prometheus-operator/kube-prometheus/release-0.8/build.sh -O build.sh
chmod +x ./build.sh
./build.sh linstor-jenkins-ns.jsonnet

You should now have a manafests directory full of the yaml manifests needed to deploy the Prometheus Operator to
monitor LINSTOR. Deploy the Prometheus Operator into EKS:

kubectl apply -f manifests

" If any of the manifests fail to apply, simply run the command above again. Some resources need to
start before others can be applied.

After deploying, forward ports to Prometheus and Grafana in order to test and configure:

kubectl --namespace monitoring port-forward svc/prometheus-k8s 9090 &
kubectl --namespace monitoring port-forward svc/grafana 3000 &

Point your web browser at http://localhost:3000 , and set a secure password for Grafana. Add a dashboard by
importing LINBITÕs Grafana dashboard for DRBD.

Highly Available Jenkins AWS EKS Architecture: 5.2. Health Monitoring with Prometheus Operator

25

http://localhost:3000
https://grafana.com/grafana/dashboards/14339

If everything was done correctly, you should see a dashboard similar to the one depicted below:

This is a good starting point for configuring alerts. In a healthy cluster, you would never see a DRBD device become
out-of-sync , a DRBD device Without Quorum, or a DRBD device in the Standalone state.

If you want to access GrafanaÕs dashboard without the port forward, expose the deployment to create a LoadBalancer
service and retrieve the public DNS name of the LoadBalancer:

kubectl expose deployment -n monitoring grafana --type=LoadBalancer --name=grafana-lb

export GRAF_IP=$(kubectl get svc -n monitoring grafana-lb --template \
Ê "{{ range (index .status.loadBalancer.ingress 0) }}{{ . }}{{ end }}")
echo http://$GRAF_IP:3000

! Exposing Grafana makes it publicly accessible unless you have tightened up the VPC security
group.

Highly Available Jenkins AWS EKS Architecture: 5.2. Health Monitoring with Prometheus Operator

26

