How Knowledge Graphs will Transform the Pharmaceutical Industry

Tim Williams

- Knowledge Graph Project Lead
 - PHUSE
- Statistical Solutions Lead
 - UCB Biosciences, Raleigh N.C.
- Past Experience
 - ~ 20 years experience in Pharma
 - Systems Admin, Systems Validation & Deployment, Research Associate (Epidemiology), Programmer.

Perspective: Late Phase Clinical Trials

Opinions are my own

Why Transform?

Time

- 10 years from discovery to marketplace
- Clinical trials 6 to 7 years

Cost for successful drug

- \$314M to \$2.8B (median \$985M)*
 - Includes cost of failures
- Success Rate
 - Less than 12%

^{*} https://www.biospace.com/article/median-cost-of-bringing-a-new-drug-to-market-985-million/

What if we could make a 1% improvement?

- Cost Savings
 - \$3M to 28M per successful drug
- Re-invest
 - Research and Development
 - New insights, discovery, revenue streams
 - New Technology
 - New efficiencies
 - Patient-value initiatives

Outline

- Current State
- Future State
- PHUSE Project
- Industry Examples
- Implementation Strategy
- Q&A

Terminology

Knowledge Graph

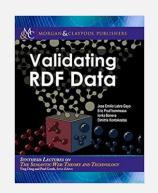
- Entities and relations in a defined schema
- Machine-readable, semantic, extensible model

Linked Data

Resource Description Framework (RDF)

Semantic Web

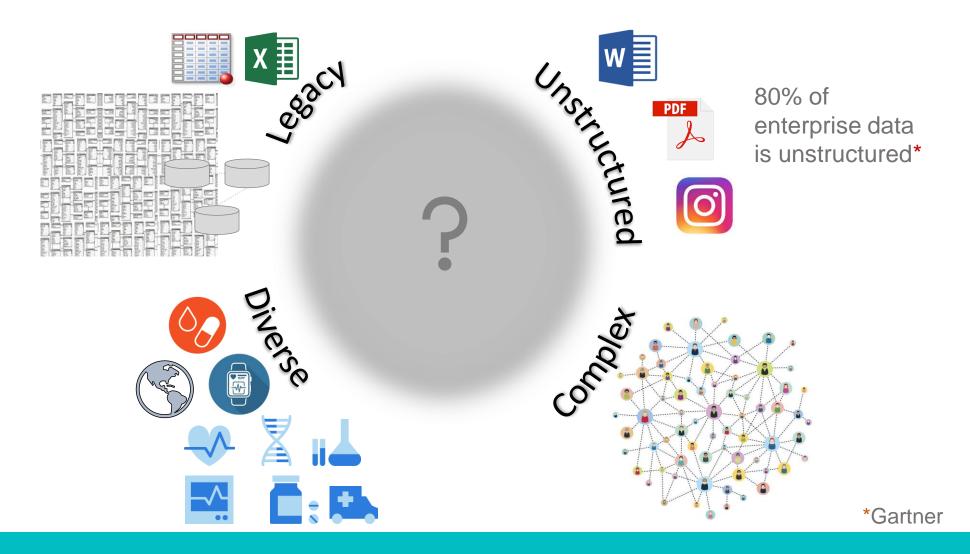
Subject Predicate → Object


• Linked Data (as RDF), Web Ontology Language (OWL), SPARQL, SHACL, etc.

Complexity? Flexibility.

"People think RDF is a pain because it is complicated. The truth is even worse. RDF is painfully simplistic, but allows you to work with real-world data and problems that are horribly complicated."

- attributed to Dan Brickley, Libby Miller. In: "Validating RDF Data"


Current State

The pharmaceutical industry needs a technology transformation.

Data Landscape

Code Landscape

```
$("#User_logged").bind("DOMAttrModified textInput input change keypress paste focus", function(a) {
                                                                    $("#inp-stats-all").html(liczenie().words)
     What does the code do?
                                                     unction curr_input_unique() { } function array_bez_powt()
                                                                    for (var a = replaceAll(",",
                                                                            0 == use_array(a[c], b) &&
                                                     ;c < a.length;c++) {</pre>

    Data Manipulation (majority)

                                                       = $("#User_logged").val(), a = replaceAll("

    Merging, subsetting, categorization...

                                                       = b.length - 1; return c; } function use_unique(a) {
                                                     array(a[c], b) && b.push(a[c]);
                                                     ogged").val(), b = b.replace(/(\r\n|\n|\r)/gm,

    Statistical Procedures

                                                         Problems

    Output formatting

                                                            Errors. 15-50 defects 1000
ndexOf_keyword(a, " "); -1 < b && a.splice(b, 1);
                        "");
                               -1 < b && a.splice(b,
 b = indexOf keyword(a,
                                                                                                        P[q]
place(new RegExp(a, "g"), b); } function use array(a,
                                                            lines*
              return c; } function czy_juz_array(a,
          return 0; } function indexOf_keyword(a, b)
                                                            Application & Skill set lock-in
                               return function(c, d)
&& (b = -1, a = a.substr(1));
                                                            Logic and metadata in code
} function occurrences(a, b, c) {
              for (c = c ? 1 : b.length;;) {
                                                                                                  Int($("
                                                            Add context and complexity
                         return d; };
limit_val").a()), a = Math.min(a, 200), a = Math.min(a
                                                                                                  t($("#limit
                                                                                                 d-list-out
                          $("#limit_val").a(a);
         limit val = a;
                          var c = 1(), a =
      var b = k();
                     h();
slider_shuffle_number").e()); function("LIMIT_total:
                                                                                                  = d, funct
                                                                * "Code Complete" – Steve McConnell
check rand\u00f3\u00f3rand: " + f + "tops: " + \overline{d});
                                               1 < e && b.splice(e. 1):
```


Dictionaries, Taxonomies, Coding...

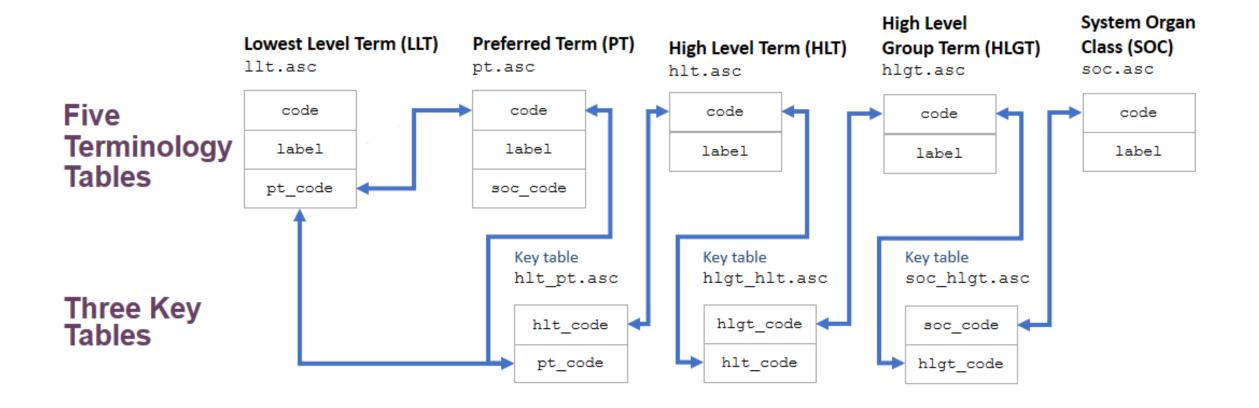
- Clinical Data Interchange Standards Consortium (CDISC) Controlled Terminology cdisc
- Logical Observation Identifiers Names and Codes (LOINC)
- WHO's International Classification of Diseases

- <u>ICD-9/ICD-10</u>
- Medical Subject Headings (<u>MeSH</u>)

• Systematized Nomenclature of Medicine (SNOMED)

WHO Drug Dictionary (WHODrug)

Medical Dictionary for Regulatory Activities (<u>MedDRA</u>)

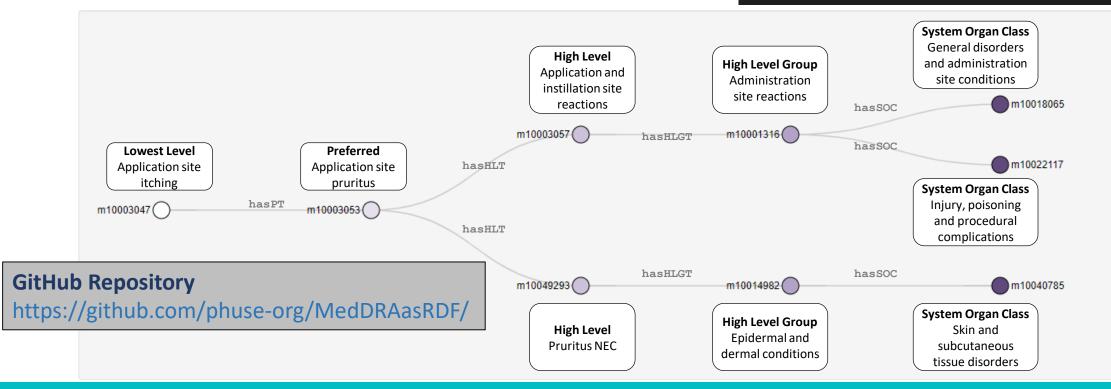


+ Company-specific

MedDRA: ASCII Text Files

MedDRA as RDF

MedDRA Tracing from Lowest Level Term (LLT) to System Organ Class(SOC)


•

LLT:

Application Site Itching

The Query

PREFIX meddra: <https://w3id.org/phuse/meddra#>
PATHS ALL
START ?s = meddra: input\$rootNode
END ?o
VIA ?p

Data Standards & Models

Pharmaceutical Industry

Health Care

Observational Health Data Sciences and Informatics (OHDSI) OHDSI

OMOP Common Data Model

Health Level 7 (HL7) HL7

- HL7 Fast Healthcare Interoperability
 Resources (HL7 FHIR) HL7° FHIR°

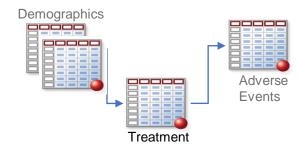
 https://www.hl7.org/fhir/rdf.html
- Microsoft Common Data Model
- <u>Healthcare extension</u> **Microsoft**

Research

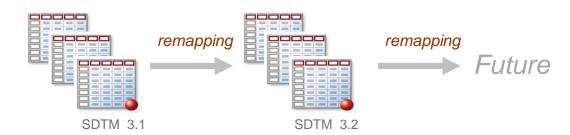
Clinical Data Interchange Standards

Consortium (cdisc.org/standards) cdisc

- Biomedical Research Integrated
 Domain Group Model (BRIDG)
- Standard for Exchange of Nonclinical Data (SEND)
- Clinical Data Acquisition Standards Harmonization (CDASH)
- Study Data Tabulation Model (<u>SDTM</u>)
- Analysis Data Model (<u>ADaM</u>)


Industry Standards. Example SDTM

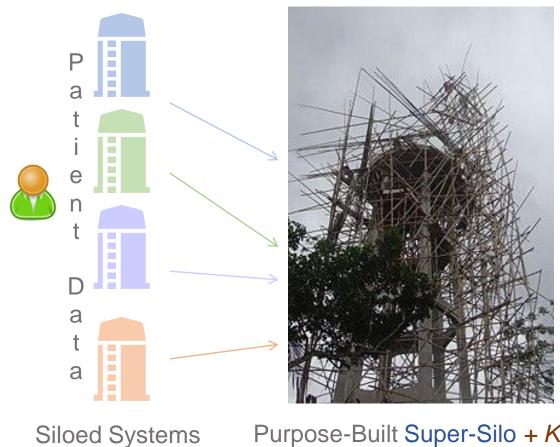
Study Data Tabulation Model

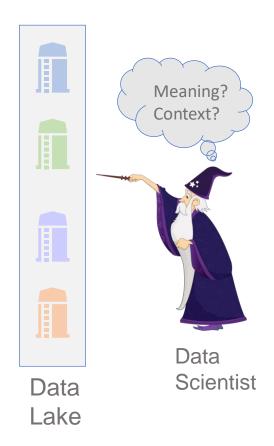

"...defines a standard structure for <u>human</u> clinical trial (study) data tabulations and for nonclinical study data tabulations that are to be submitted as part of a product application to a regulatory authority..."

- <u>en.wikipedia.org/wiki/SDTM</u>

- Domain Silos
- # Clinical Trial Process Model

 \$ Millions for version conversion, pooling, data integration, data mining





Siloed Systems / Siloed Data

Data silos prevent a complete view of the patient.

Micro/Shadow Silos

"What's in your spreadsheet?"

- Store metadata
- Drive statistical program execution
- Manage analytics for data pools
- List of project programmers
- Requests for special analysis & tracking replies
- A host of (often unknown) uses...
- 85% to 95% of spreadsheets have serious flaws
- error rate: 1%-5% per cell*

* as cited in McComb 2019

Resistance to Change

- Risk-averse
 - Time, money, patient safety
- Established, validated processes
- Skill set
- Business models support status quo
 - Vendor familiarity
 - Recoding data to revised standards
 - Cottage industry
 - Creating and maintaining code for studies & standards

But there is a way forward!

Future State

Data is the foundation for transformation.

Data as the Foundation

Evolving			Foundation
Use Cases	DiscoverySafetyMarketing	Regulatory Response	Data
Analytics	p-valueregression	Bayesian Machine Learning Natural Language AI	Data
Languages	sas.	R	Data
Standards	Legacy StandNew versions		Data

From Application-Centric to Data-Centric

Application-Centric

When

Historical

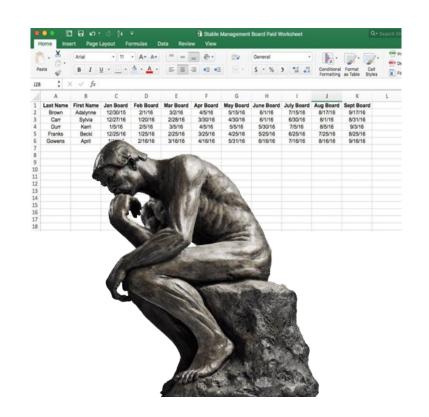
Data

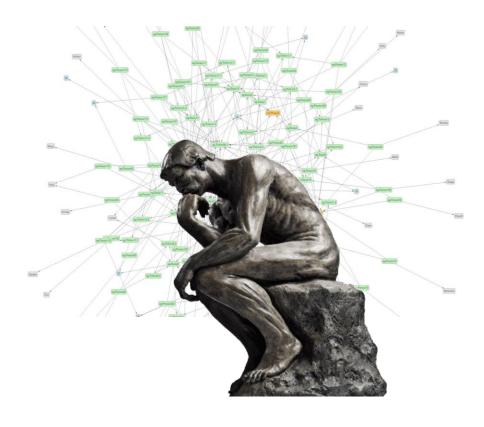
Model

- Planned Use / Analytics
- Submission/Regulatory Requirements
- Use-case dictates schema

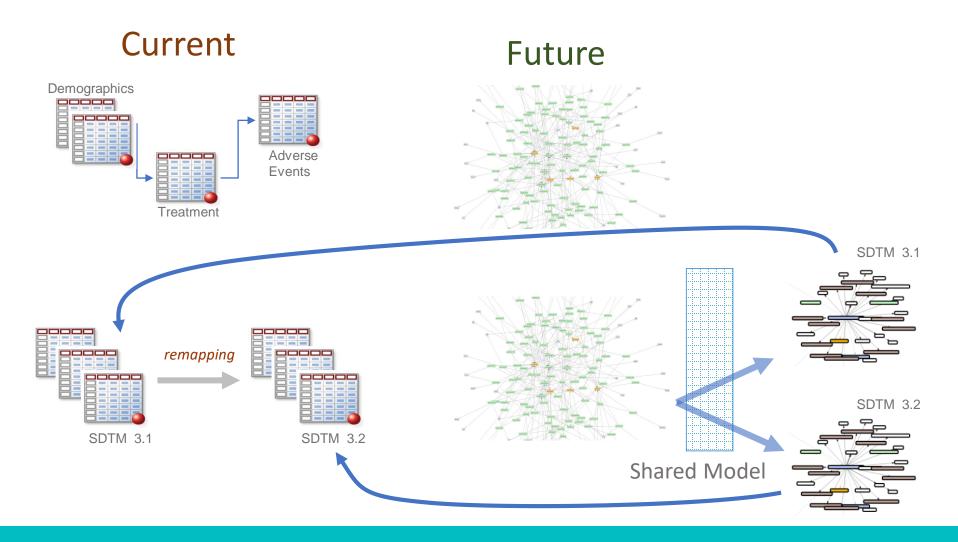
Designer

IT Architects,DatabaseAdministrators

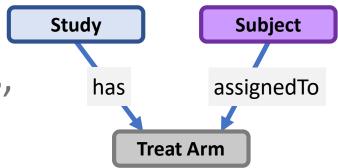

Data-Centric


- Future
- Real-world Processes
- & Meaning
- Flexible, futureproof
- Researcher, Clinicians, Analysts, working with IT and technology experts

Thinking about Data



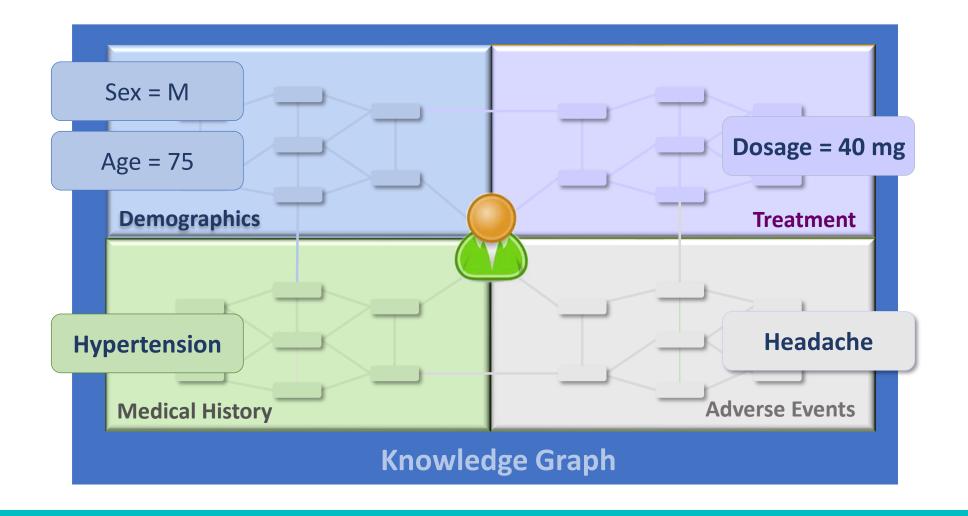
Transition from Relational to Graph

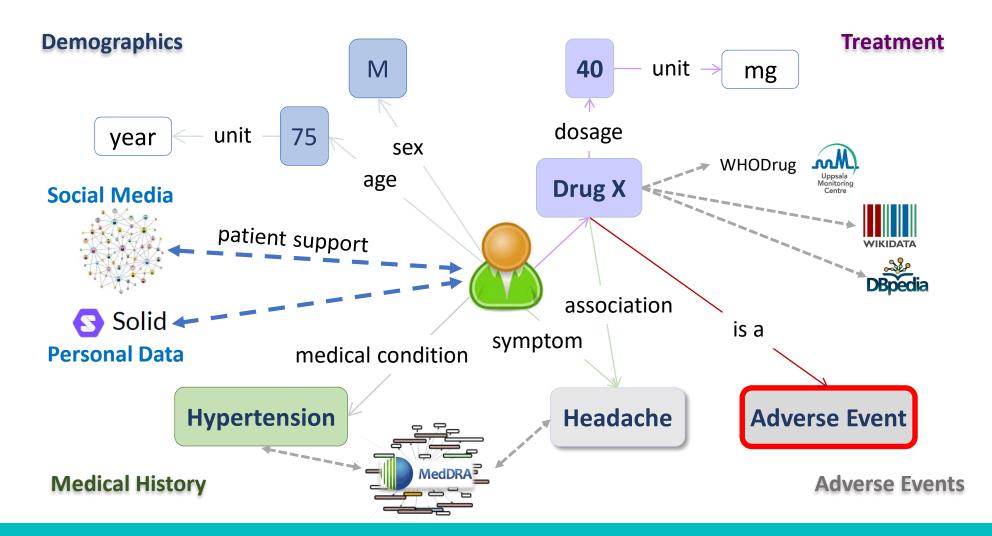


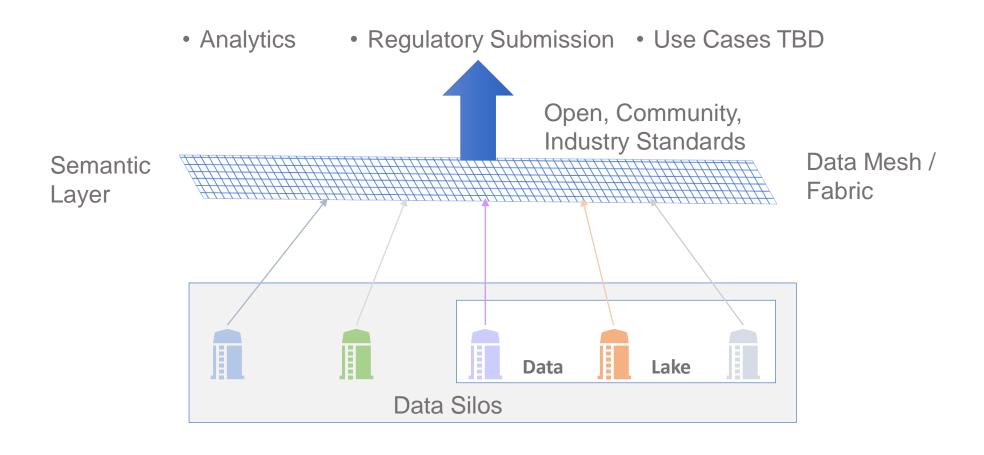
Knowledge Graph Data-Centric Model

Use-case neutral

 Real-world processes, entities, relationships


 Knowledge Graph using Resource Description Framework (RDF)


Data-Centric = Patient-Centric


Comprehensive Patient View

Semantic Data Mesh / Data Fabric

PHUSE Project

Study Data Validation & Submission Conformance

What is PHUSE?

Mission

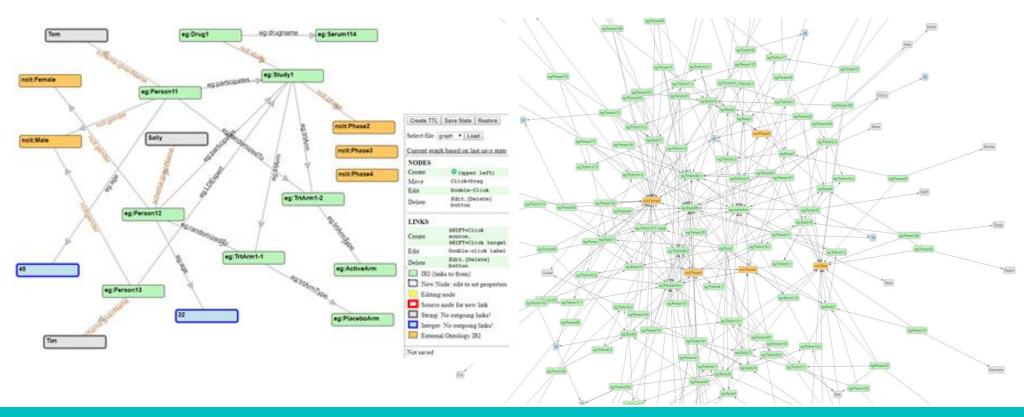
• Provide a welcoming, neutral platform for creating and sharing ideas... exploring innovative methodologies, techniques, and technologies.

Working Group Mission

• Open, transparent, and collaborative forum in a noncompetitive environment.

https://www.phuse.eu/working-groups

What is PHUSE?


- Pharmaceutical Users Software Exchange
- Membership: >8,700 spanning 30 countries
- Annual Conferences:
 - EUConnect, USConnect
- Single Day Events
- Computational Sciences Symposium (CSS)
 - A working conference

Linked Data Workshop

A PHUSE, Stardog Partnership

PHUSE Linked Data Projects

- CDISC Foundational Standards in RDF.
- CDISC Conformance Checks
- Reusing Medical Summaries for Enabling Clinical Research
- Regulatory Guidance in RDF
- Clinical Program Design in RDF
- CDISC Protocol Representation Model in RDF
- Analysis Results & Metadata
 - RDF Data Cubes for clinical trial results
- Clinical Trials Data as RDF
 - Study Data Tabulation Model as Linked Data
- Going Translational with Linked Data
- Study Data Validation and Submission Conformance
 - Pre-clinical data + submission metadata

Study Data Validation & Submission Conformance

A PHUSE Linked Data Project

Emerging Trends & Technologies Working Group

FDA Submissions

• 32% data conformance issues* (2016-2018)

Why so high? [Personal Opinion]

- A submission usually contains multiple studies
 - Data consistency and integration issues.
- Requirements: lack of clarity and understanding
- Contributing factor:
 - Legacy data structures
 - Lack of consistent identifiers
 - Poorly integrated metadata and validation rules

Application types:

- New Drug Application (NDA)
- Abbreviated New Drug Application (ANDA)
- Biologics License Applications (BLA)
- Commercial Investigational New Drug

^{* &}quot;Update on Technical Rejection Criteria for Study Data."

⁻ Ethan Chen, CDER. 3 April 2019.

Project Collaboration

- PHUSE phuse
- FDA (preclinical submissions)

- Academia (pending/TBA)
 U. (T.B.D)
- Stardog Knowledge Graph

- + YOU
 - Open Positions: Project Co-lead, Contributors

Study Data Validation

Study Data Validation and Submission Conformance

- FDA Validation Rules for pre-clinical data
- SHApes Constraint Language (SHACL)

Study Subject SHACL

Submission Conformance

Study Data Validation and Submission Conformance

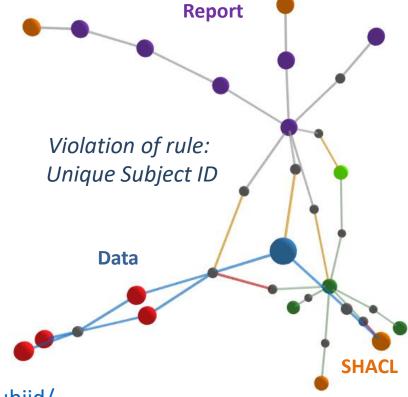
- Format and Content Completeness
- FDA Standards Catalog
- Increase automation of:
 - Submission metadata collection
 - Data validation
- Collaboration with Academia
- F.A.I.R. (Findable, Accessible, Interoperable, Reusable)

https://github.com/phuse-org/SENDConform

Project Website

Study Data Validation and Submission Conformance

http://bit.ly/SENDConform


All together:

- Data
- Validation Rules
- Validation Report

Demonstration:

Visualization of USUBJID Rule

https://phuse-org.github.io/SENDConform/visualization/usubjid/

Industry Examples

Life Sciences & Beyond

- Life Sciences Linked Open Data
 - https://lod-cloud.net/#subclouds
- Wikidata

• DBPedia DB

...and many others

F.A.I.R Data

• Findable • Accessible • Interoperable • Reusable

https://www.go-fair.org/fair-principles/

- FAIR Implementation Project & Toolkit https://www.pistoiaalliance.org/projects/current-projects/fair-implementation/
- Ontologies Mapping
 https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/

 FAIR Data Knowledge Graphs – From Theory to Practice https://youtu.be/Z0U2O2FjL6w

Bayer

- Data-Centric Approach
 - Across three Life Sciences Divisions
- FAIR Data Lake
 - Enable future data science on legacy data assets
- Clinical Trial Design
 - Answer complex questions to improve design
- Permanent ID Service
 - Central registration for ID generation and curation
- ...and more.

Information courtesy of: **Dr. Alexander Krupp**Head of Global Data Assets – Pharma 360

Roche

- Common Models for Integration
- Global Data Standards Repository (GDSR)
 - Aligned with (clinical) CDISC Standards
 - Adheres to FAIR Principles
- Roche Terminology Service (RTS)
 - Semantically linked Domain Master for Terminologies
- Clinical Trial Data, Real World Data
- And more...

Information courtesy of: **Dr. Javier Fernandez**Medical Data & Information Solutions

Implementation Strategy

The Roofshot / Moonshot Manifesto

Examples

- 1. Unique Identifiers for Pharma
- 2. Validation Rules in SHACL for Pre-Clinical Data
- 3. Open Ontology Development

Concept & Image Attribution: https://rework.withgoogle.com/blog/the-roofshot-manifesto/

The Stairway to the Stars Manifesto

Messaging

Data Owner

• Implied silo

"No, it's MY data!"

Data Steward

 Creation, oversight, sharing

Messaging

Proof of Concept

"A proof is a proof. What kind of a proof? It's a proof. A proof is a proof. And when you have a good proof, it's because it is proven."

- Former Canadian Prime Minister **Jean Chretien**.

- The technology is proven
- Better choices:
 - Experiment
 - Demonstrate the Business Case to the right audience.

Selling the Knowledge Graph Transformation

Relational

Robotic Process Automation
Machine Learning

Knowledge Graphs

Cloud

Artificial Intelligence

Digital Transformation

Data Mesh

Data Fabric

Relational + Graph

Who will Lead the Transformation?

Favor status quo

Favor Change

Legacy Vendors Graph Vendors

Traditional Consultants Data-centric Consultants

Contract Research Organizations (CROs) Progressive CROs

Legacy Corporate IT Enlightened IT

Standards Organizations Standards Organizations (future)

Regulatory Agencies (future)

Research

- Drug Discovery
- Genomics
- Key Opinion Leader ID

Analytics

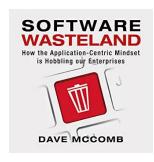
- Competitive Analysis
- Submissions
- Publishing
- Business
- Risk Management

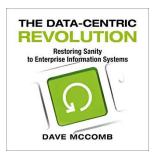
Knowledge Graphs Provide

- Fewer, simpler data models
- Less
 - Data manipulation
 - Code
 - Manual data conversion & recoding
- Built-in:
 - Data integration
 - Metadata
 - Validation
- Flexible, incremental model building
- Follow-your-nose approach to information discovery

Impact

Paradigm shift to data-centric approach


- Higher data quality
- Successful submissions for new medicines
- New insights
- Faster delivery of affordable, safe therapies to patients



Acknowledgements

Dave McComb

Industry Initiatives

• Dr. Alexander Krupp

• Dr. Javier Fernandez

Thank you!

tim.williams@phuse.eu

Questions?

