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Their Indicators in Mobile App Usage” in response to the Big Data Call for Papers.

Establishing the relationship between sleep behavior and job performance has been a challenge in the past
due to the difficulty of collecting objective measures in real-world settings. A real-time indicator of a person’s
job performance and sleep quality would enable people to increase their awareness of their own abilities and to
manage their workloads in a more efficient manner. Unfortunately, objective sleep metrics and job performance
metrics can be both difficult and invasive to collect in practice. Our work leverages the emergence of sleep-tracking
technologies and the ubiquity of smartphones and the resulting large observational datasets to examine the
relationship between sleep behavior, cognition, and psychomotor performance in real-world settings.

In this work, we conducted a 1.6-year-long observational study with 274 participants during their everyday
lives. In total, the dataset included 30,618 tracked nights of sleep, 11,140 days of app usage, 289 performance
measurements. To the best of our knowledge, this is the largest study to data on relationship between sleep, job
performance, and sleep-tracking app usage in real-world setting. The participants tracked their sleep behavior
using a mattress sensor and studied their sleep data using an accompanying smartphone app. For a subset of
that population including salespeople (N=15) and athletes (N=19), we also tracked job performance through
daily sales statistics (118 days) and game-day ratings (171 games). Using the data collected from the study, we
investigated the relationship between sleep behavior, job performance, and sleep-tracking app usage. We show
that cumulative sleep measures were significantly correlated with job performance metrics. Concretely, when
the average salesperson lost one hour of sleep daily for one week, the number of contracts they were able to
establish decreased by 9% the next day; when the average athlete lost the same amount of sleep throughout the
week, their game grades dropped by 9.5%. We also find that smartphone interaction time correlates with sleep
metrics like sleep history and time awake while accounting for potential confounders like circadian rhythms and
user-specific baselines in our statistical models. Finally, we show that interaction time is correlated with athletic
job performance(ρ=-0.296,p=0.0456).

By taking advantage of ubiquitous technologies like mattress sensors and smartphones, our research addresses
the increasing desire within various organizations to evaluate job performance through data. This highlights an
interesting opportunity for future assessments of sleep and performance in uncontrolled settings. We believe that
this article will be of particular interest to researchers in diverse disciplines, including sleep science, behavioral
psychology, public health, and computer science. The article will also attract readers from the general public
who are interested in leveraging ubiquitous sleep-tracking technology to establish healthy sleep behaviors and
improve their job performance.
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ABSTRACT

Study Objectives
Although it is commonly conjectured that a good night’s sleep is important for job performance, this relationship
has historically been hard to quantify due to the difficulty of capturing objective measures in real-world contexts.
In this work, we present the findings from an observational study of objectively measured sleep, job performance,
and sleep tracking app usage.

Methods
We conduct an observational study in which we tracked the sleep behaviors of 274 participants who used a
mattress sensor. For a subset of that population including salespeople (N = 15) and athletes (N = 19), we also
track job performance through daily sales statistics and game-day ratings. After analyzing the data to explore
the relationship between sleep behaviors and job performance, we investigate the utility of timed smartphone
interactions as a proxy cognition indicator.

Results
We show that cumulative sleep measures were significantly correlated with job performance metrics. When the
average salesperson lost one hour of sleep daily for one week, the number of contracts they were able to establish
decreased by 9% the next day; when the average athlete lost the same amount of sleep throughout the week, their
game grades dropped by 9.5%. We also find that smartphone interaction time correlates with sleep history, time
awake, and circadian rhythms. Finally, we show that interaction time is correlated with athletic job performance
(ρ=-0.296, p=0.0456), but not with salespeople’s performance.

Conclusions
We found positive correlations between cumulative sleep behaviors, job performance, and a passively captured
smartphone interaction metric.

KEYWORDS
Performance, job performance, interaction speed, sleep behavior, sleep debt, sleep history, mattress sensor

STATEMENT OF SIGNIFICANCE
Having a real-time indicator of a person’s job performance would increase self-awareness of a person’s own
abilities and would enable employers to manage workloads in a more efficient manner. Unfortunately, objective
job performance metrics can be both difficult and invasive to collect in practice. Given the emergence of sleep-
tracking technologies for continuously measuring sleep without user intervention, our work demonstrates the
utility of sleep sensing as a potential indicator of job performance. In addition, we demonstrate that passively
sensed, timed smartphone interactions provide a unique opportunity for researchers to assess cognition and
productivity in a continuous, unintrusive manner.

INTRODUCTION
Sleep is essential to human function, affecting memory [59], mood [7], energy [9], and alertness [2]. Total sleep
deprivation, even for a single day, can affect people’s ability to perform simple tasks like reaction time tasks
such as the psychomotor vigilance test (PVT) [18, 30] and mental math [5]; the same holds true for studies of
chronic sleep restriction [40, 57]. The consequences of sleep deprivation were found to be comparable to the
cognitive and motor impairments experienced during alcohol intoxication [61]. Although prior literature has led
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researchers to suspect that the side effects of poor sleep behaviors can impact real-world job performance, this
relationship has remained largely unquantified.
Researchers have often leveraged sleep behavior surveys to assess the relationship between sleep and job

performance [10, 20, 31], yet self-reports are often subjective and imprecise in nature [23, 54]. In recent years,
sleep tracking has become more commonplace due to the introduction of commercially available sleep-tracking
technologies like smartphones, smartwatches, and mattress sensors [35]. Researchers have leveraged these
technologies to study the relationship between sleep quality and people’s performance at either cognitive
tasks [32, 33, 44] or sports [41, 60]. Unfortunately, these studies have examined performance in contrived
scenarios rather than everyday life. Many careers involve a complex combination of cognitive and psychomotor
tasks, so it is unclear how contrived tasks translate to higher level performance.
In this work, we present the findings from a 1.6-year-long observational study of objectively measured sleep

and performance across 274 participants, all of whom tracked their sleep using a mattress sensor and reviewed
their data using an accompanying mobile app. A subset of that population (12.4%) worked in two organizations—a
bankruptcy law firm consultancy and the National Football League—that have widely accepted metrics for job
performance. Since job performance metrics can be difficult to capture in practice, we explore the possibility
of using timed interactions with the sleep-tracking app as an indicator for performance. The ways with which
users interact with their smartphone provides insights into their psychomotor and cognitive function [4, 24, 43],
providing an opportunity for nonintrusive app-based performance measurements. We examine the amount of
time a user spends interpreting the information on a screen in the app (interaction time) as an instantiation of an
app-based performance metric. Lastly, as users engage with their sleep-tracking data through an app, they are
likely to learn more about their sleep habits [11, 13, 14]. However, increased awareness of sleep habits does not
guarantee an improvement in sleep behavior [39]. The longitudinal nature of our dataset allows us to examine
whether engaging with sleep-tracking technology leads to improvement in the context of automatic sleep sensing.

Specifically, we leverage this data to examine the following research questions:

RQ.1 Is sleep behavior correlated with job performance?
RQ.2 Is app-based performance correlated with sleep behavior?
RQ.3 Is app-based performance correlated with job performance?
RQ.4 Is engagement with automatic sleep-tracking technology associated with improved sleep behavior?

METHODS

Study Population
The data we use in this paper was collected through a study of 274 users of a mobile app developed by Rise
Science1. Participants who enrolled into the study were sent a kit consisting of an Emfit QS2, a sleep-tracking
mobile app34, a blindfold, and orange-tinted glasses; the latter two accessories are common interventions for
improving sleep. The Emfit QS is a highly sensitive pressure sensor that lies underneath the user’s mattress
(or their preferred side of the mattress when the bed is shared). The sensor uses ballistocardiography to track
heart rate, breathing rate, and movement. In past studies, the Emfit QS has been validated against a standard
clinical heart rate monitor and polysomnography equipment [25, 36, 50]. Within the sleep-tracking mobile app,
participants can access and visualize their own sleep data, view sleep session summaries, create sleep plans, and
learn about the importance of sleep.

1https://www.risescience.com/
2https://qs.emfit.com/
3https://play.google.com/store/apps/details?id=com.risesci.risesciapp
4https://apps.apple.com/us/app/rise-science/id1107659850?app=itunes&ign-mpt=uo%3D4

https://www.risescience.com/
https://qs.emfit.com/
https://play.google.com/store/apps/details?id=com.risesci.risesciapp
https://apps.apple.com/us/app/rise-science/id1107659850?app=itunes&ign-mpt=uo%3D4
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The data collection period started on May 2017 and ended on December 2018, spanning 592 days (1.6 years).
Recruitment happened throughout that period, and participants joined and left the study as they pleased. Out of
274 participants who contributed to the dataset, 15 (5.5%) were salespeople at a bankruptcy law firm consultancy
and 19 (6.9%) were athletes from the National Football League. Demographic data like age and gender were not
collected to maintain participant privacy. Participants did not receive explicit instructions from the research
team and were free to follow whatever sleep schedule they chose. Participants were also free to use the Emfit
QS and sleep-tracking app at will; if they had to travel while participating in the study, they could choose to
either bring the Emfit QS with them or leave it behind. The mobile app sent users notifications, reminders, and
recommendations for improving their sleep (e.g., reducing caffeine intake, wearing orange-tinted glasses); users
were free to disable these features at any time. Our retrospective data analysis was conducted in accordance with
the Institutional Review Board at the University of Washington.

Sleep Behavior Metrics
The Emfit QS reports the following metrics to describe a single night’s rest: bedtime, wake time, midpoint,
time-in-bed, and total sleep duration. Time-in-bed measures how long a person is in their bed, thus only requiring
accurate presence detection. Total sleep duration, on the other hand, estimates how long a person is actually
asleep in their bed, thus requiring both accurate presence and sleep detection. Because total sleep duration is
susceptible to more sensing errors, we exclude it from the analyses reported in this paper; nevertheless, the
two metrics were strongly correlated in our dataset (ρ = 0.85,p < .001) and produced comparable results in
most cases. Looking beyond a single night’s sleep, cumulative metrics across multiple nights can provide further
insight into participants’ sleep behavior. We use sleep debt [17, 28, 34, 57], the weighted accumulation of sleep
loss, as one of those measures. Sleep debt is calculated using the following formula:

7∑
i=1

−e−i/7 ∗ (SleepNeed − TimeInBedi )

where i is the number of days in the past. Note that the difference between sleep need and debt is weighted by
a decaying exponential with a time constant of 7 days [49], indicating that recent measurements have greater
importance. Whenever a participant skips a day of tracking and a time-in-bed value is missing, their average
time-in-bed over the past week is imputed. Sleep need is typically estimated in a controlled laboratory study,
making it challenging to estimate sleep debt in the wild. Therefore, we estimate sleep need using the approach
proposed by Kitamura et al. [34]. Their approach involves using long nights of sleep to predict the difference
between sleep need and habitual sleep (i.e., the average time-in-bed over two weeks) for a minimum of four
nights. We also introduce a simplified sleep history metric that avoids the notion of sleep need, but still captures
an aggregate measure of sleep behavior:

1∑7
n=1 e

−n/7

7∑
i=1

e−i/7 ∗ TimeInBedi

The calculation of sleep history is normalized such that weights sum to one, making the metric more interpretable
as a weighted average of time-in-bed over the past week.

Job Performance Metrics
Through organizational partnerships, we were able to gather job-specific performance metrics for a subset of our
study population. We describe these metrics below:

Performance Metrics for Salespeople. The salespeople who participated in our study (N = 15) work at a bankruptcy
law firm consultancy. Their job entails fielding phone calls from potential clients in need of bankruptcy relief and
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referring those callers to an attorney. The employees collect a fee upon successfully hiring a client, which is the
company’s primary revenue source. Employees in this company are evaluated on a variety of metrics related to
that revenue stream, such as the amount they collect in fees. However, the distribution of fees is highly variable
($250–$1750) and primarily dependent upon the clients rather than the employees themselves. Therefore, we
focus on the number of hires the salespeople were able to establish as their job performance metric. Although
work hours were generally consistent across the company, we normalized the number of hires a salesperson made
by the number of hours they worked that day to account for whatever variance remained.

Performance Metrics for Athletes. The athletes who participated in our study (N = 19) play in a professional
American football league in the United States. We gather job performance metrics for the athletes’ performance
during weekly games using Pro Football Focus5 (PFF). PFF evaluates athletes using the following procedure [45]:
two expert analysts score every play the athlete is involved in, a third expert resolves disagreements between
those experts, an external group of ex-players and coaches verifies the scores, and then the scores are summed
together and normalized to a grade between 0-100. Although PFF is not purely quantitative, the experts can
account for in-game context that is lost by purely statistical methods (e.g., injuries, matchups). For this reason,
PFF has been used in the past literature for assessing performance in football [8, 19, 46].
In American football, each player has their own unique skill set according to their position; on offense, for

example, quarterbacks are typically known for their throwing ability and wide receivers are know for their speed
and catching ability. The notion of positional specialization makes it difficult to compare athletes across positions
in a purely quantitative way, especially since some skills are position-specific. PFF’s method of expert analysis
and normalization allows for the calculation of an overall game performance grade that enables comparisons
across positions, overcoming this issue.

Sleep Tracking App Usage Metrics
Users must interact with a sleep-tracking app in order to examine their sleep summaries, so we leverage these
interactions as a novel source of data. We take inspiration from Althoff et al. [4] by using interaction time—the
time between two touch events in the app—as an app-based performance metric. Interaction time is not meant to
be a direct replacement of the PVT; instead, it serves as a more general measure of cognition by measuring the
user’s ability to process information on the app’s screen. Interaction speed can be confounded by the type of
data and the quantity of data available to the user. To account for these confounds, we restrict our analysis of
interaction time to transitions from the home screen (shown in Figure 1) to three endpoints: (1) sleep details
view, (2) progress view, or (3) closing the app. We also calculate days of app engagement as a metric related to
how often the user engages with the app. This metric serves as an indicator for understanding how much users
engage with their sleep through the app.

Data Filtering and Post-Processing
Sleep behavior, job performance, and app usage metrics were collected from separate sources at different intervals.
Therefore, post-processing was needed to join and collate them. The data was first processed based on job-specific
sampling issues, and then the data was processed based on sleep behavior and app usage data qualities.

Job-Specific Filtering. Job performance data for the salespeople was collected on a daily basis. Therefore, every
night of sleep that a salesperson tracked with their Emfit QS was collated with the job performance metric from
the next day. Aligning the data streams for the athletes was more difficult since they had games on a weekly basis.
The athletes also had to travel to games away from their home stadium, leaving larger gaps in their sleep-tracking
data. To accommodate these issues, we aligned the weekly PFF grades with the sleep behavior metrics from the

5https://www.pff.com/

https://www.pff.com/
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most recent tracked night of sleep within the two days before the relevant game day; if no nights were tracked in
that span, the game grade from that week was filtered out.

General Post-Processing. The calculation of time-in-bed included naps, which were either automatically annotated
if the user’s bedtime or wake time fell in the afternoon (12:00-18:00) or manually annotated by the user. Naps
appeared in 9.3% of the nightly sleep metrics (62% automatically tagged vs. 38% manually annotated), contributing
an additional 1 hour and 13 minutes to time-in-bed on average. Sleep events when the user spent more than 16
hours in bed in a single session were attributed to faulty sensing and removed from the dataset. The remaining
nights, along with imputed averages for missing values, were used for calculating sleep debt and sleep history.
A full week of sleep data was available for calculating 46.9% of the cumulative sleep metrics, meaning that no
imputation was needed for them; three or more nights were only missing in 12.7% of the cumulative sleep metrics.
When cumulative sleep metrics were calculated without imputation, the standard deviation of the times within
the same week was only 1 hour and 10 minutes; this shows that there was not significant variance within a week,
justifying the use of a short-term average. For the analyses related to app-based performance, interaction events
that were shorter than 0.45 seconds (2.5th-percentile) were excluded since were likely accidental or automatically
generated by the app itself, and events longer than 54.83 seconds (97.5th-percentile) were excluded since they were
likely indicative of the user engaging in another activity. Summary statistics of the resulting dataset after filtering
are shown Table 2. The large standard deviations in the various metrics are due to the logistics of our study.
Participants were recruited throughout the 1.6-year-long period, so some people had many more opportunities to
use the sleep-tracking tools than others.

Correlational Analyses
Using D’Agostino’sK2 test [12], we determined that the job performance metrics in our dataset were non-normally
distributed (number of hires: K2=21.37, p=2.3×10−5; game grades: K2=14.87, p=5.9×10−4). The same holds true
for app-based performance (K2=5177, p<1.0×10−20) and app event count (K2=71.60, p=2.8×10−16). Therefore, we
use Spearman’s Rank Correlation (rho) across all correlational analyses throughout this paper.

ResearchQuestions and Methods
Understanding the relationships between app usage, sleep behavior, and job performance metrics could help
improve real-world productivity. Concretely, we aim to answer these four research questions and describe how
we analyze the data to investigate each of these questions below (Figure 2):
RQ.1 Is sleep behavior correlated with job performance?
RQ.2 Is app-based performance correlated with sleep behavior?
RQ.3 Is app-based performance correlated with job performance?
RQ.4 Is engagement with automatic sleep-tracking technology associated with improved sleep behavior?

RQ.1: The Relationship Between Sleep Behavior and Job Performance. Our first research question examines whether
better sleep improves job performance [40, 41]. Because we require job performance data to investigate this
relationship, this analysis is limited to the 19 professional athletes and the 15 salespeople in our dataset. We
calculate correlation coefficients between the job performance metrics and three sleep behavior metrics: (1) time-
in-bed, sleep debt, and sleep history. Sleep metrics can also vary across individuals due to genetic predisposition
and other factors [3, 53], so we repeat the correlation analysis using standardized sleep behavior metrics according
the Z-score within each individual’s data. Participants who did not track at least 5 nights of sleep were excluded
from this analysis to ensure that the data was representative of their typical sleep behavior.

RQ.2: The Relationship Between App-Based Performance and Sleep Behavior. Using the PVT, sleep researchers have
demonstrated that psychomotor and cognitive function improve with better sleep behavior [47, 48]. Separately,
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computing researchers have shown that the timing between interaction events in a desktop or smartphone can be
an indicator of psychomotor and cognitive function [4, 58]. Our second research question aims to join these two
bodies of literature and establish that an app-based performance metric—interaction time, in our case—can be
used to assess sleep behavior. We calculate the correlation coefficients between all of the available sleep metrics
and interaction time; since job performance data is not needed to investigate this question, we conduct this
analysis on all 274 participants in our dataset.

It is well established that psychomotor and cognitive function vary throughout the day due to circadian rhythms
homeostatic sleep drive, and sleep inertia, collectively forming the three-process model of sleep [2, 4, 22, 42].
Any performance indicator should therefore be sensitive to variations of time and sleep. To examine whether this
is the case for our app-based performance metric, we evaluate the relationship between interaction time and four
different measures: time of day, time since wake-up, sleep debt, and sleep history. We use a generalized additive
model proposed in prior work [4] and extend it with random effects intercepts for each user. Modeling users with
random effects not only accommodates user-specific performance baselines, but also accounts for device-specific
effects like the rendering capabilities of the user’s smartphone.

RQ.3: The Relationship Between App-Based Performance and Job Performance. We hypothesize that app-based
performance provides a low-level, in-situ measurement of psychomotor and cognitive performance that relates to
high-level performance in the workplace. However, we cannot presume that this statement is true even if we
identify statistically significant correlations for the previous two research questions, because correlations are
not necessarily transitive. In other words, if sleep behavior is positively correlated with both job performance
and app-based performance, we cannot assume that job performance and app-based performance are positively
correlated. We therefore evaluate the correlation between these two data sources in a separate analysis within
the subpopulations of athletes (N = 19) and salespeople (N = 15). We also fit least squares models between app
interaction time and job performance metrics to determine effect sizes.

RQ.4: The Relationship Between App Engagement and Sleep Behavior. Sleep-tracking technology is designed to
make users more aware of their sleep habits in order to encourage behavior change [11, 13, 14]; however, prior
work has questioned whether such awareness translates to improved sleep behavior [39]. Assuming that engaging
with sleep-tracking technology leads to increased awareness of sleep behavior, our longitudinal dataset allows
us to explore the link between awareness and improvement in the context of an automatic sleep sensor and its
accompanying sleep-tracking app. We begin this analysis by calculating the correlation coefficients between all
possible combinations of app engagement and sleep behavior metrics for all 274 participants in our dataset. We
also examine if app engagement affects sleep behavior consistency (e.g., going to bed at the same time every day)
by considering the standard deviations of the sleep metrics.

Correlations between app engagement and sleep could simply be a result of selection effects, where particular
users may happen to be simultaneously sleeping well and highly engaged in the app, rather than having a causal
effect between them. Therefore, we leverage the longitudinal nature of our data to study whether higher app
engagement was associated with improvements in sleep behaviors over time. We calculate changes in sleep
behavior by comparing the average time-in-bed from the first D days to the last D days in a 5-week period; we
call this difference sleep improvement. In our analysis, we vary D from four to seven days. The larger the value of
D, the larger the sample size for calculating sleep behavior; however, larger values of D will also attenuate the
effects of interest as users may be improving their sleep behaviors during the first D days. For each D, we filter
out users with less than D/2 days of sleep tracking to ensure there is enough data to accurately estimate their
sleep behavior. We compare sleep behavior improvement with the number of app engagement days between the
first and last D days.
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RESULTS
We also use these statistical analyses to explore the possibility of leveraging passively captured app interaction
data as a performance indicator.

RQ.1: The Relationship Between Sleep Behavior and Job Performance
The analyses for this research question cover 19 athletes and 15 salespeople who, respectively, contributed
data from 171 and 118 nights of sleep with corresponding job performance metrics. The correlation coefficients
between the sleep behavior and job performance metrics in our dataset are presented in Table 3. The analysis
reveals positive, statistically significant correlations in some, but not all, cases. For the salespeople, sleep debt
was positively correlated with the number of hires they made (ρ=0.218, p=0.022). For the athletes, normalized
sleep history (ρ=0.179, p=0.020) and sleep debt (ρ=0.166, p=0.031) were both positively correlated with game
performance. Fewer correlations were found for the salespeople than the athletes, which could be due to the nature
of their jobs. The athletes rely on millisecond-scale reaction times during their games, whereas salespeople do not
need to operate at such a rapid pace. These results could imply that careers focused on physical and psychomotor
skills may be more strongly affected by sleep behaviors than careers that focus primarily on cognition. The fact
that multiple correlations emerged between cumulative sleep behavior metrics and job performance, combined
with the lack of such correlations from single-day metrics, suggests that sleep over an extended period has a
stronger impact on a person’s job performance than a single night of sleep. Additionally, the general increase in
correlation coefficients after the sleep behavior metrics were normalized within users supports the notion that
sleep needs and behaviors vary between individuals.

We further analyze the statistically significant correlations by measuring their effect sizes. One hour of sleep
loss the night before by the average salesperson resulted in 1.9% decrease in the number of hires they were able
to make. The average salesperson made 3.8 hires per workday and collected $936 in fees per hire. Therefore, a
1.9% decrease translates to a $67 loss per day. The average athlete experienced a 2.0% drop (1.3 points) in their
game grade when they lost one hour of sleep the night before. Although these performance decreases may appear
small, they can accumulate over time or across multiple people on the same team. In fact, sleep debt implies that
a deficit can be spread over multiple days, so one hour of sleep loss the night before is equivalent to 2.4 hours
of sleep loss a week before or 0.2 hours of sleep loss every day for a week. A more severe, but not uncommon
scenario of losing an hour of sleep every day for a week is equivalent to losing 4.75 hours of sleep yesterday or
11.2 hours of sleep one week ago. On average, this loss in sleep debt causes a 9.5% (6.2 points) reduction in game
performance, and a 9% ($317) reduction in hires for salespeople.

RQ.2: The Relationship Between App Interaction Time and Sleep Behavior
The analyses for this research question cover all 274 participants in our dataset. Our participants logged 7,195
nights of sleep that were paired with at least one app interaction event during the same day. Table 4 summarizes
the correlation coefficients between our app-based performance metric (interaction time) and sleep behavior
metrics for all 274 participants. Time-in-bed (ρ=-0.154, p<0.05), sleep history (ρ=-0.0549, p<0.05), and sleep debt
(ρ=-0.0948, p<0.05) had negative correlations with interaction time; in other words, participants with better
sleep behaviors had faster interaction times. As before, the cumulative sleep behavior metrics exhibited stronger
correlations than total time-in-bed; however, app-based performance correlated better with non-normalized sleep
behavior metrics. This result suggests that the minimal complexity of the app interaction task engendered less
variance across individuals. Users who accumulated one less hour of sleep debt were 0.2 seconds faster each time
they moved between app screens.
Since we found statistically significant correlations between the cumulative sleep behavior metrics and job

performance, we used sleep history and sleep debt in our generalized additive model. Figure 5 shows the variation
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of app interaction time as a function of time of day, time since wake-up, and the aforementioned metrics. We find
that interaction times are slowest at night hours, when users are most likely to be asleep, and fastest between 3-6
PM; the difference between those extremes is approximately 1.5 seconds. Note that the curves between interaction
time against time of day (Figure 5, left column) generally align with circadian rhythm processes as measured
through controlled sleep studies [2, 6, 16]. In the first hour of wake time, users tend to have slower interaction
times. This result concurs with the chronobiological process of sleep inertia [2], which dictates that users are
slower right after waking up. Interaction time decreases in the first six hours after wake-up and then begins to
increase again, consistent with the chronobiological process of homeostatic sleep drive [6] as well as previous
work examining click speeds in search engines [4]. On average, interaction time increases by 0.4 seconds when
sleep history improves from 6 to 8 hours, and interaction time increases by 0.5 seconds beyond the threshold of
-5 sleep debt hours.

RQ.3: The Relationship Between App Interaction Time and Job Performance
The analyses for this research question cover the 19 athletes and 15 salespeople who, respectively, interacted
with their sleep-tracking app on 46 and 122 days with corresponding job performance metrics. Figure 6 shows
real-world job performance against interaction time for those participants. Interaction time was not found to
be significantly correlated with the number of hires the salespeople made (ρ=-0.0752, p=0.411). A significant
correlation was found between interaction time and the athletes’ game grade (ρ=-0.296, p=0.0455). The effect size
shows that athletes who were 10 seconds faster in their interaction time had an average of 5 more points in game
grades. Our app interaction metric is partly related to reaction time, so the discrepancy between athletes and
salespeople in this analysis may be because the athletes’ day-to-day activities require rapid, precise reactions; the
salespeople’s activities, on the other hand, are typically more forgiving in the sense of psychomotor function.
Another explanation could be that PFF includes contextual information, such as whether the opponent presented
a favorable matchup during a game; the number of hires a salesperson can make in a given day is more dependent
upon external factors (e.g., customer needs, health of the economy).

RQ.4: The Relationship Between App Engagement and Sleep Behavior
Figure 7 shows the correlation and regression analysis between the number of app engagement days and sleep
behavior metrics for the 274 participants in our dataset. The top row of the figure shows that participants who
used the app more frequently slept longer, earlier, and accumulated less sleep debt on average. The bottom row of
the figure shows that more frequent app usage also resulted in less variance in sleep behavior across all metrics,
including more consistent bedtimes, wake-up times, and time-in-bed. All of these relationships except those
related to average wake time, consistency of wake time, and sleep history were statistically significant.

Participants who engaged with the app for 35 days on average slept 42 minutes longer, had 3.5 hours less sleep
debt, and went to bed 48 minutes earlier, compared to less engaged users who only engaged with the app for
7 days. Participants who engaged with the app more often also exhibited more consistent bedtimes, with the
standard deviation dropping from 1.4 hours to 1.2 hours. We note that the wake-up time was more consistent
across users than bedtime; this can be attributed to the fact that people typically need to wake up at a particular
time for work, but there is no corresponding societal pressure for going to bed.
To analyze whether high app engagement is associated with improvement in sleep behaviors, we examine

changes in sleep behavior within each user by comparing the average time-in-bed from the first D days to the
last D days in a 5-week period (Figure 8). We find that higher app engagement was associated with increases in
average time-in-bed between the first and last week of this five week period. This supports the assertion that the
previously described effects in Figure 7 are not entirely explained by selection effects. Higher app engagement
was consistently associated with an improvement in average time-in-bed, with an average increase of about
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15 minutes per night. However, sleep improvement decreased as D increased. This phenomenon was expected
since users likely saw significant improvement within the first few days of app engagement due to the novelty
effect; as D increases, that short-term benefit becomes part of the baseline and makes the long-term benefit of
app engagement less obvious.

DISCUSSION
Establishing the relationship between sleep behavior and job performance has been a challenge in the past
due to the difficulty in collecting objective measures in real-world settings. By taking advantage of ubiquitous
sleep-tracking technology and the increasing desire within companies to evaluate job performance through data,
our research signifies a first step towards understanding this relationship. We also demonstrate that an app-based
performance metric is correlated with sleep behaviors and time of day in a way that is consistent with sleep
biology, and that it is correlated with job performance metrics as well. This highlights an interesting opportunity
for future assessments of sleep and performance in uncontrolled settings. Finally, we demonstrate that increased
engagement with automatic sleep-tracking technology is associated with improved sleep behavior. Below, we
describe the implications and limitations of our work.

Opportunities for Passive Sensing
The PVT has been used to measure psychomotor and cognitive function in the wild [1]; however, the PVT can be
disruptive if deployed at inopportune moments. Other prior work has required participants to adhere to a strict
sleep schedule in order to measure the effects of sleep on behavior. In our work, we found that our instantiation
of app-based performance (interaction time) was correlated with both better sleep behavior and athletic job
performance, suggesting the potential power of a passive, nonintrusive performance indicator. Passive sensing
additionally enables continuous collection of data in a wide variety of settings and contexts. Leveraging the use
of ubiquitous technology to collect relevant benchmarks can also help produce large datasets or enable the study
of populations that have traditionally been difficult to recruit to controlled studies.

We restricted our correlation analysis of app-based performance to specific, common, repeated, and comparable
interactions within the sleep-tracking app that started from the same home screen and involved single touches;
however, not all interactions are created equal, nor does the interaction time tell the whole story about how
the user is engaging with the app’s content. One may argue that some screens require more time to process
than others, and longer processing times may indicate that the user is engaging more with the displayed
information. Understanding the factors between app interaction time and on-screen content more broadly could
be explored further to provide more frequent and representative measurements of interaction time. Comparable
performance metrics to interaction time have also been elicited through other interactions, like typing and web
browsing [4, 55, 58]. Responses to sleep alarms and notifications could also provide more natural opportunities
for capturing app-based performance in the future.

Recommendations for Sleep-Tracking App Design
One design recommendation that we propose for sleep-tracking apps involves personalized views of sleep
metrics. Many researchers have noted that sleep behaviors are unique according to genetic predisposition and
chronotyping [3, 53]. Throughout our analyses, there were cases when normalizing sleep behavior metrics
according to each user’s history produced statistically significant correlations, but the same was not true for the
raw data. Presenting raw values in combination with data that is scaled relative to the individual could provide
useful insights to users in the future. Because sleep quality is subjective and not well-defined [27, 51], future
apps could also allow users to explore what sleep metrics matter to their perceived sleep quality. In fact, we posit
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that job performance may be influenced by a person’s perception of their own sleep quality, so our research may
inform ways of exploring this matter in the future.
Finally, lapses in sleep tracking and the resulting lack of data are an important consequence of real-world

data collection that should be addressed. Our dataset exhibited an extreme case of this issue since athletes
can be away from home for at least 3-4 days at a time; nevertheless, travel is a regular occurrence for many
people. The cumulative sleep metrics in our dataset, sleep history and sleep debt, were most informative in our
analyses related to sleep behavior. We used the average time-in-bed of nearby nights for imputation when a
participant skipped a night of sleep tracking. In future work, an alternative sensing approach (e.g., smartphone,
smartwatch [35]) could be used for imputation. Finding ways of combining and resolving metrics across these
different data sources could remedy data gaps.

Additional Context Information
With the exception of PFF’s game grades for NFL athletes, all of our data streams lacked some amount of
contextual information. PFF game grades incorporate context because they are assigned by experts who watch
the games and understand the athletes’ match. The performance of salespeople, on the other hand, depends on
the demand of their goods and services and potentially other constraints; unfortunately, that information was
unavailable to us. Job performance in a broader sense is also a function of experience and division of labor. Such
information could be captured by worker profiles and more refined tracking in future work.

Sleep is known to be affected by a wide variety of factors: age [15, 21, 62], ambient light [37], caffeine intake [38],
and diet [26], to name a few. The effect of travel between time zones (2–3 hour difference) has not been shown to
significantly impact sleep [52], but an effect has been demonstrated on athletic performance [29]. Meanwhile,
app usage can be affected by the user’s interest in other apps on their smartphone and their overall workload.
Measuring these factors through sensors and accounting for their effects in statistical analyses could improve
evidence of links between sleep behavior, job performance, and app usage.

Limitations
Our dataset included participants from a bankruptcy law firm consultancy and the NFL, which allowed us to
compare two populations with distinct job demands whose job performance can be quantified effectively. In
both cases, we were able to identify sleep behavior metrics that correlated with job performance; however,
the correlations manifested in different sleep behavior metrics (e.g., sleep debt and hiring rate for salespeople,
personalized sleep history and game grades for athletes). Beyond the discrepancy between the two groups’ job
demands, the differences in results can also be attributed to idiosyncrasies within the job performance metrics
themselves. For the salespeople, the number of hires an employee is able to make may depend on the state of
the economy and the rate of bankruptcy in the country. For the athletes, the subjective nature of the expert’s
grades can manifest in anchoring effects towards common values [56]. We use rank-based correlation methods
and per-person normalization to account for some of these idiosyncrasies, but future work should explore and
compare alternative sources of job performance data. Furthermore, an exciting avenue of research may entail the
creation of a job performance metric that generalizes across different careers.

Although salespeople and athletes have very different job demands, they do not cover the entire spectrum of
careers. Each profession has its own demands and may not overlap with either of the ones that were included in
our study. There was also an element of selection bias in our participant pool; the people who enrolled in our
observational study may have been more excited to track their sleep and interact with the app than the average
person, producing inflated app engagement measurements. Similarly, the observational and correlational nature
of our data preclude us from making causal inferences. Learning about how our findings may generalize to other
populations remains an area of future work.
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CONCLUSION
Many people recognize that improving sleep behavior benefits job performance, but the precise relationship
between the two has been difficult to capture and quantify in the past. Our study advances the literature in
this space by providing a correlational analysis between objectively measured sleep behavior metrics from a
mattress sensor and job performance metrics from a bankruptcy law firm and the NFL. Our findings suggest that
establishing good sleep behaviors over extended periods is more important to job performance than simply getting
a good night’s sleep one day prior. We also found evidence that passively captured app interaction metrics can
serve as a useful indicator for some job performance and sleep measures, thereby highlighting another mechanism
through which researchers can collect relevant psychomotor and cognitive performance measures. Lastly, we
found that increased engagement with automatic sleep-tracking technology is associated with improvements in
sleep behavior over time. It is our hope that our work inspires researchers to examine in-situ sleep behaviors and
performance measures across diverse contexts to further develop our understanding of human performance.
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(a) (b)
Fig. 1. (left) The home screen of a sleep-tracking app. (right) The kit that participants received upon enrolling in the study,
including: an Emfit QS, a sleep-tracking mobile app, a blindfold, and orange-tinted glasses.
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Fig. 2. A diagram that summarizes the research questions explored in this work.



0:20 • Park and Arian, et al.

12 10 8 6 4 2
Sleep Debt

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Hi
re

s P
er

 H
ou

r

r=0.2181, p=0.0215

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Sleep History Z-Norm

60

62

64

66

68

70

72

Ov
er

al
l G

am
e 

Gr
ad

e

r=0.1785, p=0.0195

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Sleep Debt Z-Norm

60
62
64
66
68
70
72
74

Ov
er

al
l G

am
e 

Gr
ad

e

r=0.1659, p=0.0307

Fig. 3. Regression plots showing the effect sizes for the statistically significant results from Table 3. For all similar figures in
this paper, data is binned into discrete intervals, with the estimated mean and standard error shown in blue. Intervals are
chosen such that samples are evenly distributed throughout the bins. Orange lines represent the best linear regression fit to
the raw data (not the interval aggregates) along with 95% confidence intervals.
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Fig. 5. (Top row) The generalized additive model of interaction time against the local time in the user’s time zone, time
since wake-up, and sleep history. (Bottom row) A similar generalized additive model using sleep debt instead of sleep history.
Standard errors are shown in both cases. Both models included random intercepts for each user.
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Fig. 7. Regression plots showing the effect sizes between days of app engagement and (top row) sleep behavior metrics and
(bottom row) variation in sleep behaviors.
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Fig. 8. Sleep improvement over a five-week period vs. app engagement (excluding first and last D days). N indicates the
number of participants who tracked their sleep for the first and last D days during the five-week period. Standard errors are
shown.
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Metric Description

Sleep

Bedtime Time at which the user got into their bed
Wake time Time at which the user got out of their bed
Midpoint Midpoint between start and end time
Time-in-bed The total time the user spent in bed during a single day including

nighttime sleep and naps, regardless of whether they were sleeping
Sleep debt Weighted average of difference between sleep need and time-in-bed
Sleep history Weighted average of time-in-bed

Job
Performance

Number of hires (sales-
people)

Number of contracts made after consulting, normalized by the num-
ber of hours they work

Game grade (athletes) Score of a player’s game performance out of 100 assigned through
three independent experts

App Usage Interaction time Time between opening home screen of app to another screen by
user’s touch input

Days of app engagement Number of days the user opened the app
Table 1. A summary of the metrics we collect in our dataset through three data streams: (1) sleep metrics through the Emfit
QS, (2) job performance through the participants’ employers, and (3) app usage through a sleep tracking mobile app.
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Statistic All Users Salespeople Athletes
Number of participants 274 15 19
Total unique days with both sleep-tracking and job
performance measurements

289 118 171

Total unique days with both app interaction and job
performance measurements

168 122 46

Total nights of sleep tracked with app-based perfor-
mance measure

7,195 234 418

Total nights of sleep tracked 30,618 834 2,687
Total number of transitions between screens 16,336 679 909
Total number of times app was opened 11,140 425 691
Nights of sleep tracked per user (avg ± std) 109.2 ± 91.81 46.33 ± 37.45 133.1 ± 89.92
Time-in-bed in hours (avg ± std) 7.338 ± 1.628 7.283 ± 2.020 7.308 ± 1.920
Days of app use per user (avg ± std) 43.68 ± 46.48 28.25 ± 21.06 40.65 ± 50.43

Table 2. Summary statistics for data from different participant cohorts after filtering (see section on Data Filtering and
Post-Processing).
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Sleep Metrics
Raw Metrics Per-Person Z-Normalized Metrics

Time-in-Bed Sleep Debt Sleep History Time-in-Bed Sleep Debt Sleep History

Jo
b

Pe
rf
or
m
an

ce
M
et
ri
cs

NFL Player
Game Grades

(N = 19)

-0.024
(p=0.751)

-0.095
(p=0.218)

-0.029
(p=0.711)

0.086
(p=0.263)

0.166
(p=0.031)

0.179
(p=0.020)

Salespeople
Hires per Day

(N = 15)

-0.067
(p=0.469)

0.218
(p=0.022)

0.039
(p=0.690)

-0.102
(p=0.283)

0.164
(p=0.088)

-0.047
(p=0.634)

Table 3. Spearman correlation coefficients between sleep behavior and job performance. P-values are provided in parentheses;
results with p-value < 0.05 are shown in bold.
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Raw Sleep Data
Per Person

Z-Normalization of Sleep Data
Time-in- Sleep Sleep Time-in- Sleep Sleep

Bed History Debt Bed History Debt
Interaction -0.015 -0.055 -0.095 0.006 -0.012 -0.010

Time (p=0.049) (p=3.9×10−11) (p=5.2×10−30) (p=0.483) (p=0.140) (p=0.230)
Table 4. Spearman correlation coefficients between sleep behavior and app-based performance. P-values are provided in
parentheses; results with p-value < 0.05 are shown in bold.
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