
EASY SYSTEMS | 1

Cloud Services

EASY SYSTEMS | 2

Revision history

Version Date Author(s) Description

1.13 28-05-2024 Bart Timmermans Customer Data Usage

1.12 27-06-2023 Hans van der Kolk
Erwin Rebergen
Frits Frederiks

Changed product name “Next” to “Easy1”
Better distinction between the cloud
platform and its services. Section 2.2.
Currentgen removed. Chapter 4 removed
(Secure software development). Chapter
10 removed (Cloud Restrictions). All
superseded by information in other
chapters.

1.11 09-01-2023 Erwin Rebergen
Sjoerd van den
Top

Added links and spelling corrections
Added chapter 2.1.5 Quality of our code

1.10 01-11-2021 Erwin Rebergen Corrected paragraphs 8.3.1 and 8.3.2
Update own software vs third party.
Removed Keel from paragraph 5.2
Software deployment tools.

1.9 17-03-2021 Bas Bremer The following changes:
- Chapter 7: Added the AWS shared
responsibility model
- Paragraph 10.3.3: Improved process
description
- Paragraph 10.6: Several additions
- Paragraph 10.7: Added ISO 27017
- Paragraph 10.8.1: Removed typo

1.8 25-01-2021 Bart Timmermans Audits initiated by customers

1.7 08-01-2021 Bas Bremer Several changes

1.6 02-12-2020 Bas Bremer Added CurrentGen software

1.5 26-02-2020 Bart Timmermans Data classification and edit on 10.4 DATA
PROTECTION

1.4 14-02-2020 Bart Timmermans Adding time sync services and publish
document

1.3 12-02-2020 Bart Timmermans Publish

1.2 10-02-2020 Bart Timmermans Lay-out and some comments

1.1 29-01-2020 Bart Timmermans Lay-out and releasing document

EASY SYSTEMS | 3

1.0 28-01-2020 Bas Bremer Cloud and security aspects

1.0 28-01-2020 Bart Timmermans INTRODUCTION

1.0 28-01-2020 Leon Krol Testing

0.9 24-01-2020 Jacco Dieleman SOFTWARE ARCHITECTURE and
TECHNOLOGY STACK

0.8 14-01-2020 Bart Timmermans BASIC PRINCIPLES EASY SYSTEMS
NEXT CLOUD

0.7 13-01-2020 Bart Timmermans FUNCTIONALITIES AND USE
SCENARIOS OF THE NEXT
APPLICATIONS

0.6 10-01-2020 Leon Krol SECURE SOFTWARE DEVELOPMENT

0.5 09-01-2020 Leon Krol SECURE SOFTWARE DEPLOYMENT

0.4 08-01-2020 Bart Timmermans Functional description of the product lines

0.3 06-01-2020 Bart Timmermans Table of contents

0.2 16-12-2019 Bart Timmermans Determining the content

0.1 03-12-2019 Bart Timmermans Setting up framework

EASY SYSTEMS | 4

EASY SYSTEMS | 5

EASY SYSTEMS | 6

EASY SYSTEMS | 7

This document describes the technical and operational details of the Easy Systems Cloud
Platform, a SaaS (Software as a Service) platform for which Easy Systems uses Amazon Web
Services (AWS) as its hosting provider. The purpose of this document is to give insight in the
infrastructure, principles, security, development and deployment process of the Easy Systems
Cloud Platform and the SaaS services that are provided with it.

EASY SYSTEMS | 8

The Easy Systems Cloud platform is designed for Continuous Delivery, Scalability, High
Availability and Security.

Easy Systems software like Easy1 is based on the idea to produce software in short cycles,
ensuring that the software can be reliably released at any time. Building, testing, and releasing
software with greater speed and frequency. The approach helps reduce the cost, time, and
risk of delivering changes by allowing for more incremental updates to applications in
production.

Our SaaS solution is highly scalable thanks to the use of containerized applications which are
hosted using tools such as Kubernetes. The software is hosted on the AWS Public Cloud
Platform which makes it possible to scale in seconds with unlimited resources.

The SaaS solution is highly available thanks to the use of containerized applications which are
hosted using tools such as Kubernetes. Kubernetes makes it possible to host multiple servers
per service/application. The use the AWS Public Cloud Platform makes it possible to host
applications in multiple regions or multiple zones within a region.

The Easy Systems Cloud team is primarily responsible for the security management of virtual
networks. The physical networks are maintained by our cloud supplier, Amazon Web
Services. We work together to keep the software platform stable and secure. The security
measures are described at chapter 8 - Cloud Services.

EASY SYSTEMS | 9

Within the development process there are several moments when the code is reviewed. We
do this through scanning, automated testing, through automated functional testing, through
peer control/reviews and through scans of the developed code.

1. Quality Gates (quality policy)
2. Quality Gates Conditions on New Code
3. Quality Gates scans of the developed code OWASP top 10
4. Quality Gates scan on use of Hard-coded Credentials (CWE-798)
5. Quality Gates scan on use of Hard-coded Password (CWE-259)
6. Quality Gates scan on CWE/SANS TOP 25 Most Dangerous Software Errors
7. Automated testing (unit tests)
8. Through peer control/reviews
9. Automated functional testing

1. Quality Gates (quality policy)

Quality Gates enforce a quality policy in the organization by answering one question: is my
project ready for release? To answer this question, you define a set of conditions against
which projects are measured. We want to ensure stronger requirements on our applications.
This is why you use a high quality gate. The "Sonar way" Quality Gate is provided by
SonarSource, , and considered as built-in and read-only. This Quality Gate represents the
best way to implement the Clean as You Code concept by focusing on new code. With each
SonarQube release, we automatically adapt the default quality gate according to SonarQube's
capabilities.

EASY SYSTEMS | 10

With the Quality Gate, We enforce ratings (reliability, security, security review, and
maintainability) based on metrics on overall code and new code. These metrics are part of the
default quality gate.

2. Quality Gates Conditions on New Code

Conditions on New Code apply to all branches and to Pull Requests.

Metric Operator Value

Coverage is less than 80.0%

Duplicated Lines (%) is greater than 3.0%

Maintainability Rating is worse than A

Reliability Rating is worse than A

Security Hotspots Reviewed is less than 100%

Security Rating is worse than A

3. Quality Gates scans of the developed code (Automatic scans to preserve the

quality of the delivered code)

In addition to a mandatory review from a colleague, we also have automatic scans to preserve
the quality of the delivered code and ultimately our software. We do this based on the OWASP
top 25 check, automatically with every software release using SonarQube. We use the
standard settings. No exclusions are applied.
The check is done on multiple subjects;
Complexity: Complexity refers to cyclomatic complexity, a quantitative metric used to calculate
the number of paths through the code. Whenever the control flow of a function splits, the
complexity counter gets incremented by one. Each function has a minimum complexity of 1.
This calculation varies slightly by language because keywords and functionalities do.
Cognitive complexity: How hard it is to understand the code's control flow.
Duplications : The number of duplicated blocks of lines.
Issues: New issues, False positive issues (The total count of issues marked false positive),
Open issues (The total count of issues in the Open state), Confirmed issues (The total count
of issues in the Confirmed state.), Reopened issues (The total count of issues in the
Reopened state.)

EASY SYSTEMS | 11

Maintainability: Code smells (The total count of code smell issues.), New code smells (The
total count of Code Smell issues raised for the first time on New Code.), Maintainability rating,
Technical debt.
Quality gates: Quality gate status (The state of the quality gate associated with your project.
Possible values are ERROR and OK.), Quality gate details (For all the conditions of your
quality gate, you know which condition is failing and which is not.)
Reliability: Bugs (The total number of bug issues.), New Bugs (The number of new bug
issues.), Reliability remediation effort, Reliability remediation effort on new code.
Security: Vulnerabilities (The number of vulnerability issues.), Vulnerabilities on new code
(The number of new vulnerability issues.), Security Rating, Security hotspots
(security_hotspots): The number of Security Hotspots, Security hotspots on new code (The
number of new Security Hotspots on New Code.), Security review rating (The security review
rating is a letter grade based on the percentage of Reviewed Security Hotspots. Note that
security hotspots are considered reviewed if they are marked as Acknowledged, Fixed or
Safe.), Security review rating on new code (The security review rating for new code.), Security
hotspots reviewed (The percentage of reviewed security hotspots.), New Security Hotspots
Reviewed (The percentage of reviewed security hotspots on new code.)
Size: Classes (The number of classes), Comment lines (The number of lines containing either
comment or commented-out code.) Comments (The comment lines density), Directories (The
number of directories.), Files (The number of files.), Lines (The number of physical lines),
Lines of code (The number of physical lines that contain at least one character which is
neither a whitespace nor a tabulation nor part of a comment.), Lines of code per language
(The non-commented lines of code distributed by language.), Functions (The number of
functions), Projects (The number of projects in a Portfolio.), Statements (The number of
statements.)
Tests: Condition coverage (On each line of code containing some boolean expressions, the
condition coverage answers the following question: 'Has each boolean expression been
evaluated both to true and to false?'. This is the density of possible conditions in flow control
structures that have been followed during unit tests execution.), Condition coverage on new
code (This definition is identical to Condition coverage but is restricted to new/updated source
code.), Condition coverage hits (A list of covered conditions.), Conditions by line (The number
of conditions by line.), Covered conditions by line (The number of covered conditions by line.),
Coverage (A mix of line coverage and condition coverage.), Line coverage on new code (This
definition is identical to Line coverage but restricted to new/updated source code.), Line
coverage hits (A list of covered lines.), Lines to cover (The number of lines of code that could
be covered by unit tests (for example, blank lines or full comments lines are not considered as
lines to cover.), Lines to cover on new code (This definition is Identical to Lines to cover but
restricted to new/updated source code.), Skipped unit tests (The number of skipped unit

EASY SYSTEMS | 12

tests.), Uncovered conditions (The number of conditions that are not covered by unit tests.),
Uncovered conditions on new code (This definition is identical to Uncovered conditions but
restricted to new/updated source code.), Uncovered lines (The number of lines of code that
are not covered by unit tests.), Uncovered lines on new code (This definition is identical to
Uncovered lines but restricted to new/updated source code.), Unit tests (The number of unit
tests.), Unit tests duration (The time required to execute all the unit tests.), Unit test errors
(The number of unit tests that have failed.), Unit test failures (The number of unit tests that
have failed with an unexpected exception.), Unit test success density (Test success density =
(Unit tests - (Unit test errors + Unit test failures)) / (Unit tests) * 100)

4. Quality Gates scans on use of Hard-coded Credentials

Hard-coded credentials typically create a significant hole that allows an attacker to bypass the
authentication that has been configured by the software administrator. This hole might be
difficult for the system administrator to detect. Even if detected, it can be difficult to fix, so the
administrator may be forced into disabling the product entirely. There are two main variations:
Inbound: the software contains an authentication mechanism that checks the input credentials
against a hard-coded set of credentials.
Outbound: the software connects to another system or component, and it contains hard-coded
credentials for connecting to that component.
In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is
the same for each installation of the product, and it usually cannot be changed or disabled by
system administrators without manually modifying the program, or otherwise patching the
software. If the password is ever discovered or published (a common occurrence on the
Internet), then anybody with knowledge of this password can access the product. Finally,
since all installations of the software will have the same password, even across different
organizations, this enables massive attacks such as worms to take place.
The Outbound variant applies to front-end systems that authenticate with a back-end service.
The back-end service may require a fixed password which can be easily discovered. The
programmer may simply hard-code those back-end credentials into the front-end software.
Any user of that program may be able to extract the password. Client-side systems with hard-
coded passwords pose even more of a threat, since the extraction of a password from a
binary is usually very simple.

EASY SYSTEMS | 13

5. Quality Gates scans on use of Hard-coded Password

A hard-coded password typically leads to a significant authentication failure that can be
difficult for the system administrator to detect. Once detected, it can be difficult to fix, so the
administrator may be forced into disabling the product entirely. There are two main variations:
Inbound: the software contains an authentication mechanism that checks for a hard-coded
password.
Outbound: the software connects to another system or component, and it contains hard-coded
password for connecting to that component.
In the Inbound variant, a default administration account is created, and a simple password is
hard-coded into the product and associated with that account. This hard-coded password is
the same for each installation of the product, and it usually cannot be changed or disabled by
system administrators without manually modifying the program, or otherwise patching the
software. If the password is ever discovered or published (a common occurrence on the
Internet), then anybody with knowledge of this password can access the product. Finally,
since all installations of the software will have the same password, even across different
organizations, this enables massive attacks such as worms to take place.
The Outbound variant applies to front-end systems that authenticate with a back-end service.
The back-end service may require a fixed password which can be easily discovered. The
programmer may simply hard-code those back-end credentials into the front-end software.
Any user of that program may be able to extract the password. Client-side systems with hard-
coded passwords pose even more of a threat, since the extraction of a password from a
binary is usually very simple.

6. Quality Gates scans on CWE/SANS TOP 25 Most Dangerous Software Errors

1 CWE-787 Out-of-bounds Write

2 CWE-79

Improper Neutralization of Input During Web Page Generation ('Cross-site
Scripting')

3 CWE-89

Improper Neutralization of Special Elements used in an SQL Command
('SQL Injection')

4 CWE-20 Improper Input Validation

5 CWE-125 Out-of-bounds Read

6 CWE-78

Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')

7 CWE-416 Use After Free

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html

EASY SYSTEMS | 14

8 CWE-22

Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

9 CWE-352 Cross-Site Request Forgery (CSRF)

10 CWE-434 Unrestricted Upload of File with Dangerous Type

11 CWE-476 NULL Pointer Dereference

12 CWE-502 Deserialization of Untrusted Data

13 CWE-190 Integer Overflow or Wraparound

14 CWE-287 Improper Authentication

15 CWE-798 Use of Hard-coded Credentials

16 CWE-862 Missing Authorization

17 CWE-77

Improper Neutralization of Special Elements used in a Command
('Command Injection')

18 CWE-306 Missing Authentication for Critical Function

19 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

20 CWE-276 Incorrect Default Permissions

21 CWE-918 Server-Side Request Forgery (SSRF)

22 CWE-362

Concurrent Execution using Shared Resource with Improper
Synchronization ('Race Condition')

23 CWE-400 Uncontrolled Resource Consumption

24 CWE-611 Improper Restriction of XML External Entity Reference

25 CWE-94 Improper Control of Generation of Code ('Code Injection')

7. Through peer control/reviews

Before any changes are made to the software, our process enforces peer checks/reviews.

8. Automated testing (unit tests)

Unit tests are typically automated tests written and run by software developers to ensure that
a section of an application (known as the "unit") meets its design and behaves as intended.

https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/276.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/94.html

EASY SYSTEMS | 15

9. Automated functional testing

Before code is promoted within our pipeline, the code goes through front-end testing in which
functional scenarios are run through. We use this to make sure whether end-user scenarios
continue to work in new versions of our software. If one of these tests fails, the software will
not be promoted or not distributed

10. Container Scanning

The Docker images can contain known vulnerabilities. By including an extra Container
Scanning job in our pipeline that scans for those vulnerabilities and displays them in a merge
request, we use the GitLab container Scanning to audit our Docker-based apps.

11. Packages Vulnerabilities scans

Vulnerabilities scans of main. The scan results from a pipeline are only ingested after all the
jobs in the pipeline are complete.
The report is available for users in projects, groups, and the Security Center.
At all levels, the Vulnerability scan contains:

• Totals of vulnerabilities per severity level.
• Filters for common vulnerability attributes.
• Details of each vulnerability, presented in tabular layout.

EASY SYSTEMS | 16

The following concepts are used:
• Domain Driven Design
• Event Sourcing
• Command and Query Responsibility Segregation (CQRS)

Domain-driven design (DDD) is an approach to developing software for complex needs by
deeply connecting the implementation to an evolving model of the core business concepts.
Domain-driven design is not a technology or a methodology. DDD provides a structure of
practices and terminology for making design decisions that focus and accelerate software
projects dealing with complicated business domains. Key concepts from DDD:

• Domain: a business domain. Examples: Expenses, Contracts, Invoices. There are
also domains that are less important for the business. We call these Supporting
Domains. Examples: Notifications, Authentication.

• Ubiquitous language: a common, rigorous language between developers and users.
• Bounded Context: a (part of a) software solution with clear boundaries. In DDD there

is ideally a 1:1 relation between a Domain and a Bounded Context.
• Context Map: a way to show relations of one bounded context between others.

Important to note is which are upstream and which are downstream. It is often in the
form of a diagram.

• Entity: an element in the domain which can be referenced by its identity. Example:
Declarant, Expense.

• Aggregate: an entity in the domain which consists of other entities. The top of the
structure is called Aggregate Root. Examples: DeclarantCreditCardPeriod,
ContractFile.

• Value Object: element in the model defined by its properties, without an id. Always
part of an Entity. Example: AmountOfMoney, ExpenseDate.

EASY SYSTEMS | 17

Instead of storing just the current state of the data in a domain (often in a relational database),
we use an append-only store to record business events that took place on the entities. We
record events on the level of aggregate roots. You can read more about this here.

We follow this pattern to segregate operations that read data from operations that update data
by using separate interfaces. This can maximize performance, scalability, and security.
Supports the evolution of the system over time through higher flexibility, and prevents update
commands from causing locking, or worse, merge conflicts at the data level. You can read
more about this here. In our architecture this translates to:

• We have a command server per domain. These handle commands (like,
SubmitExpense) and as a result publish events (like, ExpenseSubmitted). Events are
stored in an event store.

• We have query servers per application. These listen to events (published by the event
store) and created views for theses which are stored in a database. When a client
queries the query server for a certain view, it can fetched from the database an
served to the client. We call these views: ViewProjections. Under the hood these are
fed by AggregateProjections.

We use a Multi-Tenant architecture which consists of multiple customers using a single
instance of an application running on a single instance of an operating system on a common
hardware platform, with only a database or data-source being different between customers.

The Easy Systems backend software is created using C# with ASP.NET Core. The software is
hosted in the AWS Cloud, using Elastic Kubernetes Services (EKS). EKS is the AWS
Kubernetes service which makes it possible to integrate with AWS components (such as Auto
Scaling). Kubernetes makes use of Docker and organizes containers into Pods. The desktop
clients are created using Angular with TypeScript. the mobile clients are created using Flutter
with C#.

EASY SYSTEMS | 18

At run-time our software is composed of several software components, for most of them, the
source is maintained in a separate Git repository. We distinguish the following types:

• Event Store, this stores the business events
• Command Servers, handles commands. Each command server pod consists of:

o An api host (which handles API calls, transform these to commands, process
the commands, store events in event store)

o An document database (used to store projections)
• Query Servers, maintains projections of the events on views and handle queries.

Each query server pod consists of:
o An api host (which handles incoming API calls en queries the document

database to create the response)
o A projection manager (which listens to events that stream from event store,

create projections and store these in the document database)
o A document database (used to store projections)

• Desktop Clients, provide an user interface from a browser. The desktop clients are
served to the browser from pods, but note that they run in the browser.

• Mobile Clients, provide an user interface from a mobile app. We support iOS and
Android. supporting components

• API Gateway, acts as an entry point for the tenant. Each request enters the instance /
tenant through the API Gateway.

• Message Bus. Within the tenant, components talk to each other through messages
that are placed on the message bus. We distinguish two types of messages:
commands and events.

o Components handling media (like documents and images)
o Components supporting authentication and authorization
o A document database to persist the status of running processes

The run-time components share some common concerns. To avoid duplication we share
solutions for these concerns in packages. Some of the packages are grouped in separate Git
repositories. For example: general command server concerns and general query server
concerns.

EASY SYSTEMS | 19

The following diagram gives a high-level overview of how the software components work
together. Note that the diagram depicts one customer instance. The Application Load
Balancer takes care of routing requests to the correct customer instance.

Image 3.5.1 – Interaction between software components

EASY SYSTEMS | 20

The goal of our deployment pipeline is to deploy stable software to our customer instances.
Our continuous integration server publishes our software as uniform Docker images. This
allows for a standardized pipeline for all our software, leveraging the strengths of industry
standard components. All docker images are published to a secured Harbor registry, which
has the added benefit of automated scanning for vulnerabilities. Whenever a new version of
an image is detected a signal is sent in order to update customer instances. These are
managed by Kubernetes in order to manage all components of our software, maintain high
uptimes by automated error recovery, allowing rolling updates and by being able to act as a
load balancer.

The deployment process differs for Easy1 and E-InvoiceNext. Both are shown below, all future
new product development will be based on the same process as Easy1.

Image 5.1.1 – Easy1 deployment

EASY SYSTEMS | 21

Image 5.1.2 – E-invoice Next deployment

Tool Description
Docker Docker is used to deliver software in packages called containers.

Containers are isolated from one another and bundle their own software,
libraries and configuration files.

Harbor Harbor is an open source container image registry that secures images
with role-based access control, scans images for vulnerabilities, and
signs images as trusted. Harbor delivers compliance, performance, and
interoperability to consistently and securely manage images.

Spinnaker Spinnaker allows you to automate Kubernetes deployment updates and
can be launched as a Kubernetes service in a dedicated namespace.
Spinnaker helps to deploy Kubernetes service through labels,
annotations, and charts.

It’s also used by Product Owners to stop the deployment process (when
new functionality is deployed). Also the possibility exists to add tests
which can block deployment.

Kubernetes Kubernetes is an open-source container-orchestration system for
automating application deployment, scaling, and management.

TeamCity TeamCity is a build management and continuous integration server.

EASY SYSTEMS | 22

In order to ensure stable and user-friendly functionality we rigorously test every change to our
Easy1 suite. We hereby adhere to industry standards and best practices. We will disclose
some of the test types we apply, but before that, we will lay some theoretical groundwork.

• Shift left testing vs shift right testing
• Agile testing quadrants

In the early years of the 2000’s software testing in general was an afterthought in software
development. It’s placement right before delivery deadlines brought some understandable
drawbacks. The term Shift left testing was coined by Larry Smith in 2001 1 and was used to
describe the placement of testing activities as soon as possible in the software lifecycle. Early
defect detection results in lower correction costs 2 3. A large enabler for this shift is a high
degree of test automation. Developing automated tests are a mandatory part of our
development lifecycle. While shift left testing implies a solid position for testing during
development, after deployment there is still a need to detect issues quickly in production,
introducing shift right testing, sometime also called: ‘Testing in production’. By introducing a
dev-ops way of working we incorporated the managing and monitoring of the software after
delivery. This allows for much faster detection of issues in production environment, thereby
further shortening the feedback loop.

Many testing methodologies adhere to a risk-based approach 4 5 6. In order to facilitate
comprehensive risk coverage, we use the agile testing quadrants as refined by Janet Gregory
and Lisa Crispin in their seminal book on software testing: “More Agile Testing” . They
describe two viewpoints for software:

1 Smith, L. (2001). Shift-Left Testing. Dr. Dobb’s Journal, 26, 56–62.
2 Boehm, B. W. (1981). Software Engineering Economics. USA: Prentice-Hall.
3 McConnell, S. (2004). Code Complete. USA: Microsoft Press.
4 van der Aalst, L., Davis, C., & van der Aalst, L. (2012). TMap NEXT in scrum: effectief testen in Agile
projecten. Netherlands: Kleine Uil, Uitgeverij.
5 Bouman, E. (2008). SmarTEST, Slim testen van Informatiesystemen. Netherlands: Academic Service.
6 Koomen, T., van der Aalst, L., Broekman, B., Vroon, M., & van der Aalst, L. (2013). TMap Next: voor
resultaatgericht testen. Netherlands: Kleine Uil, Uitgeverij.

EASY SYSTEMS | 23

a. Technology facing VS business facing
b. Guiding development VS critiquing the product

When placed on opposite axes the following matrix with four specific quadrants arises:

• Q1 Technology facing and guiding development. Software obviously has a technical
quality which needs to be addressed early in development by developers. Testing at
this level is used to proof correctness of small pieces of code (units), integration of
units and adherence to coding standards.

• Q2 Business facing and guiding development. Software is designed to serve a
specific purpose. The quality of these requirements should be proven as early as
possible, even before the coding process starts. This can be done through validation
by customers and domain experts.

• Q3 Business facing and critiquing the product. Once a working piece of software is
delivered, its functionality and usefulness can be actively measured. This can be done
manually for usability aspects and automated for repetitive tasks.

• Q4 Technology facing and critiquing the product. There are other quality aspects of

software which do not specifically pertain to documented requirements, like security
and performance. These aspects are best suited to test manually with the assistance
of specialized tools.

We employ multiple test types per quadrant, thereby combining their respective strong points
to a chain of complementary tests.

Having expanded on two viewpoints demonstrating the necessity for multiple complementary
test types, we can make a framework for describing our testing strategy.

The following overview references the shift left and right of testing by mentioning the
development phase in which it is executed, demonstrating full coverage hereof. Additionally,
the coverage of the testing quadrants is made clear by referencing them per test type.
Please note that this overview is meant to give a broad overview of our test strategy, but a
complete and detailed description of every test activity.

EASY SYSTEMS | 24

Test type Quadrant Development phase Description
Unit test Q1 Development We aim to cover as much units of

code as possible in order to
automatically detect errors as soon as
possible.

Specflow test Q1 Development We write user stories to describe the
desired functionality. We use the tool
Specflow to convert those user stories
to automated tests. This allows for an
up to date overview of implemented
features and their correctness.

Prototyping Q2 Development One of the first things we create are
prototypes of the software to be
developed. These are used to elicit
feedback from customers regarding
functionality and usability. Usually,
multiple refinements are done before
the actual build starts.

Integration
test

Q3 Acceptance For every release of our software we
execute a fully automated regression
test of multiple flows in our software.
User actions are simulated in the user
interface in a production like
environment.

Acceptance
test

Q3 Acceptance Our product owners review the major
changes for usability and
conformance to requirements.

Pentest Q4 Production We use checklists to check and
improve specific security attributes of
our software and infrastructure. Ad
hoc independent penetration tests,
pentests for short, are executed.

Monitoring Q4 Production A multitude of monitoring tools are in
use in our production environment.

EASY SYSTEMS | 25

More about this can be found in
paragraph: 8.2.

Table 6.2.1 – Test types per quadrant and phase

Having good test coverage is one thing, but without follow up they are pointless. Every
automated test is implemented as a quality gate in our build pipeline, meaning when a test
fails, the software can’t proceed to the Next stage and can’t be rolled out to production. Every
test has extensive reporting in order to quickly identify root causes.

EASY SYSTEMS | 26

The Easy Systems cloud computing environment (or Easy Systems Cloud) on Amazon Web
Services (AWS). The Easy Systems Cloud consists of multiple platforms. These platforms are
on the same AWS account and are divided by VPC.

Image 7.1 – Platform architecture

The AWS platform contains several components which are used in the infrastructure. The
relevant components are described below.

Kubernetes is used for the orchestration of containers. These containers contain the Easy
Systems products. Kubernetes takes care of deployment and scaling of the containers.

EASY SYSTEMS | 27

A subnet is an IP address range. It is used for dividing a network into two or more smaller
networks. It increases routing efficiency and enhances the security of the network. The
customer instance is assigned with a private subnet only. Because it needs to be accessible
from the internet a Load Balancer is used to route the traffic to the customer instance (through
a specific port and encrypted by an SSL certificate).

The Internet Gateway is used to route communication from instances to the internet, and vice
versa. For the instances, the outbound internet traffic is routed through the Internet Gateway
and all inbound internet traffic is blocked. Outgoing traffic is only allowed if the connection is
initiated from the server and uses secured protocols (such as SFTP, HTTPS, etc.).

Configuration rules for inbound and outbound traffic (allowed communication protocols and
ports) is realized within AWS security groups. Each server within the AWS infrastructure is
assigned to at least one security group. Security groups can only be changed by AWS admin
user accounts.

The Easy Systems cloud infrastructure is hosted in Frankfurt, Germany (region eu-central-1).
The backups are replicated to Paris, France (region eu-west-3). SMTP services are hosted in
Ireland (region eu-west-1).

The Easy Systems AWS infrastructure consists of 2 environments: a development and a
production environment, these 2 environments are used to ensure a structured roll-out of
software updates, upgrades and/or patches.

Development environment
The development environment is used for developing new functionalities, but is also the first
environment where new software versions are rolled out. This could either mean new software
versions but also new Windows versions / updates or, for example, a new DBMS version.
Once we have determined a successful roll out on the development environment, the software
will be rolled out to the test environment.

EASY SYSTEMS | 28

The development environment is not available for the customer and is only meant for internal
use.

Production environment
The production environment is the live environment that is used by the customer. New
software will only be rolled out after all technical and functional tests are successfully
completed. The go live date will be communicated well up front so the customer is fully aware
and prepared. In most cases the roll out in the production environment will take place outside
business hours 08:00 – 17:30 CET/CEST and mostly during the weekends (dependent of the
impact of the change). In any case: the go live date is always determined together with the
customer. This way, the business is not affected by any downtime.

Roll out scheme
The rollout procedure for the environments is showed in the below schema:

Image 7.2.1 – roll out scheme

EASY SYSTEMS | 29

To integrate with external systems a separate structure is setup which is called the Easy
Systems Gateway Service. The Easy Systems Gateway Service are several components
which make it possible to upload a file which delivers standardized output to the Easy
Systems products.

Image 7.3.1 – Integrations

EASY SYSTEMS | 30

Cloud Operations is the responsibility of a dedicated Cloud team. The Cloud team is
responsible for setting up, maintaining, monitoring and updating the SaaS platform and its
applications. The team is working closely with customer support, delivery and development
team(s) to ensure reliability and professionalism of the hosted platform.
Access to the cloud environment is only allowed to persons that are qualified and assigned to
Cloud tasks. Access is only provided with personal accounts, all actions/changes in the cloud
environment are being logged for traceability and auditability.

Monitoring is applied at several layers of the Cloud environment. In het following paragraphs
is shown on which layers it is applied and how this is done.

The Easy1 application is monitored on different aspects, to ensure business continuity,
performance and to be able to trouble shoot issues. These different aspects are described
below:

• Application service
Applications are monitored on running state. If a service is not running it will be
flagged by our monitoring software, according measures will be taken.

• Document processing
• Import/Output folders

For each server within the Easy Systems SaaS environment there is hardware / server
monitoring in place to ensure availability and an acceptable performance. The different
counters are described below:

• CPU
The CPU load of the server instance is monitored. An automatic alarm will be pushed
by our monitoring software if thresholds are exceeded for a configured period of time.

• Memory
The physical memory usage of the server instance is monitored. An automatic alarm

EASY SYSTEMS | 31

will be pushed by our monitoring software if thresholds are exceeded for a configured
period of time.

• Disk space
The disk space is monitored for all server disk drives. If the available disk space drops
below the threshold (low disk space), an automatic alarm will be pushed by our
monitoring software

• Network
All incoming and outgoing network traffic is monitored per server. An automatic alarm
will be pushed by our monitoring software if thresholds are exceeded for a configured
period of time.

7.2.3.1 AWS Web application Firewall (WAF)

AWS WAF is a web application firewall that helps protect your web applications or APIs
against common web exploits that may affect availability, compromise security, or consume
excessive resources. AWS WAF gives you control over how traffic reaches your applications
by enabling you to create security rules that block common attack patterns, such as SQL
injection or cross-site scripting, and rules that filter out specific traffic patterns you define. You
can get started quickly using Managed Rules for AWS WAF, a pre-configured set of rules
managed by AWS or AWS Marketplace Sellers. The Managed Rules for WAF address issues
like the OWASP Top 10 security risks. These rules are regularly updated as new issues
emerge. AWS WAF includes a full-featured API that you can use to automate the creation,
deployment, and maintenance of security rules.
With AWS WAF, you pay only for what you use. The pricing is based on how many rules you
deploy and how many web requests your application receives. There are no upfront
commitments.
You can deploy AWS WAF on Amazon CloudFront as part of your CDN solution, the
Application Load Balancer that fronts your web servers or origin servers running on EC2, or
Amazon API Gateway for your APIs.
Source: https://aws.amazon.com/waf/

7.2.3.2 AWS SECURITY HUB

AWS Security Hub gives you a comprehensive view of your high-priority security alerts and
compliance status across AWS accounts. There are a range of powerful security tools at your
disposal, from firewalls and endpoint protection to vulnerability and compliance scanners. But
oftentimes this leaves your team switching back-and-forth between these tools to deal with
hundreds, and sometimes thousands, of security alerts every day. With Security Hub, you now

https://aws.amazon.com/waf/

EASY SYSTEMS | 32

have a single place that aggregates, organizes, and prioritizes your security alerts, or findings,
from multiple AWS services, such as Amazon GuardDuty, Amazon Inspector, Amazon Macie,
AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager,
as well as from AWS Partner solutions. AWS Security Hub continuously monitors your
environment using automated compliance checks based on the AWS best practices and
industry standards your organization follows. You can also take action on these security and
compliance findings by investigating them in Amazon Detective or by using Amazon
CloudWatch Event rules to send the findings to ticketing, chat, Security Information and Event
Management (SIEM), Security Orchestration Automation and Response (SOAR), and incident
management tools or to custom remediation playbooks. Get started with AWS Security Hub in
just a few clicks in the Management Console and once enabled, Security Hub will begin
aggregating and prioritizing findings and conducting compliance checks.
Source: https://aws.amazon.com/security-hub/

7.2.3.3 AMAZON INSPECTOR

Amazon Inspector is an automated security assessment service that helps improve the
security and compliance of applications deployed on AWS. Amazon Inspector automatically
assesses applications for exposure, vulnerabilities, and deviations from best practices. After
performing an assessment, Amazon Inspector produces a detailed list of security findings
prioritized by level of severity. These findings can be reviewed directly or as part of detailed
assessment reports which are available via the Amazon Inspector console or API. Amazon
Inspector security assessments help you check for unintended network accessibility of your
Amazon EC2 instances and for vulnerabilities on those EC2 instances. Amazon Inspector
assessments are offered to you as pre-defined rules packages mapped to common security
best practices and vulnerability definitions. Examples of built-in rules include checking for
access to your EC2 instances from the internet, remote root login being enabled, or vulnerable
software versions installed. These rules are regularly updated by AWS security researchers.
Source: https://aws.amazon.com/inspector/

7.2.3.4 AMAZON GUARDDUTY

Amazon GuardDuty is a threat detection service that continuously monitors for malicious
activity and unauthorized behavior to protect your AWS accounts and workloads. With the
cloud, the collection and aggregation of account and network activities is simplified, but it can
be time consuming for security teams to continuously analyze event log data for potential
threats. With GuardDuty, you now have an intelligent and cost-effective option for continuous
threat detection in the AWS Cloud. The service uses machine learning, anomaly detection,
and integrated threat intelligence to identify and prioritize potential threats. GuardDuty
analyzes tens of billions of events across multiple AWS data sources, such as AWS

https://aws.amazon.com/security-hub/
https://aws.amazon.com/inspector/

EASY SYSTEMS | 33

CloudTrail, Amazon VPC Flow Logs, and DNS logs. With a few clicks in the AWS
Management Console, GuardDuty can be enabled with no software or hardware to deploy or
maintain. By integrating with AWS CloudWatch Events, GuardDuty alerts are actionable, easy
to aggregate across multiple accounts, and straightforward to push into existing event
management and workflow systems.

Image 8.2.2.1 – GuardDuty, how it works

Source: https://aws.amazon.com/guardduty/

7.2.3.5 AWS IAM Access Analyzer

AWS IAM Access Analyzer helps you identify the resources in your account, such as Amazon
S3 buckets or IAM roles, that are shared with an external entity. This lets you identify
unintended access to your resources and data, which is a security risk. Access Analyzer
identifies resources that are shared with external principals by using logic-based reasoning to
analyze the resource-based policies in your AWS environment. For each instance of a
resource that is shared outside of your account, Access Analyzer generates a finding.
Findings include information about the access and the external principal that it is granted to.
You can review findings to determine whether the access is intended and safe, or the access
is unintended and a security risk.
Source: https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

Several tools are used to monitor the Easy Systems cloud environment. Beneath these tools
are described.

https://aws.amazon.com/guardduty/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

EASY SYSTEMS | 34

7.2.4.1 AWS Security Hub gives a view of your high-priority security alerts and compliance status

across AWS accounts. Within the Hub there are firewalls and endpoint protection to

vulnerability and compliance scanners.

Image 8.2.4.1.1 – Security Hub, how it works

Servers and networks are constantly monitored for security issues. Alarms will be triggered
through AWS GuardDuty and AWS Inspector which associates and analyses events. These
alarms will be directly forwarded to the Cloud team so they can act swiftly and accordingly.

Alarms are sent to the Cloud team through different notification channels, such as email and
Microsoft Teams. Outside business hours, the alarms are also sent to mobile devices.

7.2.4.2 Prometheus and Grafana

Prometheus is an open-source monitoring which is used to retrieve information from the
running containers. This information is retrieve by Grafana and put into some dashboards.
This is available both in the Production and Development environment. In production it’s used
to monitor the customer environment. In development it’s used to improve the development of
the Easy Systems products.

7.2.4.3 Kibana

Kibana is used for viewing the centralized logging. In case of a problem it’s possible to search
through a logfile using several parameters (such as namespace, response code, et cetera).

At Easy Systems there are two types of updates/upgrades which are described in the
following paragraphs.

EASY SYSTEMS | 35

This chapter shows the procedures regarding Easy Systems software updates on the Easy
Systems Cloud. Reasons to update the software are:
- Improved security;
- New functionality;
- Software update needed by third-party software.

The following paragraphs show a description of the procedures per platform.

EASY SYSTEMS | 36

7.3.1.1 E-invoicing NEXT

Updates on the E-invoicing NEXT (or Easy Exchange) platform are deployed in accordance
with the Product Owner. The Product Owner is triggered by a deployment from Development
(in the AWS Development environment). After approval the update will be deployed to the
AWS Production environment (running instances for Partners and Production)

Image 8.3.2.1.1 – Update Easy Systems Easy Exchange software process

EASY SYSTEMS | 37

7.3.1.2 Easy1

Updates on the Easy1 platform are executed by the Product Owner. The Product Owner is
triggered by a deployment from Development (in the DEV environment). After approval the
update will be moved automatically to production (by deployment application Spinnaker). This
movement happens in two steps to limit the impact of changes.

Image 8.3.2.2.1 – Update Easy Systems Easy1 software process

EASY SYSTEMS | 38

7.3.1.3 CurrentGen

Updates on the CurrentGen platform are executed by the Cloud Engineer. When a new
version of the software is available it can be enrolled using the following components:

- MySql database
The MySql database beholds a list of customers and software
versions. By changing the software version in this database it’s
possible to update software.

- REST service
The REST service starts the Spinnaker pipeline, which retrieves the
software versions from the MySql database and enrolls it in the
Customer namespace.

Image 8.3.2.3.1 – Update Easy Systems CurrentGen software process

EASY SYSTEMS | 39

This chapter shows the procedures which are used for updating third-party software at the
Easy Systems Cloud. Software updates are enrolled with the following reasons:
- Improved security;
- Improved functionality;
- Software is no longer maintained by supplier;
- Software update is mandatory because of Easy Systems software;
- Software update is mandatory because of other third-party software.

The actor in this process is always the Cloud Engineer. The Cloud Engineers keep track of
new software by using Ninite Pro software and checking the supplier websites for new
versions regularly. To keep the risk of updates as small as possible, updates are installed in
the test / development environment before they are deployed to production.

The procedure shown below is equal for all platforms.

EASY SYSTEMS | 40

Image 8.3.1.1 – Update third-party software process

EASY SYSTEMS | 41

Maintenance is performed on application, database and operating system level.

The Easy1 applications are maintained on a daily basis. Log files will be cleaned or archived
to ensure a stable performance after a period of 1 month.

Database maintenance is performed on a weekly basis, outside working hours. The database
maintenance window contains the following steps:

• Reorganize and rebuild indexes: correct problems regarding non-optimal indexing.
• Database integrity check: prevent corruption of data.
• Shrink database: to avoid critical situations due to the filling of the space allocated.

The Easy1 platform is based on Kubernetes nodes with the master hosted by AWS. The
underlying EKS worker nodes are enrolled by Easy Systems based on the last image
(provided by AWS). The version of the used is checked and maintained automatically.
Some of the Easy Systems applications are installed on virtual machines, based on Microsoft
Windows Images (AMI). When deploying a new virtual machine, the most recent version of
the AMI is used. Each night a process checks if new operating system updates are available.
These are installed if they are older than 7 days.

Availability of the service means that the referenced environment (production or test
environment) is operational and accessible. In particular that means a correct functioning of all
hardware, software and connectivity components. There is a service level agreement in place
for the Easy Systems SaaS environment. Please refer to the Easy Systems Cloud SaaS SLA
document for more information.

EASY SYSTEMS | 42

This chapter in only applicable for the Easy Systems SaaS environment. For disaster recovery
there are certain procedures in place in the event of a human error, data corruption, or failing
server instance. Easy Systems' strategy for Disaster Recovery is implemented with the use of
a back-up process (see paragraph “backup model” for a description). This process allows the
Easy Systems Cloud team to recover system operation, with the defined RPO (see paragraph
6.1.2) and RTO (see paragraph 6.1.2).

In case of a disruption/disaster, a procedure is in place to determine the impact and to resolve
the disruption within the agreed SLA.

In case of service disruption within business hours (08:30 – 17:00 CET/CEST), the Cloud
team will be notified directly. Notifications will be sent out automatically throughout multiple
channels. Escalation levels are in place: first the Cloud team lead will be contacted and if
needed also the delivery manager is contacted. The customer will be notified directly if the
disruption affects the business.

The following events will take place in case of a disruption/disaster:

The (business)impact analysis contains the following:

Data loss analysis
Investigation will be performed to determine if there is any data loss due to the disruption. In
case of data loss, an overview will be created of the data that is lost and has to be recovered.

Data recovery plan
After the analysis of the data loss, a plan is made on how to recover the data. This could be
by reprocessing data or restore a backup.

Expected recovery time

EASY SYSTEMS | 43

After analysis of data loss and verification of the recovery plan, an estimated recovery time
can be set (also according to the agreed SLA). The recovery time will be communicated to the
customer in case the business was affected by the disruption.

Escalation
The outcome of the impact analysis will determine if the disruption will be escalated to the
Cloud team lead and/or the delivery manager. Escalation can be used for allocating more
resources or to determine the communication plan to the customer.

Communication with customer
In case the business process is affected by the disruption, the customer will be notified by
phone and/or email. The Easy Systems service center will be involved to take care of issue
management and to inform our customer contact.

In case of a major malfunction/disruption, the RPO is set to 24 hours. That means that
backups of the database and snapshots from instances will be restored with data that is not
older than 24 hours.

In case of smaller disruptions and in case data can be recovered/restored without the need to
use a full backup, the data will be restored manually. Any changes done will be reverted to the
point in time the service was working correctly.

In the event of an unrecoverable loss of a data storage device, full backups will be restored of
the database and/or server instances. After the restore, checks are made to determine if the
restore was successful. A business impact analysis will be made and the outcome will be
communicated to the customer. All necessary steps to restore the data and the expected RTO
will be included in the communication. The RTO goal is set to 48 hours. Updates on the
expected recovery time will be sent to the customer every 4 hours.

EASY SYSTEMS | 44

Below an overview is provided of the RPO/RTO timeline in case of disaster recovery.

Image 9.1.3 – RPO & RTO

In the Easy Systems Cloud platform, database backups and server snapshots are
automatically made every 24 hours. The retention period for the backups is 1 month. That
means that backups which are older than 1 month will be automatically removed.

All backup files and snapshots are encrypted with AES-256 encryption. The backup files and
snapshots can only be accessed with an encryption key that is stored in the AWS
administrator account.

Daily backups are made from the whole Kubernetes namespace. The Kubernetes
configuration is saved to Amazon S3. The snapshots are saved as EBS volume snapshot
(default AWS functionality). These backups are checked on weekly basis (as part of a
checklist).

At a regular time interval a point-in-time backup is made from the event store. This backup is
saved to Amazon S3. These backups are checked on weekly basis (as part of a checklist).

The retention period for backups is set to 31 days. After every new successful backup, the
oldest backup will be removed (taking the retention period into account).

Blobs (images, documents) are stored in the customer instance Amazon S3 bucket. The
policy is to keep a copy of customer data in the AWS backup region Paris, France. This
process is automated using an AWS Lambda function which is triggered by new added

EASY SYSTEMS | 45

objects. Objects are simply copied from the source (customer S3 bucket) to a destination
(backup s3 bucket in the same region as the source bucket (Frankfurt, Germany)). The
destination bucket has an active replication configuration which replicates the object async to
the backup bucket.

The backup bucket is owned by a different AWS account. For security reasons the bucket
owner will become the owner of the data after the replication was successful. This complete
process from adding a media object to the customer bucket until it arrives in Paris finishes
within max 2 seconds.

This solution automatically picks up new deployed customer instances.

Image 9.2.4.1 – Backups

EASY SYSTEMS | 46

Security of the Easy Systems SaaS service and infrastructure is ensured through the following
principles.

The environment is protected against viruses, spam, malicious software and dangerous active
content with the use of AWS WAF - Web Application Firewall, AWS GuardDuty, AWS
Inspector and antivirus software. All emails, data transfers, downloads, uploads etc. are
monitored. Automatic notification will be sent out to the Cloud team in case of a vulnerability.
In case of infected files, the customer will be notified as well.

AWS GuardDuty is continuously monitoring the network activity and account behavior in the
AWS infrastructure. All events are logged and analyzed and notifications will be forwarded to
the Cloud team in case of a potential risk. The team will analyze the AWS flow logs and AWS
CloudTrail logging and act accordingly if needed.

For security assessments on server level, AWS Inspector is used. This service is used to
detect vulnerabilities and deviations. The “CIS Security Benchmark” is used in AWS inspector
as best practice. AWS Inspector will automatically perform an assessment and forward events
to the DevOps for further handling.

ESET Antivirus software is active on all server instances in the Easy Systems SaaS
environment. This software is used to protect the environment against malicious software,
ransomware, data leaks and botnets. A firewall is also setup in ESET to control the
communication between the secure SaaS environment and the internet. Events will be
automatically forwarded to the Cloud team.

Access to the Easy Systems SaaS environment and access to customer data is granted using
the least-privilege principle.

EASY SYSTEMS | 47

Consultants are only allowed to access specific servers and customer data if really necessary
and only for a certain time period (depending on the nature and duration of the work). All
consultants are authenticated with their own named user accounts. Access is only granted
after managerial approval.

Only Cloud team members have access to the AWS platform environment.

Only Cloud team members within Easy Systems are given administrator access to the AWS
infrastructure / environment. Access is revoked if an employee no longer needs to access the
environment. Two factor authentication is applicable when logging on to the AWS
environment.

Some consultants and customer have access to the AWS infrastructure / environment. In this
case they only get access to the part that is applicable for the project or customer instance.

Within AWS, user roles are defined. These are called IAM roles. The use of IAM roles allows
segregation of duty for users that can access the AWS environment. Implementation
consultants will be assigned to a role that provides access to only relevant sources for that
project i.e. a consultant who will configure an instance will only get the role that is relevant for
that instance, based on least-privilege.

More privileged accounts must first be approved by the Delivery manager/Cloud team lead
before assigning them.

A server account will provide access for consultants to specific server instances, for example
a customer server. Access for consultants is configured by the Cloud team and allows them to
perform specific implementation tasks. Access can be revoked at any time by the Cloud team.

Easy Systems application user accounts are named accounts for the consultants and
customer, so they are able to log on to the application only for a specific customer instance.
The user account are set-up by the initial consultant and are maintained by the customer. The
user accounts can also be deleted at any time by the Cloud team.

EASY SYSTEMS | 48

All AWS login attempts and changes done in the AWS environment are logged in AWS
CloudTrail. AWS CloudTrail will store all AWS events in a secured environment. This
environment can only be accessed from a designated AWS account which is only available to
the AWS system administrators in the Easy Systems Cloud team.

When a contract is terminated its important to remove the customer environment from the
Easy Systems Cloud. Beneath the main process is shown, which contains a different sub
process per platform. These sub processes are shown in the following paragraphs.

Image 10.3.1 – Contract termination

EASY SYSTEMS | 49

When a customer doesn’t want to continue to use the Easy Exchange services the following
happens:
- The Easy Exchange customer Registration is deactivated;
- The registration at the PEPPOL Service Metadata Publisher is made undone;
- Processed documents will be removed, 3 months after termination;
- PEPPOL (and customer) specific logfiles will be removed, 3 months after termination.

Image 10.3.1.1 – Contract termination E-invoicing NEXT

EASY SYSTEMS | 50

When a customer doesn’t want to continue to use the Next services the following happens:
- The tenant is removed;
- The EBS volumes are deleted;
- The backups are removed.

Image 10.3.2.1 – Contract termination Easy1

When a customer doesn’t want to continue to use the CurrentGen services the following
happens:
- The Customer instance is removed;
- Backup data and share this with customer;
- The EBS volumes are deleted;
- The database is removed;

EASY SYSTEMS | 51

- The backups are removed.

Image 10.3.3.1 – Contract termination CurrentGen

Customer data is segregated on database and application level. All data is kept within the
secured Easy Systems SaaS environment. Data at rest is encrypted with AES-256 encryption
and cannot be accessed without the encryption key that is stored within the AWS root
account. We use AWS Key Management Service (KMS) to manage, generate and rotate
cryptographic keys.

https://aws.amazon.com/kms/

Easy Systems employees will be granted access to the encryption key alongside the AWS
IAM role that is assigned.

https://aws.amazon.com/kms/

EASY SYSTEMS | 52

Data in transit, initiated from the Easy Systems SaaS environment to the internet is encrypted
using Transport Layer Security (TLS). We use TLS 1.2 which is a cryptographic protocol
designed to provide communications security over a computer network. TLS 1.2 can secure
all communications between servers and web browsers. The TLS protocol aims primarily to
provide privacy and data integrity between two or more communicating computer applications.

https://aws.amazon.com/about-aws/whats-new/2017/02/elastic-load-balancing-support-for-tls-
1-1-and-tls-1-2-pre-defined-security-policies/

Access to the encryption key management service is very limited. Only a small number of
Easy Systems employees can access this.

In addition to the cloud infrastructure did we also taken security measures on our applications
for example:

1. All our applications are only accessible through the https protocol this means that data
up to our API gateway is encrypted by this standard protocol.

2. The passwords used within the applications are hashed. This means that they cannot
be traced, not even by us.

Exceptions tailored environment
Our infrastructure is designed and construct to provide the best possible protection. To keep
all data secure. We don’t make exceptions to our infrastructure when it comes to security
measures. There will be no tailormade solution for our customers.

The Center for Information Security and Privacy Protection (Centrum Informatiebeveiliging en
Privacybescherming) published a baseline for data classification. In this baseline they include
a classification guideline. Documents and data about Expenses, Invoices and Contracts were
judged on business and personal impact. The sensitivity is measured by integrity and
confidentiality rating, conform the classification guideline.

Information types Business process
impact*

Integrity
classification

Confidentiality
classification

Expenses 4 2 – High 2 – Confidential

Invoices 3 2 – High 1 – Business confidential

Contracts 4 2 – High 2 - Confidential

https://aws.amazon.com/about-aws/whats-new/2017/02/elastic-load-balancing-support-for-tls-1-1-and-tls-1-2-pre-defined-security-policies/
https://aws.amazon.com/about-aws/whats-new/2017/02/elastic-load-balancing-support-for-tls-1-1-and-tls-1-2-pre-defined-security-policies/

EASY SYSTEMS | 53

*Business process impact rating on a 5-point scale

We only deliver the highest possible setting on security to our documents and data.

Because the data and documents that are used in our software all scored 3 or 4 on business
process impact and the Integrity classification is a minimum of 2 – high. The Confidentiality
classification is 1 - business confidential or 2 – confidential we decided to set the highest
possible setting on security to our documents. Only the people that are authorized in a specific
process can see the documents and only the people that are authorized can adjust. This
setting is set on processes the documents are set to confidential.

Background information about CIP
CIP was founded by the Dutch tax service, DUO, SVB and UWV and originates from the
program Compacte Rijksdienst (2011-2012).

Source: https://www.cip-overheid.nl/media/1166/bid-operationele-producten-bir-010-
dataclassificatie-1_1.pdf

Security and software issues and incidents are identified via multiple channels, from technical
and functional monitoring to the Easy Systems customer service desk. Security incident
handling follows a defined procedure and is the responsibility of the Easy Systems security
officer. For more details about the Easy Systems customer service desk incident response
times and issue management, please refer to the Easy Systems Cloud/SaaS SLA.

Easy Systems is ISO 9001, ISO/IEC 27001 and ISO/IEC 27017 certified. Easy Systems is
following all relevant data protection guidelines and rules, applicable to our operations.

https://www.cip-overheid.nl/media/1166/bid-operationele-producten-bir-010-dataclassificatie-1_1.pdf
https://www.cip-overheid.nl/media/1166/bid-operationele-producten-bir-010-dataclassificatie-1_1.pdf

EASY SYSTEMS | 54

Customer data is isolated in separate ways per platform. Beneath the oversight per platform is
shown.

Easy Systems customers can have one or more entities to the service. It’s possible to retrieve
the status of sent and received documents per entity. The customer data is captured in a
document-database. E-invoicing is a multi-tenant application, data segregation is managed in
the application layer.

Image 10.8.8.1 – Data segregation E-invoicing NEXT

Each customer has its own tenant on which the following measures took place:
- Each customer has its own admin portal to manage users;
- Each customer has its own tenant on a shared database;
- Each customer has its own tenant S3 bucket for attachments;
- The software is enrolled fully automatic through the Easy Systems CI/CD pipeline.

EASY SYSTEMS | 55

Image 10.8.2.1 – Data segregation Easy1

Each customer has its own customer instance on which the following measures took place:
- Each customer has its own admin portal to manage users;
- Each customer has its own database and customer S3 bucket for attachments;
- Each customer has its own services/data-processors (so the application is multi-instance,
not multi-tenant);
- The software is enrolled fully automatic through the Easy Systems CI/CD pipeline.

Image 10.8.3.1 – Data segregation CurrentGen

EASY SYSTEMS | 56

Customer have the right to request an additional independent audit. This audit can be carried
on the technical and organizational security measures that Easy Systems takes to protect the
information of it and its customers. The following conditions are attached to this audit:

• The audit takes place against the ISO27001 & ISO27017 standard;
• The audit is performed by an accredited auditor;
• The costs for the audit are for the client;
• All confidential business information remains within Easy Systems;
• All information about other customers remains within Easy Systems.
• The additional independent audit can only be requested once a year

Easy Systems accepts to resolve all identified shortcomings within a reasonable period of
time.

The cloud infrastructure that we use offers a Time Sync Service “Amazon Time Sync Service”
The Amazon Time Sync Service is a time synchronization service delivered over Network
Time Protocol (NTP) which uses a fleet of redundant satellite-connected and atomic clocks in
each region to deliver a highly accurate reference clock. The Amazon Time Sync Service
automatically smooths any leap seconds that are added to UTC. This service is available in all
public AWS regions to all instances running in a VPC.

EASY SYSTEMS | 57

The service is a consistent and accurate time reference is crucial for many server tasks and
processes. Most system logs include a time stamp that we use to determine for example when
problems occur and in what order the events take place.

The Amazon Time Sync Service is available through NTP at the 169.254.169.123 IP address
for any instance running in a VPC. All our applications and underlying services and
components use the time sync service.

Being an Easy Systems Customer implies that Easy Systems and its subcontractors may use,
store, copy, transfer and process customer data (excluding any personal data contained
therein), as received by Easy Systems and its subcontractors for the performance of the
services such as invoices and purchase orders, for the purpose of developing, analyzing,
monitoring and improving its services to its customers.
More particularly, without being exhaustive, Easy Systems and its subcontractors may use,
store, copy, transfer and process customer data (excluding any personal data contained
therein) to perform financial risk analysis and modelling of individual customers and groups of
customers, to match data with data obtained from third parties, to create benchmarks and to
compile statistics, allowing Easy Systems and its subcontractors to develop, analyze, monitor
and improve its worldwide services.
As far as needed to allow Easy Systems and its subcontractors to comply with its
confidentiality undertaking as mentioned in the Agreement, such customer data will be
anonymized before transferring to any third party.
Notwithstanding its confidentiality undertaking towards the Customer, Easy Systems and its
subcontractors may communicate with and transfer non-anonymized customer data to third
parties providing third party application software and/or services to the Customer, as
purchased or subscribed to through Easy Systems, where such is reasonably necessary to
enable such third parties to provide such third party application software and/or services. More
particularly, without being exhaustive, Easy Systems and its subcontractors may transfer
customer data to a third party providing supply chain financing services to the Customer, as
subscribed to through Easy Systems and its subcontractors services, where such customer
data are reasonably necessary to enable such third party to provide its supply chain financing
services.

EASY SYSTEMS | 58

Easy Systems and its subcontractors may furthermore transfer non-anonymized customer
data to the Customer’s trading partner that previously issued or received the related customer
data.
The present Agreement is considered as the Customer’s authorization and instruction to Easy
Systems and its subcontractors to transfer the customer data as meant above.

	1 Introduction
	2 Basic principles of Easy Systems Cloud
	2.1 Software as a Service
	2.1.1 Continuous Delivery
	2.1.2 Scalability
	2.1.3 High availability
	2.1.4 Security
	2.1.5 Quality of our code

	3 Easy1 software development and architecture
	3.1 Used concepts
	3.1.1 Domain Driven Design
	3.1.2 Event sourcing
	3.1.3 Command and query responsibility segregation (CQRS)

	3.2 Multi-tenancy
	3.3 Technology stack
	3.4 Software components
	3.5 Interaction between software components

	4 Secure software deployment
	4.1 Software deployment process
	4.2 Software deployment tools

	5 Testing Easy1 software
	5.1 The theory behind our vision on correct software testing
	5.1.1 Shift left testing vs shift right testing
	5.1.2 Agile testing quadrants

	5.2 Applied test types
	5.3 Test follow-up

	6 Platform architecture
	6.1 Components within the platform architecture
	6.1.1 Kubernetes
	6.1.2 Private/public Subnets
	6.1.3 Internet Gateway
	6.1.4 Security Groups
	6.1.5 Regions

	6.2 Environments
	6.3 Integrations with external systems

	7 Cloud services
	7.1 Organization
	7.2 Monitoring
	7.2.1 Application/software monitoring
	7.2.2 Hardware/server monitoring
	7.2.3 AWS Platform monitoring
	7.2.3.1 AWS Web application Firewall (WAF)
	7.2.3.2 AWS SECURITY HUB
	7.2.3.3 AMAZON INSPECTOR
	7.2.3.4 AMAZON GUARDDUTY
	7.2.3.5 AWS IAM Access Analyzer

	7.2.4 Monitoring tools
	7.2.4.1 AWS Security Hub gives a view of your high-priority security alerts and compliance status across AWS accounts. Within the Hub there are firewalls and endpoint protection to vulnerability and compliance scanners.
	7.2.4.2 Prometheus and Grafana
	7.2.4.3 Kibana

	7.3 Upgrades/updates
	7.3.1 Update of our software
	7.3.1.1 E-invoicing NEXT
	7.3.1.2 Easy1
	7.3.1.3 CurrentGen

	7.3.2 Update third-party software

	7.4 Maintenance
	7.4.1 Application maintenance
	7.4.2 Database maintenance
	7.4.3 Operating system maintenance

	7.5 Availability
	7.5.1 Cloud/SaaS availability

	8 Disaster recovery
	8.1 Procedure
	8.1.1 Impact analysis
	8.1.2 Recovery Point Objective (RPO)
	8.1.3 Recovery Time Objective (RTO)

	8.2 Backup model
	8.2.1 Daily backup
	8.2.2 Point-in-time backup
	8.2.3 Backup retention
	8.2.4 File backups

	9 Security
	9.1 Vulnerability management
	9.2 Access control
	9.2.1 AWS Accounts
	9.2.2 AWS IAM Roles
	9.2.3 Server Accounts
	9.2.4 Application User Accounts
	9.2.5 Logging

	9.3 Contract termination
	9.3.1 E-invoicing NEXT
	9.3.2 Easy1
	9.3.3 CurrentGen

	9.4 Data Protection (cryptographic, encryption, hashing)
	9.5 Data classification (CIP Taskforce Baseline)
	9.6 Incident management
	9.7 Risk and compliance
	9.8 Data segregation
	9.8.1 E-invoicing NEXT
	9.8.2 Easy1
	9.8.3 CurrentGen

	10 Audits initiated by customers
	10.1 Additional independent audit

	11 Time Sync Service
	11.1 Redundant Network Time Protocol Sync Service

	12 Customer Data Usage
	12.1 Customer Data Usage

