
- A RASA PUBLICATION -

THE RASA
MASTERCLASS

HANDBOOK
A COMPANION GUIDE TO THE

RASA MASTERCLASS VIDEO SERIES

1

THE RASA MASTERCLASS
HANDBOOK

Foreword

In September 2019, we launched the Rasa Masterclass, a twelve-video tutorial series on
building AI assistants with Rasa. The Masterclass provides a complete roadmap for building AI
assistants—all the way from installing Rasa for the first time to deploying a finished project on
Kubernetes. Along the way, we cover important machine learning concepts and practical coding
examples to give you a solid foundation in conversational AI.

The series is hosted by Juste Petraityte, Head of Developer Relations at Rasa. Over the course
of the Masterclass, we build an advanced assistant called the Medicare Locator, which uses the
medicare.gov API to locate nearby medical facilities.

In addition to learning how to build the Medicare Locator, the Masterclass also covers:

● NLU and dialogue management components and how to configure your NLU pipeline to
get the best performance with your dataset

● Adding business logic using forms and integrating with backend systems
● Connecting with messaging channels and deploying the assistant

First published on the blog and now available as an ebook, the Masterclass Handbook is the
companion guide to the Masterclass video series.You can follow along with the Handbook as
you watch the videos, or return to it later as a quick reference guide. At the end of each chapter,
you’ll find links to additional resources to help you along your journey.

Whether you’re brand new to Rasa or you’ve built simple AI assistants before, the Rasa
Masterclass is a great resource to level up and deepen your expertise as a Rasa developer.
We’re excited to have you along—we’ll learn a lot and apply our new skills to building AI
assistants that really help users.

Let’s get started!

2

TABLE OF CONTENTS

Chapter 1: Intro to Conversational AI and Rasa
What are Contextual Assistants?
Exploring Rasa
Getting Started

Chapter 2: Creating NLU Training Data
What We’re Building
Conversation Design
Generating NLU Training Data

Chapter 3: NLU Model, Part 1: Pre-configured Pipelines
Key Concepts
Choosing a Pipeline Configuration
Training the Model
Testing the Model

Chapter 4: NLU Model, Part 2: Pipeline Components
Training Pipeline Overview
Training Pipeline Components

SpacyNLP
Tokenizer
Named Entity Recognition
Intent Classification
Featurizers
Intent Classifiers

FAQ

3

TABLE OF CONTENTS

Chapter 5: Intro to Dialogue Management
Machine Learning vs State Machines
Stories
Adding Stories to Medicare Locator
Training Data Tips

Chapter 6: Domain, Custom Actions, and Slots
Domain File in Rasa
Building a Domain for Medicare Locator
Custom Actions in Rasa
Slots in Rasa

Slot Types
Using Slots in Medicare Locator

Training Your Rasa Assistant
Chapter 7: Dialogue Policies

Policy Configuration in Rasa
Dialogue Policies

Memoization Policy
Mapping Policy
Keras Policy
TED Policy
Form Policy
Fallback Policy

4

TABLE OF CONTENTS

Chapter 8: Integrations, Forms, and Fallbacks
Real-world Dataset for Medicare Locator
Improving the NLU

Regex in Entities
Synonyms

Implementing a Form Action
Failing Gracefully in Rasa

Chapter 9: Improving the Assistant
What is Rasa X?
Deploying Rasa X

Configure the VM
Install Rasa X
Connecting the Assistant
Set up the Action Server

The Rasa X Dashboard
Chapter 10: Sharing with Test Users

Opening Your Assistant to Testers
Reviewing Test Conversations
Improving Your Assistant

Chapter 11: Connecting to Messaging Channels
Configuring DNS and SSL
Telegram
Webchat

5

TABLE OF CONTENTS

Chapter 12: Deploying on Kubernetes
What is Kubernetes?
Create a New Cluster
Connect to the Cluster
Set up the Custom Action Server
Deploy Rasa X

6

Intro to Conversational
AI and Rasa

CHAPTER ONE

7

INTRO TO CONVERSATIONAL AI
AND RASA

Introduction
Welcome to episode 1 of the Rasa Masterclass. In this episode, we lay the foundation for this
video series by introducing you to contextual assistants and Rasa. By the end of this episode,
you’ll be able to identify what separates contextual assistants from simple FAQ assistants and
the components that make up the Rasa stack: Rasa Open Source, which handles NLU and
dialogue management, and Rasa X. You’ll also install Rasa and create your first starter project.

8

https://youtu.be/-F6h43DRpcU
http://www.youtube.com/watch?v=-F6h43DRpcU

Chapter 1: Intro

What are contextual assistants?
At Rasa, we use the concept of 5 Levels of Assistants to describe the capabilities of AI
assistants and show how the technology has evolved over time.

Briefly, these are the definitions:

● Level 1: Notification Assistants
○ Capable of sending simple notifications, like a text message, push notification, or

WhatsApp message.
● Level 2: FAQ Assistants

○ Can answer simple questions, like FAQs.
○ The most common type of assistant today
○ Often constructed around a set of rules or a state machine.

● Level 3: Contextual Assistants
○ Able to understand the context of the conversation, i.e. what the user has said

previously and when/where/how they said it.
○ Capable of understanding and responding to different and unexpected inputs
○ Can learn from previous conversations and improve in accuracy over time

■ Buildable today with Rasa
● Level 4: Personalised Assistants

○ The next generation of AI assistants, that will get to know you better over time
○ Theoretical only

● Level 5: Autonomous Organization of Assistants
○ AI assistants that know every customer personally
○ Capable of running large parts of a company’s operations—from lead generation

to sales, HR, or finance.
○ Long-term vision for the industry

In the Rasa Masterclass, we’ll be focused on building Level 3 assistants, using Rasa’s machine
learning-based approach, which uses data from real conversations to improve accuracy over
time.

9

https://blog.rasa.com/conversational-ai-your-guide-to-five-levels-of-ai-assistants-in-enterprise/

Chapter 1: Intro

Exploring Rasa
Rasa has three major components that work together to create contextual assistants:

Note: As of Dec 2019, Rasa Core is now known as dialogue management, to more accurately
desdribe its function. Together, the NLU and dialogue management libraries make up Rasa
Open Source.

Rasa NLU
Rasa NLU is like the “ear” of your assistant—it helps your assistant understand what’s
being said. Rasa NLU takes user input in the form of unstructured human language and
extracts structured data in the form of intents and entities.

● Intents are labels that represent the goal, or meaning, of a user’s specific input.
For example, the message ‘Hello’ could have the label ‘greet’ because the
meaning of this message is a greeting.

● Entities are important keywords that an assistant should take note of. For
example, the message ‘My name is Juste’ has the name ‘Juste’ in it. An assistant
should extract the name and remember it throughout the conversation to keep the
interaction natural.

○ Entity extraction is achieved by training a named entity recognition model
to identify and extract the entities (in this example, names) for
unstructured user messages

Rasa Core
Core is Rasa’s dialogue management component. It decides how an assistant should
respond based on 1) the state of the conversation and 2) the context. Rasa Core learns
by observing patterns in conversational data between users and an assistant.

Rasa X
Rasa X is a toolset for developers to build, improve and deploy contextual assistants with
the Rasa framework. You can use Rasa X to:

- View and annotate conversations
- Get feedback from testers
- Version and manage models

With Rasa X, you can share your assistant with real users and collect the conversations
they have with the assistant, allowing you to improve your assistant without interrupting
the assistant running in production.

10

Chapter 1: Intro

Getting Started
The fastest way to begin building an AI assistant with Rasa is on the command line, with a few
simple steps:

Install Rasa
You can install both Rasa (NLU and Core) and Rasa X with a single command:

pip3 install rasa-x --extra-index-url https://pypi.rasa.com/simple

For detailed step-by-step instructions on installing Rasa, along with system requirements and
dependencies, see the Installation Guide.

Create the starter project
Next, we can create the Rasa example starter project. Open a terminal and run the command
rasa init.

This command creates a new Rasa project in a local directory, which you will specify by
providing the directory name. Once the directory is initialised, Rasa will automatically populate it
with the project files and example training data, and it will train the NLU and dialogue models.

By default, rasa init trains a simple assistant called moodbot which will ask you how you
feel, and if you are unhappy it will try to cheer you up by sending you a picture of a cute tiger
cub.

11

https://rasa.com/docs/rasa/user-guide/installation/#installation-guide

Chapter 1: Intro

Interacting with moodbot
You can use moodbot immediately. In your terminal, type Hi. The assistant responds with, Hey,
how are you .

12

If you reply that you are a bit sad, moodbot understands that you are unhappy and will send you
a picture to cheer you up.

The rasa init function is a great way to test how a Rasa-powered assistant works. You can also
use moodbot as a boilerplate project for building your own custom assistant.

Next Steps
Now that we’ve laid the foundation by establishing what contextual assistants are, identifying the
components of Rasa, and creating a starter project, we’ll build on that knowledge in the next
episode: Creating the NLU Training Data.

https://youtu.be/k5UeywXA28k

Chapter 1: Intro

Additional Resources
● Intro to conversational AI and Rasa: Rasa Masterclass Ep#1 (YouTube)
● Conversational AI: Your Guide to Five Levels of AI Assistants in Enterprise (Rasa Blog)
● Level 3 Contextual Assistants: Beyond Answering Simple Questions (Rasa Blog)
● Step-by-step Installation Guide (Rasa docs)
● Getting Started with Rasa (Rasa docs)

13

https://youtu.be/-F6h43DRpcU
https://blog.rasa.com/conversational-ai-your-guide-to-five-levels-of-ai-assistants-in-enterprise/
https://blog.rasa.com/level-3-contextual-assistants-beyond-answering-simple-questions/
https://rasa.com/docs/rasa/user-guide/installation/#installation-guide
https://rasa.com/docs/getting-started/

Creating NLU Training
Data

CHAPTER TWO

14

CREATING NLU TRAINING DATA

Introduction
In Episode 2 of the Rasa Masterclass, we focus on generating NLU training data. In the previous
episode, we installed Rasa and created moodbot, the Rasa starter project. Now, we’ll start to
build your assistant’s vocabulary.

We’ll begin with the basics of conversation design, including techniques you can use to script
dialogues between your assistant and your users. Then, we’ll learn how to format your training
data and define the intents and entities your assistant can understand.

15

http://www.youtube.com/watch?v=k5UeywXA28k

Chapter 2: NLU Data

What We’re Building
Before we get into the details of generating NLU training data, let’s briefly discuss what we’ll be
building over the course of the Masterclass series. The Medicare Locator is an AI assistant that
uses the Medicare.gov API to locate hospitals, nursing homes, and home health agencies in US
cities. We’ll be building this assistant from beginning to end throughout the series. When we’re
finished, the assistant will be able to answer requests like “Give me the address of a hospital in
San Francisco.”

In this episode, we’ll cover the basics of conversational design and generating training data
using the Medicare Locator as an example.

Conversation Design
The first step to building a successful contextual assistant is planning the types of conversations
your assistant will be able to have, a process known as conversation design. Conversation
design should start with three important planning steps to ensure your assistant will meet the
needs of your users:

1. Asking who your users are
2. Understanding the assistant’s purpose
3. Documenting the most typical conversations users will have with the assistant

Gathering possible questions
Once you’ve considered who your users are and the intended purpose of your assistant, start
assessing what you already know about your potential audience. The goal is to begin compiling
a list of common questions your users are likely to ask your assistant.

Do this by:
● Leveraging the knowledge of domain experts
● Looking at common search queries on your website
● Asking your customer service team about their most common requests

16

Chapter 2: NLU Data

If you don’t have access to historical conversation data, you can use the Wizard of Oz approach
to gather information. This technique gets its name from a classic scene in the film The Wizard
of Oz, where the “wizard” is revealed to be a man behind a curtain. When you use the Wizard of
Oz approach, you are the man behind the curtain, so to speak. Recruit a volunteer to play the
part of your user while you play the role of the bot. By simulating a human-bot chat interaction
and recording the conversations, you can put together a realistic estimate of the questions your
real users are likely to ask.

Outlining the conversational flow
Conversations tend to follow patterns we can use to identify common intents our assistant
should anticipate. For example, many conversations follow this structure:

1. Greeting
2. Assistant states what it is capable of (this is a good practice for a better user experience)
3. User states what they are looking for
4. Assistant asks for more details OR
5. Answers the query if enough information has been provided
6. User says thank you
7. Assistant says “you’re welcome” and goodbye

This sequence may seem simple, but conversation design is actually a challenging task.
Real-life conversations have more back and forth interactions, and it’s difficult to anticipate
everything users might ask. When you try to invent a large number of hypothetical conversations
to train your model, you risk introducing bias into your data. Because of this, you should only rely
on hypothetical conversations in the early stages of development and train your assistant on real
conversations as soon as possible.

Generating NLU training data for the Medicare
Locator
The moodbot starter project contains a Data directory, where you’ll find the training data files for
NLU and dialogue management models. The Data directory contains two files:

● nlu.md - the file containing NLU model training examples. This includes intents, which
are user goals, and example utterances that represent those intents. The NLU training
data also labels the entities, or important keywords, the assistant should extract from the
example utterance.

● stories.md - the file containing story data. Stories are example end-to-end
conversations.

17

Chapter 2: NLU Data

For now, we’ll concentrate on the nlu.md file:

Intents are defined using a double hashtag. Each intent is followed by multiple examples of how
a user might express that intent.

Entities are labeled with square brackets and tagged with their type in parentheses.

For example, in the nlu.md file for the Medicare Locator, we’ve created an intent called
search_provider, which represents a user’s request to locate a healthcare facility. In each
example utterance, we’ve labeled entities for location and facility type.

18

Chapter 2: NLU Data

Each intent your assistant is capable of understanding will need to be defined in the nlu.md file.
There are a few best practices to keep in mind:

● You don’t need to write every possible utterance to train an intent, but you should provide
10-15 examples.

● Make sure you provide high-quality data to train your model. Examples should be
relevant to the intents, and be sure that there’s plenty of diversity in the vocabulary you
use in your examples.

Next Steps
Take some time to practice what you’ve learned by defining a few new intents in your nlu.md file.
Then, continue on to Episode 3, where we’ll discuss the NLU training pipeline.

Additional Resources
● Creating the NLU training data - Rasa Masterclass Ep.#2 (YouTube)
● NLU Training Data Format (Rasa docs)
● Rasa X - NLU Training (Rasa docs)

19

https://youtu.be/seBN1gMJN0U
https://youtu.be/k5UeywXA28k
https://rasa.com/docs/rasa/nlu/training-data-format/
https://rasa.com/docs/rasa-x/annotate-conversations/#nlu-training

NLU MODEL: PART 1
PRE-CONFIGURED

PIPELINES

CHAPTER THREE

20

NLU MODEL: PART 1
PRE-CONFIGURED PIPELINES

Introduction
In episode 3 of the Rasa Masterclass, we tackle the first of a two-part module on training NLU
models. In this part, we’ll focus on choosing a training pipeline configuration, training the model,
and testing the model. In our next episode, we’ll be back to do a deep dive into each of the
components that make up the NLU pipeline.

21

http://www.youtube.com/watch?v=seBN1gMJN0U

CHAPTER 3: PRE-CONFIGURED PIPELINES

Key Concepts
Let’s begin with a few important definitions.

NLU model - An NLU model is used to extract meaning from text input. In our previous episode,
we discussed how to create training data, which contains labeled examples of intents and
entities.Training an NLU model on this data allows the model to make predictions about the
intents and entities in new user messages, even when the message doesn’t match any of the
examples the model has seen before.

Training pipeline - NLU models are created by a training pipeline, also referred to as a
processing pipeline. A training pipeline is a sequence of processing steps which allow the model
to learn the training data’s underlying patterns.

In our next episode, we’ll dive deeper into the inner workings of the individual pipeline
components, but for now, we’ll focus on the two pre-configured pipelines included with Rasa
out-of-the-box. These pre-configured pipelines are a great fit for the majority of general use
cases. If you’re looking for information on configuring a custom training pipeline, we’ll cover the
topic in Episode 4.

Word embeddings - Word embeddings convert words to vectors, or dense numeric
representations based on multiple dimensions. Similar words are represented by similar vectors,
which allows the technique to capture their meaning. Word embeddings are used by the training
pipeline components to make text data understandable to the machine learning model.

22

CHAPTER 3: PRE-CONFIGURED PIPELINES

Choosing a Pipeline Configuration
Rasa comes with two default, pre-configured pipelines. Both pipelines are capable of performing
intent classification and entity extraction. In this section, we’ll compare and contrast the two
options to help you choose the right pipeline configuration for your assistant.

1. Pretrained_embeddings_spacy - Uses the spaCy library to load pre-trained language
models, which are used to represent each word in the user’s input as word embeddings.

a. Advantages
i. Boosts the accuracy of your models, even if you have very little training

data
ii. Training doesn’t start from scratch, which makes it blazing fast. This

encourages short iteration times, so you can rapidly improve your
assistant.

b. Considerations
i. Complete and accurate word embeddings are not available for all

languages. They’re trained on publicly available datasets, which are
mostly in English.

ii. Word embeddings don’t cover domain-specific words, like product names
or acronyms, because they’re often trained on generic data, like Wikipedia
articles.

2. Supervised_embeddings - Unlike pre-trained embeddings, the supervised_embeddings
pipeline trains the model from scratch using the data provided in the NLU training data
file.

a. Advantages
i. Can adapt to domain-specific words and messages, because the model is

trained on your training data.
ii. Language-agnostic. Allows you to build assistants in any language.
iii. Supports messages with multiple intents.

b. Considerations
i. Compared to pre-trained embeddings, you’ll need more training examples

for your model to start understanding unfamiliar user inputs. The
recommended number of examples is 1000 or more.

Generally speaking, the pretrained_embeddings_spacy pipeline is the best choice when you
don’t have a lot of training data and your assistant will be fairly simple. The
supervised_embeddings pipeline is the best choice when your assistant will be more complex,
especially if you need to support non-English languages. This decision tree illustrates the factors
you will want to consider when deciding which of these two pre-configured pipelines is right for
your project:

23

https://spacy.io/

CHAPTER 3: PRE-CONFIGURED PIPELINES

Training the Model
After you’ve created your training data (see Episode 2 for a refresher on this topic), you are
ready to configure your pipeline, which will train a model on that data. Your assistant’s
processing pipeline is defined in the config.yml file, which is automatically generated when you
create a starter project using the rasa init command.

This example shows how to configure the supervised_embeddings pipeline, by defining the
language indicator and the pipeline name:

language: "en"

pipeline: "supervised_embeddings"

To train an NLU model using the supervised_embeddings pipeline, define it in your config.yml
file and then run the Rasa CLI command rasa train nlu . This command will train the model
on your training data and save it in a directory called models.

24

https://youtu.be/k5UeywXA28k

CHAPTER 3: PRE-CONFIGURED PIPELINES

To change the pipeline configuration to pretrained_embeddings_spacy, edit the language
parameter in config.yml to match the appropriate spaCy language model and update the pipeline
name. You can now retrain the model using the rasa train NLU command.

Testing the Model
Test the newly trained model by running the Rasa CLI command, rasa shell nlu . This loads
the most recently trained NLU model and allows you to test its performance by conversing with
the assistant on the command line.

While in test mode, type a message in your terminal, for example, ‘Hello there.’ Rasa CLI
outputs a JSON object containing several useful pieces of data:

● The intent the model thinks is the most likely match for the message.
○ For example: {“name: greet”, “confidence: 0.95347273804” . This means the

model is 95% certain “Hello there” is a greeting.
● A list of extracted entities, if there are any.
● A list of intent_rankings. These results show the intent classification for all of the other

intents defined in the training data. The intents are ranked according to the intent match
probability predictions generated by the model

.

25

CHAPTER 3: PRE-CONFIGURED PIPELINES

You can use this output to compare the performance of models generated by different pipeline
configurations.

Next Steps
Pre-configured pipelines are a great way to get started quickly, but as your project grows in
complexity, you will likely want to customize your model. Similarly, as your knowledge and
comfort level increases, it’s important to understand how the components of the processing
pipeline work under the hood. This deeper understanding will help you diagnose why your
models behave a certain way and optimize the performance of your training data.

Continue on to our next episode, where we’ll explore these topics in part 2 of our module on
NLU model training: Training the NLU models: understanding pipeline components (Rasa
Masterclass Ep.#4).

Additional Resources
● Training the NLU model: pre-configured pipelines - Rasa Masterclass ep.#3 (YouTube)
● Choosing a Pipeline (Rasa docs)
● Supervised Word Vectors from Scratch in Rasa NLU (Rasa blog)
● Spacy 101 (Spacy docs)

26

https://youtu.be/ET1k9OrsfYQ
https://youtu.be/ET1k9OrsfYQ
https://youtu.be/seBN1gMJN0U
https://rasa.com/docs/rasa/nlu/choosing-a-pipeline/
https://medium.com/rasa-blog/supervised-word-vectors-from-scratch-in-rasa-nlu-6daf794efcd8
https://spacy.io/usage/spacy-101

NLU MODEL: PART 2
PIPELINE

COMPONENTS

CHAPTER FOUR

27

NLU MODEL: PART 2
PIPELINE COMPONENTS

Introduction
Episode 4 of the Rasa Masterclass is the second of a two-part module on training NLU models.
This episode builds upon the material we covered previously, so if you’re just joining, head back
and watch Episode 3 before proceeding.

Let’s do a quick recap of the most important concepts covered in Episode 3:

● NLU models accept user messages as input and output predictions about the intents
and entities contained in those messages.

● A training pipeline trains a new NLU model using a sequence of processing steps that
allow the model to learn the training data’s underlying patterns.

•

28

https://youtu.be/ET1k9OrsfYQ
https://youtu.be/seBN1gMJN0U
http://www.youtube.com/watch?v=ET1k9OrsfYQ

CHAPTER 4: PIPELINE COMPONENTS

● Rasa comes with two pre-configured pipelines:
a. Pretrained_embeddings_spacy - Uses the spaCy pre-trained language model.

Pre-trained models allow you to supply fewer training examples and get started
quickly; however, they’re trained primarily on general-purpose English data sets,
so support for domain-specific terms and non-English languages is limited.

b. Supervised_embeddings - Trains the model from scratch using the data
provided in the NLU training data file. Supervised training supports any language
that can be tokenized and can be trained to understand domain-specific terms,
but a greater number of training examples is required.

● In a Rasa assistant, the training pipeline is defined in the config.yml file:

language: "en"
pipeline: "pretrained_embeddings_spacy"

In addition to defining which pipeline you want to use, you can also define which individual
pipeline components you want to use, to completely customize your NLU model. In Episode 4,
we’ll examine what each component does and what’s happening under the hood when a model
is trained.

Training Pipeline Overview
Before getting into the details of individual pipeline components, it’s helpful to step back and
take a birds-eye view of the process.

As mentioned earlier, a training pipeline consists of a sequence of steps that train a model using
NLU data. Each pipeline step executes one after the other, and the order of the steps matters.
Some steps produce output that a later step needs to accept as input. Imagine an assembly line
in a factory: the worker at the end of the line can’t attach the final piece until other workers have
attached their pieces. So the pipeline doesn’t just define which components should be present,
but also the order in which they should be arranged.

No matter which pipeline you choose, it will follow the same basic sequence. We’ll outline the
process here and then describe each step in greater detail in the Components section.

1. Load pre-trained language model (optional). Only needed if you’re using a pre-trained
model like spaCy.

2. Tokenize the data. Splits the training data text into individual words, or tokens.
3. Named Entity Recognition. Teaches the model to recognize which words in a message

are entities and what type of entity they are.

29

https://rasa.com/docs/rasa/nlu/choosing-a-pipeline/#pre-configured-pipelines
https://spacy.io/

CHAPTER 4: PIPELINE COMPONENTS

4. Featurization. Converts tokens to vectors, or dense numeric representations of words.
This step can be performed before or after Named Entity Recognition, but must come
after tokenization and before Intent Classification.

5. Intent Classification. Trains the model to make a prediction about the most likely meaning
behind a user’s message

After a model has been trained using this series of components, it will be able to accept raw text
data and make a prediction about which intents and entities the text contains.

Training Pipeline Components
So far, we’ve talked about two processing pipelines: supervised_embeddings and
pretrained_embeddings_spacy. Both consist of components that are each responsible for a
different task. Let’s examine each component in greater detail.

SpacyNLP
The pretrained_embeddings_spacy pipeline uses the SpacyNLP component to load the Spacy
language model so it can be used by subsequent processing steps. You only need to include
this component in pipelines that use spaCy for pre-trained embeddings, and it needs to be
placed at the very beginning of the pipeline.

30

https://rasa.com/docs/rasa/nlu/components/#spacynlp

CHAPTER 4: PIPELINE COMPONENTS

Tokenizer
Tokenizers take a stream of text and split it into smaller chunks, or tokens; usually individual
words. The tokenizer should be one of the first steps in the processing pipeline because it
prepares text data to be used in subsequent steps. All training pipelines need to include a
tokenizer, and there are several you can choose from:

WhitespaceTokenizer - The way a whitespace tokenizer works is very simple: it looks for
whitespace in a stream of text and uses it as a delimiter to separate each token, or word. A
whitespace tokenizer is the default tokenizer used by the supervised_embeddings pipeline, and
it’s a good choice if you don’t plan on using pre-trained embeddings.

Jieba - Whitespace works well for English and many other languages, but you may need to
support languages that require more specific tokenization rules. In that case, you’ll want to reach
for a language-specific tokenizer, like Jieba for the Chinese language.

SpacyTokenizer - Pipelines that use spaCy come bundled with the SpacyTokenizer, which
segments text into words and punctuation according to rules specific to each language. This is a
good option if you’re using pre-trained embeddings.

Tokenizer

Supervised embeddings Whitespace
Jieba (Chinese)

Pre-trained embeddings SpacyTokenizer

Named Entity Recognition (NER)
NLU models use named entity recognition components to extract entities from user
messages. For example, if a user says “What’s the best coffee shop in San Francisco?” the
model should extract the entities ‘coffee shop’ and ‘San Francisco’, and identify them as a
type of business and a location. There are a few named entity recognition components you
can choose from when assembling your training pipeline:

31

https://rasa.com/docs/rasa/nlu/components/#whitespacetokenizer
https://pypi.org/project/jieba/
https://rasa.com/docs/rasa/nlu/components/#spacytokenizer

CHAPTER 4: PIPELINE COMPONENTS

CRFEntityExtractor - CRFEntityExtractor works by building a model called a Conditional
Random Field. This method identifies the entities in a sentence by observing the text features of
a target word as well as the words surrounding it in the sentence. Those features can include
the prefix or suffix of the target word, capitalization, whether the word contains numeric digits,
etc. You can also use part of speech tagging with CRFEntityExtractor, but it requires installing
spaCy. Part of speech tagging looks at a word’s definition and context to determine its
grammatical part of speech, e.g. noun, adverb, adjective, etc.

Unlike tokenizers, whose output is fed into subsequent pipeline components, the output
produced by CRFEntityExtractor and other named entity recognition components is actually
expressed in the final output of the NLU model. It outputs which words in a sentence are entities,
what kind of entities they are, and how confident the model was in making the prediction.

SpacyEntityExtractor - If you’re using pre-trained word embeddings, you have the option to
use SpacyEntityExtractor for named entity recognition. Even when trained on small data sets,
SpacyEntityExtractor can leverage part of speech tagging and other features to locate the
entities in your training examples.

DucklingHttpExtractor - Some types of entities follow certain patterns, like dates. You can use
specialized NER components to extract these types of structured entities. DucklingHttpExtractor
recognizes dates, numbers, distances and data types.

Regex_featurizer - The regex_featurizer component can be added before CRFEntityExtractor
to assist with entity extraction when you’re using regular expressions and/or lookup tables.
Regular expressions match certain hardcoded patterns, like a 10-digit phone number or an email
address. Lookup tables provide a predefined range of values for an entity. They’re useful if your
entity type has a finite number of possible values. For example, there are 195 possible values
for the entity type ‘country,’ which could all be listed in a lookup table.

Named Entity Recognition

Supervised embeddings CRFEntityExtractor
DucklingHttpExtractor
Regex_featurizer

Pre-trained embeddings SpacyEntityExtractor

32

https://rasa.com/docs/rasa/nlu/components/#crfentityextractor
https://rasa.com/docs/rasa/nlu/components/#spacyentityextractor
https://rasa.com/docs/rasa/nlu/components/#ducklinghttpextractor
https://rasa.com/docs/rasa/nlu/components/#regexfeaturizer

CHAPTER 4: PIPELINE COMPONENTS

Intent Classification
There are two types of components that work together to classify intents: featurizers and intent
classification models.

Featurizers take tokens, or individual words, and encode them as vectors, which are numeric
representations of words based on multiple attributes. The intent classification model takes the
output of the featurizer and uses it to make a prediction about which intent matches the user’s
message. The output of the intent classification model is expressed in the final output of the NLU
model as a list of intent predictions, from the top prediction down to a ranked list of the intents
that didn’t “win.”

{
 "intent": {"name": "greet", "confidence": 0.8343},
 "intent_ranking": [
 {
 "confidence": 0.385910906220309,
 "name": "goodbye"
 },
 {
 "confidence": 0.28161531595656784,
 "name": "restaurant_search"
 }
]
}

Featurizers
CountVectorsFeaturizer - This featurizer creates a bag-of-words representation of a user’s
message using sklearn’s CountVectorizer. The bag-of-words model disregards the order of
words in a body of text and instead focuses on the number of times words appear in the text. So
the CountVectorsFeaturizer counts how often certain words from your training data appear in a
message and provides that as input for the intent classifier.

33

https://scikit-learn.org/stable/modules/feature_extraction.html
https://rasa.com/docs/rasa/nlu/components/#countvectorsfeaturizer

CHAPTER 4: PIPELINE COMPONENTS

CountVectorsFeaturizer can be configured to use either word or character n-grams, which is
defined using the analyzer config parameter. An n-gram is a sequence of n items in text data,
where n represents the linguistic units used to split the data, e.g. by characters, syllables, or
words.

By default, the analyzer is set to word n-grams, so word token counts are used as features. If
you want to use character n-grams, set the analyzer to char or char_wb. You can also use
character n-gram counts by changing the analyzer property of the
intent_featurizer_count_vectors component to char. This makes the intent classification more
resilient to typos, but also increases the training time.

- name: “CountVectorsFeaturizer”
analyzer:”char_web”
min_ngram: 1
max_ngram: 4

SpacyFeaturizer - If you’re using pre-trained embeddings, SpacyFeaturizer is the featurizer
component you’ll likely want to use. It returns spaCy word vectors for each token, which is then
passed to the SklearnIntent Classifier for intent classification.

34

https://rasa.com/docs/rasa/nlu/components/#spacyfeaturizer

CHAPTER 4: PIPELINE COMPONENTS

Intent Classifiers
EmbeddingIntentClassifier - If you’re using the CountVectorsFeaturizer in your pipeline, we
recommend using the EmbeddingIntentClassifier component for intent classification. The
features extracted by the CountVectorsFeaturizer are transferred to the
EmbeddingIntentClassifier to produce intent predictions.

The EmbeddingIntentClassifier works by feeding user message inputs and intent labels from
training data into two separate neural networks which each terminate in an embedding layer.
The cosine similarities between the embedded message inputs and the embedded intent labels
are calculated, and supervised embeddings are trained by maximizing the similarities with the
target label and minimizing similarities with incorrect ones. The results are intent predictions that
are expressed in the final output of the NLU model.

SklearnIntentClassifier - When using pre-trained word embeddings, you should use the
SklearnIntentClassifier component for intent classification. This component uses the features
extracted by the SpacyFeaturizer as well as pre-trained word embeddings to train a model called
a Support Vector Machine (SVM). The SVM model predicts the intent of user input based on
observed text features. The output is an object showing the top ranked intent and an array listing
the rankings of other possible intents.

35

https://rasa.com/docs/rasa/nlu/components/#embeddingintentclassifier
https://rasa.com/docs/rasa/nlu/components/#sklearnintentclassifier
https://machinelearningmastery.com/support-vector-machines-for-machine-learning/

CHAPTER 4: PIPELINE COMPONENTS

FAQ
Now that we’ve discussed the components that make up the NLU training pipeline, let’s look at
some of the most common questions developers have about training NLU models.

Q. Does the order of the components in the pipeline matter?

A. The short answer: yes! Some components need the output from a previous component in
order to do their jobs. As a rule of thumb, your tokenizer should be at the beginning of the
pipeline, and the featurizer should come before the intent classifier.

Q. Should I worry about class imbalance in my NLU training data?

A. Class imbalance is when some intents in the training data file have many more examples
than others. And yes—this can affect the performance of your model. To mitigate this problem,
Rasa’s supervised_embeddings pipeline uses a balanced batching strategy. This algorithm
distributes classes across batches to balance the data set. To prevent oversampling rare classes
and undersampling frequent ones, it keeps the number of examples per batch roughly
proportional to the relative number of examples in the overall data set.

Q. Does the punctuation in my training examples matter?

A. Punctuation is not extracted as tokens, so it’s not expressed in the features used to train the
models. That’s why punctuation in your training examples should not affect the intent
classification and entity extraction results.

Intent Classification

Pipeline Featurizer Intent Classifier

Supervised embeddings CountVectorsFeaturizer EmbeddingIntentClassifier

Pre-trained embeddings SpacyFeaturizer SklearnIntent Classifier

36

CHAPTER 4: PIPELINE COMPONENTS

Q. Are intent classification and entity extraction case sensitive?

A. It depends on the task. Named Entity Recognition does observe whether tokens are upper- or
lowercase. Case sensitivity also affects the results of entity extraction models.
CountVectorsFeaturizer, however, converts characters to lowercase by default. For that reason,
upper- or lowercase words don’t really affect the performance of the intent classification model,
but you can customize the model parameters if needed.

Q. Some of the intents in my training data are pretty similar. What should I do?

A. When the intents in your training data start to seem very similar, it’s a good idea to evaluate
whether the intents can be combined into one. For example, imagine a scenario where a user
provides their name or a date. Intuitively you might create a provide_name intent for the
message “It is Sara,” and a provide_date intent for the message “It is on Monday.” However,
from an NLU perspective, these messages are very similar except for their entities. For this
reason it would be better to create an intent called inform which unifies provide_name and
provide_date. Later on, in your dialogue management training data, you can define different
story paths depending on which entity Rasa NLU extracted.

Q. What if I want to extract entities from one-word inputs?

A. Extracting entities from one-word user inputs is still quite challenging. The best technique is
to create a specific intent, for example inform, which would contain examples of how users
provide information, even if those inputs consist of one word. You should label the entities in
those examples as you would with any other example, and use them to train intent classification
and entity extraction models.

Q. Can I specify more than one intent classification model in my pipeline?

A. Technically yes, but there is no real benefit. The predictions of the last specified intent
classification model will always be what’s expressed in the output.

Q. How do I deal with typos in user inputs?

A. Typos in user messages are unavoidable, but there are a few things you can do to address
the problem. One solution is to implement a custom spell checker and add it to your pipeline
configuration. This is a nice way to fix typos in extracted entities. Another thing you can do is to
add some examples with typos to your training data for your models to pick up.

37

CHAPTER 4: PIPELINE COMPONENTS

Conclusion
Choosing the components in a custom pipeline can require experimentation to achieve the best
results. But after applying the knowledge gained from this episode, you’ll be well on your way to
confidently configuring your NLU models.

After you finish this episode of the Rasa Masterclass, keep up the momentum. Watch the next
installment in the series: Episode 5, Intro to dialogue management. Then, join us in the
community forum to discuss!

Additional Resources
● Training the NLU models: understanding pipeline components - Rasa Masterclass Ep.#4

(YouTube)
● Entity Extraction (Rasa docs)
● NLU Components (Rasa docs)
● Rasa NLU In Depth: Part 1 - Intent Classification (Rasa Blog)
● Rasa NLU in Depth: Part 2 - Entity Recognition (Rasa Blog)

38

https://youtu.be/WoTmnN2EMdo
https://forum.rasa.com/t/rasa-masterclass-episode-list-resources/20552
https://youtu.be/ET1k9OrsfYQ
https://rasa.com/docs/rasa/nlu/entity-extraction/
https://rasa.com/docs/rasa/nlu/components/
https://blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/
https://blog.rasa.com/rasa-nlu-in-depth-part-2-entity-recognition/

INTRO TO DIALOGUE
MANAGEMENT

CHAPTER FIVE

39

INTRO TO DIALOGUE
MANAGEMENT

Introduction
In Episode 5 of the Rasa Masterclass, we introduce dialogue management, which is controlled
by a component called Rasa core. Dialogue management is the function that controls the next
action the assistant takes during a conversation. Based on the intents and entities extracted by
Rasa NLU, as well as other context, like the conversation history, Rasa core decides which text
response should be sent back to the user or whether to execute custom code, like querying a
database.

Previously in the Rasa Masterclass, we covered NLU models, including how to format NLU
training data, how to choose a pipeline configuration and train a model, and an in-depth
examination of NLU pipeline components. If you’re just joining, be sure to catch up on previous
episodes before moving on to Episode 5.

40

https://blog.rasa.com/the-rasa-masterclass-handbook-episode-2/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-2/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-3/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-4/
https://blog.rasa.com/the-rasa-masterclass-handbook-episode-4/
http://www.youtube.com/watch?v=WoTmnN2EMdo

CHAPTER 5: INTRO TO DIALOGUE

Machine Learning: a Better Alternative to State Machines
When building AI assistants, the most common approach to handling dialogue management is to
use a set of rules, known as a state machine. Let’s examine how a state machine works, and
then discuss why Rasa does things differently.

What is a state machine?
A state machine exists in exactly one of a predefined set of states at any given time. The state
machine consists of rules that determine the specific set of inputs or circumstances necessary to
transition from one state to another. When we apply this concept to a conversation between a
bot and a user, we can see how the state machine can control the way the conversation shifts
from one phase to the next: 1) in the initial state, the bot greets the user and describes a task it
can help with, like ordering a pizza 2) if the user confirms 3) the bot transitions to a new state
and asks the user whether they would like a pizza for delivery or pickup.

41

CHAPTER 5: INTRO TO DIALOGUE

The important thing to keep in mind about state machines is that every state, and the user input
needed to transition from state to state, must be explicitly programmed. The assistant won’t be
able to transition to the next conversational state if it doesn’t receive the expected input, which
can create a very undesirable user experience. Let’s imagine that instead of saying “delivery” in
response to the bot’s question, the user instead typed “This order is actually for next week.” An
assistant controlled by a state machine might find it difficult to recover from this unexpected
input and transition to the proper state.

You could try to code a rule for every possible turn the conversation might take, but this gets
complex very quickly, and you still might not anticipate everything users might say.

Dialogue Management with Rasa
Rasa takes a different approach. Instead of a state machine, Rasa core uses machine learning
to pick up conversational patterns from example conversations. These example conversations
are supplied as training data, much like the method we used to train the NLU model. Based on
these patterns, the assistant can generalize, allowing the model to predict the next best action to
take in a conversation.This allows the model to provide an appropriate response, even when the
conversation doesn’t exactly match any of the training examples seen before.

Importantly, this means you don’t need to program every possible conversational turn into your
assistant up front. You can supply training data containing a few conversation examples when
you first build the assistant, and then gather new conversation data directly from real user
interactions. Using machine learning, the assistant is able to improve over time, based on the
things that users are actually saying.

Stories
In Rasa core, the basic unit of dialogue training data is called a story. You can think of a story
as a script detailing the back and forth conversation between user and assistant, from beginning
to end. Stories are written in a specific format and stored in the stories.md file. When you run the
rasa init command to create a new starter project, the stories.md file is automatically created in
the data directory, along with a few simple training stories.

42

https://blog.rasa.com/the-rasa-masterclass-handbook-episode-2/

CHAPTER 5: INTRO TO DIALOGUE

Let’s look at an example:

Story Name
The beginning of a story is marked with a double hashtag (##), followed by its name. Naming
your stories is not required, but it makes debugging much easier. For the same reason, it’s a
good idea to make story names descriptive so you can see at a glance what the story is about.

Messages from Users
Stories are structured as a series of messages from users, and your assistant’s response to
those messages. User messagesare marked by lines starting with an asterisk (*).

As you can see, the user message is not the actual text of the user message. Instead, the story
contains the intent labels and entities extracted by the NLU model.

43

CHAPTER 5: INTRO TO DIALOGUE

Adding Stories to the Medicare Locator Assistant
If you’ve been following along with the Masterclass, we’ve been building a contextual AI
assistant that uses the Medicare.gov API to locate medical facilities in the US, like hospitals or
nursing homes. For reference, you can find the completed code for the Medicare Locator
assistant in the Rasa Masterclass GitHub repository.

In the meantime, let’s keep working on building our medicare locator from scratch. Let’s update
the assistant’s stories.md file and add some training data.

Locate the stories.md file in the data directory. Since we used the rasa init command to create
the assistant earlier in the tutorial, we should see a few example stories used to train moodbot.

44

https://github.com/RasaHQ/rasa-masterclass/tree/master/episode5

CHAPTER 5: INTRO TO DIALOGUE

We’ll add a few new stories to train the Medicare Locator.

Story 1: hospital search happy path
We’ll start with a story where the user supplies all of the required information and the
conversation goes as expected (what we’d call the “happy path”).

If we were to write out the full conversation, it might look something like this:

User: Hello
Medicare Locator: Hi. I am a Medicare Locator. I can help you find hospitals, nursing homes or
other medical facilities in your preferred location. How can I help?
User: I need a hospital in San Francisco
Medicare Locator: The address is 1001 Potrero Ave.
User: Thank you.
Medicare Locator: You are very welcome. Goodbye.

Let’s translate the conversation above into the training story format.

First, we’ll name the story hospital search happy path .

hospital search happy path

Because the user will likely start out with a greeting like ‘Hello’ or ‘Hi there,’ we start the
story with the user intent greet, which is an intent we defined when we created the
assistant’s NLU training data. In response, the assistant responds with an utterance: a
hard-coded message that prints out “Hi. I am a Medicare Locator. I can help you find
hospitals, nursing homes or other medical facilities in your preferred location. How can I
help?”

45

CHAPTER 5: INTRO TO DIALOGUE

hospital search happy path
* greet
 - utter_how_can_i_help

The user responds with “I need a hospital in San Francisco,” which matches the seach_provider
intent we defined in the NLU training data. The user provides the two entities needed to conduct
the search: the facility_type and the location. Next, the assistant responds by executing a
custom action, in this case, making an API call to locate hospitals in San Francisco.

* search_provider{"facility_type":"hospital", "location": "San
Francisco"}
 - action_facility_search

We end the conversation with the user thanking the assistant and the assistant uttering
goodbye.

* thanks
 - utter_goodbye

Story 2: hospital search + location
In order for the assistant to learn, we need to supply more than one training story. So let’s add
another conversation to our training data.

46

CHAPTER 5: INTRO TO DIALOGUE

hospital search happy path
* greet
 - utter_how_can_i_help

The user responds with “I need a hospital in San Francisco,” which matches the seach_provider
intent we defined in the NLU training data. The user provides the two entities needed to conduct
the search: the facility_type and the location. Next, the assistant responds by executing a
custom action, in this case, making an API call to locate hospitals in San Francisco.

* search_provider{"facility_type":"hospital", "location": "San
Francisco"}
 - action_facility_search

We end the conversation with the user thanking the assistant and the assistant uttering
goodbye.

* thanks
 - utter_goodbye

Story 2: hospital search + location
In order for the assistant to learn, we need to supply more than one training story. So let’s add
another conversation to our training data.

47

CHAPTER 5: INTRO TO DIALOGUE

In this story, the user doesn’t specify their location right away, so the assistant will need to ask
for it. We’ll call this story hospital search + location .

You’ll notice this story looks much like the story we wrote for hospital search happy
path, except this time, the user’s search_provider message only includes one entity:
facility_type. Instead of executing the action_facility_search custom action, the assistant
responds with an utterance prompting the user for their location. Once the location entity has
been supplied, the assistant executes the custom action searching the facility, and the
conversation ends with a thank you and a goodbye.

Training Data Tips
While there isn’t a firm rule for the number of stories you should have in your training data, there
are 2 things to keep in mind:

The more training examples you have, the better. Remember, you don’t need to provide a
training example for every possible conversational turn, but you do need diverse training
examples so the model can learn, start to generalize, and handle previously unseen user inputs.

Examples from real user interactions are preferable to training stories you make up
yourself. With this in mind, you should focus first on building an assistant that can handle a
simple skill and then share the assistant with real users as soon as possible. Data generated by
conversations with real users is the best training data you can possibly get.

It can be challenging to improve your assistant with real user input, which is why we created
Rasa X. The Rasa Masterclass will cover Rasa X in detail in later episodes. For now, create as
many training stories as you need to cover what you want your assistant to be able to do, and
know that you’ll need to test it with real users to make it better, later.

48

CHAPTER 5: INTRO TO DIALOGUE

Conclusion
If you’re coding along, try adding a few more training story examples to your stories.md file. Start
by writing down different conversations you think the assistant might have with users and then
convert the dialogues into the Rasa training data format.

So far, we’ve just scratched the surface of dialogue management. In Episode 6, we’ll go deeper,
covering domain, custom actions, and slots. And in Episode 7, we’ll talk dialogue policies—the
machine learning components that determine the behavior of Rasa core. Keep up the progress,
and if you get stuck, ask us a question in the Community forum.

Additional Resources
● Ep #5 - Rasa Masterclass - Intro to dialogue management with Rasa (YouTube)
● About Rasa Core (Rasa docs)
● Stories (Rasa docs)
● Rasa: Open Source Language Understanding and Dialogue Management (arXiv)

49

https://youtu.be/W7jdIeyIPcU
https://youtu.be/EuOyncigHLA
https://forum.rasa.com/
https://youtu.be/WoTmnN2EMdo
https://rasa.com/docs/rasa/core/about/
https://rasa.com/docs/rasa/core/stories/
https://arxiv.org/abs/1712.05181

DOMAIN, CUSTOM
ACTIONS, AND SLOTS

CHAPTER SIX

50

DOMAIN, CUSTOM ACTIONS,
AND SLOTS

Introduction
In Episode 6 of the Rasa Masterclass, we cover essential components in building dialogue
management models with Rasa, including domain, custom actions, slots, and more.

This episode builds heavily on Episode 5, in which we covered dialogue management, handled
by Rasa core. Dialogue management is the function that controls the next action the assistant
takes during a conversation. Based on the intents and entities extracted by Rasa NLU, as well
as other context, like the conversation history, Rasa core decides which text response should be
sent back to the user or whether to execute custom code, like querying a database.

If you’re just joining, be sure to catch up on previous episodes before moving on to Episode 6.

Want to skip straight to the code? Get the full code for this episode on GitHub.

51

https://youtu.be/WoTmnN2EMdo
https://github.com/RasaHQ/rasa-masterclass/tree/master/episode6
http://www.youtube.com/watch?v=W7jdIeyIPcU

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Domain File in Rasa

The domain is an essential component of a Rasa dialogue management model. It defines the
environment in which the assistant operates, including:

● What the user means: specifically, what intents and entities the model can
understand

● What responses the model can provide: such as utterances or custom actions
● What to say next: what the model should be ready to respond with
● What info to remember: what information an assistant should remember and use

throughout the conversation

Building a Domain for Medicare Locator

To understand the domain better, let’s build out an actual example domain for our medicare locator
assistant.

52

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

The domain of an assistant is usually specified in a domain.yml file of the project directory.

Earlier, we ran the rasa init function and a domain was automatically created for our
Moodbot assistant. This domain is a nice starting point for creating a custom domain for our
medicare locator assistant.

In this Moodbot domain, you can see three sections which are necessary to build an assistant with
Rasa: intents, actions and templates. We’ll start by discussing these sections, and then add two
more sections that are necessary to build many assistants, including our medicare locator:
entities and slots.

Intents
The section labeled intents defines a list of intents that the assistant is able to understand. These
details come from the NLU model (nlu.md). The intents section is where you need to provide the
labels of all the intents that you trained your NLU model to understand. In earlier episodes of the
Rasa Masterclass, we created new intents for the medicare locator assistant, which you can see
below in the nlu.md file. Those two intents (inform and search_provder) need to be added to the
domain file for the medicare assistant.

53

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Actions
The section called actions should contain the list of all utterances and custom actions an
assistant should use to respond to user’s inputs. These should come from your stories data in
the stories.md file.

Here we took the actions created earlier for the medicare locator assistant from the stories file and
added them to the domain.

54

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Templates
The final section in the domain is called templates. The templates section is where you can
define the specific text responses that your assistant will provide to the user, based on which
utterance is predicted by the dialogue management model. Each utterance can have more than
one template, that is, more than one specific text response that captures the meaning of the
utterance. Utterances can also go beyond simple messages, and can include things like images,
buttons, custom payloads (for a datepicker, for example), and more.

Below you can see some templates created for our medicare locator assistant.

Entities
Another important section of the domain file is for entities. While the Moobot assistant domain
does not have this section, the NLU model for our medicare locator assistant does extract entities,
like location and facility type. Since entities influence how an assistant responds to a user’s input,
entities must be included in the domain file.

55

https://rasa.com/docs/rasa/core/domains/#custom-output-payloads

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

As you can see, we’ve created the entities section in the domain file, and listed the entity labels
that the medicare locator NLU model (nlu.md) was trained to extract. In our case, we have two
entities, location and facility_type.

Custom Actions in Rasa
Adding response templates directly to the domain file is the easiest way to define the message
an assistant sends the user once a specific utterance is predicted. But there is another way to
achieve the same result - by creating custom actions.

Custom actions are response actions which include custom code. That custom code can define
anything from a simple text response to a backend integration - an API call, connecting to the
database, or anything else your assistant needs to do.

56

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Custom actions are defined in a file called actions.py, containing python code, as the file
extension suggests. Again, the rasa init function created a sample file for us, this time
including the code for a simple Hello World custom action, which we will examine to better
understand custom actions.

The import statement above imports modules (like rasa sdk) that are necessary to ensure that
the custom action server and the server running your assistant can exchange information.

57

https://github.com/RasaHQ/rasa-masterclass/blob/master/episode6/actions.py

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Next, we have the class of the custom action. The class consists of two functions - name and
run. The function name in the class must match the name of the custom action in your training
stories (in stories.md). For example, when the custom action action_hello_world is
included in a story, Rasa knows to run the code defined in the custom action class named
action_hello_world .

The run function within the class contains the code to be executed, once the custom action is
predicted. The run function is where you can define what the custom action actually does. Note
the tracker and dispatcher elements, which are very useful and important pieces of the run
function:

● tracker keeps track of what happens at each point within a dialogue - what intents
were predicted, which entities where extracted, as well as other information

● dispatcher is the element that sends the response back to the user.

Updating this actions file for our medicare locator would look like this. We created a class called
ActionFacilitySearch that, when the action called action_hello_world is predicted,
the assistant responds, “Sure, I’m on it!”

58

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

An important thing to remember about custom actions is that the names of these actions must
match the actions included in the domain file.

As you can see, the domain, NLU training data, and stories data files are very closely
connected. There is no specific rule for which one should come first, but you will notice that
changes in one file will result in changes in other files. Developing an assistant with Rasa
usually takes a number of iterations; that’s why you should expect to constantly go back and
forth between these files and make modifications as you go.

Slots in Rasa
Another important element of the domain file - very important for dialogue management in Rasa
- is slots. Slots function as the assistant’s memory, and are used by your assistant to remember
important details throughout the conversation and apply those details in context to drive the
conversation. Slots act as a key-value pair to store information critical to the conversation with
the user. This information can be provided by the user (e.g., entity values extracted by the NLU
model) or gathered from outside the conversation (e.g.,results extracted from the external
database).

59

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Earlier in the Masterclass, we covered situations in which details provided by the user influence
the path of the conversation. For our medicare locator assistant, if the user wants help finding a
medicare facility, the assistant needs both location and facility type to perform the search. We
trained the NLU model to extract the location and the facility type from the user requests, if
provided. If the user asks for a facility search, but hasn’t yet provided location and facility type,
the assistant directs the conversation to ask for them, before performing the search. In this way,
the dialogue management model uses the provided information to drive the conversation.

This is implemented in Rasa using slots. The details of location and facility type as stored as
slots and allow the dialogue management model to use the content of the slots to determine the
next step in the conversation.

Slots have a dedicated section in a domain file. To define a slot, you have to provide two
pieces of information - slot name and a slot type. Slot names can match the names of the
entities. If there is a match, the values of extracted entities are automatically set as slots. (You
can disable this behavior by setting the auto_fill attribute to False for specific slots.)

60

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Slot Types
Slot types are extremely important and have a direct influence on the predictions the dialogue
management makes. For some types, only the presence or the absence of the slot matters, in
other cases the values of the slots matter too.

Slot Type: text
● Use for: user preferences where you care only whether or not the preference has been

specified
● A slot of the type text only tells Rasa whether the slot has been set or not. The actual

value doesn’t make any difference.
● Slots with type text are useful when modelling the situation where the dialogue should

take different turns, depending on whether or not users provided specific details.
● Example: if the location slot has not been set, an assistant should ask for this detail,

otherwise, move forward and drive the conversation further.

Slot Type: bool
● Use for: true or false
● When using this slot type, not only the presence or absence of this slot matters, but also

the value
Example: the dialogue management model checks if a slot value is true and based on
that, drives the conversation further.

Slot Type: categorial
● Use for: slots which can take one of N values
● Both the presence of and the value of the categorical slot matters.
● Categorical slots are useful when a piece of information can take one of N possible

values.
● For example: slot with possible values of low, medium, and high. A dialogue

management model can take the value of the slot into account and use it to make the
prediction for the next best action to respond with.

61

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Slot Type: float
● Use for: continuous values
● Useful to store continuous values like float numbers
● Both the presence of the slot and the value matters
● The float slot has the parameters min_value and max_value , which lets you define

the highest and lowest possible values for the slot. Anything that is above max_value will
be set to max_value while everything that is below min_value will be set to min_value.

Slot type: list
● Use for: list of values
● If the NLU model extracts more than one value for an entitiy, you might want to store all

the provided values.
● A slot with the type list is designed to store details with multiple values.
● The length and values of a list slot doesn’t really matter; what matters is if the slot is

empty or filled.

Slot type: unfeaturized
● Use for: continuous values
● Useful when you want to use slots to store the information as extracted, but not to drive

the dialogue.
● Slot type unfeaturized means that neither the value of the slot nor whether it’s filled will

influence the dialogue management model’s predictions.

62

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Using Slots in the Medicare Locator
Here we will define the slots for the medicare locator assistant.

In addition to driving conversations, slots can be useful in other situations when developing
your assistant.

Using Slots to Customize Templates
Slots can be used when creating the responses of an assistant. Slots hold the values of
important details, which can be added to utterance templates to make them more personal.
Simply provide the slot name in curly brackets within the template.

63

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Slots can also be used in custom actions when running backend integrations, querying
database, making API calls, and more.

Slots & Custom Actions
Using slots, let’s update our custom action action_facility_search .

A tracker keeps track of the slots set at each dialogue state. The values of these slots can be
returned using the get_slot method, and providing the name of the slot we need
(“facility_type”). Then we can enable the custom action to extract the user’s requested facility
type and use this slot to find an address of the facility that meets the user’s requirements.

For the sake of simplicity in this example, we hard-coded a suggested facility address (300 Hyde
St, San Francisco).

Slots can be set by the NLU model as well as by custom actions. This is useful when important
information is provided by running a backend integration, which should be saved and used later
on throughout the conversation. For example, when our medicare locator assistant finds the
address of a facility for the user, it is useful to save this piece of information, because the user
may ask follow-up questions about the facility. Saving the address as a slot lets your assistant
handle this situation. You can set slots in custom actions using the SetSlot event.

64

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

An important note about slots set using a custom action: Rasa requires that these slot events be
reflected in the training stories (stories.md). So, in our medicare locator assistant,
action_facility_search sets a slot address , and so in our stories, this action must be followed by
an event slot. This is necessary so that the dialogue management model can access these
details to make the right decision on how to respond going forward.

In our medicare locator, we can import the SlotSet event, and update the return statement of the
run function with the SlotSet event, providing the slot name and the value.

65

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Resetting Slots
Slot values are kept in memory until reset. If the slot is set by the NLU model, then every time a
new value is extracted, the slot value will be updated with the most recently extracted one. The
same is true of slots set by the custom actions. In some situations you may want to reset
specific or all slots. To achieve that, you can use Rasa in-built events like reset slot .

Lastly, remember that all slots have to be listed in the domain. Since we created a new slot
address , it needs to be added to the domain file as well.

66

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Let’s update the file to use the endpoint for our medicare locator model.

Training your Rasa Assistant
With domain and custom actions in place, we can train the first version of our assistant and see
how it works.

To do that we can use the command called rasa train which will retrain the NLU model
alongside the dialogue management model. Once the model is trained, we can test it on our
command line by running a command rasa shell . The rasa train command will also tell
us if we forgot any details in the domain file.

Custom actions run on a separate server than the one the models run on. Rasa will call an end
point, which you specify, when a custom action is predicted. This endpoint should be a web
server that reacts to the call, runs the code, and optionally, returns information to modify the
dialogue state. The full configuration of the custom action server is provided in the file in the
project directory named endpoints.yml.

67

CHAPTER 6: DOMAIN, ACTIONS, SLOTS

Now we can start the custom action server using the Rasa CLI function rasa run actions
and load the assistant for us to test, using the Rasa CLI function rasa shell . With this, we
have the very first version of our medicare locator assistant.

Conclusion
Here, we used a default dialogue management model created by rasa init function. A model
is defined using training policies. We will talk about them in Episode 7 of the Rasa Masterclass,
where we will understand better what the training policies are, how they work, how to define
them in the configuration file, and in what situations one policy may be better than another.

If you’re coding along, now would be the time to start having conversations with your assistant,
to see how it works. Keep up the progress, and if you get stuck, ask us a question in the
Community forum.

Additional Resources
● Ep #5 - Rasa Masterclass - Intro to dialogue management with Rasa (YouTube)
● Ep. #6 - Rasa Masterclass - Dialogue management with domains, custom actions, and

slots (YouTube)
● About Rasa Core (Rasa docs)
● Stories (Rasa docs)
● Rasa: Open Source Language Understanding and Dialogue Management (arXiv)

68

https://youtu.be/EuOyncigHLA
https://forum.rasa.com/
https://youtu.be/WoTmnN2EMdo
https://youtu.be/W7jdIeyIPcU
https://youtu.be/W7jdIeyIPcU
https://rasa.com/docs/rasa/core/about/
https://rasa.com/docs/rasa/core/stories/
https://arxiv.org/abs/1712.05181

DIALOGUE POLICIES

CHAPTER SEVEN

69

DIALOGUE POLICIES

Introduction
In Episode 7 of the Rasa Masterclass, we cover dialogue policies. In our last few episodes,
we’ve been discussing dialogue management—the process that determines what an assistant
does next in response to user input. Policies are components that train the dialogue model, and
they play a very important role in determining its behavior. Some policies are quite simple, like
those that mirror the conversations they’ve been trained on, and some are quite complex, like
those that rely on sophisticated machine learning to predict the next action based on the context
of the conversation.

In this episode, we’ll cover the policies that are available in Rasa, how developers can configure
them, and how to decide which policies to use. Because we’ll be building on concepts covered in
previous episodes, be sure to watch Episode 5 and Episode 6 before proceeding.

70

https://youtu.be/EuOyncigHLA
https://youtu.be/WoTmnN2EMdo
https://youtu.be/W7jdIeyIPcU
http://www.youtube.com/watch?v=EuOyncigHLA

CHAPTER 7: DIALOGUE POLICIES

Policy Configuration in Rasa
Just like the NLU training pipeline we configured in Episode 4, dialogue policies are also
configured in the config.yml file, which you’ll find in your main project directory.

Let’s take a look at the default configuration generated by rasa init :

The policy configuration is defined by a list of policy names, along with optional parameters that
can be configured by developers. Unlike the NLU training pipeline, which runs components
sequentially, dialogue policies run in parallel. At each conversational turn, each policy in the
configuration makes its own prediction about the next best action. The policy that predicts the
next action with the highest confidence level determines the assistant’s next action.

71

https://youtu.be/ET1k9OrsfYQ

CHAPTER 7: DIALOGUE POLICIES
In cases where two policies predict with equal confidence, a priority system kicks in to decide
which policy will “win.” Rasa automatically weights policies according to default priority levels,
which are tuned to make sure the assistant chooses the most appropriate action when there’s a
tie. Higher numbers are given higher priority, and machine learning policies are given a priority
of 1:

5. FormPolicy
4. FallbackPolicy and TwoStageFallbackPolicy
3. MemoizationPolicy and AugmentedMemoizationPolicy
2. MappingPolicy
1. EmbeddingPolicy, KerasPolicy, and SklearnPolicy

Generally speaking, you should only have one policy per priority level to avoid conflicts, and
some policies, like Fallback and TwoStageFallback, explicitly cannot be used together. We’ll
discuss configuration in greater detail when we cover each policy in depth. For now, keep in
mind that multiple policies can be used together, and the highest confidence, highest priority
policy predicts the assistant’s next action.

Hyperparameters
While individual policies have their own unique parameters that can be configured to adjust the
model’s behavior, there are two important parameters that are common to all Rasa core
dialogue policies: max-history and data augmentation.

Max-history
When a policy makes a prediction about the next action to take, it doesn’t just look at the last
thing the user said. It also considers what’s happened in previous conversational turns. The
max-history parameter controls how many previous conversational turns the policy should look
at when making a prediction. This can be especially useful if you want to train your assistant to
respond to certain patterns in user messages, like repeated off topic requests.

Let’s use our medicare locator assistant, which helps users locate nearby medical facilities, as
an example. If a user asked the assistant several times in a row where to find the nearest Italian
restaurant, we’d probably want the assistant to respond with a help message telling the user
what it can help with. Assuming we’d defined an out_of_scope intent to catch off-topic requests,
the story might look like this:

72

CHAPTER 7: DIALOGUE POLICIES
* out_of_scope
 - utter_default
* out_of_scope
 - utter_default
* out_of_scope
 - utter_help_message

In order for the assistant to pick up this pattern, we’d need to set the max_history to at least 3.

So a higher max_history is always better, right? Not so fast. A higher max_history creates a
larger model, which can cause performance issues. If you need your assistant to remember
certain details from farther back in the conversation, it’s better to save those details as slots
instead of setting max_history to a very large number.

Data augmentation
By default, Rasa core combines randomly-selected stories in your training data file, a process
known as data augmentation. Data augmentation is used to teach the model to ignore
conversation history when it’s not relevant. For example, with short stories like these, the next
action should be the same, no matter what happened before in the conversation:

You can control this behavior using the --augmentation flag in the policy configuration.
By default, augmentation is set to a factor of 20, which creates 200 augmented stories. A
higher factor increases the amount of data the model has to process and results in higher
training times. Setting --augmentation 0 disables the behavior, which you might want
to do if you have a lot of training examples.

73

CHAPTER 7: DIALOGUE POLICIES

Dialogue Policies
Now, we’ll discuss the available Rasa training policies, one by one. The policies are:

● Memoization Policy
● Mapping Policy
● Keras Policy
● Embedding Policy (TEDP)
● FormPolicy
● FallbackPolicy

For each policy, we’ll discuss how the policy makes predictions and influences the behavior of
Rasa core, as well as the parameters available for developers to configure.

Memoization Policy
The Memoization Policy is one of the simpler dialogue policies we’ll discuss. It snips the part of
the conversation defined by the max_history (so if max_history: 3, 3 turns back), and looks for a
matching story fragment in the training data set. If it finds a match, it predicts the same next
action seen in the training data.

An important detail about the Memoization Policy is that it predicts with 100% certainty: if a
match is found in the training data, it predicts the next action with a confidence level of 1,
otherwise it predicts None, with a confidence level of 0.

74

CHAPTER 7: DIALOGUE POLICIES
The Memoization policy is very useful for making sure your assistant follows the stories you’ve
provided in your training data. It enforces the patterns and conversational paths you want your
assistant to follow, much like a set of rules. However, when a match isn’t found in the training
data, the Memoization policy can’t provide a next action. That’s why the Memoization Policy isn’t
meant to be used on its own—it’s used with other policies that fill in the gaps when an exact
match isn’t available.

Configuration
● Max_history - Determines the length of story fragments an assistant should consider

when making the next prediction. Default configuration is 5
● Priority - While you can reset the policy’s priority, we recommend leaving this as the

default.

Mapping Policy
The Mapping Policy maps an intent to a specific action. This is useful when you know that an
intent should always be followed by a certain response, regardless of what has happened
previously in the conversation. For example, if the user asks if they’re speaking to a bot in the
middle of the conversation, the assistant should always respond with the same message,
without breaking the flow of conversation.

Because the Mapping Policy is so specialized, it will always need to be used in combination
with other policies, to generate action predictions outside of those that have been explicitly
mapped.

75

CHAPTER 7: DIALOGUE POLICIES
Configuration
To enable the mapping policy, include MappingPolicy in your config.yml policies and then
map intents to actions in the domain.yml file, using the triggers property. An intent can be
mapped only to a single action.

Here, we’re mapping the ask_is_bot intent to a custom action that prints a response message.

Preventing mapped actions from influencing later predictions
When a mapped action has been triggered, that action is taken into account by other policies
making later predictions, just like any other conversational turn. If you want to completely
remove the mapped action from the conversational flow, so it doesn’t influence later
predictions, you can disable the behavior by adding the UserUtteranceReverted() event
to your custom action. This deletes the interaction from memory so it won’t affect the
predictions of other policies later in the conversation.

Keras Policy
The Keras Policy applies the power of machine learning to dialogue management. It learns from
training data, and over time, your assistant can learn to handle advanced conversations. The
policy uses the neural network implemented in Keras, a Python deep learning library. The default
architecture is based on Long Short Term Memory (LSTM), a type of recurrent neural network
(RNN) but this can be overridden in the Keras Policy model_architecture method.

76

https://keras.io/
https://en.wikipedia.org/wiki/Long_short-term_memory
https://github.com/RasaHQ/rasa/blob/293cf2aad0b784033806dc6971d601ddd8d3b765/rasa/core/policies/keras_policy.py#L109

CHAPTER 7: DIALOGUE POLICIES
The Keras policy considers multiple factors when making a prediction, including:

● The last action
● The intents and entities extracted by the NLU model
● The slots that have been set
● Previous conversational turns

Let’s walk through the process step by step to understand how the Keras Policy decides which
action to predict.

1. First, the user asks a question.
2. Rasa NLU extracts the intents and entities from the user’s message, which are used to

create the feature vector passed to the dialogue model. A feature vector is a numeric
representation that describes important characteristics of the message.

3. The dialogue model takes in previous conversational states, as set by the max_history
hyperparameter, and the feature vector of the current state is also passed into the model.

4. The model predicts the next best action.
5. If the next action includes a call to a backend integration that fetches additional details,

those details can be featurized and used to predict future actions.
6. The predicted response is sent back to the user.

77

CHAPTER 7: DIALOGUE POLICIES
Configuration

● Max_history - Defines the number of previous conversational states the model should
take into account

● Epochs - The number of times the algorithm should pass through the training data,
where an epoch equals one forward pass and one backward pass of all training
examples.

● Validation_split - The portion of training data set apart and not used for training, to
evaluate the model’s performance

● Random_seed - Helps the model achieve reproducible results, when set to an integer
value. By design, neural networks use randomness to achieve the best performance: in
the initial weights set in a neural network, the training data that’s sampled, and in other
areas. The seed number is the starting point used by the random number generator to
generate a random sequence; when we specify a random_seed value, the same starting
point is used each time, resulting in the same random number sequence.

78

CHAPTER 7: DIALOGUE POLICIES

Embedding Policy (TEDP)
Transformer Embedding Dialogue Policy, also known as TED Policy, is Rasa’s default machine
learning based policy. Compared to other machine learning policies like Keras, our research has
shown that TED Policy performs better, especially when it comes to modelling multi-turn
conversations.

Instead of using a recurrent neural network like Keras Policy, TED Policy uses Transformer, a
deep machine learning model that is now overtaking RNNs in popularity. Transformers produce
accurate results across a variety of corpora, or datasets, and they also deal well with
unexpected user input, like adversarial messages or chitchat.

How does the TED Policy make predictions? Let’s walk through the high level architecture
(shown in the diagram below). The diagram depicts two time steps, or dialogue turns.

1. First, input is aggregated from a variety of sources:
a. Intent and entities extracted from the user’s message by the NLU model
b. Any previous system actions
c. Data saved as slots.

These are concatenated into an input vector and fed into the transformer deep learning
model.

2. A dense layer is applied to the transformer’s output to get dialogue embeddings for each
time stamp.

3. A dense layer is applied to create embeddings for each categorical system action, for
each time step.

4. The similarity between the dialogue embedding and the embedded system actions is
calculated (this concept is based on the StarSpace idea).

79

https://arxiv.org/abs/1709.03856

CHAPTER 7: DIALOGUE POLICIES

Configuration
The TED Policy includes configurable hyperparameters that allow developers to adjust
conditions that affect the neural network architecture, training, embedding, and more. See the
documentation for a full list of hyperparameters and their default values.

Form Policy
The Form Policy is used in situations where the assistant needs to collect specific pieces of
information from the user before executing an action. For example, in order for the Medicare
Locator assistant to fetch search results for medical facilities, it needs two pieces of information:
the type of facility and the location. Without those, it’s impossible to complete the search
request. If we were to develop the medicare locator assistant further, we might want to ask for
additional information, like the patient’s name and age, in order to send these details to the
hospital ahead of the patient’s visit.

80

https://rasa.com/docs/rasa/core/policies/#embedding-policy

CHAPTER 7: DIALOGUE POLICIES

Another common use case is account
creation. You might have a minimum number
of fields that are required to create an
account in a CRM or billing system—things
like name, address, phone number, etc. If you
were building an assistant that helps users
create a new account, you would want to be
sure that the assistant collected all of the
required pieces of information from the user
before moving forward in the conversation.

You could enable this behavior by writing
stories with slots, but that would require a lot
of training data, even just to handle the happy
path. A better solution is to use the Rasa
Form Policy to collect the information. The
Form Policy allows you to define which
pieces of information the assistant needs to
collect. It activates a form action, which runs
continually until all of the required data has
been provided by the user.

Forms are a powerful feature in Rasa, and there’s more to the topic than we can cover
here. We’ll dedicate the next episode to covering forms in greater detail.

Fallback Policy
Even the best contextual assistants get stumped from time to time, if the user’s message
is outside of the assistant’s domain or off-topic. Since it’s impossible to train your assistant
to handle every possible situation, it’s important to have a strategy for gracefully handling
requests the assistant doesn’t understand.

81

CHAPTER 7: DIALOGUE POLICIES

The Fallback Policy is activated when the assistant can’t predict an intent or next action with
certainty above a certain threshold. The Fallback Policy also kicks in when the confidence levels
of two intents are very close together. The confidence levels that should trigger the fallback
policy are configured as hyperparameters. When the Fallback Policy is triggered, an action is
executed—usually an utterance letting the user know the assistant didn’t understand and asking
them to rephrase their message.

Configuration
The Fallback Policy accepts four hyperparameters that set the minimum confidence thresholds
for triggering the fallback. These are:

● nlu_threshold - Min confidence needed to accept an NLU prediction
● ambiguity_threshold - Min amount by which the confidence of the top intent must exceed

that of the second highest ranked intent.
● core_threshold - Min confidence needed to accept an action prediction from Rasa Core
● fallback_action_name - Name of the fallback action to be called if the confidence of intent

or action is below the respective threshold. You can use the default fallback action, or
you can configure your own. If you specify your own custom action, be sure to include it
in your domain.yml and stories.md files.

Two-stage Fallback Policy
The Two-stage Fallback Policy is a more sophisticated variation of the Fallback Policy we just
discussed. Instead of immediately executing the fallback action, the Two-stage Fallback Policy
asks the user to verify the predicted intent. If the user verifies the intent was correct, the story
continues. If the user tells the assistant the predicted intent was not what they meant, the
assistant asks the user to rephrase the message.

82

https://rasa.com/docs/rasa/core/fallback-actions/#fallback-actions
https://rasa.com/docs/rasa/core/fallback-actions/#fallback-actions

CHAPTER 7: DIALOGUE POLICIES

Besides providing a better user experience, the
Two-stage Fallback Policy also allows the
assistant to correct itself and recover in cases
when it’s not confident in a prediction.

While dialogue policies are meant to be used
together, a notable exception is the Fallback
Policy and the Two-stage Fallback Policy. You
can’t choose both when configuring your
dialogue policies in the config.yml file—it has to
be one or the other.

Configuration
In addition to the nlu_threshold,
ambiguity_threshold, and core_threshold
hyperparameters, the Two-stage Fallback Policy
also includes three more hyperparameters that
define the actions executed at each stage of the
fallback flow:

● fallback_core_action_name - Name of
the fallback action called when the
confidence of the Rasa Core action
prediction is below the core_threshold.
This action suggests possible intents for
the user to choose from.

● fallback_nlu_action_name - Name of the
fallback action to be called if the
confidence of the Rasa NLU intent
classification is below the nlu_threshold.
This action is called when the user
denies the second time

● deny_suggestion_intent_name - The
name of the intent used to detect that the
user has denied the suggested intents

83

CHAPTER 7: DIALOGUE POLICIES

Conclusion
Customizing your policy configuration and fine-tuning parameters is a powerful way to take your
Rasa assistant to the next level. Although the default configuration provided with moodbot is a
great place to get started, over time, you can layer on additional policies to enhance your
assistant’s performance.

In our next episode, we’ll dive deeper into developing the medicare locator assistant, focusing
on implementing custom actions with backend integrations, forms and fallback. Keep up the
momentum, and if you get stuck, ask us a question in the Community forum.

Additional Resources
● Ep #7 Rasa Masterclass - Dialogue Policies (YouTube)
● Dialogue Policies (Rasa docs)
● Dialogue Transformers (arXiv)
● StarSpace: Embed All the Things! (arXiv)
● Fallback Actions (Rasa docs)
● Failing Gracefully with Rasa (Rasa blog)

84

https://forum.rasa.com/
https://youtu.be/EuOyncigHLA
https://rasa.com/docs/rasa/core/policies/
https://arxiv.org/abs/1910.00486
https://arxiv.org/abs/1709.03856
https://rasa.com/docs/rasa/core/fallback-actions/#fallback-actions
https://blog.rasa.com/failing-gracefully-with-rasa-core/

INTEGRATIONS,
FORMS, AND
FALLBACKS

CHAPTER EIGHT

85

INTEGRATIONS, FORMS, AND
FALLBACKS

Introduction
In this edition of the Rasa Masterclass + Handbook, we will take the theoretical learnings from
the prior 7, and apply them in practice. In the previous episodes we covered a great deal of
theoretical concepts involved in the development of AI assistants with Rasa. Episode #8 of the
Rasa Masterclass takes much of what you’ve learned in prior episodes and helps you use these
learnings in a hands-on way. In this episode, we will focus more on the actual development of
our medicare locator assistant to show you how things work in practice.

86

http://www.youtube.com/watch?v=9POI7LiKH_8

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

At the end of this tutorial, we will have completed the following for our medicare locator
assistant:

● Update the NLU and stories data to expand the knowledge and skills of our medicare
locator assistant

● Implement custom actions which will leverage API calls and connections to the database
to extract necessary information

● Implement form action
● Enable our assistant to fail gracefully

Let’s get started.

Real-World Dataset for our Medicare Locator

At the moment, the medicare locator assistant is capable of understanding some simple inputs
like greetings & goodbyes, handling some simple interactions with a user, such as a request to
find a specific health facility, and dialogue in which the user provides some information, like their
location or the type of facility they are seeking. With this information, we enabled our assistant to
run a simple action (action_facility_search) once the user asks for a suggestion. In this
section, we will upgrade this ability to enable the assistant to collect all necessary information
from the user, and run a real backend integration to provide the location of the type of facility
requested.

We will start with the data source for the backend integration. We will use a publically available
database from www.medicare.gov, which provides a variety of open datasets, including
information about different health facilities across the U.S.

87

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

The data the assistant needs can be pulled using the provided API. You can see above where
the endpoint is specified and can be copied. It looks like this:
https://data.medicare.gov/resource/xubh-q36u.json

There are different endpoints for different types of facilities, and they are differentiated using a
resource code. In the example above, the endpoint contains xubh-q36u which specifies the
dataset for hospitals. Two other important resource codes (that we will use later) are
f7df-2ac7 for home health agencies and b27b-2uc7 for nursing homes.

In the API call itself, we can further narrow the search using parameters like city name or zip
code. This is a perfect dataset to provide real-world data about specific healthcare facility
locations to our assistant.

Improving the NLU
Previously, we built a simple NLU model capable of classifying intents and extracting a few
entities. The model works, but is prone to mistakes: our limited training data doesn’t provide
enough information for the NLU to be very accurate. A good next step will be to update the NLU
data and add more training examples to all of the intents in our training data file to improve the
performance of the model.

88

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Remember, you can download the full code of the assistant from:
https://github.com/RasaHQ/rasa-masterclass/tree/master/episode8

If you examine the nlu.md file, you will see we added many new intents (e.g., intent:
affirm, intent: out_of_scope), as well as additional examples for existing intents (e.g.,
catch you later , gotta go for the intent:goodbye). We also added more examples
for entity values (e.g., increasing from 8 to more than 50 examples for the entity location).
Adding more examples will improve performance, but there’s a lot more we can do to improve
entity extraction.

Using Regex in Entities
Let’s start with the location entity. Users can provide this information by responding with
either a city name or a zip code. Since standard U.S. zip codes follow a specific pattern - 5
digits, an easy and effective way to improve the extraction of zip codes is to allow the NLU
model to use regex features. Specifying a regex for the location entity allows the model to
learn that certain patterns should be associated with specific entities. This can be achieved by
defining a regex for an entity location and including the pattern. The regex for extracting zip
codes is entered into the nlu.md file as follows:

regex:location
- [0-9]{5}

Using Synonyms
Another thing we can do to improve the NLU model is use synonyms. The medicare.gov site,
where we get our facility information, uses resource codes to specify the type of medical facility.

Resource code Type of facility

xubh-q36 hospital

f7df-2ac7 Health agency

b27b-2uc7 Nursing home

89

https://github.com/RasaHQ/rasa-masterclass/tree/master/episode8

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Providing the request using words rather than resource codes is more natural for a user talking
to our assistant, so we will do some data normalization to make sure that the extracted values
(words from users) can be used to query the database correctly (using the appropriate resource
codes).
To do this, we will define synonyms that map specific values for the entity facilty_type to
corresponding resource codes. This can be achieved using a Rasa NLU feature called
synonyms.

To define the synonym, we have to update our training data and specify the mapping between
entities and synonym values. There are two ways to define a synonym. The first is within the
intent itself - in this case, ## intent:search_provider . Within the examples under this
intent, we can connect the entity factility_type with the value nursing home to the
specific resource code b27b-2uc7 .

90

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

You can also create a synonym directly in the nlu.md file, using the following format. This defines
a specific value for the synonym (in this case, the resource code) and makes a list of possible
entity values that the synonym should be mapped to.

synonym:rbry-mqwu
- hospital
- hospitals

This synonym will make sure that whenever a facility_type entity is extracted with the
value ‘hospital’ or ‘hospitals’, those values will be mapped to the specified resource code, to be
used to query the database later on. We will do the same with other entity values and resource
codes.

Lastly, to ensure that the NLU model learns to map the synonyms, we need to include the
component EntitySynonymMapper in our pipeline, in the config.yml file. Going forward, we
will be using the Supervised Embeddings Pipeline for our model, and this pipeline (by default)
includes the EntitySynonymMapper component in its configuration.

91

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Retraining the NLU Model
Since we’ve added a number of items to the NLU model, let’s retrain the model to see how it
works. Once again, we will use the rasa train nlu command to train the model, and the
rasa shell nlu command to talk to our model.

If we type I need a hospital , we can see the model correctly classifies this input as
intent: search_provider . Even better, take a look at the extracted entities. The entity
hospital was identified, but the extracted value was a medicare.gov resource code, which
was mapped to the entity value hospital using the synonym feature.

92

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Implementing a Form Action in Rasa

Next, we will improve the dialogue management in our assistant by using the Form Action in
Rasa. In previous episodes, we built a simple dialogue management model capable of using
slots. The model is capable of driving the conversation based on whether or not the user
provided specific details like location or facility type.

Going forward, we will be using the database from medicare.gov to supply information about
facility locations. We want the medicare locator assistant to query this database when the user
asks the assistant for information about a specific health facility, via an action. To make sure that
the API call to the database is correct, we need to make sure that our assistant collects and
uses the details of location and facility_type before the call is made. This situation is a
perfect use case for Rasa forms - a component which can be used to ensure the assistant
collects the necessary details before running a specific action.

Defining a Form Action
Form actions have to be defined in the project’s actions.py file. All the work in this section will be
within this file.

First, we need to import the FormAction method from the Rasa SDK. Form action is a class,
just like other custom actions in Rasa and so it follows a similar overall structure.

93

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Forms generally consist of a few main functions - name, required slots, slot mappings, and
submit.

The function called name is very simple - it defines the name of the form action. When an action
facility_form is predicted, Rasa knows that it should run the code defined in this class
FacilityForm(FormAction):

All form actions must have a method called required slots . This method is used to define
which slots must be filled in before an assistant can continue with the dialogue. In the
conversation with the user, as long as there are unfilled slots, the model will continue
predicting FormAction , and the assistant will continue to ask the user for information to fill in
the details, until all the slots are filled. In the case of our medicare locator, we need two slots
to be provided for an assistant to query the database: location and facility type .

94

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

slot_mappings is an optional method used with Form Action, but it’s a very useful one.
Sometimes, required slots come from very different user inputs which, naturally, will have
different intent or entity labels. By default, Form Action will fill in required slots using only the
values extracted from intents or entities with exactly the same name as the slot. Slot mapping
allows you to define how the values from other intents and entities can be mapped to the
required slots. In our case, the names of the required slots match the names of the
corresponding entities. We can use slot_mappings to specify which intents those values
come from. For example, the slot location can be filled using the entity values from two
different intents: inform and search_provider .

All form actions must have a method called required slots . This method is used to define
which slots must be filled in before an assistant can continue with the dialogue. In the
conversation with the user, as long as there are unfilled slots, the model will continue
predicting FormAction , and the assistant will continue to ask the user for information to fill in
the details, until all the slots are filled. In the case of our medicare locator, we need two slots
to be provided for an assistant to query the database: location and facility type .

Finally, we need to define what should happen when all required slots are filled. This is
specified in the submit method. In the medicare locator, we want our assistant to send the
facility query to medicare.gov database using the provided details and return the options to
the user.

95

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Let’s walk through the code of the submit method in detail.

With the tracker.get_slot method, our assistant will pull the current values of the
location and facility_type slots, and use them to call the (still-to-be-created) custom
action find_facilities . (We will create the find_facilites action in a later
masterclass.)

If no results were found by find_facilities , the assistant will send a message to the user
saying the requested facility could not be found in the specified location.

96

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

If find_facilities returns results, the assistant will format the first three returned facilities
as buttons, to be returned to the user. The message to the user is sent using the Rasa
dispatcher method.

Updating the Domain File and Model Configuration for Forms

For our assistant to use this newly created form, it has to be included in the domain file.

97

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

We also need to update the model config.yml file to include FormPolicy , an extension of the
MemoizationPolicy that handles the filling of forms. FormPolicy will predict the new
FormAction until all the required slots in the form are filled.

Updating Training Stories with Forms
Lastly, we need to update the stories.md file with the form action that we created,
facility_form .

98

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

We add three lines, which represent three actions that should happen when the user chooses a
facility type for the medicare locator assistant to find:

● facility_form tells the model to activate the form, to begin gathering information to
complete the form

● form{“name”:”facility_form”} indicates that the FormPolicy will run the form
action until all slots are filled

● form{“name”:”null”} ends this small story, and indicates that the form is filled and
the assistant can move on with the conversation. These three lines are enough to allow
our assistant to handle all the happy paths the user might take when filling in the form. In
this case, by “happy path”, we mean that whenever the assistant asks the user for some
information, they eventually respond with the information you asked for. There are many
paths for this to happen - situations where the user provides one detail but not the other,
or responds with all details at once, or even when the user doesn’t provide any of the
required information.

Let’s add another story which will teach our assistant how to respond when the user provides all
information with their initial request.

We also want our medicare locator assistant to be able to handle situations in which a user
asks for multiple recommendations. A user may ask additional questions after the assistant
has provided information to answer an initial question. We can enable our assistant to handle
this behavior by adding stories with more dialogue turns, like the following:

99

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

With forms, we enabled our assistant to collect some crucial details needed to run the facility
search. Now, let’s update the facility_search custom action to enable our medicare
assistant to use the extracted details, run the backend integrations, and return the requested
information.

Let’s go back to our actions.py file.

Custom actions with real backend integrations usually consist of quite a few methods and they
will highly depend on what database or API you are using. In the medicare locator, we have
quite a few helper methods - for example, defining the endpoints for our APIs.

The most important part of our actions.py file is a function called FindHeathCareAddress .
This function retrieves the current slot values for key parameters, and uses them to create a
full path for an endpoint. Our assistant will send a request to this endpoint to retrieve the data -
the health care facility address. A method requests.get sends a GET request to the API,
which returns the data in JSON format. If any results were returned, our assistant returns a
response, based on what was requested. If no results were returned, the assistant sends a
message back to the user suggesting what went wrong.

100

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Failing Gracefully in Rasa
We’ve updated our assistant to be better at intent classification and entity extraction,
implemented form actions, and added a custom action for the facility search, with some
backend integrations.

Another valuable improvement we can make to our assistant is to implement a fallback policy.
The fallback policy helps to make sure that if our assistant makes a mistake, it handles the
situation gracefully.

As we discussed in the Rasa Masterclass Episode #7, there are two fallback policies in Rasa:
the fallback policy and the two-stage fallback policy. For our assistant, we will implement the
TwoStageFallbackPolicy .

101

https://youtu.be/EuOyncigHLA

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

We add the TwoStageFallbackPolicy to our assistant in the config.yml file, by listing this
policy as one of the components of the policy configuration. We will keep the default
hyperparameters of this policy for now.

Since we’ve made many additions to the model, it would be a good time to re-train the models
and test how they work. Again, we use the command line function rasa train , and after
the models are trained, we can load the assistant using the functions rasa run actions
and rasa shell . Then we can have a conversation with the newly trained assistant.

Our assistant can now pull real-world data and use it to respond to users’ queries.

102

CHAPTER 7: INTEGRATIONS, FALLBACKS,
FORMS

Conclusion

So after all this hard work, our assistant improved quite a bit - we managed to improve the
performance of the NLU model, we implemented the form action and quite an advanced custom
action with back-end integrations, and we even created a fallback policy.

In future episodes of the Masterclass, we will expand on these updates and work on adding new
features and skills to our assistant. We hope you will implement all the features that you learned
in this episode of the Rasa Masterclass, to improve your custom assistants. See you in the next
episode!

Additional Resources
● Ep. #6 - Rasa Masterclass - Dialogue management with domains, custom actions, and

slots (YouTube)
● Ep. #7 - Rasa Masterclass - Dialogue Policies
● Form Basics (Rasa docs)
● Custom Actions (Rasa docs)
● Fallback Actions (Rasa docs)

103

https://youtu.be/W7jdIeyIPcU
https://youtu.be/W7jdIeyIPcU
https://youtu.be/EuOyncigHLA
https://rasa.com/docs/rasa/core/forms/#form-basics
https://rasa.com/docs/rasa/core/actions/#id2
https://rasa.com/docs/rasa/core/fallback-actions/#fallback-policy

IMPROVING THE
ASSISTANT

CHAPTER NINE

104

IMPROVING THE ASSISTANT

Introduction
In Episode 9 of the Rasa Masterclass, we introduce Rasa X, a toolset for improving AI
assistants. We’ll discuss why you should use Rasa X, demonstrate how to deploy Rasa X to a
server, and connect the Rasa X instance to the medicare locator assistant.

Before beginning this tutorial, use the exercises in the previous 8 episodes to build the medicare
locator assistant, a contextual assistant that can find the addresses of nearby hospitals, home
health agencies, and nursing homes. You can also fast track by downloading the completed
medicare locator assistant code on GitHub.

To follow along, you’ll need to push your medicare locator project files to GitHub.

105

https://youtu.be/IUYdwy8HPVc
https://www.youtube.com/playlist?list=PL75e0qA87dlHQny7z43NduZHPo6qd-cRc
https://github.com/RasaHQ/rasa-masterclass/tree/master/episode8
https://github.com/RasaHQ/rasa-masterclass/tree/master/episode8
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
http://www.youtube.com/watch?v=IUYdwy8HPVc

CHAPTER 9: IMPROVING THE ASSISTANT

The challenge: getting good training data is hard
Up until this point, we’ve been creating training data for the medicare locator assistant by
imagining things users might say and writing them down as training examples.

That’s a fine way to start, but it has some major limitations. The data set we’ve generated is
pretty small, and it’s inherently biased—our real users are likely to say things to the assistant
that we didn’t anticipate. Because of this, the assistant will have a hard time generalizing. It can
handle utterances and story paths that are pretty close to what we have in our training data, but
it’s likely to fall down if presented with an unexpected user message.

The best training data we could use would be a large data set made up of real conversations.
There are publicly available conversational data sets, but they tend to be general purpose:
they’re not conversations with your users, and they don’t relate to your domain.

Rasa X solves this problem by helping you build the ideal data set: a large body of
conversations that have happened between your users and your assistant. It allows you to share
the assistant with test users to collect their conversations, and later on, when the assistant has
been deployed, collect conversations from real users. Rasa X converts these conversations into
high quality data which can be used to re-train and improve the assistant.

It’s important to get your assistant into the hands of real users to start collecting this training data
as soon as possible. The perfect time to start using Rasa X is when you’ve built an assistant that
can handle what we call the most basic happy paths, meaning the assistant can handle some
basic conversations and accomplish its main purpose: in our case, to look up medical facilities in
the United States. The medicare locator is still a simple application at this point, but it’s far
enough along to start benefiting from real-world data.

What is Rasa X?
Rasa X is a UI tool for developers, used to improve assistants built with Rasa Open Source. It’s
intended to solve two problems:

● First, to make it easier to leverage real conversations as training data.
● Second, to provide a way to review past conversations for patterns or errors.

106

https://youtu.be/k5UeywXA28k

CHAPTER 9: IMPROVING THE ASSISTANT

Without a UI tool, these workflows can be challenging. Rasa X collects conversations with users
so you can review how they went and make decisions about the best way to improve the
assistant. For example, if you see a conversation where the assistant performed particularly
well, you can save it directly to your training stories. If you see an intent that was mis-classified,
you can correct the classification and save the annotated data to your training file.

But, not every type of update should be made directly in Rasa X. While reviewing past
conversations, you might conclude that two intents should be merged into one or the behavior of
a custom action needs to change. In these cases, Rasa X is a useful tool for identifying which
changes need to happen, but it’s easier to make major updates like these in a text editor on your
local machine, rather than in Rasa X.

Deploying Rasa X
Now that we’ve discussed why Rasa X is an important part of the assistant-building workflow,
let’s move on to installation. The proper way to run Rasa X is to deploy it to a server. It’s possible
to run it in local mode, but in order to really start collecting conversations with users, Rasa X
needs to be accessible on the public internet and running at all times.

In this tutorial, we’ll be using Google Cloud Platform (GCP). You can sign up for a GCP account
(and get $300 free credit) here.

It’s also possible to deploy Rasa X to other hosting services, like Azure, Digital Ocean, AWS, or
to your own dedicated server. You’ll just want to make sure your machine meets the minimum
requirements:

At least 4GB RAM
2-6 vCPUs
100 GB disc space
Linux distribution that can run Docker (e.g. Debian 9, Ubuntu 16.04 / 18.04)

Docker-compose
The most lightweight method for installing Rasa X is to use docker-compose, which is the
method we’ll be using today. For larger-scale assistants running in production, Rasa X also
provides Helm charts for deploying to Kubernetes/Openshift. We’ll cover cluster deployments in
a later episode of the Masterclass.

107

https://cloud.google.com/free/?utm_source=google&utm_medium=cpc&utm_campaign=na-US-all-en-dr-bkws-all-all-trial-b-dr-1008072&utm_content=text-ad-lpsitelinkPexp1-any-DEV_c-CRE_353294881636-ADGP_Hybrid+%7C+AW+SEM+%7C+BKWS+%7C+US+%7C+en+%7C+BMM+~+UX+Test+~+gcp-KWID_43700044772255389-kwd-20903505266&utm_term=KW_%2Bgcp-ST_%2Bgcp&gclid=EAIaIQobChMIguGjv-KL5wIVnv_jBx0H7AhiEAAYASACEgKh1_D_BwE

CHAPTER 9: IMPROVING THE ASSISTANT

Configure the VM instance
Log in to your GCP Console and navigate to Compute Engine>VM instances. Click Create.

On the configuration page, specify a name for the instance. We’ll call ours rasax-server. Then,
choose a region near where you are located. In our case, that’s Belgium.

Under Machine configuration>Machine type, choose the standard option with 2 CPUs:
n1-standard-2 (2 vCPU, 7.5 GB memory).

108

CHAPTER 9: IMPROVING THE ASSISTANT

Next, specify the boot disk. You’ll need to be running a modern Linux distribution that can run
Docker, like Debian 9 or Ubuntu 16.04 / 18.04. We’ll go with Ubuntu 16.04 LTS. Increase the
disc size to 100 GB.

109

CHAPTER 9: IMPROVING THE ASSISTANT

Finally, under the Firewall settings, check the boxes to allow both HTTP and HTTPS traffic, and
click Create.

Install Rasa X
We’ve created our VM, but right now, it’s empty. Let’s connect to the new instance using SSH,
so we can download and install Rasa.

If you’ve installed the Google Cloud SDK, you can run the following command in your terminal to
connect to the VM instance.

110

https://cloud.google.com/sdk/install

CHAPTER 9: IMPROVING THE ASSISTANT

Otherwise, you can click the SSH button next to your newly created instance to start a new
shell session and connect.

In your terminal, run the install script using the following commands. First, run:

curl -sSL -o install.sh
https://storage.googleapis.com/rasa-x-releases/0.23.3/install.sh

111

https://storage.googleapis.com/rasa-x-releases/0.23.3/install.sh

CHAPTER 9: IMPROVING THE ASSISTANT

Note that we’re specifying version 0.23.3. At the time this video was made, this is the latest
version. Be sure to update to the most recent Rasa X version number if you’re watching at a
later date.

Then, run:

sudo bash ./install.sh

The installation will take a few minutes to complete. Agree to the terms and conditions when
prompted in the terminal.

By default, the installation folder for Rasa X is the /etc/rasa directory. Navigate into this
directory using the following command:

cd /etc/rasa

We can run the ls command to take a look at the files contained in this directory.

We see everything Rasa X needs to run properly: credentials, the models directory, a database
file (which will be used to store the conversations between users and the assistant), container
logs, and a docker-compose file.

Let’s start Rasa X with the following command:

sudo docker-compose up -d

112

CHAPTER 9: IMPROVING THE ASSISTANT

Once the container is up and running, set the password for the admin user with the following
command. In the example below, we’re setting the password to rasarasa .

sudo python rasa_x_commands.py create --update admin me rasarasa

Launch Rasa X
We’re now ready to launch Rasa X in the browser. Head back to your GCP console and click the
external IP address for your VM instance.

At first, the page will appear to be broken, but not to worry—that’s expected at this stage. By
default, the link opens with HTTPS, but we haven’t installed an SSL certificate on the server.
We’ll change the URL to http://<your_External_IP> in the address bar for now.
Now we see the Rasa X login page and can enter the password we just set for the admin user.

113

CHAPTER 9: IMPROVING THE ASSISTANT

Connecting the Assistant to Rasa X
Integrated Version Control allows you to connect your Rasa X instance to a remote git
repository, like GitHub, to keep track of the version history for your training data. In addition to
keeping a record of all changes, Integrated Version Control allows teams to take advantage of
the downstream benefits of a git-based development workflow: reviewing changes before they
go into production, integrating CI/CD, and running tests on proposed changes.

Integrated Version Control works by performing a two-way sync with the remote Git repository. If
changes exist in Rasa X that haven’t been pushed to the remote repository, Integrated Version
Control lets you commit those changes to an existing branch or create a new one. Read more
about Integrated Version Control on the Rasa blog and in the documentation.

Project Structure
To set this up, we first need to upload our medicare locator project files to a remote GitHub
repository. See GitHub’s documentation for step-by-step instructions.

114

https://blog.rasa.com/integrated-version-control-linking-rasa-x-with-git-based-development-workflows-untitled/
https://rasa.com/docs/rasa-x/installation-and-setup/integrated-version-control/
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line

CHAPTER 9: IMPROVING THE ASSISTANT

In order for Integrated Version Control to sync with the remote repository, the file structure needs
to follow the same structure generated when you create a new project using the rasa init
command. If you’ve been following along with this series to build your assistant, you should be
good to go.

Activate Integrated Version Control
At the time this video was released, Integrated Version Control is an experimental feature that
must be manually toggled on. Let’s go ahead and activate it.

Note: as of Rasa X 0.26.0, Integrated Version Control is no longer an experimental feature and
we’ve simplified the setup process. Check the docs for the most up-to-date instructions.

In the Rasa X dashboard, click on the user icon in the lower left hand corner and select
Experimental. Check the box next to Integrated Version Control.

115

https://rasa.com/docs/rasa-x/installation-and-setup/integrated-version-control/

CHAPTER 9: IMPROVING THE ASSISTANT

Once Integrated Version Control has been activated, you will see a git icon appear in the bottom
left corner, just above your user icon, with a message indicating the feature is not connected.

Next, we’ll authenticate our server with GitHub to establish the connection, by generating an
SSH key on the server, saving the public key in our GitHub repository settings, and sending the
private key to Rasa X via an API call.

Generate SSH keys
Navigate back to your terminal. If you’ve closed the connection to your VM instance, log back in.

Run the following command to generate a public and private SSH key.

ssh-keygen -t rsa -b 4096 -f git-deploy-key

When prompted, do not set a passphrase. After the key has finished generating, you can run the
ls command in the /rasa/etc directory to see the newly created keys: git-deploy-key (the
private key) and git-deploy-key.pub (the public key).

116

CHAPTER 9: IMPROVING THE ASSISTANT

Save the public key in GitHub
We’ll print the public key to the terminal so we can copy and save it in our GitHub settings.

Run the following command to view the public key:

cat git-deploy-key.pub

Copy the entire contents.

In your GitHub repository, navigate to Settings>Deploy keys. Click the Add deploy key button
and paste your public key into the Key box. Give the key a title to identify it, like medicare-rasax,
and be sure to check the box to allow Write permissions. Click Add key.

117

CHAPTER 9: IMPROVING THE ASSISTANT

Connect the repository to Rasa X
We’ll establish the connection between the Rasa X instance and GitHub repository by making a
POST request to this Rasa X API endpoint:

https://<Rasa X server
host>/api/projects/default/git_repositories?api_token=<your api
token>

The JSON request body contains three pieces of information:

● repository_url - The SSH URL for your GitHub repository, e.g.
git@github.com :RasaHQ/rasa-demo.git

To get the URL for your repo, click the Clone or download button on your GitHub
repository and select the Use SSH link.

● target_branch - The GitHub repository branch where Rasa X should push and pull
changes, e.g. master

● ssh_key - The private SSH key generated on your server.

To copy the private key, run the following command in the /etc/rasa folder on your server:

cat git-deploy-key

Copy the entire contents of the key, including the lines -----BEGIN RSA PRIVATE
KEY----- and -----END RSA PRIVATE KEY-----

118

mailto:git@github.com

CHAPTER 9: IMPROVING THE ASSISTANT

Once you’ve assembled the JSON object, you’ll have something like this:

{
 "repository_url": "git@github.com:RasaHQ/rasa-demo.git",
 "target_branch": "master",
 "ssh_key": "-----BEGIN RSA PRIVATE KEY-----
b3BlbnNzaC1rZXktdjEAAAAABG5vbmUAAAAEbm9uZQAAAAAAAAABAAACFwAAAAdzc2gtc
n
NhAAAAAwEAAQAAAgEAu/Giin7t8DFMxsaTbyy1To2EQpLIAhpAIgpyC/e45NYVTwKRGCB
1
mxHzt5IWoh7GSWry3pKFBM74UpXxrRPBdCmFeUIiJoslAukNkRSckAUj0VEfOIZLf2SSP
g
...
CDHniFksE1SjkAAAEBANJacZeM2Qdk/vditmBQV97Ac2VJL/Btt8Rks2Vb3CORyXQn3Bp
b
+5ZONhmPEoCg4FcZbAm02gYw3dSoBBWz2i8mmAv71mVsNoddWKpDngRFv4PUaITnYYxrZ
4
-----END RSA PRIVATE KEY-----"
}

We’ll save this JSON object in a file called repository.json, in the /rasa/etc folder on the
server. First, let’s create that file:

touch repository.json

Open the file to edit it:

nano repository.json

Paste the JSON object into the file. Press Control + X to exit the editor, and confirm Y to save
your changes when prompted.

We need one more thing before we can send the cURL request: the Rasa X API token. The
easiest way to get the token is to launch Rasa X in the browser and navigate to the Models
screen. Click the Upload model button and copy the api_token from the URL.

119

CHAPTER 9: IMPROVING THE ASSISTANT

Head back to the terminal. Still in the /etc/rasa directory, run the following cURL command,
replacing the Rasa X server URL and API key values with your own:

curl --request POST \
 --url http://<Rasa X server
host>/api/projects/default/git_repositories?api_token=<your api
token> \
 --header 'content-type: application/json' \
 --data-binary @repository.json

Check the connection by navigating back to the Rasa X dashboard in your browser and
checking the Integrated Version Control icon in the bottom left corner. If the connection was
successful, you’ll see either a green indicator, meaning Rasa X is up to date with the GitHub
repository, or a yellow indicator, meaning Rasa X has changes that need to be pushed to
GitHub.

Set up the Actions Server
We have one more thing to configure: the assistant’s custom action server. To do this, we’ll
place the assistant’s custom action code within an actions directory on the server.

120

CHAPTER 9: IMPROVING THE ASSISTANT

Connect to your server and make sure you’re in the /etc/rasa directory. In your terminal, run the
following commands to create the actions directory and two files inside it: __init__.py and
actions.py :

Run nano actions/actions.py to edit the newly-created actions.py file. Paste the code
from your assistant’s actions.py file into the blank file, save, and close the editor.

Then, we need to create a docker-compose.override.yml file. This file instructs
docker-compose to spin up a custom action server when the Rasa X server starts up. Let’s
create that file:

touch docker-compose.override.yml

Open the file editor:

nano docker-compose.override.yml

And add the following contents:

version: '3.4'
services:
 app:
 image: 'rasa/rasa-sdk:latest'
 volumes:
 - './actions:/app/actions'
 expose:
 - '5055'
 depends_on:
 - rasa-production

121

CHAPTER 9: IMPROVING THE ASSISTANT

Here, we’re using the rasa-sdk image to run our custom actions, and we’re specifying that the
actions server will listen on port 5055. The actions server depends on the rasa-production
service, which is responsible for running the trained model, parsing intent messages, and
predicting actions.

Once you’ve saved the file, you can restart the Rasa X docker container and the assistant will be
fully functional on Rasa X.

sudo docker-compose up -d

Let’s head back to the Rasa X dashboard where we can have a look and try it out!

The Rasa X Dashboard
When you log in to Rasa X, you’ll see four tabs on the left side of the screen: Models, Talk to
your bot, Training, and Conversations. In this section, we’ll take a tour of each area.

Models
The Models screen is where you view and manage your models. Now that we’ve connected
Integrated Version Control, all of the files from the GitHub repository have been pulled into the
Rasa X instance. Let’s hit the Train button on the sidebar to train a new model on the latest
training data and file configurations.

Once the model has finished training, we can make it active on the Models screen.

122

CHAPTER 9: IMPROVING THE ASSISTANT

Talk to your bot
The Talk to your bot screen allows you to test and improve your assistant by talking to it. You
can use the Talk to your bot screen in two modes:

● Simple chat - Allows you to test the performance of the assistant by having a
conversation. This is a nice way to test your assistant and generate new training
examples at the same time.

● Interactive learning - As you chat with your assistant, you’ll be asked to validate the
intent classification and action prediction at each step of the conversation. This allows
you to finely tune and correct your assistant’s behavior.

As you chat with your assistant, you can save new stories and example utterances to your
training files. When you’ve accumulated a few of these changes, you can then retrain the model
on the new data.

Training
The Training tab is where you can manage your assistant’s training and configuration files,
annotate new training examples, and train new models after making changes. Let’s look at two
important subsections:

123

CHAPTER 9: IMPROVING THE ASSISTANT

NLU Training
This screen contains the assistant’s NLU training examples. If you navigate to this screen, you’ll
see all of the example utterances we added when we first created the assistant, plus the
examples we generated during our interactive learning session on the Talk to your bot screen.

On the Training data tab, you can see the intent predicted for each utterance. If there’s another
intent that would be a better match for the utterance, you can change it here.

Finally, under the Annotate new data tab, you’ll see the user inputs that were entered during the
Talk to your bot session. You can label the entities and intent predictions for each input and add
the annotated data to your training files.

124

CHAPTER 9: IMPROVING THE ASSISTANT

Stories
On the Stories screen, you can select each story in your training data to see a visual
representation of the conversation. You can also write new stories, edit existing stories, import
stories in bulk, or generate training stories by talking to your assistant in interactive learning
mode.

Conversations
When you navigate to the Conversations screen, you’ll notice something: it’s empty! That’s
because we haven’t yet shared our assistant with any testers. When we do, those conversations
will show up here.

In our next episode, we focus on the process of improving AI assistants, by sharing your
assistant with testers and real users.

125

CHAPTER 9: IMPROVING THE ASSISTANT

Conclusion
In this episode of the Rasa Masterclass, we covered quite a bit of ground: we deployed Rasa X
to a server, connected the assistant using Integrated Version Control, and took a tour of the
Rasa X dashboard. This sets us up to cover our next topic: further improving your assistant
using Rasa X.

Keep up the momentum, and if you get stuck, ask us a question in the Community forum.

Additional Resources
● Ep #9 Rasa Masterclass - Improving the assistant: Setting up Rasa X (YouTube)
● Rasa X - Docker-compose Quick Install (Rasa docs)
● Integrated Version Control (Rasa docs)
● Integrated Version Control: Linking Rasa X with Git-based Development Workflows

(Rasa blog)
● Rasa Open Source + Rasa X: Better Together (Rasa blog)

126

https://forum.rasa.com/
https://youtu.be/IUYdwy8HPVc
https://rasa.com/docs/rasa-x/installation-and-setup/docker-compose-script/#
https://rasa.com/docs/rasa-x/installation-and-setup/integrated-version-control/
https://blog.rasa.com/integrated-version-control-linking-rasa-x-with-git-based-development-workflows-untitled/
https://blog.rasa.com/rasa-open-source-rasa-x-better-together/

SHARING WITH TEST
USERS

CHAPTER TEN

127

SHARING WITH TEST USERS

Introduction
In episode 10 of the Rasa Masterclass, we focus on gathering valuable feedback, by sharing
your assistant with test users. We set ourselves up in episode 9 by deploying Rasa X and
connecting the assistant. Now, we’ll let test users talk to the assistant and explore the ways
Rasa X helps you improve based on those conversations.

128

http://www.youtube.com/watch?v=LWzsS5Q-RoI

CHAPTER 10: SHARING WITH TESTERS

Opening your assistant to testers
Once your assistant is capable of handling the most important happy path stories, the next step
is to invite testers—real users—to test and have conversations with your assistant. Using the
conversations you collect from testing, you will be able to review conversations and make minor,
major, and architectural changes to improve your assistant.

This is an important intermediary step that sits between the initial development – where you rely
on manually generated training data – and the deployment stage – where you open up your
assistant to a wider audience of users. Inviting guest testers to try out your assistant will help
you to spot problems early, and make the improvements necessary to ensure that real users
have a good experience when using your assistant in production.

Rasa X comes with a number of useful features that enable you to easily share your assistant
with real testers, collect their conversations with your assistant, then review those conversations
and decide which improvements you should work on next.

Reviewing the Rasa X UI will help to better understand these features.

129

CHAPTER 10: SHARING WITH TESTERS

Conversations tab

The “Conversations” tab is accessed on the left navigation within Rasa X. Clicking on this tab
will show you the conversations that users have had with your assistant. This tab will also show
how many conversations have taken place, when those conversations happened, and the
content of the actual conversations themselves. If you haven’t shared your assistant with real
users just yet, this section will be empty.

Sharing with guest testers
Rasa X allows you to invite real testers to talk to your assistant via a shareable link. At the top
right, you will find an icon to share your assistant. Clicking on the icon will bring up a “Share with
guest testers” dialog box.

130

CHAPTER 10: SHARING WITH TESTERS
Here you can provide a name for your assistant and a description about what your assistant
does. Once you are happy with the details, hit Generate link . This link can be shared with
the people that you want to test your assistant - your friends, family, colleagues or a specific
group of people that you’ve selected for a user test.

As you can see, the link in the screenshot above includes our server IP address. Users will be
able to test using this URL, but best practice would be to configure a custom domain and SSL
for your server, so that the users would see a more familiar URL format. We’ll cover these steps
in episode 11.

What the guest tester sees
Once an invited test user clicks on the link you shared, they will see a simple chat UI where they
can immediately talk to your assistant. The guest tester doesn’t need to install software or do
any additional setup, making it very simple for them to start testing.

It’s important to note that multiple guest testers can talk to your assistant, all at the same time.
All of the conversations they have with your assistant are stored in a database on your server
and are displayed in the Conversations tab of Rasa X for you to review.

Even more importantly, remember that all of the conversations you collect and view using Rasa
X are stored on your server, which means that you completely own your data. Conversations
are not shared with Rasa. You completely control access to these conversations.

Lastly, remember that you can find all of the files of your assistant on your server - including
models, actions, configurations, and the database itself.

131

CHAPTER 10: SHARING WITH TESTERS

Reviewing test conversations
After your guest testers have had a chance to chat with your assistant, you can review their
conversations in Rasa X.

Each conversation has a timestamp of when it took place. To make reviewing the conversations
more efficient, you can apply filters to the collected conversations - for example, you can filter by
intents or actions included in the stories, or the number of user messages included in a story. .

Reviewing these collected conversations should be a great source of learnings about your
assistant, and helps in deciding which changes are needed to improve your assistant.

Improving your assistant

Changes within Rasa X
Minor changes are typically something that can be adjusted within Rasa X, like improving your
NLU model to better classify intents. In the example below, the assistant failed to classify the
message Hellooo as a greeting. This could be an indication that we should include more, and
more unusual, examples of greetings in our training data.

132

CHAPTER 10: SHARING WITH TESTERS

From the NLU Training screen, located under the Training tab, we can add ‘Hellooo’ as a new
training example. Rasa X will automatically suggest an intent match, and we can verify that the
intent for the message should be greet.

Major changes to your assistant, like creating a new intent or adjusting the logic of your stories,
can be done either within Rasa X or on the command line. This blog post highlights how that
works within Rasa X.

Architectural changes
Your test conversations may uncover more substantial issues that require architectural changes
to your assistant, such as changing your custom actions. These changes usually require
updates to your assistant’s files on your local computer, made via a text editor, and then pushed
to GitHub and your production server.

133

https://blog.rasa.com/rasa-open-source-rasa-x-better-together/

CHAPTER 10: SHARING WITH TESTERS

For example, in testing our medicare locator, we collected a conversation with a test user based
in London. However, the custom action we created can handle only requests for US-based
facilities. We can flag this conversation for later review.

In this case, we would either have to include location validation, or update our custom actions
with a new API which would find health facilities in locations outside the US.

Improving the NLU model
The conversations you collect can also be used to improve your NLU model.

134

CHAPTER 10: SHARING WITH TESTERS

You can access the NLU training section of Rasa X in the left navigation, and there you will find
the inputs from test users who talked to your assistant. From this screen, you can review each of
the inputs and annotate them. You can improve your NLU model by annotating a user input and
its predicted intent as correct.

If some examples aren’t useful – like below, where the user’s input Hey was extracted as an
entity -- such inputs can simply be deleted.

After you make improvements to your model and annotate new training data, you should train
a new model. In prior episodes of the Masterclass, we’ve been training our model using the
command line, but training can also be done directly in Rasa X.

135

CHAPTER 10: SHARING WITH TESTERS

Once you make the new model active, you can start sharing your assistant with real testers
again, and start collecting new conversations.

Version control
You can version control your assistant using Rasa X’s integrated version control feature.

When you make a change to your model in Rasa X, like annotating new training data or
changing model configurations, you will see that the integrated version control icon is highlighted
to the left with an orange bar. This indicates that there are some changes you made in Rasa X
that are not reflected in your git server.

To include those changes, you can commit them to the master branch or create a new one.

136

CHAPTER 10: SHARING WITH TESTERS

Once the changes are added, you will find a pull request on your assistant’s git repository with
suggested changes. You can open a PR, invite team members to review and merge it, and
continue improving your assistant.

Conclusion

Rasa X is an essential tool in improving your Rasa Open Source based assistant. The process
outlined in this Masterclass should be repeated until you’re happy with how your assistant
performs:

● Share the assistant with real testers,
● Make improvements based on the collected conversations, and
● Repeat.

Once you feel your assistant can handle conversations with guest testers, it’s time to take the
next step - connecting to outside messaging channels.

An outside messaging platform can be one of many platforms: Slack, Facebook Messenger,
SMS your own website, or any other method where real users will talk to your assistant. You will
collect the conversations users have with your assistant, and continue making improvements
based on what you can learn from these real-world conversations. We’ll cover this in the next
episode of the Rasa Masterclass, #11.

137

CHAPTER 10: SHARING WITH TESTERS

Additional Resources
● Ep. #9 - Rasa Masterclass - Improving the assistant: Setting up the Rasa X (YouTube)
● Rasa Blog: Rasa Open Source and Rasa X: Better Together
● Rasa Blog: Integrated Version Control
● Rasa Docs: Improve your assistant with Rasa X

138

https://youtu.be/IUYdwy8HPVc
https://blog.rasa.com/rasa-open-source-rasa-x-better-together/
https://blog.rasa.com/integrated-version-control-linking-rasa-x-with-git-based-development-workflows-untitled/
https://rasa.com/docs/rasa-x/

CONNECTING TO
MESSAGING
CHANNELS

CHAPTER ELEVEN

139

CONNECTING TO MESSAGING
CHANNELS

Introduction
In the previous episode of the Rasa Masterclass, we learned how to share the medicare locator
assistant with test users. Sharing the assistant with test users is an important middle step for
QA, allowing you to build up the training data set with realistic dialogues and review collected
conversations for actionable insights.

In this episode, we’ll go one step further by making the assistant available to real users on a
publicly accessible messaging channel. This is an exciting milestone—our assistant will finally
be live.

We’ll connect the medicare locator assistant to two channels: Telegram and a website chat
widget. Then, we’ll head back to Rasa X to view the conversations our users are having on
these channels.

140

http://www.youtube.com/watch?v=uYUxJIiinJE

CHAPTER 11: MESSAGING CHANNELS

Configuring DNS and SSL
Before we can connect our assistant to messaging channels, we need to do some additional
setup on the Rasa X server. As you recall, when we deployed Rasa X, we were able to access
Rasa X in the browser by going to an IP address with an http protocol, like http://34.62.185.11/.
That was fine while we were in early development, but in order to securely connect to external
applications—our messaging channels—we need to configure a domain name and SSL. After
completing these steps, the Rasa X instance will be accessible at a secure, human-friendly URL
like https://rasamasterclass.com.

First, we’ll assign a domain name to the server instance. Then, we can configure an SSL
certificate, bound to the domain.

Assigning a static IP address
If you’re following along with this tutorial and using Google Cloud Platform as your host, you can
find the IP address for your VM instance in your GCP Console under Compute Engine>VM
Instances.

Before you point your domain to this address, you’ll want to complete one additional step. By
default, the external IP address assigned to a GCP VM instance is ephemeral, meaning that a
new IP address is assigned each time the server is stopped or started. This would break the
connection with the domain and require you to update your DNS records to point to the new IP.

141

http://34.62.185.11/

CHAPTER 11: MESSAGING CHANNELS

To prevent this, you can promote your external IP address from ephemeral to static. Select your
VM instance and click Edit. Then, scroll down to the Network interfaces settings. In the External
IP dropdown, select Create IP address.

Enter a name, and click Reserve. This IP address will now be associated with your server until
it is explicitly removed.

142

CHAPTER 11: MESSAGING CHANNELS

Pointing to a domain
You can purchase the domain name for your Rasa X instance from any registrar you would like;
for example, Google domains. Once you’ve registered the domain, you can apply it to your Rasa
X instance by creating an A record that maps the domain to the external IP address for your
server. Be sure to check your domain registrar’s documentation for specific instructions on
creating DNS records.

After updating DNS records, be sure to allow time for them to propagate. Test the new
configuration by visiting http://yourdomain.com in the browser.

Installing an SSL certificate
An SSL certificate creates a secure connection between the browser and the server. It verifies
that the requested hostname matches the name registered on the certificate.

To secure your setup, you can either purchase a certificate from a certificate authority or you
can use a free option like Let’s Encrypt. In this tutorial, we’ll use certbot: a free, open source
tool that makes it easy to install an SSL certificate from Let’s Encrypt.

Begin by establishing an SSH connection to your VM instance. In the terminal, stop the docker
container:

sudo docker-compose down

Run the following command to install certbot:

sudo apt-get certbot

143

https://domains.google/intl/en-GB_ALL/
https://support.google.com/domains/answer/9211383?hl=en
http://yourdomain.com
https://letsencrypt.org/
https://certbot.eff.org/

CHAPTER 11: MESSAGING CHANNELS

Start the installation with this command:

sudo certbot certonly

Certbot asks a series of questions to guide you through the process of configuring the SSL.
First, you’ll be asked how you would like to authenticate with the ACME CA. Choose option 1,
Spin up a temporary webserver.

When prompted, provide a valid email address, accept the terms and conditions, and finally,
enter the domain name you applied to the Rasa X server.

When the process has been completed successfully, you’ll see the following message in your
terminal:

144

CHAPTER 11: MESSAGING CHANNELS

By default, the certificate is saved to a /letsencrypt/ directory. We’ll need to move the files to the
/etc/rasa/ directory to make them accessible to the docker container.

sudo cp /etc/letsencrypt/live/rasa.example.com/privkey.pem
/etc/rasa/certs/

sudo cp /etc/letsencrypt/live/rasamasterclass.com/fullchain.pem
/etc/rasa/certs/

Re-start the docker container to put the updates into effect:

sudo docker-compose up -d

Test the changes by navigating to https://yourdomain.com. You should now see a secure lock
symbol in the address bar.

Note:
Let’s Encrypt certificates are valid for 90 days. You can renew the certificate with the following
command (either manually or through an automated cron job):

sudo certbot renew

145

CHAPTER 11: MESSAGING CHANNELS

Connecting to Messaging Channels
Rasa comes pre-configured to connect with popular messaging channels like Slack, Facebook
Messenger, Telegram, and many more. You can also connect to a website chat widget, SMS, or
integrate your own custom channel.

In this episode, we demonstrate how to connect the medicare locator assistant to two channels:
Telegram and a website chat widget. The configuration process is similar across different
channels, but you can find step-by-step instructions for each channel in the documentation.

Telegram
Telegram is a popular free messaging app that syncs messages across a number of different
devices—smartphones, tablets or laptops. It supports third party integrations like AI assistants,
so it’s a great platform to build on.

Telegram provides an assistant called BotFather that helps developers register a new bot
integration. Use the /newbot command to get started. When prompted, provide a name and
username for your assistant. The name is displayed in contact details. The username is a short
name used in mentions and must end in bot. When the assistant’s profile is complete, you’ll
be given an API token.

146

https://rasa.com/docs/rasa/user-guide/messaging-and-voice-channels/
https://rasa.com/docs/rasa/user-guide/messaging-and-voice-channels/
https://t.me/botfather

CHAPTER 11: MESSAGING CHANNELS

Now that we have the Telegram API token, we can connect our Rasa assistant. Head back to
your server and open a terminal session.

The credentials.yml file holds the configuration details for connecting to external applications,
like messaging channels. This file is created automatically with the rasa init command.

From the /etc/rasa directory, open the credentials.yml file:

sudo nano credentials.yml

Edit the contents of the file to include the following details:

telegram:
 access_token: "490161424:AAGlRxinBRtKGb21_rlOEMtDFZMXBl6EC0o"
 verify: "your_bot"
 webhook_url: "https://your_url.com/core/webhooks/telegram/webhook"

Here, we’re providing the channel name (telegram) and the access_token, which we obtained
from Telegram’s BotFather assistant. In the verify field, provide the username you registered with
BotFather. Be sure to replace the your_url.com placeholder in the webhook_url with the domain
of your Rasa X server.

147

CHAPTER 11: MESSAGING CHANNELS

Save the changes and then restart the docker container:

sudo docker-compose restart

We can now chat with the medicare locator assistant on Telegram:

148

CHAPTER 11: MESSAGING CHANNELS

Webchat
To connect your assistant to a website, you’ll need a plugin to create the chat widget—a chat
interface where users can talk to your assistant. We’ll use an open source option called Rasa
WebChat. It uses SocketIO to send and receive messages in real time.

If you don’t have a website already, you can try out the WebChat widget with a simple hello
world example—a basic HTML document.

<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 </body>
</html>

Much like we did when setting up Telegram, we’ll need to add configuration details for the
SocketIO channel to the credentials.yml. Open the credentials.yml file in the editor and add the
following:

socketio:
 user_message_evt: user_uttered
 bot_message_evt: bot_uttered
 session_persistence: true

Here, user_message_evt and bot_message_evt define the event names used by the Rasa
dialogue management engine when sending or receiving messages over SocketIO. The third
configuration, session_persistance, determines how SocketIO should handle session
management. By default, the session restarts on every page reload. By setting this parameter to
“true” you can persist the session until the browser or tab is closed, or until a specific event is
called to clear the session storage.

149

https://github.com/botfront/rasa-webchat
https://github.com/botfront/rasa-webchat

CHAPTER 11: MESSAGING CHANNELS

Once the changes have been saved to credentials.yml, you can embed the widget by adding a
snippet of HTML between the <body></body> tags of your website:

<div id="webchat"/>
<script
src="https://storage.googleapis.com/mrbot-cdn/webchat-latest.js"></sc
ript>
// Or you can replace latest with a specific version
<script>
 WebChat.default.init({
 selector: "#webchat",
 initPayload: "/get_started",
 customData: {"language": "en"}, // arbitrary custom data. Stay
minimal as this will be added to the socket
 socketUrl: "http://localhost:5500",
 socketPath: "/socket.io/",
 title: "Title",
 subtitle: "Subtitle",
 })
</script>

There are three values you’ll want to change in the configuration object:

socketURL Your Rasa X server URL

title The assistant’s name, e.g. Rasa Medicare
Locator

subtitle A description of your assistant, or any
additional details you’d like users to see when
they begin a conversation

150

CHAPTER 11: MESSAGING CHANNELS

Test the new channel by opening the web page in a browser and chatting with the assistant.

151

CHAPTER 11: MESSAGING CHANNELS

Working with Messaging Channels
A single Rasa assistant can be connected to multiple channels—in fact, you may find it easier to
configure the connections for multiple assistants at once in your credentials.yml file rather than
connecting one at a time.

Conversations users have with the assistant—across all connected channels—are collected in
Rasa X for review. In the Rasa X Conversations screen, each conversation is labeled with the
channel it originated from.

152

CHAPTER 11: MESSAGING CHANNELS

Another useful feature when working with multiple channels is the ability to specify
channel-specific utterances. Different messaging channels may come with different UI
messages you can use, or you may want the assistant to use different responses depending on
the channel. To use channel-specific utterances, add the channel key to your response template
in domain.yml:

responses:
 utter_ask_game:
 - text: "Which game would you like to play?"
 channel: "slack"
 custom:
 - # payload for Slack dropdown menu to choose a game
 - text: "Which game would you like to play?"
 buttons:
 - title: "Chess"
 payload: '/inform{"game": "chess"}'
 - title: "Checkers"
 payload: '/inform{"game": "checkers"}'
 - title: "Fortnite"
 payload: '/inform{"game": "fortnite"}'

153

https://rasa.com/docs/rasa/core/domains/#channel-specific-responses

CHAPTER 11: MESSAGING CHANNELS

Conclusion
In this episode of the Rasa Masterclass, our assistant finally made the leap from the
development and testing stage to interacting with the outside world. Our assistant can now have
conversations with real users on real messaging platforms.

Not only is this a gratifying step, it’s also crucial for the continued improvement of the assistant.
Conversations with real users provide valuable insights and training data. As you review
conversations in Rasa X, you should use these conversations to add new training examples and
determine the direction of future development. For example, you may decide to add a new intent
or action, make adjustments to machine learning algorithms—or even change the scope of the
assistant’s domain.

As a next step, try connecting your assistant to one of the messaging channels listed in the
documentation, and spend some time analyzing your assistant’s interactions in Rasa X. When
you’re ready, meet us back here for the next episode of the Rasa Masterclass.

Additional Resources
● Messaging and Voice Channels (Rasa docs)
● Channel-specific Responses (Rasa docs)
● IP Addresses (Google Cloud docs)
● DNS Basics (Google support)
● Certbot (Certbot website)

154

https://rasa.com/docs/rasa/user-guide/messaging-and-voice-channels/
https://rasa.com/docs/rasa/core/domains/#channel-specific-responses
https://cloud.google.com/compute/docs/ip-addresses
https://support.google.com/a/answer/48090?hl=en
https://certbot.eff.org/

DEPLOYING ON
KUBERNETES

CHAPTER TWELVE

155

DEPLOYING ON KUBERNETES

Introduction
In episode 9 of the Rasa Masterclass, we learned how to deploy Rasa X to a server using the
docker-compose quick installation method. In episode 12, we’ll cover a more advanced
deployment scenario: deploying Rasa X to a cluster environment.

The docker-compose method is a great deployment option if your goal is to get started quickly or
build a Rasa assistant for personal use. However, if your goal is to build a high-availability,
mission-critical assistant, a scalable cluster architecture is essential.

Rasa supports cluster deployments on both Kubernetes and OpenShift. In this episode, we’ll
walk through deploying Rasa X to Kubernetes step-by-step, using Helm to configure the
deployment.

156

https://youtu.be/IUYdwy8HPVc
http://www.youtube.com/watch?v=QLq_U3J9kOo

CHAPTER 12: KUBERNETES

What is Kubernetes?
Kubernetes is an open source system for deploying, scaling, and maintaining containerized
applications. Whereas the docker-compose method deploys Rasa X to a single container
running on a single machine, Kubernetes deploys Rasa X to multiple containers running on
multiple host machines, known as nodes. This distributed approach means that there’s always a
backup system in place—if one container in the cluster goes down, another container can start
up to take its place.

Let’s take a closer look at the Kubernetes architecture. A pod represents either a single
container or multiple containers that share resources, and it’s the smallest unit of deployment in
Kubernetes. Any container runtime can be used with Kubernetes, but the most common choice
is Docker.

A Deployment is a YAML file that declares the deployment configuration. For each pod, it
specifies the container image(s), and the number of copies, or replicas, that should be running.
The configuration laid out in the deployment YAML file is what’s considered the “desired state.”

The Kubernetes cluster service takes the deployment YAML file and schedules the desired
number of pods on the host machines, or nodes. It’s the scheduler’s job to maintain the desired
state even if a host machine goes offline. If one machine goes down, the scheduler spins up
new pods and redistributes them on the remaining machines to maintain the number of pods
defined in the deployment.

It’s this self-healing ability that makes cluster deployments so resilient. Similarly, load balancers
distribute traffic across the pods and nodes, to automatically scale in response to increased
usage.

157

CHAPTER 12: KUBERNETES

Kubectl
Kubectl is a command line tool for interacting with the Kubernetes cluster services. Kubectl
works by sending HTTP requests to the Kubernetes API server, allowing the user to control the
cluster from the command line. In this episode we’ll use kubectl to access and work with our
cluster.

Helm
Helm is an application package manager for Kubernetes, and its purpose is to simplify the
process of installing an application on a Kubernetes cluster. A Helm chart is a set of instructions
for how an application should be installed on a cluster. It describes the application, including the
services and packages it needs to run, and its default configuration values.

Rasa provides an open source Helm chart, which we’ll use in this episode to install Rasa X on
our cluster.

Prerequisites
Before beginning this tutorial, you’ll need to install the following prerequisites on your local
machine:

● gcloud SDK
● Docker + create a Docker Hub account
● Helm

158

https://github.com/RasaHQ/rasa-x-helm
https://cloud.google.com/sdk/install
https://docs.docker.com/install/
https://hub.docker.com/signup
https://github.com/helm/helm#install

CHAPTER 12: KUBERNETES

Create a new Kubernetes Cluster
In this tutorial, we’ll use Google Kubernetes Engine to create a new cluster, but you can install
Rasa on a Kubernetes cluster on any host you choose: Digital Ocean, Microsoft Azure, Amazon
Elastic Kubernetes Service, or even a bare metal server.

From the Google Cloud Console, navigate to Kubernetes Engine>Clusters. Click the button to
create a new cluster.

You can change the location zone and the machine type if you wish, but in our case, we’ll use
the standard, default configuration to create our cluster.

Click Create to spin up the cluster.

159

https://console.cloud.google.com/

CHAPTER 12: KUBERNETES

Connect to the Cluster
To connect to the cluster, we’ll run a gcloud SDK command in the terminal. Note that we’ll be
using the terminal on your local machine, although you can use the cloud terminal embedded in
the browser if you wish.

Before running this command be sure to install the gcloud SDK on your computer. See the
Prerequisites section for a quick link to the installation instructions.

Click the Connect button for your cluster and copy the gcloud command.

Run the gcloud command in your terminal, e.g.:

gcloud container clusters get-credentials standard-cluster-1 --zone
us-central1-a --project replicated-test

Once you’ve connected, check that Helm is installed by running the following command:

helm version

The minimum required version for this tutorial is 3.0.

160

CHAPTER 12: KUBERNETES

Note: Received an error message saying helm is not a recognized command? Check the
Prerequisites section of this tutorial for a link to installation instructions, or Mac users can run the
brew install helm command.

Next, check to make sure kubectl is connected to the cluster by running:

kubectl cluster-info

The IP address of the Kubernetes master should match the IP address in the cluster
configuration in Google Kubernetes Engine.

Run the following command to add the Rasa Helm Chart to your cluster. This prepares us to
fetch the chart when we run the command to install later on in this tutorial.

helm repo add rasa-x https://rasahq.github.io/rasa-x-helm

Let’s inspect the list of values you can configure in your deployment. Run this command:

helm inspect values rasa-x/rasa-x

161

CHAPTER 12: KUBERNETES

Configuration is optional, and we’ll go with the default values for most of these. However, for
values you do want to change, you’ll need to create an override file with a .yml extension. We’ll
do just that to set the username and password for Rasa X. Create a new file in the directory of
your choice and call it values.yml:

touch values.yml

Open the file in the editor:

nano values.yml

Paste the following into the file contents, replacing the <password> placeholder with an
8-character password of your choice.

rasax specific settings
rasax:
 # Other 'rasax' configuration
 # initialUser is the user which is created upon the initial start
of Rasa X
 initialUser:
 # username specifies the name of this user
 username: "admin"
 # password for the Rasa X user
 password: "<safe credential>"

162

CHAPTER 12: KUBERNETES

On a new line, add the following to enable error logging:

debugMode: "true"

Save and close the file.

Set up the custom action server
Our medicare locator assistant requires a custom action server, so our next step will be to set up
a container to run custom actions. We’ll do that by creating a custom Docker image and
referencing it in our cluster configuration.

Create a directory for your action server, anywhere on your local machine:

mkdir action_server

cd action_server

Inside the directory, create an __init__.py file and an actions.py file:

touch __init__.py
touch actions.py
nano actions.py

Paste the code from your assistant’s actions.py file into the actions.py file that you just created,
save, and close the file.

163

CHAPTER 12: KUBERNETES

Create the Dockerfile
If your custom actions require any libraries that aren’t included in the rasa-sdk image, you’ll need
to include them in a requirements.txt file. The medicare locator uses the requests library, so we’ll
need to specify that as a dependency in the image. Create the requirements.txt file:

touch requirements.txt

Open it in the editor:

nano requirements.txt

And paste the following into the contents:

requests~=2.21.0

Save and close the file.

Finally, we’ll create a Dockerfile. The Dockerfile contains the commands needed to build the
Docker image to our specifications.

Create a new file called Dockerfile and open it in the editor:

touch Dockerfile

nano Dockerfile

164

CHAPTER 12: KUBERNETES

Paste the following into the file contents:

FROM rasa/rasa-sdk:latest #lock the version

USER root

WORKDIR /app

COPY actions.py /app

COPY requirements.txt /app

RUN pip3 install -r requirements.txt

CMD ["start", "--actions", "actions"]

USER 1001

Let’s break down what’s happening in the Dockerfile. The first thing we do is specify the parent
image. This is the image we’ll use as a starting point, before adding the specifications custom to
our application on top. In this case, we’ll use the latest version of the rasa/rasa-sdk image as the
parent.

Next, we’ll set the user group permissions. If your custom action contains any external libraries,
like ours does, you may need to set the USER group to root.

Then, we specify the working directory, which we’ll set to app. The lines that follow add the
necessary files to the directory: requirements.txt and actions.py. We install the necessary
dependencies, and then run the command to spin up the custom action server, referencing the
module of our custom action as a parameter. Since we have actions.py in our working directory,
all we have to do is reference the module name actions. Lastly, we re-set the user group to
default permissions.

Save and close the file.

165

CHAPTER 12: KUBERNETES

Build and push the image
Now, we’re ready to build the image and push it to a container registry. We’ll use Docker Hub in
this tutorial, but you can use the registry of your choice.

Make sure you’re logged into your Docker Hub account (see Prerequisites for a quick link to
set this up) and run the following command to build the image:

docker build . -t <dockerusername>/<imagename>:<tag>

The period in the command means that the Dockerfile is in our current directory. Be sure to
replace the <dockerusername> placeholder with your Docker Hub username and
<imagename>:<tag> with a name and tag, something like customactionserver:1

Once the build finishes, we can test it by running:

docker images

docker run <image ID>

166

CHAPTER 12: KUBERNETES

Once we’ve confirmed it’s running, we’re good to push the image to Docker Hub with the
following command:

docker push <dockerusername>/<imagename>:<tag>

Pushing the image to the registry makes the image available to reference in our values.yml file.
Here, we’re making the image publicly available on Docker Hub, but you also have the option to
make the image private. To access a private image, you’ll need to configure an image pull
secret, following the Kubernetes guide. You can then add the secret to your values.yml file:

images: Settings for the images
images:
 # imagePullSecrets which are required to pull images for private
registries
 imagePullSecrets:
 - <name of your pull secret>

Since we’re using a public image, we can skip creating the image pull secret and simply
reference the image using this configuration in the values.yml file:

app:
 name: "name of your image"
 tag: "tag you want to use"

167

https://kubernetes.io/docs/concepts/containers/images/#creating-a-secret-with-a-docker-config

CHAPTER 12: KUBERNETES

Deploy Rasa X
We recommend installing Rasa X in a separate namespace on your Kubernetes cluster.
Namespaces are a way to divide a cluster among multiple users.

Create a new namespace called rasaxkube with this command:

kubectl create ns rasaxkube

Then, install Rasa X with these two commands:

helm repo update

helm install --generate-name --namespace rasaxkube --values
values.yml rasa-x/rasa-x

Here, we’re pointing to the override YAML file, values.yml, which is in our current directory.

Once the installation is complete, you can check the status of the pods by running:

kubectl get pods --namespace=rasaxkube

168

CHAPTER 12: KUBERNETES

If you notice that some of the pods are restarting or pending, you can inspect it further by
requesting the logs for that pod, for example:

kubectl logs rasa-x-1580751734-app-5d4c58c545-dswxn

Rasa is now up and running on the Kubernetes cluster! To access it in the browser, find the IP
address by running:

kubectl get services

Look for the Load Balancer service, which lists an external IP address, along with the port the
service is running on. Here, it’s 34.89.92.247:8000

Go to the IP address in your browser with the port number appended (remember to reset the
protocol to http), and you should now be able to log in using the password you set in your
values.yml file.

169

CHAPTER 12: KUBERNETES

Next steps
Now that Rasa X has been deployed on Kubernetes, you can go through the process we
outlined in earlier episodes to finish setting up your assistant. That includes:

● Connecting integrated version control
● Configuring DNS
● Installing an SSL certificate
● Connecting messaging channels.

Refer to the documentation for your cloud provider to point a domain name to your cluster. You
can find the docs for Google Kubernetes Engine here.

We recommend enabling SSL on your cluster’s ingress controller or the load balancer serving
the ingress. Check the documentation for your cloud host for detailed instructions. You can find
the docs for Google Kubernetes Engine here.

When running your assistant on Kubernetes, messaging channels are configured by adding
credentials to the values.yml override file, in this format:

rasa: Settings common for all Rasa containers
rasa:
 # additionalChannelCredentials which should be used by Rasa to
connect to various
 # input channels
 additionalChannelCredentials: |
 socketio:
 user_message_evt: user_uttered
 bot_message_evt: bot_uttered
 session_persistence: true/false

170

https://rasa.com/docs/rasa-x/installation-and-setup/integrated-version-control/#connect-your-rasa-x-server-to-a-git-repository
https://cloud.google.com/kubernetes-engine/docs/tutorials/configuring-domain-name-static-ip
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress#options_for_providing_ssl_certificates

CHAPTER 12: KUBERNETES

Conclusion
In this episode, we learned how to deploy Rasa X on a scalable cluster environment, using
Kubernetes. This setup provides the reliable infrastructure our assistant will need to handle
increased traffic and usage in production.

And although the deployment is different, the process for improving the assistant is the same
process we covered in episode 10: review conversations to identify places where the assistant
performs well or not so well, and make updates based on your findings.

And with that, we conclude the Rasa Masterclass. You can watch our Rasa Masterclass Recap
episode to review all of the topics we covered over the course of the series.

This is the end for the Rasa Masterclass, but it’s just the beginning of our efforts to help
developers build great contextual assistants. Let us know what topics you’d like to see covered
in future tutorials by commenting on the Rasa Masterclass Recap video.

Additional Resources
● Google Kubernetes Engine documentation (Google Cloud Platform)
● What is Kubernetes (Kubernetes docs)
● Deploy in a Cluster Environment (Rasa docs)
● Build and Run Your Image (Docker docs)
● Helm Quick Start (Helm docs)

171

https://youtu.be/LWzsS5Q-RoI
https://youtu.be/lYOrQDu_86w
https://cloud.google.com/kubernetes-engine/docs
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://rasa.com/docs/rasa-x/installation-and-setup/openshift-kubernetes/
https://docs.docker.com/get-started/part2/
https://helm.sh/docs/intro/quickstart/

CONGRATS!
You’ve completed the Rasa Masterclass.

Ready to share what you build? Connect with the
Rasa Community in our forum.

JOIN THE FORUM

172

https://forum.rasa.com/

