
9/18/19	

1	

© 2019 Wirfs-Brock Associates

1990
cover art by Phil Brock

9/18/19	

2	

Nothing
ever goes

exactly by
the book

Nothing
ever goes

exactly by
the book

9/18/19	

3	

“any approach to problem solving, learning, or discovery that employs a
practical method not guaranteed to be optimal or perfect, but sufficient for
the immediate goals.”—Wikipedia

9/18/19	

4	

Heuristic
“anything that provides a
plausible aid or direction in the
solution of a problem but is in the
final analysis unjustified,
incapable of justification, and
potentially fallible.”
 —Billy Vaughn Koen

Heuristic

9/18/19	

5	

A Few General Engineering
Heuristics by Billy

Always give an
answer.

Solve problems by
successive

approximations.

Always give yourself a
chance to retreat.

Use feedback to
stabilize your design.

Context
In	which	situa4ons		

can	I	use	this pa8ern?	

Problem
What	does	it	try	to	solve?		

What	ques4ons	does	it	answer?			

Solution
What	can	I	

do	that	usually	works?	

patterns are
another
nicely

“packaged”
form

9/18/19	

6	

1.
Heuristics to Solve a

Design Problem

transac'on	
scripts	

database	

a.	Transac'on	
Script	Pa3ern	

database	

Service	Layer	
(business	service		
objects)	

Domain	Model	
(en'ty,	value,	
service	objects)	

object	to	
database	
mapper	

c.	Domain	
Model	Pa3ern	

Service	Layer	
(business	service	
objects)	

Table	Module	
(database	
table	objects)	

database	

b.	Table	Module	
Pa3ern	

Three Approaches for
Structuring the Domain Layer

Patterns of Enterprise Application Architecture

Heuristic:
Use for simple apps
and data

Heuristic:
Use for complex logic
and accept cost of db
mapping

Heuristic:
Use for complex
existing data and
logic applying to
multiple “rows”

9/18/19	

7	

2.
Heuristics to Guide

Use of Other Heuristics

First Contact Patterns

Talk with
developers

Talk with
end users

System experts

Pattern 3.1:
Chat with the
Maintainers

Pattern 3.4:
Interview During
Demo

Compile
it

Read
about
it

Software System

Pattern 3.2:
Read All the Code
in One Hour

Pattern 3.5:
Do a Mock
Installation

Pattern 3.3:
Skim the
Documentation

Read
it

Talk about it

Verify what
you hear

Each chapter in Object-Oriented Reengineering Patterns is a small language

9/18/19	

8	

3.
Heuristics that

Determine our Attitude
and Behavior

Examples

9/18/19	

9	

Share some “go to”
design heuristics with

your neighbor. Jot them
down on stickies.

7 minute
Discussion

The heuristics we
choose are a matter
of context/values/

fit/efficacy /
preference

9/18/19	

10	

How can you
quickly record

heuristics?

9/18/19	

11	

Say more on
Question, Heuristic, Example (QHE) Cards

10 minute
exercise

Write a QHE Card.
Ask the question,
state the heuristic,
then give at least 3
examples.

9/18/19	

12	

Question-Heuristic-Example Cards

This part I turn into a heuristic

Heuristic: Generate different events for a
business process if different
downstream business processes react
differently.

9/18/19	

13	

Pair or small
team

Working
together, turn
your QHE
questions and
answers into
Heuristic
statements

×  We each have our own
cherished heuristics

×  As new ones become useful
we add to our collection

×  No longer useful ones fall
out of fashion

×  Make small changes to
your state-of-the-art

×  Sometimes, even useful
ones fade away

Our State of The Art (SOTA)
According to Vaughn Koen

https://xkcd.com/1823/

9/18/19	

14	

Some Age Well!

© Can Stock Photo / Noofoo

Short
discussion

How have your
heuristics have
evolved?

9/18/19	

15	

Heuristics Need to be Challenged

© Can Stock Photo / 4774344sean

How Big Should a
Microservice Be?

9/18/19	

16	

“…small enough and no smaller”
 —Sam Newman

“In my view a single deployable service should
be no bigger than a bounded context, but
no smaller than an aggregate.”

 –Ben Morris

9/18/19	

17	

“I’d probably end up with a dozen, maybe
twenty or thirty services (or self-contained
systems, as I prefer to call them).

 —Steven Tilkov

“I’d probably end up with a dozen, maybe
twenty or thirty services (or self-contained
systems, as I prefer to call them). And more
importantly, I think that for any given
interaction triggered by some outside event –
like e.g. a user clicking a button after entering
data into a form – I’d end up touching maybe
3-5 of them.”

—Steven Tilkov

9/18/19	

18	

“Single Responsibility Principle: there should
only be a single service impacted by a change to
the definition of this data.
As a result, you’ll tend to see services that
aren’t all that small, and probably not so many
of them. In my experience, I’ve seen between 7
and 15 services the majority of the time.”

—Udi Dahan

© Can Stock Photo / andrewgenn

9/18/19	

19	

Heuristics Often Conflict…

© Can Stock Photo / DaneeShe

Choose the heuristic
to use from what
you take to be the
best option at the

time you are
required to choose.

9/18/19	

20	

5 minute
discussion

Identify some
competing
heuristics

9/18/19	

21	

Map out your interests

Where to next?

9/18/19	

22	

9/18/19	

23	

“As a rule, the more demanding the application, the
more leverage you get from using a powerful language.

But plenty of projects are not demanding at all. Most
programming probably consists of writing little glue

programs, and for little glue programs you can use any
language that you’re already familiar with and that has

good libraries for whatever you need to do”
 — Paul Graham, Revenge of the Nerds

9/18/19	

24	

© Can Stock Photo / gameover

 Paul’s Heuristic

It doesn’t matter what
programming language you use if
you have a simple program. Use
programming languages, tools,
and frameworks and libraries you
are familiar with.

My Imaginary Debate with Paul

And, use transaction scripts
for really simple stuff that

isn’t going to change much.

But Paul, what about the
heuristic, use a rich

domain model when
you have rich behavior

in your application?

And my lifelong heuristic:
Learn something new. Don’t always do things the
same way. That’s soul sucking!

9/18/19	

25	

My First Heuristics Distillation
Conversation with Mathias Verraes

What’s a heuristic
you use when you

model events?

Heuristic: Events are
records of things that
have happened, not

things that will happen
in the future.

The event is “a
reservation has been
made” or “service has
been scheduled”

9/18/19	

26	

Examples Keep the
Conversation

Flowing
Here’s another
heuristic: A bounded
context should keep its
internal details private.

Say if you keep monetary
units with 10 digits

precision internally in a
service, pass out an amount

with 2 digits precision
because that’s all other
consumers of the event

would need.

We Dig Deeper…

Perhaps
there’s
another
heuristic?

Don’t design
message or event
contents for
specific subscribers
to that event?

Design agreed
upon standard
formats based
on standard
usage.

9/18/19	

27	

And then it got really
interesting…

What happens if a new
process needs extra
precision?

Maybe it belongs
within the bound
context of the
process that knows
10 digits precision?

Which led us to this insight…
These two heuristics compete

Heuristic:
Design agreed
upon standard
formats based on
expected usage.

Heuristic:
When designing
information in
an event, don’t
lose necessary
precision.

9/18/19	

28	

Distiller Advice
×  Listen

×  Let the conversation wander where the the
the person you are trying to glean
knowledge from takes it

×  Ask questions to gain clarity
×  Can you give me an example?
×  What would happen if…?

×  No need to record every heuristic in real time.
Photograph scribbles and drawings.

How do you approach
doing...?

1. Pick a topic to hunt for
heuristics. (3 minutes)

2. Decide who will ask
questions, who will be
interviewed (the heuristic
expert). (1 minute)

3. Have a 10 minute
conversation and record
some heuristics (use either
stickies or QHE cards).
 Small team

9/18/19	

29	

Heuristic: Generate different events for a
business process if different
downstream business processes react
differently.

Heuristic Gists*

*gist – the main point or part; essence. Similar to pattern thumbnails.

Multiple Events for a Single Process
You need to balance passing along information needed by downstream processes
in a single business event with creating multiple event records, each designed to
convey specific information needed by a specific downstream process.

Summary of Problem
How do you know how many events to generate from a single business process?

Summary of Solution
If different processes downstream react differently, generate different events. For
example, handling a “rental car return” request might generate two events and
event records: “car returned” and “mileage recorded.” Even though the mileage is
recorded at the time a car is returned, mileage could be recorded at any other time
as well. It is a cleaner design to generate two events, rather than cram information
into a single, overloaded “car returned” event.

9/18/19	

30	

When?

as you attempt
something new

you have a ½ hour

9/18/19	

31	

61

Distill what you do: �
Record Your Design Values & Practices

Distill what you decide: �
Document Design Decisions*

Title
Context - Forces at play
Decision - Stated with active voice:
"We will ..."
Status - “proposed” or “accepted”
later may be “deprecated” or
“superseded”
Consequences positive, negative,
and neutral that affect the team and
project in the future

*Thanks to Michael Nygard
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-decisions
Useful link to github project on decision records: https://github.com/joelparkerhenderson

9/18/19	

32	

Michiel Overeem

5. Distill What You Hear
at Conferences

5. Distill What You Hear
at Conferences

9/18/19	

33	

5. Distill What You Hear
at Conferences

Workshop Sketch notes of Marco Heimeshoff

9/18/19	

34	

One of My Heuristics: By characterizing a domain entity’s
attributes you can identify needed system behaviors

×  Descriptive Attributes reflect a
domain’s properties (not identity).

×  Time-dependent attributes Where
maintaining a history of past
values is important.

×  Lifecycle state attributes Some
entities go through a one-way
lifecycle, from initial to final state.

×  Operational state Some entities
switch between different states.
The state it is currently in
determines how it behaves.

2001

9/18/19	

35	

Some of My Cherished
Heuristics for Validating Data

×  Perform simple edits (syntactic) in browser code

×  Don’t always trust browser-validated edits.

×  Reapply them if receiving requests from an
untrusted source

×  Consistently assign validation responsibilities to
framework-specific validation classes

×  Consistently use domain validation and constraint
enforcement patterns

9/18/19	

36	

 Heuristic*:
Distinguish between “superficial” and “domain”
validations and handle them differently

“superficial”: what must be true, regardless of the state of the
domain

Heuristic: Validate these before issuing a command, ideally on the
client side as well as the server side

“superficial” but requires lookup of other information
Heuristic: Validate in the service before invoking the command

“domain”: validity of a command is dependent on the state of
the model

Heuristic: Validate in domain objects

*http://danielwhittaker.me/2016/04/20/how-to-validate-commands-in-a-cqrs-application/

Sorting out heuristics…

9/18/19	

37	

Let’s Just Get On With It

© Can Stock Photo / Zinkevych

Sorting things out…

9/18/19	

38	

Cultivating
Your

Heuristics
Requires
Care and
Attention

9/18/19	

39	

Be more
intentional

Write and share
your
heuristics with
others

Expect them to
grow and
evolve

Keep Your Heuristics Alive

Credits & Acknowledgements
×  Erik Simmons encouraged me to read Discussion of The

Method.

×  Richard Gabriel, a thinker and doer, critic of my work, and
inspiration too.

×  Eric Evans makes me think deeply about design matters.

×  Mathias Verraes for sparking my heuristic exploration and
continuing conversations about heuristics

×  Allen Wirfs-Brock photograph of Rebecca Wirfs-Brock at
Haystack Rock.

×  Photographs were taken at DDD Europe 2018 of the
workshop by the conference photographer and used with
permission

×  All other photos taken by Rebecca Wirfs-Brock

9/18/19	

40	

Thank you!
rebecca@wirfs-brock.com
twitter: @rebeccawb
www.wirfs-brock.com

