
1 Retail: Enabling Automated Continuous Testing of Complex Purchase Transactions

The Challenge: Test Environment Constraints Make Automated Continuous Testing 
Impractical for Continuous Integration 
When a customer completes the checkout process on the retailer’s ecommerce site, this triggers a number of 
system operations:

 Validate the address through a third-party service

 Validate credit cards and cash cards through a different third-party service

 Query internal systems to ensure that the items are still in stock

	 Enter	an	order	into	the	order	fulfillment	system

The	transaction	is	not	considered	complete	until	a	confirmation	email	is	sent	to	the	customer.	However,	before	
that	can	occur,	the	order	fulfillment	system	must	first	receive	the	order,	perform	a	number	of	operations	to	
process	the	order,	then	send	an	asynchronous	confirmation	response	once	those	operations	are	completed.	

Most	of	the	business-critical	transactions	that	need	to	be	continuously	tested	involve	this	checkout	procedure.	
However,	testing	these	transactions	was	complicated	by	a	number	of	factors:

	 The	third-party	validation	services	allowed	only	a	limited	number	of	test	transactions	before	a	
fee	was	levied.	Moreover,	the	team	needed	to	continuously	test	how	the	AUT	responded	when	
these	services	were	slow,	unavailable,	or	returned	errors—but	they	weren’t	able	to	configure	
this	behavior	within	their	test	environment.	

	 Various	downstream	internal	systems	in	the	test	environment	were	often	unstable	or	down	
due	to	frequent	updates—making	them	unavailable	for	testing.	When	tests	failed	as	a	result	
of these environment issues, a team member had to manually investigate the source of the 
failure.	If	it	was	related	to	system	instability,	they	had	to	wait	for	the	system	to	be	brought	back	
online before they could achieve the 100% test success rate required for the application to be 
promoted	to	the	next	stage	of	the	software	delivery	pipeline.	

	 The	order	fulfillment	system	in	the	test	environment	typically	took	over	30	minutes	to	return	
the	necessary	response,	which	meant	that	any	test	involving	the	checkout	transaction	would	
take	over	a	half	hour	to	complete.	This	delay	made	it	impractical	to	continuously	execute	the	
complete	regression	test	suite	as	part	of	the	team’s	Continuous	Integration	process.	

Transitioning	to	DevOps,	the	world’s	second	largest	retailer	significantly	accelerated	much	of	their	delivery	
pipeline,	 but	 testing	 transactions	 through	 their	 ecommerce	 site	 remained	 a	 bottleneck.	 Their	 ability	 to	
continuously	 execute	 automated	 tests	 involving	 core	 purchase	 functionality	 was	 impeded	 by	 unstable	
downstream	 components—some	 with	 significantly-delayed	 asynchronous	 responses—as	 well	 as	 third-
party	services	that	were	difficult	to	configure	for	testing.	Service	virtualization	eliminated	these	roadblocks,	
enabling	them	to	execute	a	more	expansive	test	suite	faster,	automatically,	and	continuously.	

Retail: Enabling	Automated	Continuous	Testing	of	
Complex Purchase Transactions



2

© Parasoft Corporation All rights reserved. Parasoft and all Parasoft products and services listed within are trademarks or registered trademarks of Parasoft Corporation. 
All other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the US and/or other countries.

USA PARASOFT HEADQUARTERS  /  101 E. Huntington Drive, Monrovia, CA 91016
Phone: (888) 305-0041  /  Email: info@parasoft.com

Retail: Enabling Automated Continuous Testing of Complex Purchase Transactions

The Solution: Service Virtualization Provides Continuous Access to a Stable and Complete Test 
Environment 

The	company	was	able	to	tackle	all	three	of	these	issues	by	applying	Parasoft’s	Continuous	Testing	platform.	
Parasoft	Service	Virtualization	gave	them	control	over	dependencies	that	were	difficult	to	access	for	testing.	
Moreover, Parasoft Environment Manager automatically detected test environment stability issues so 
that	unstable	components	 could	be	 instantly	 replaced	with	 ”virtual	assets”	before	 they	had	a	 chance	 to	
compromise	test	results.	

The	 challenge	 of	 accessing	 third-party	 validation	 services	 with	 the	 necessary	 frequency	 and	 response	
conditions	was	addressed	with	service	virtualization.	The	company	recorded	how	the	AUT	interacted	with	
the	actual	services,	 then	captured	this	behavior	 in	flexible	virtual	assets.	They	then	parameterized	these	
virtual	assets	with	a	broad	array	of	response	conditions,	including	negative	responses,	performance	delays,	
and	the	various	error	conditions	that	they	needed	to	test	against.	

The	complex	downstream	component	stability	issue	was	resolved	through	a	combination	of	test	environment	
monitoring	 and	 service	 virtualization.	 Parasoft	 Environment	 Manager	 was	 configured	 to	 continuously	
monitor	whether	the	necessary	downstream	dependencies	were	truly	functioning	as	expected	(e.g.,	they	
were	 not	 only	 responsive,	 but	 successfully	 passing	 a	 battery	 of	 functional	 test	 scenarios).	 If	 a	 problem	
was	 detected,	 the	 team	was	 immediately	 alerted,	 and	 the	 environment	was	 reconfigured	 to	 use	 virtual	
assets	instead	of	the	actual	systems.	In	order	for	this	strategy	to	work,	they	used	service	virtualization	to	
create	virtual	assets	representing	the	behavior	of	each	of	these	systems.	When	the	systems	were	deemed	
”healthy,”	the	AUT’s	interactions	with	them	were	recorded,	then	converted	to	virtual	assets	that	were	then	
parameterized	via	synthetic	test	data	generation.	

Finally,	the	problem	of	the	delayed	asynchronous	responses	bringing	test	execution	to	a	crawl	was	addressed	
by	 replacing	 this	 system’s	 behavior	 with	 a	 virtual	 asset—again,	 parameterized	 via	 synthetic	 test	 data	
generation—and	configuring	its	response	times	to	suit	their	testing	needs.	For	testing	during	Continuous	
Integration,	they	configured	the	virtual	asset	to	respond	instantly	so	that	test	execution	could	complete	as	
quickly	as	possible.	Additionally,	they	added	a	second	”performance	profile”	to	the	virtual	asset	so	that	the	
nightly	 tests	could	run	against	 that	same	virtual	asset	using	more	realistic	response	times.	This	enabled	
them	to	rapidly	validate	each	change	as	it	was	introduced	while	still	testing	the	AUT	versus	a	range	of	real-
world	response	times.	


