
Empirical Validation of Test-Driven Pair Programming in Game Development

Shaochun Xu
Department of Computer Science

Algoma University College, Laurentian University,
xu@auc.ca

Vaclav Rajlich
Department of Computer Science

Wayne State University
rajlich@wayne.edu

Abstract

This paper investigates the effects of some extreme
programming practices in game development by
conducting a case study with 12 students who were
assigned to implement a simple game application either
as pairs or as individuals. The pairs used some XP
practices, such as pair programming, test-driven and
refactoring, while the individuals applied the traditional
waterfall-like approach. The results of the case study
showed that paired students completed their tasks faster
and with higher quality than individuals. The programs
written by pairs pass more test cases than those
developed by individuals. Paired programmers also wrote
cleaner code with higher cohesion by creating more
reasonable number of methods. Therefore, some XP
practices, such as pair programming, test-driven and
refactoring could be used in game development.

1. Introduction

Traditional software development process usually fails
to deliver products in time because it requires a thorough
analysis of the requirements and a detailed design before
implementation. Software that takes years or so to design
and to implement may lose the market because of the fast
change of the requirements, high competition of software
market, and increasing complexities of software. This
also happens in game development.

In order to solve those problems, agile software
development processes, like Scrum, FDD, Extreme
Programming (XP) have been recently proposed [2, 5, 20].
XP is a lightweight process and thus, suitable for small to
medium sized projects [2]. It is becoming pervasive in the
world of software development. XP includes 12 practices,
among which pair programming, test-driven and
refactoring are the most commonly used.

Pair programming refers to the techniques where two
programmers work on a programming problem using only
one computer [2]. Each programmer has a distinct role
(i.e., driver and observer), in which one is writing the
code and the other is helping and doing immediate code
review. The test-driven technique means that the

programmers write the test before writing the code and it
forces the programmers to define the exact functionality
of each method and the system will be automatically
tested when it is developed. Refactoring is often used in
association with test-driven technique, which transforms
the source code to be more readable and more elegant [2].

Pair programming has been used in industry and
reported with some promising results [18]. Test-driven
and refactoring have not been used much, but their
benefits have also been reported [10]. However, those XP
practices have scarcely been applied in game
development. A survey shows that only 5% of people in
game industry have been using XP in some aspects [12].
Although a few game companies, such as Coyote
Development [7] and Sammy Studios [1], are using pair
programming and test-driven, no experiment is known to
have been conducted to evaluate the results of such usage.

In order to investigate the effects of some XP
practices in game development, we designed a case study
where the participants worked either in pairs or
individually and implemented a simple game application.
Paired programmers also used test-driven and refactoring
practices, and individuals used the traditional waterfall
approach. That allowed us to make a comparison
between these two approaches. We also conducted a
survey on those techniques.

Section 2 reviews the three XP practices in game
development. Our case study design is described in
section 3. The results of the case study and the survey are
discussed in Section 4 and the conclusions and the future
work are presented in Section 5.

2. Pair Programming, Test-Driven, and
Refactoring in Game Development
In this section, we discuss the related work with pair

programming, test-driven and refactoring in game
development.

2.1. Pair Programming

Pair programming has been widely known with its
fast development cycle and high quality code [6, 23].

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

Nosek [18] found that all pairs outperformed the
individuals in terms of quality and time spent after
having studied 15 professional programmers with pair
programming and individual programming. Williams
[23] conducted a survey on professional programmers
and found that 100% agreed that they were more
confident in their solutions using pair programming than
when they worked alone. Williams and Upchurch [22]
found that the programmers communicated with each
other more effectively, appeared to learn faster, and were
happier. Canfora [4] also noticed the positive effect of
pair programming on knowledge sharing during program
design.

However some negative effects of pair programming
were also reported. Nawrocki and Wokciechowski [17]
mentioned that pairs spend nearly twice as much total
effort than individual programmers. Beck [2] stated that
pair programming is not suitable for very large projects.

The big difference between game applications and
other applications lies in the fact that game applications
use heavy graphics and users mainly interact with the
graphic interface. However, the actual process is in fact
done behind the interface similar to other applications and
the most part of code in game applications is just like
code in other types of applications, object doing some
processes and communicating with other objects. A lot of
code in a game is more than simple functions that return a
value or set states.

Game applications are usually implemented by a group
of 4-10 programmers [13]. The collaboration in game
design and development is also an important issue
because it affects the quality of the games and production
time [8]. However, the overhead communication in a
team of more than 4 people was reported to be high [19].
With pair programming, it can be reduced greatly [2].

Game applications are often of medium-size in term of
number of lines of code. According to the characteristics
of pair programming [2], the game applications may be
suitable to apply pair programming due to their sizes.

In industry, there are some game companies applying
this methodology, such as Coyote Development [7] and
Sammy Studios [1].

2.2. Test-Driven Development

In the traditional waterfall approach, test definitions
are developed independently from code according to the
requirements. Automated tests may be done
independently of coding. The number of tests passing vs
the total number of tests is a metric to show the quality of
the products. In test-driven approach, programmers write
the tests for the new functionality before writing the code.
At first, the test case fails since the corresponding code
has yet to be written. Then the code for the actual
functionality is written and tested till the test case has

been passed. This process continues until all
functionalities have been completed.

In general, the test-driven approach means that the
system developed does exactly what it needs to do. It is
easy to modify to make it do more things in the future as
they are driven out by more tests. In test-driven, once the
tests are passed, they become regression tests for ongoing
development, which improves the code quality.

Muller and Hagner [16] conducted an experiment in
which they divided the participants into two groups, one
with test-driven development, and the other with
traditional programming. Although they found no obvious
discrepancies between two groups in overall development
time and quality of the code, the test-driven group had
significant fewer errors when the code was reused. Test-
driven is more than unit testing, since it helps keeping the
design simple from the initial stage and easy to change.

Game is composed of a set of rules. By knowing the
rules, we know what game we are playing and how to
implement the game. The game application needs to
follow those rules. In fact, game designers are
formulizing the rules, changing the rules and testing the
rules. Test-driven approach can help game developers to
efficiently complete their tasks.

Using test-driven can avoid the effort spent on the un-
requested functionality of games, since the code written
should be no more than necessary to pass the tests. The
tests, in effect, are the functional requirements
specification of the game applications; therefore, they
ensure that the requirements and only the requirements
are developed. This also increases the understanding of
the functionality of games to be implemented.

One of the advantages of test-driven is that it makes
sure that each functionality has its associated test and that
everything that we want the software to do is documented
as a test. Therefore, test-driven provides a way to
document the game application since programmers are
reluctant to do so during coding.

On the other hand, in order to achieve the robustness
of the game application, automated tests are needed. Test-
driven performs such task. It is important that tests are
automated, which means that they could be run
automatically without user interactions. That makes it
easier to always run all the tests, which prevent game
programmers from unintentionally break any already
existing functionality when adding a new functionality to
the game application.

Although testing user interface of game applications is
a hard job, it is still possible to use test-driven with user
interface implementation [11] [14].

2.3. Refactoring

Refactoring means consistently cleaning and
improving the code which makes code easier to maintain

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

and extend, but without changing its observable behavior.
It is a technique used to improve the design of the
existing code. On the other hand, if the code is well
structured, it is easy and efficient for programmers to add
new functionality to it.

Refactoring might introduce new bugs, however, unit
testing, which is part of test-driven approach, helps
ensure that refactored code does not break existing
functionality and introduce bugs.

Applying refactoring during the game development
process can enhance the game quality. Since game
applications take much time to compile and run,
refactoring becomes quite necessary since high quality of
code take less time to run. Time spent on the refactoring
may shorten the entire game development time as well
since refactoring makes debugging easier and makes
adding new functionality faster.

3. Case Study Design

The case study design is based on the following
hypothesis: “XP practices, such as pair programming,
test-driven and refactoring are not applicable to game
development” which is falsified by the case study. The
rest of this section presents case study design in detail.

3.1. Participants

Eight undergraduate students from the Department of
Computer Science at Wayne State University, and four
undergraduate students from the Department of Computer
Science at Algoma University College, who were taking
software engineering courses, are classified as novice
programmers. They voluntarily joined the case study as a
part of their course projects. They had small-to-
intermediate programming experience with C++, and
Java, but they had never used pair programming or test-
driven and refactoring practices. Paired students were
from Wayne State University and learned C++ in
introduction courses, and those individuals were from
Algoma University College and took Java in introduction
courses. All 12 students are advanced students in the
classes. We randomly chose students to form the pairs.
The pairs worked with test-driven and refactoring
practices. The remaining four individuals worked alone
using traditional waterfall-like approach.

3.2. Material

The task to be solved in the case study is to implement
an application which records the scores for bowling
games. All the participants worked on the same task. Our
novice programmers were not originally familiar with the
bowling domain.

3.3. Recording Method

In order to trace the development process and the
time spent, we used free software “Microsoft Producer”
[15], to capture computer screens and to record voice at
the same time when programmers conduct their work.
The recorded media files were mainly used for cognitive
research, and partial results have been published in [24].

3.4. Procedures

Our case study was carried out in 2005 and 2006.
Two pairs did their work in February, 2005 and two pairs
completed their task in June, 2005. The four individuals
finished their work in February, 2006. All pairs were
asked to use Eclipse, an open source Java compiler, and
JUnit. Two individuals chose Eclipse and another two
used TextPad with JDK.

We performed short training sessions prior to the case
study for pairs because programmers were new to pair
programming, test-driven development and refactoring.
During the training session, the paired programmers were
provided with reading materials on pair programming,
test-driven, and refactoring techniques, and they were
asked to implement a simple program using the Eclipse
environment and JUnit in order to understand the
procedure and to be familiar with the tools.

The four individuals were advised to use traditional
waterfall-like development process. All of pairs and
individuals were asked to write a high quality program in
an efficient way.

One of the authors acted as the mentor, who monitored
the programming process for all the pairs and the
individuals. Programmers were provided with a list of
bowling scoring rules. After the case study, programmer
pairs were asked to conduct a survey.

4. Results and Discussion

In this section, we summarize the case study results
and the survey results.

4.1. Results of the Case Study

Table 1 summarizes the characteristics of the
developed programs by each pair and individual and the
actual time used. Table 2 contains the summery results
for all the four pairs and four individuals. Please note that
the times listed in Table 1 and Table 2 are the duration
that the pairs and individuals spent on the task, therefore
the “total time cost” for a pair is twice as much as the
time indicated. Therefore, it is slightly bigger than the
total time cost spent by individuals who worked on the
same task. Please also note that first individual lost the
development direction twice and gave up all the previous

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

code and that is why he took much longer time. On the
other hand, programmer pairs worked on the tasks for a
significantly shorter duration than individual
programmers. The average time spent by the pairs is 216
minutes, while as that for individuals is 418 minutes (as

Table 2). This indicates the pairing may reduce the time
of game development, which is consistent with the result
for pair programming in other software development
reported [6, 23].

Table1. Main characteristics of the programs developed by each pair and individual

Items Pair 1 Pair 2 Pair 3 Pair 4 Ind. 1 Ind. 2 Ind. 3 Ind. 4
LOC 360 249 289 269 195 215 150 162
Number of class members 24 28 26 27 18 40 1 2
Number of classes 4 4 3 2 2 4 1 1
Number of classed created in first half of code 3 2 2 2 2 4 1 1
Number of refactoring 1 2 3 1 0 1 0 0
Numbers of test cases passed 12 12 11 12 11 9 9 10
Time used (minutes) 154 241 260 210 568 268 380 459
LOC written per hour 140 62 67 77 21 48 24 22

The average number of lines of code in the programs
developed by pairs is 291 and that of the programs
written by individuals is 180 (see Table 2). Although the
programs written by the pairs have more lines of code
than those by individuals, LOC (line of code) written per
hour by pairs are much higher than those by individuals,
which indicates the high efficiency of pair programming.
Please notice that two individuals put everything in one
class and that is why their programs have less number of
lines of code than other two individuals. That also
indicates individuals lack the advantage of pairing where
partner could provides some suggestions for the program
design.

Table 2. Summery of data from the programs
developed by pairs and individuals

Pairs Individuals Items
Av. SD Av. SD

LOC 291.7 48.3 180.5 29.8
Number of class members 26.3 1.7 15.2 18.2

Number of classes 3.3 0.96 2 1.4
Number of classed created in

first half of code 2.3 0.5 2 1.4
Number of refactoring 1.8 0.96 0.3 0.5

Numbers of test cases passed 11.8 0.5 9.8 1.0
Time used (minutes) 216.3 46.3 418.8 126.7
LOC written per hour 86.5 36.2 28.8 12.9

A comparison between the final programs constructed
by pairs and those by individual shows that the former
has a better design. Pairs created much more (26 in
average, and almost twice) class members (methods)
than individuals (15 in average) in general (see Table 2),
which indicates modules in pairs’ programs have higher
cohesion. It coincides with the finding of Beck [3] who
stated that codes written with test-driven technique tend
to be more cohesive and less coupled than codes that are
written with traditional approach.

Table 3. Result of quantitative questions
Questions Lowest

(0.0)
Highest
(5.0)

Answ
er(av)

How effective do you think
pair programming was for the
project?

Not
effective

Very
effective

4.5

Did you and your partner
contribute equally to the
project?

Very
unequal

equal 3.5

What is your rating of your
performance?

Did very
little

Did most of
work

4.0

What is your rating of your
partner’s performance?

Did very
little

Did most of
work

4.0

Do you think you learned more
or less than you would have if
you had worked on your own?

Much
less

Much more 3.5

How do you think the time that
you personally spent on this
project compares to the time it
would have taken you to do it
on your own?

Pairs
much
slower

Pairs much
faster

4.0

Would you like to use pair
programming during your
future graduate course project?

Not at all Very like 4.5

How do you like the test-driven
technique?

A little Very much 4.0

How do you like the
refactoring?

A little Very much 3.0

The pairs’ class members are also much more elegant
and readable. Please note second individual created a lot
of unnecessary data members and that is why the
program contains over 40 data members. However, in
general, the individuals created one or two classes at the
beginning and kept them until the end, while pairs
created classes as needed at beginning and they added
one more class in the middle of the process. The program
implemented by our third individual is also hard to read
with less meaningful variable names and the programs
written by pairs have more meaningful variable names,
which proves that with the help of each other,
programmer pairs are able to write higher quality code,
which supports the same finding by [23]. It is interesting

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

to point out that all the paired programmers have less
experience in using Java than those individuals as
mentioned in previous section.

Since our paired programmers were new to the
refactoring technique, they applied it several times at the
beginning of the process by only renaming the variables,
but they did not extract methods or classes [9]. Three
individuals did not clear up the code at all. Using
refactoring certainly contributed to higher quality of code.

In order to test the quality of the programs written by
pairs and individuals, we created 12 black-box test cases
and run them on all the eight programs. The test-cases
can verify how well the requirement specifications were
met by the program and how robust the program is. The
programs written by the pairs pass almost all the 12 test
cases since they were written with test-driven techniques.
The programs by individuals only passed 9 to 11 test
cases.

Since test-driven approach provides a way to do
documentation, programs written by pairs have been
documented once they are completed and therefore they
are easy to understand.

In general, pair programming, test-driven and
refactoring techniques all contribute to the higher quality
of code written by four pairs.

4.2. Survey Results

After completing the case study with pairs, we
conducted a survey on pair programming, test-driven and
refactoring with the survey questions listed in Table 3
and Table 4.

In general, participants thought that pair
programming is an efficient way to develop software. All
were happy about the performance by themselves and
their partners in general; however, they thought the
contributions from the two people in the pair were
slightly different, which is consistent with the two roles
in the pair: one is the driver who controls the keyboard
and the other one is observer performing code review and
helping driver to make decisions [2]. Previous work has
indicated that a role rotation is needed for further
promoting learning between the two programmers in the
pair [21].

Programmers indicated that pair programming can
actually saves time in projects, which corresponds to the
shorter project durations as shown in Table 1 and Table 2.
The four pairs showed that they liked the pair
programming technique more than them programming
alone and it seems that they are willing to apply it in their
future projects.

The pairs seem to prefer pair programming more
than test-driven and refactoring techniques since they
rated test-driven and refactoring with lower scores. Pair
programming is easier to learn and easier to use than the

other two practices. Test-driven technique is new to all
the programmers and is hard to apply. Refactoring is less
favorable since programmers often forgot to use it.

Table 4. Answers of qualitative questions

Questions Answers (the number of answer)
Do you feel like you have
learned anything just by
reading your partner’s
code?

• Yes (7)
• Others: I did not learn too much (1)

What was the biggest
problem you have had to
overcome as a paired
programmer?

• No problem (4)
• Others: The pair should be in good

relation; should know how to choice
different options; should know how
to explain their idea

What do you think is the
biggest concern in pair
programming?

• No problem (4)
• Others: agreement, hard to

cooperate; time conflict; comparable
What are the advantages
of pair programming?

• Improve the quality; more options;
more confidence; find the bugs
quickly; learn from each other

What do you think is the
biggest advantage of test-
driven?

• Features can be tested one by one;
gives us a correct direction;
confidence with previous testing;
increases the correctness

What do you think is the
biggest problem with test-
driven approach?

• No problem (2)
• Others: add amount of code for

testing; not familiar; forget to use it;
hard to find next function

What do you think is the
biggest advantage of
refactoring?

• Code become more and more
readable; make code shorter; makes
code easy maintainable

What do you think is the
biggest problem with
refactoring?

• No problem (1)
• Others: time consuming; could

change the concepts; not familiar

Based on the case study and the survey results, it
seems that pair programming, test-driven and refactoring
can be applied in game development in some aspects
since paired programmers with test-driven and
refactoring produced higher quality results within a
shorter period of time, compared with those working
individually with traditional waterfall-like approach.

Programmers often have resistance to do
documentation when they implement the program.
Documentation increases the understandability of the
programs. With test-driven development, the
documentation is done at the same time, which not only
can reduce the resistance, but also can save
programmers’ time.

4.3. Limitations

While our case study can be replicated, some of its
features may cause some limitations in the result:
• The problem solved by the programmers is a part of a

game application and is relatively simple. Most game
applications have heavy interface. The results may be
different when solving more complex problems.

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

• Our sample size was relatively small with only 4
pairs and 4 individuals.

• The subjects of the case study are classified as novice
programmers in term of XP knowledge. The result
might be different if we conduct the case study on
experienced professional programmers.

5. Conclusions and Future Work

XP practices such as pair programming, test-driven
and refactoring increasingly attract attention. They have
been reported to have benefits in software development.
However, few researches and no experiment have been
done on XP in game development.

We performed a case study with 12 advanced
undergraduate students, who worked as either pairs or
individuals. Paired programmers were also using test-
driven and refactoring techniques, while the four
individuals were applying waterfall-like approach. All
the subjects worked on implementing an application
which scores the Bowling game.

The case study showed that programmer pairs spent
much shorter period of time in completing the task than
individuals. Programmer pairs completed the tasks with
higher quality than individuals since their programs
passed more test cases than those by individuals. The
modules in the programs written by pairs have higher
cohesion and more meaningful variable names. Paired
programmers also wrote much more lines of code per
hour than individuals, showing its efficiency. According
to the survey, all students are satisfied with the
performance by themselves and their partners and they
are willing to use pair programming, test-driven and
refactoring techniques in the future. Based on the case
study and survey results, it seems that some XP practices
may be useful in game development.

For the future work, we would like to replicate this
case study on different sizes of gaming problems in order
to further validate our observation.

6. References

[1] "Sammy Corporation:http://www.sammy.co.jp/
 english/index.html ", 2006.
[2] Beck, K., Extreme Programming Explained,

Maassachusettes, Addison-Wesley, 2000.
[3] Beck, K., Test-Driving development: by Example, Addison

Wesley, 2003.
[4] Canfora, G., Cimitile, A., and Visaggio, C., "Working in

pairs as a means for design knowledge building: an
empirical study", in Proceedings of International Workshop
on Program Comprehension, Bari, Italy, 24-26 June 2004,
pp. 62-69.

[5] Coad, P., LeFebrve, E., and Luca, J., "Feature-driven
development", in Java Modeling in Color with UML,
Prentice Hall, 1999.

[6] Cockburn, A. and Williams, L., "The costs and benefits of
pair programming", in Proceedings of Extreme
Programming and Flexible Processes in Software
Engineering, Cagliari, Italy, June 21-23, 2000, pp. 223-243.

[7] Coyoto Development,
"http://www.coyotedev.freeserve.co.uk/", 2006.

[8] Falstein, N. and Fox, D., "Collaborating in Game Design,
http://www.gamasutra.com/features/19970601/collab_in_g
ame_design.htm", 1997.

[9] Fowler, M., Refactoring: Improving the Design of Existing
Code, Addison-Wesley, 1999.

[10] George, B. and Williams, L., "An initial investigation of
test driven development in industry", in Proceedings of the
2003 ACM Symposium on Applied Computing Melbourne,
Florida, 2003, pp. 1135 - 1139

[11] Hamill, P., Unit Test Frameworks, O'Reilly, 2004.
[12] Llopis, N., "By the Books: Solid Software Engineering for

Games, http://convexhull.com/sweng/GDC2003.html",
2003.

[13] Llopis, N., "Games from within: GDC 2004: Software
Engineering Roundtable Summary,
http://www.gamesfromwithin.com/articles/0403/000015.ht
ml", 2004.

[14] Llopis, N., "Stepping Through the Looking Glass: Test-
Driven Game Development, http://www.gamesfromwithin.

 com/articles/0502/000073.html", 2005.
[15] Microsoft, "Microsoft Producer for Microsoft Office

Powerpoint 2003", http://www.microsoft.com/windows/
 windowsmedia/technologies/producer.aspx,
[16] Muller, M. M. and Hagner, O., "Experiment about test-first

programming", IEE Proceedings Software, vol. 149, no. 5,
October 2002, pp. 131-136.

[17] Nawrocki, J. and Wokciechowski, A., "Experimental
evaluation of pair programming", in Proceedings of
European Software Control and Metrics (Escom), London,
England, April 2001, pp. 269-276.

[18] Nosek, J. T., "The case for collaborative programming",
Communications of the ACM, vol. 41, no. 3, 1998, pp. 105-
108.

[19] Pressman, R., Software Engineering A Practitioner's
Approach, McGraw Hill, 2001.

[20] Schwaber, K. and Beedle, M., Agile Software Development
with SCRUM, Prentice Hall, 2001.

[21] Srikanth, H., Williams, J. G., Wiebe, E., Miller, C., and
Balik, S., "On pair rotation in the computer science course",
in Proceedings of the 17th Conference on Software
Engineering Education and Training, Norfolk, Virginia
March 1-3 2004, pp. 144-149.

[22] Williams, J. G. and UpChirch, R. L., "In support of student
pair-programming", in Proceedings of the 32th SIGCSE
Technical Symposium on Computer Science Education,
Charlotte, NC, February 21-25, 2001, pp. 327 - 331.

[23] Williams, L., Kessler, R., Cuningham, W., and Jeffries, R.,
"Strengthening the case for pair-programming", IEEE
Software July/August 2000, pp. 19-25.

[24] Xu, S. and Rajlich, V., "Dialog-based protocol: an
empirical research method for cognitive activity in
software engineering", in Proceedings of the 4th
ACM/IEEE International Symposium on Empirical
Software Engineering, Noosa Heads, Queensland,
November 17-18, 2005.

Proceedings of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS
International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR’06)
0-7695-2613-6/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

