
Available online at www.sciencedirect.com
www.elsevier.com/locate/infsof

Information and Software Technology 50 (2008) 231–240
Pair programming in software development teams – An empirical
study of its benefits

Tanja Bipp a,1, Andreas Lepper b, Doris Schmedding b,*

a Organizational Psychology, University of Dortmund, Dortmund, Germany
b Department of Computer Science, University of Dortmund, Dortmund, Germany

Received 27 June 2006; received in revised form 24 May 2007; accepted 25 May 2007
Available online 16 June 2007
Abstract

We present the results of an extensive and substantial case study on pair programming, which was carried out in courses for software
development at the University of Dortmund, Germany. Thirteen software development teams with about 100 students took part in the
experiments. The groups were divided into two sets with different working conditions. In one set, the group members worked on their
projects in pairs. Even though the paired teams could only use half of the workstations the teams of individual workers could use, the
paired teams produced nearly as much code as the teams of individual workers at the same time. In addition, the code produced by the
paired teams was easier to read and to understand. This facilitates finding errors and maintenance.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Pair programming; Empirical software engineering; Quality of software
1. Introduction

Pair programming [23] is an important feature of
extreme programming [2]. Our own experiences [3] with
extreme programming with groups of students showed that
students less experienced in software development were
overwhelmed by planning and organizing an extreme pro-
gramming project. In particular, estimating the efforts to
realize a feature and distinguishing between essential and
nice-to-have features were very difficult for the students.
Still, we noticed that the students do benefit from pair pro-
gramming. With this in mind, we decided to continue using
this concept in our courses and to investigate the benefits
and drawbacks of this method in more detail.

In the ‘‘Software-Praktikum’’ course (SoPra) at the Uni-
versity of Dortmund, teams of eight students of computer
science carry out software development projects. They
0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.05.006

* Corresponding author. Tel.: +49 231 755 2436.
E-mail addresses: Tanja.Bipp@udo.edu (T. Bipp), Andreas.Lepper@

udo.edu (A. Lepper), Doris.Schmedding@udo.edu (D. Schmedding).
1 Tel.: +49 231 755 2841.
improve their programming knowledge and study software
engineering by applying software engineering methods in
projects close to reality.

In accordance with Nosek [20], we define a paired team

as a team in which each task of software development is
done simultaneously at one workstation by two members
of the team. There are two roles within a pair [23]: one per-
son is the ‘‘driver’’ who has control of the pencil/mouse/
keyboard and is writing the design or code. The other per-
son, the ‘‘observer’’, continuously and actively examines
the work of the driver – watching for errors, thinking of
alternatives, looking up resources, and considering strate-
gic implications of the work at hand. The observer identi-
fies tactical and strategic deficiencies in the work. The
partners in a pair switch their roles periodically. Addition-
ally, the pairs in the team are put together in new combina-
tions frequently to support the distribution of knowledge in
the whole team.

Distribution of knowledge through the whole team can
be seen as one advantage of this type of team work. If at
least two developers work on every task, a paired team
can compensate for the loss of an expert for a specific task

mailto:Tanja.Bipp@udo.edu
mailto:Andreas.Lepper@ udo.edu
mailto:Andreas.Lepper@ udo.edu
mailto:Doris.Schmedding@udo.edu


232 T. Bipp et al. / Information and Software Technology 50 (2008) 231–240
much more easily. The solutions of the pairs should be bet-
ter than the solutions of individuals because the combined
creativity and experience of both are greater. Pair program-
ming can be seen as a suitable method to ensure quality of
code since the observer does a first code review while the
driver writes. This helps to avoid and detect defects early
on.

Especially in work groups of students, the potential
advantages of working in pairs can be very useful. Within
student groups in SoPra, the programming knowledge is
very heterogeneous. One potential cause is the students’
experience in programming, which in some cases is based
solely on homework in programming courses at the univer-
sity, whereas other students have held jobs as Java pro-
grammers or user interface designers. A software
development method based on ‘‘learning from each other’’
is supposed to be particularly helpful, especially in situa-
tions such as these, where prior knowledge is not
homogeneous.

Working in teams of two instead of utilizing the work
force of two single programmers, the postulated low effi-
ciency of pair programming is one of the most prevailing
counter arguments for this type of work organization. It
is therefore not surprising, that this approach is met with
particularly little acceptance in teams working under great
time pressure.

When two developers work together on one task all the
time, it is generally expected that a team consisting of pairs
needs twice as much time as a team of developers working
on their own. These additional costs must be compared to
the positive effects of pair programming on software qual-
ity, on the climate in the work teams, and a higher level of
knowledge in all team members. Results of current research
studying the costs and benefits of pair programming are
presented in Section 2.

To study the advantages and disadvantages of software
development by teams of pairs, we did some extensive
experiments in the SoPra with a total of 95 students in
summer 2004 and in spring 2005. In Section 3, these stud-
ies are described in detail. Section 4 discusses our experi-
ences on the acceptance of the pair programming concept
and the work results of the groups are compared. In the
conclusion, the relevance of the results for the field of
software engineering and the limitations of our experi-
ment are discussed.

2. Studies with paired teams

A seminal study on pair programming was carried out
by Nosek in 1998 [20]. Subjects of his experiment were 15
full-time system programmers from a program trading firm
working at system maintenance. They were asked to write a
small script. Ten programmers worked in pairs and five of
them worked individually and served as a control group.
When comparing the five solutions of the experimental
group with the five solutions of the control group, Nosek
found that the readability of the code of the pairs and
the functionality of their solutions was significantly higher.
Additionally, the pairs were more confident in their solu-
tions and enjoyed their collaborative problem-solving pro-
cess more. In fact, all groups outperformed the individuals.
Although the average time for completion was 30.20 min
taken by the pairs and 42.60 min taken by the individuals,
the prediction that pairs need less time to solve a problem
was not statistically supported. Prior knowledge of the sys-
tem programmers and quality of the solution (functionality
and readability) were highly correlated for both the exper-
imental and the control group.

Williams et al. [22] carried out an experiment in a senior
software engineering course at the University of Utah. The
students were divided into two groups with nearly equal
levels of prior knowledge: 28 students formed the experi-
mental group of pair programmers, 13 students formed
the control group of individual workers. Whereas Nosek’s
experiment was restricted to comparing coding time and
quality of code, Williams and her coauthor observed the
whole process of software development, analysis, design,
implementation, and test. The students completed four
assignments over a period of six weeks. The authors com-
pare development time, efficiency, and quality of the results
of both groups. The pairs were able to complete their
assignments in 40–50% of time spent on the project by
the single developers. The quality of the products was mea-
sured by counting passed test cases. The four programs of
the pairs passed statistically significant (p < 0.01) more of
the automated post development test cases. Since the pro-
grams of the pairs had the same functionality but less lines
of code compared to the programs of the teams of individ-
ual developers, the authors conclude that the quality of the
code of the pairs is higher. The pairs enjoyed their work
more because they are more confident in their results.
The authors describe their study as quantitative research,
although they mostly only show the mean values of their
data and not the complete set of raw data with additional
descriptive statistics.

McDowell and his coauthors [16,17] received some
interesting quantitative results when studying the effects
of pair programming in a programming course for begin-
ners with 600 participants at the University of California.
They recognized that weaker students in particular benefit
from working in pairs. Less pair programmers quitted the
course and pair programmers consequently passed their
exams more frequently than students of the control group
who had to complete their assignments alone. Also, the
long term influence of pair programming was impressive
as more of the pair programmers took follow-up computer
science courses. In comparison to the other studies, the
sample of this study is quite large. But it concentrates on
programming and does not look at the entire software
development process.

Müller [18] and Padberg [19] also compared the work
of individuals with the work of pairs instead of building
teams of pairs as proposed in extreme programming.
They let 38 students at the University of Karlsruhe write



T. Bipp et al. / Information and Software Technology 50 (2008) 231–240 233
two small programs. On average, the students needed 4 h
to finish the assignment. Half of the students worked in
pairs, the others worked alone. The collected data showed
no correlation between the experience level of a pair and
the implementation time, but a significant correlation
between performance and feel-good factor [19]. The tasks
students had to solve were defined in such a way that
automated test cases could be used to measure the func-
tionality of programs. High quality of a program was
defined by high rate of passed test cases. The average level
of correctness of programs developed by pairs was 29%
higher than of programs developed by single program-
mers [18].

All cited authors, besides Williams et al., restrict their
studies to programming as one task during software devel-
opment. Similar to Williams et al., we want to study the
entire software development process. In every experiment
considered so far, a task was completed by a pair of two
developers or by a single developer who worked alone.
The tasks were small and the requirements were precisely
defined. In these studies, teams of individuals solving one
task together are not compared with teams of pairs switch-
ing partners and the roles within the pairs. In contrast, we
choose a much more realistic experimental setting. Teams
of eight students were asked to solve a complex problem.
Half of the teams worked in pairs, the others were teams
of individual developers.

3. Method

The effects of pair programming were studied in two
experimental settings referred to as Study I and Study II,
respectively [15]. The main focus laid on testing the postu-
lated effects of the work organization type on performance
(paired teams versus teams of individuals). Study I can be
seen as a preliminary study, most of the results presented
in Section 4 were yielded in Study II.

3.1. Setting/task

The ‘‘Software-Praktikum’’ course is obligatory for all
students in the second year of studying computer science
at the University of Dortmund. Aims of the course are
the improvement of programming skills, to apply software
development methods and tools, and to work in a team.

During six weeks, teams of eight students carry out two
projects. Each team of students solves the same tasks. Dur-
ing this time, no other classes are scheduled so that the stu-
dents can work on their projects all day. In Study I, the
students realized a card game. The other task was the man-
agement of a cocktail bar. In Study II, the tasks were a quiz
game and the simulation of the elevators in a multi-story
building, respectively.

We use Java as programming language and UML [5] for
analysis and design. The software development teams fol-
low a process model [13] based on Unified Process [14] in
their projects.
3.2. Subjects

In total, 95 undergraduate computer science students
from the University of Dortmund (2nd/3rd year stu-
dents) participated in our studies, who all had just suc-
cessfully finished their intermediate examination in
software development. All of them received course cred-
its in return for their participation. The students were
randomly sampled to the teams of developers (experi-
mental group as well as control group) to control for
potential biases, like differences in prior programming
experiences.

The present research paper consists of two different
samples. Within Study I (2004), 25 students participated
and were randomly assigned to one of four groups with
six or seven members with different work conditions.
Two teams worked within pairs of two whereas the
remaining students worked as teams of individuals. Most
of the work took place in a laboratory at the University
of Dortmund [4], where the groups could be observed
and video-taped while working on the assigned projects.
Further research questions lead to a second study, which
took place in 2005. Seventy participants were split by
chance into 9 groups of nearly equal size. Five of nine
groups in Study II were asked to work in groups of
two. In support of this concept, special work conditions
for these students were created. Paired teams were only
assigned half the number of workstations of the number
of team members. The other teams were supplied with
the amount of workstations according to their team size
and received no restrictions regarding their work
organization.

3.3. Hypothesis

Based on our experiences within Study I, and taking into
account the existent literature on the effects of pair pro-
gramming, we expected several advantages of pair pro-
gramming concept. First of all, we were interested how
the participants in our studies accepted the concept and
were able to increase their work performance. Our hypoth-
esis regarding acceptance, quality of products, and distri-
bution of work load are:

• Less experienced students benefit from pair program-
ming because they are better integrated in the software
development teams.

• The knowledge about the project and how to do special
subtasks is spread through the whole team.

• Code written by a paired team is better, less complex,
and easier to read because it is written to be understood
by the whole team not only by its single author.

These questions are interesting and new because the
before mentioned studies compare only the performance
of a pair of two developers with an individual worker,
not development teams with complex tasks.



234 T. Bipp et al. / Information and Software Technology 50 (2008) 231–240
3.4. Measures

To test our hypothesis regarding the influence of work
organization on different work performance related vari-
ables, we assessed several covariates and performance
related variables within the study settings:

• programming skills (programming knowledge prior to
SoPra),

• time spent on the task (duration of work periods),
• work behavior,
• general motivation to do work within SoPra, and
• personality factors.

They were either based on observational, objective data
or questionnaires. Subjective constructs were assessed by
different items within questionnaires before the start of
SoPra or while working on the projects. Additionally, par-
ticipants were asked to fill out a final questionnaire after
the completion of the projects to gain information about
the work load distribution within work groups. Answers
on sole items were only aggregated to a mean scale value,
if they reached an acceptable value of reliability (Cron-
bach’s a > .70) [9]).

Participants judged their prior knowledge and program-
ming skills on the basis of six five-point Likert scaled items
(Example: ‘‘I did a lot of programming during my stud-

ies.’’2). Answers were combined to a mean value (answer
range from 1 = little/5 = much knowledge, Cronbach’s
a = 0.82).

To gain information about the time spent on the task by
different work teams, participants were asked to regularly
mark their hours of work on a questionnaire.

To check if the groups really worked within their
assigned work conditions, participants in Study II were
asked about their work behavior (Example: ‘‘Most of the

time we worked in pairs in our group.’’). Four different items
were generated (ratings from 1 = totally disagree to
5 = totally agree) and combined into a common value
(Cronbach’s a = 0.90). Additionally, conclusions from
Study I are based on behavioral observations. In Study
II, the database is supplemented by objective data (number
of logged in persons). Distribution of work was measured by
single items at the end of SoPra (‘‘The work load was not

equally distributed in our group,’’ ‘‘I barely know some parts

of the project.’’). Both items were rated on a five-point Lik-
ert scale, ranging from 1 = totally disagree to 5 = totally
agree. Finally, three items for measuring ambiguity about
the work schedule were included in the final questionnaire
after completing both tasks, from an adapted German ver-
sion [21] of the job ambiguity questionnaire by Breaugh
and Colihan [7]. Three items were rated on a seven-point
Likert scale, ranging from 1 = totally disagree to 7 =
2 Interested readers may obtain a copy of the complete (German)
questionnaire from the authors.
totally agree (Example: ‘‘I knew precisely, in which chrono-

logical order I had to accomplish my work,’’ Cronbach’s
a = 0.73).

To account for the motivation of group members within
SoPra, participants were asked eight different questions to
state their motivation for engaging in activities at the
beginning of the SoPra (Example: ‘‘I am looking forward

to the opportunity to apply in SoPra the knowledge that I

acquired,’’ answering range from 1 to 5, low values = high
willingness to get involved within SoPra). Whereas it was
not possible to combine the answers within Study I into a
reliable scale, Study II yielded an acceptable reliability
value (Cronbach’s a = 0.82). Additionally, participants
responded to a German version of the NEO-FFI [6]. This
test measures the ‘‘Big Five’’ personality factors (neuroti-
cism, extraversion, openness to experience, agreeableness,
and conscientiousness) with 12 items for each construct.

For mainly exploratory reasons, we included at the end
of the SoPra nine items linked to the acceptance or evalu-
ation of the pair programming concepts within the setup of
Study II (‘‘For which task of software development is work-

ing with a partner useful?’’ e.g., program design, product
test).

3.5. Methods

Indicators of task performance were obtained by mea-
suring the amount and quality of the programming assign-
ments. We measured the range and the complexity of the
developed software by means of software metrics. Based
on the metric suits of Chidamber and Kemerer [8], many
software development tools offer facilities to analyse an
object oriented program. The metric tools determine the
depth of inheritance, the coupling between the objects
and their cohesion. Cohesion is the degree to which meth-
ods within a class are related to one another and work
together to provide well-bounded behavior. Additionally,
we asked software development experts to inspect the pro-
grams of the students and judge the quality.

To compare the results within the paired teams and
teams of individuals regarding questionnaire data, we com-
pared values on the individual level (individual workers vs.
pair programmers) or on group level (paired teams vs.
teams of individuals). Therefore, we conducted several t-
tests and ANCOVA’s [12] to account for differences in
mean values between these groups.

3.6. Manipulation checks

Within the two studies, personality, motivation, time
spent on the task, and prior programming knowledge were
tested for differential effects between the groups, based on
their postulated influence on team performance. Despite
the random assignment of students to the different work
conditions, three of these covariates showed significant dif-
ferences in Study I (prior knowledge, personality, and time
spent on the task). Therefore, the results of Study I are not



T. Bipp et al. / Information and Software Technology 50 (2008) 231–240 235
presented in detail within the following sections. Data from
this study were mainly used to generate our research
hypothesis for testing in Study II. Within this study setup,
one group (No. 9) refused to work within the assigned con-
ditions pair programming, so that these seven members are
excluded from the dataset for the following analyses. The
sample size is therefore reduced to 63.
3.6.1. Prior knowledge

By sampling randomly individual students to different
groups of working conditions, we wanted to control for
several potential influences on performance. Based upon
a wide range of programming experiences (besides univer-
sity curriculum), prior knowledge of the students was dis-
tributed heterogeneously within the groups of both
studies. This perception of the SoPra organizer was vali-
dated by questionnaire data. The distribution of the ques-
tionnaire data regarding prior knowledge of the different
development teams in Study II is given in Fig. 1.

The descriptive inspection of self-assessed knowledge
scores (see Boxplot in Fig. 1) leads to the assumption that
prior knowledge is not equally distributed within the devel-
opment teams. In some teams, prior knowledge scatters
more than in others. However, a statistical test of the average
knowledge score in Study II revealed no significant mean dif-
ference between the individuals in the experimental and con-
trol groups (MpairedTeams = 2.58; MteamsOfIndividuals = 2.87;
t(60) = �1.56, p > 0.05). A distorting influence of different
programming experiences on performance between the dif-
ferent development teams can therefore be excluded.
3.6.2. Motivation and personality

Team effectiveness is a broad construct and is therefore
influenced by numerous factors. In addition to external
group

1,00

2,00

3,00

4,00

5,00

pr
io

rk
no

w
nl

ed
ge

excluded from consideration
individual workers
pair programmers

1 2 3 4 5 6 7 8 9

Fig. 1. Prior knowledge within each group in Study II (N = 72).
environmental determinants (like work conditions), a lot
of research has been done on the composition of teams,
taking into account group members abilities, attitudes,
and motivation. How team members think about their
groups and their goals is likely to have an important influ-
ence on team performance. From the observational data
and personal discussions with the team members in Study
I, we know that they were all highly motivated to complete
the assignments. In Study II, the mean values of the ratings
of motivation within our questionnaire were close to each
other in both experimental groups (1.65–2.25). A statistical
test for the difference between these groups revealed no sig-
nificant effect. The members of both teams were compara-
bly motivated to work on the SoPra assignments.

Whereas the comparison of the Big Five personality fac-
tors showed no significant difference between the partici-
pants in Study II, members of the paired teams in Study
scored significantly higher on conscientiousness compared
to members of the groups of individuals. Relating person-
ality to individual and team performance, this factor espe-
cially shows intercorrelations with task relevant output
variables [1]. This finding raised again considerable doubt
about the comparability of the two work setting groups
in Study I.

3.6.3. Hours of work

Working hours are usually not specified within SoPra.
Instead, every team works the amount of time it needs to
fulfill its assignment. Average working time per week var-
ied between 22.7 and 28.8 h between the eight considered
groups of Study II. Groups of pairs worked on average
26.0 h a week, whereas the other teams reached a slightly
reduced average working time (25.7 h). Therefore, on the
mean level the difference between the groups is not statisti-
cally significant. On average, all groups worked about the
same amount of time per week on their projects. A system-
atic influence from time spent on the project on perfor-
mance between the groups can therefore be excluded.

3.6.4. Check experimental setup/work conditions

Within the first study, participants were observed during
their work periods on a regular basis. All groups worked in
accordance to the experimental work concept, working on
their workstations either individually or in twos. In addi-
tion to the programming work, all teams held meetings
with all members on a regular basis. Answering questions
or helping coworkers was not prohibited within the differ-
ent experimental setups. Such helping behavior occurred
under both sets of working conditions. The sample of
Study II consisted of far more persons than Study I, so a
constant observation could not be realized for reasons of
practicability. Instead, the participants were asked about
their working behavior in detail after finishing their pro-
jects by questionnaire.

Fig. 2 shows the mean levels of the four items used in
Study II (higher values indicating an intensified working
in pairs). On average, the members of the paired teams



0

1

2

3

4

5

individual workers pair programmers

M
ea

n
+-

2
SD

Sc
al

e
to

th
e

qu
es

tio
n

w
et

he
r

th
e

gr
ou

p s
w

or
ke

d
in

pa
irs

Fig. 2. Fulfilment of paired-team concept in Study II.

236 T. Bipp et al. / Information and Software Technology 50 (2008) 231–240
reached a value of 4.14, whereas the other groups reached a
mean value of 2.58 or the work behavior. The teams of
individual workers were not forbidden to work with a part-
ner and did so from time to time. In total, the groups
designed to work in pairs realized this working behavior
more often than the other groups (significant mean differ-
ence), which supports a successful manipulation of work
conditions.

Besides the collection of subjective data by question-
naires, the sum of logged in persons within the computer
labs was registered by a Unix script in different time peri-
ods. Fig. 3 displays the difference between the paired teams
0

500

1.000

1.500

2.000

N
um

be
ro

fl
og

ge
d

in
gr

ou
p

m
em

be
rs

at
th

e
di

ffe
re

nt
tim

e
pe

rio
ds

1 2 3 4 5 6 7 8 9
group

excluded from consideration
individual workers
pair programmers

Fig. 3. Number of group members logged in.
(dark shaded) and individual teams (light shaded) clearly.
One of the groups (No. 9) refused to participate in the
study and worked most of the time on their own laptops
without logging in on the provided workstations. Within
subsequent analysis, this group is excluded from further
consideration.
4. Results

Within the following sections, results regarding the
acceptance of the pair programming concept, quality of
developed software and further results regarding question-
naire data are presented.
4.1. Acceptance of pair programming

We have to confess that one of our five groups (chosen
randomly to work as a paired team) refused to work in this
way. Two members in this group (No. 9) expressed great
disaffirmation against pair programming already in the first
questionnaire before the experiment started. Although the
remaining members of this team were absolutely open-
minded about pair programming, we could not include this
group in our experiment. Pair programming in a team can
only be successful if every member of a team accepts this
concept.

The remaining participants in the paired teams were
asked to report their experiences in the experiment using
questionnaires. They judged the role of their partner in
the pair in the following way (see Fig. 4): 90% regarded
his or her partner as very helpful, 50% felt motivated by
their partner, 38% felt hurried by their partner. To feel in
a hurry can positively influence performance if it leads to
a higher concentration on the task. But this feeling can also
influence performance in a negative way, if one feel pressed
and controlled. Some participants expressed definitively
negative feelings. For example, 5% of the pair-program-
mers felt hindered or unsettled by the partner.

Nearly all participants in the paired teams agree to the
statement ‘‘Working in pairs helps to find errors earlier.’’
The statement ‘‘I feel uncomfortable while programming

because my partner is observing me’’ is not well agreed, also
the statement that the partner is hindering. Answering the
question: ‘‘For which task of software development is work-

ing with a partner useful?,’’ we received the following
answers (The students were allowed to give more than
one answer.): 83% suggested working with a partner when
looking for errors, 79% for program design, 73% for GUI
design and two-third for the development of UML dia-
grams and for complex programming tasks. Most of the
nine proposed tasks of the software development process
were suggested to be done by pairs. The least accepted
was ‘‘every programming task.’’ Only 36% would prefer to
do every programming task with a partner together. In
light of the fact that in complex software development pro-
jects there are a lot of simple programming tasks, which



0

20

40

60

80

100

78,57%

66,67%

35,71%

64,29%
73,81%

42,86%

83,33%

50,0%
42,86%

N=42

Fo
rw

hi
ch

ta
sk

of
so

f tw
ar

e
de

ve
lo

pm
en

t
is

w
or

ki
ng

w
ith

a
p a

rt
ne

ru
se

fu
l?

(%
)

program
design

developm
ent of UM

L
diagram

s

every
program

m
ing

task
com

plex
program

m
ing

task

GUI design
docum

entation
looking

for errors
class

test

product test

Fig. 4. Answers to the question ‘‘For which task is working with a partner
useful?’’.

0,00

1.000,00

2.000,00

3.000,00

4.000,00

5.000,00

6.000,00

LO
C

w
hi

th
ou

tG
U

I

1 2 3 4 5 6 7 8
group

individual workers
pair programmers

Fig. 5. Range of project for each group.

0,00

1.000,00

2.000,00

3.000,00

4.000,00

5.000,00

pair programmersindividual workers

LO
C

 w
hi

th
ou

tG
U

I

Fig. 6. Average range of projects for paired teams and teams of individual
workers, respectively.

T. Bipp et al. / Information and Software Technology 50 (2008) 231–240 237
can easily be done by a single member of the team, this
answering quote seems comprehensible.

In conclusion, we can state that the participants who
had done their project in a paired team had a lot of positive
experiences and suggested it for many tasks of software
development. One group did not accept the pair program-
ming concept as two members were against it. This is a risk
in any real software development setting.

4.2. Quality of software

Besides the effect of programming in paired teams on
quality of the developed software, the influence of the
experimental setup on the distribution of work load within
the groups was examined.

At the end of the SoPra assignment, a review of the
developed programs is done by the organizers of the SoPra
together with the participants. All developed programs
possessed at least the expected functionality and fulfilled
the requirements defined in the description of the problem
which should be solved. The produced solutions differed a
lot in user interface design and in the offered additional
functionality. In both studies, one of the two developed
programs was a game. Some of these games simulates
team-mates with a strong strategy, one game shows all pos-
sible moves to the player, one explains the rules of the game
exceptionally colourful, etc. The differences in functionality
could not be measured objectively. But the organizers of
the lab got the subjective impression that in the second
study, the teams of individuals developed programs with
a little more functionality compared to the paired teams.

Figs. 5–9 show results of the second study achieved by
analyzing the programs of the groups by means of metrics.
The metric ‘‘lines-of-code’’ was used to measure the
amount of program code. A positive correlation between
LOC and the amount of work hours performed has been
proved [10]. The classes of the graphical user interface
(which are normally the largest classes in our projects)
are developed by means of a graphical user interface editor.
Because most lines of code in these classes are generated by
this tool, we ignored these classes when counting the lines.
Also, we did not include empty lines and lines containing
only comments.

One can see in Fig. 5 that the range of the projects scat-
ters between about 2500 lines and about 5000 lines. One
paired team and two teams of individual programmers
have developed large programs with about 5000 lines of
code. Medium scaled projects with about 3500 lines of code
were built by two paired teams and one team of individual



0,00

300,00

600,00

900,00

1.200,00

1.500,00

m
ax

im
um

LC
O

M

1 2 3 4 5 6 7 8
group

individual workers
pair programmers

Fig. 7. Program complexity measured by LCOM.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

m
ax

im
um

R
FC

1 2 3 4 5 6 7 8
group

individual workers
pair programmers

Fig. 8. Program complexity measured by RFC.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

m
ax

im
um

W
M

C

1 2 3 4 5 6 7 8
group

individual workers
pair programmers

Fig. 9. Program complexity measured by WMC.

238 T. Bipp et al. / Information and Software Technology 50 (2008) 231–240
developers. Of each work organization team, one belongs
to the cluster of small projects.

In Fig. 6, one can see that the paired teams produced
only 13.6% less code at half of the workstations than the
teams of individuals in comparable working time. In Study
I, the paired teams were able to develop larger programs
than the two teams of individuals. But we assume that this
was a result of the higher prior knowledge of the students
in these groups.

Other research studies (see Section 2) used test cases
to estimate the quality of the developed software. This
was possible because these projects were small and the
given problems were well specified. But in this way,
you can only measure the functional correctness of a
program, other aspects of quality, for example, usability
of the user interface or the readability of the code, are
not considered.

Since we expect that pair programming positively influ-
ences the quality of the written code, we were very inter-
ested in studying this quality aspect. Especially, we
wanted to analyse the complexity of the program code.
Very complex code is not easy to understand, therefore
maintenance is difficult. Complex code may still contain
errors which had not yet been discovered and which may
occur later when the program is already in use. Well writ-
ten object oriented code is simply structured because using
the object oriented concepts inheritance and polymorphism
leads to clearly structured design [11].

Analysing the produced software by means of metric
tools lead to the result that teams of pairs and teams of
individuals do not use inheritance differently. The metrics
DIT (Depth of Inheritance Tree) and NOC (Number of
Children) do not provide different values for both types
of teams. The metric CBO (Coupling Between Objects)
showed some differences between the teams but we cannot
detect a specific trend for pair programmers. In [15] you
can find further details.

But we were able to detect some difference studying the
complexity of the programs. LCOM (Lack of Cohesion in
Methods) (see Fig. 7), RFC (Response for a Class) (see
Fig. 8), and WMC (Weighted Methods per Class) (see
Fig. 9) differed obviously for both types of teams. A high
LCOM value is an indicator for parts of code in a class
which do not really belong to this class. A high RFC value
serves as indicator to a strong connection of one class to
another class. This has to be avoided because it makes
changes of the program difficult. If you change the class
with the high RFC value, you probably will also have to
change other classes. A high WMC value indicates that a
class cannot be tested easily because the number of paths



T. Bipp et al. / Information and Software Technology 50 (2008) 231–240 239
of control flow is very large. The three teams of individual
workers, team 4, team 6, and team 8, reached high levels of
WMC in contrast to the paired teams (see Fig. 9). Only one
team of individual workers (team 3) had a similar non com-
plex program. Their program was also the smallest
program.

Although the Figs. 8 and 9 show an obvious difference
between the paired teams and the teams of individuals, this
is statistically not significant because the sample is too
small to draw generally applicable conclusions. But we
can state that there is a trend to less complex programs
for paired teams.

We measured the code quality not only by means of met-
rics but we also asked computer science experts, colleagues
at our software engineering department, to judge the quality
of the programs. Based on ‘‘bad code smells’’ defined by
Fowler [11], a catalogue of criterions was established to
guide the software experts. Especially, understandability
and readability achieved by using self-explanatory identifi-
ers and well written comments, for example, were consid-
ered because the meaning of names and comments cannot
be measured by metrics. Each of the software experts
judged two classes of some of the teams not knowing if
the team was a paired team or not. The code of the paired
teams was rated a little bit better. Its readability and under-
standability were somewhat higher.

Since the members of a paired team do not only pro-
gram together with their partner but also carry out every
other task together during the software development, it
would be interesting to compare not only the developed
software of both kinds of teams but also the quality of
the documents and diagrams produced in the early phases
of software development. But since the judgement on the
quality of the software proved to be so complex and diffi-
cult, we abandoned the idea of considering UML diagrams
and documents. The evaluation of diagrams is expected to
be more difficult. We are still working on this topic.

4.3. Further results

We recognized in the laboratory setting of Study I that
teams of individual developers were likely to exclude less
experienced members of their team. Often less able stu-
dents were not integrated in the team work and it was
nearly impossible for them to offer contributions to the
project. The fittest students in the teams of individuals
always solved the most important tasks. The less experi-
enced students did some less critical jobs, like writing an
user manual. From the viewpoint of the team, this orga-
nization of work is efficient and useful. But in a learning
environment, this kind of team organization should be
avoided in order to give every team member the chance
to learn new topics.

To set these observations on a solid empirical basis, we
included in Study II several items tapping into this aspect
of work or learning behavior. By testing for differences
between the two work conditions, significant results were
found between participants working in paired teams on
two items. Judging the statement ‘‘The work load was not

equally distributed in our group,’’ the students within
the groups of two settings scored significantly lower
(MpairedTeams = 2.68) than the members of the other groups
(MteamOfIndividuals = 3.23; t-test: t(59) = �2.19, p = 0.03).
Participants in paired settings had been more able to
achieve an even distribution of work load between their
individual group members.

Results for answers on the statement ‘‘I barely know

some parts of the project’’ are comparable. Here, the teams
of individuals showed a significant higher agreement com-
pared to the paired teams members (MpairedTeams = 2.26;
MteamOfIndividuals = 3.17; t-test: t(59) = �3.35, p = 0.01).
The distribution of knowledge about different project
aspects was improved by working in paired teams. Support
for this effect was also found within questionnaire data of
Study I. Independent from prior programming knowledge,
members of the paired teams reported a lower uncertainty
about how to schedule their work within SoPra. Partners
within the pair settings were very clear about the necessary
steps in the projects or when to apply which work proce-
dure (MpairedTeams = 5.64). In comparison, members of
the individual teams reported significant lower values, even
independent from their prior experiences in programming
(MteamsOfIndividuals = 5.15; ANCOVA: F(1,22) = 6.19,
p < 0.05).

5. Conclusion and limitations

Why do eight developers at four workstations not need
twice as much work time as eight developers at eight work-
stations to solve the same problem? We conclude from our
inquiries and our observations that teams working in pairs
with changing partners benefit a lot from this type of work
organization because they gain more knowledge of all parts
of the project. The paired teams use their work time more
efficiently because they concentrate much more on their
task. If someone needs help, the partner is always nearby
to answer questions. During the development of complex
software much time is spent in finding errors. Testing and
bug fixing in particular is done much easier by two develop-
ers than by one.

All pair programmers assess working together with a
partner as very positive. Pair programmers take advantage
of the higher quality of their code which is less complex,
better to read, and easier to understand. This supports find-
ing errors faster.

Most of the pair programmers underline the benefit of
pair programming in the questionnaires, while only few
of the students who worked in a paired team gave negative
comments. One SoPra team was excluded from the exper-
iment because two members in this team refused to work
with a partner. If working as a paired team is not accepted
by all team members, it cannot be realized.

We cannot yet answer the exciting question of whether
doing every task of software development together with a



240 T. Bipp et al. / Information and Software Technology 50 (2008) 231–240
partner leads to more knowledge about software develop-
ment. The self-evaluation on the newly acquired knowledge
by the participants does not show a statistically significant
difference between students who worked with a partner and
students who worked alone. All participants of both
groups declare to have learned much or very much. How-
ever, the pair programmers in our study stated that they
gained more knowledge on the entire project they have
done together with their team mates. Therefore, it can be
concluded that pair programmers have learned more about
software development.

On the one hand, the loss of efficiency resulting from
pair programming is very small and this is the only disad-
vantage we have seen. On the other hand, the quality of the
developed code is higher and the integration of less experi-
enced team members is easier. Therefore, we emphatically
recommend working in pairs for teams of students.

The experiments at the university offered the opportu-
nity to compare two different kinds of teamwork for soft-
ware development under controlled conditions with a
number of teams who did the same projects at the same
time. Nevertheless, our study setup and conclusions from
it have to keep in mind several limitations. Although we
conducted our studies within a lab setup, we were not able
to control all aspects of work conditions within the six
weeks lasting course. Violations to our intended work set-
tings (e.g., like working in teams for teams of paired work-
ers or working by two within teams of individuals) can
therefore be critical for making causal interpretations of
our results. We did not see clear signs of diffusion or imita-
tion of the paired team concept within the control groups,
but all students saw each other on a regular basis during
the study, so that an exchange of ideas and experiences
probably took place. To gain clearer results, future studies
could, for example, realize a diversified experimental setup
(e.g., with waiting control groups) to account for these
kinds of problems. Furthermore, we analysed data mainly
on the basis of individual statements on the group level. To
gain clearer results, future research should concentrate on
the possibility doing hierarchical analyses for testing for
effects, not only taking into account results at the group
but also individual level.

A next step should be to test whether our results can be
transferred to industrial software development settings.
Limitations to expand our results can obviously be seen
within our experimental lab settings, the use of a student
sample, a small number of groups and the used tasks which
all limit the external validity of our results. Although the
integration of the study within a mandatory course within
the study program offered us the opportunity to test our
hypotheses on a heterogeneous sample (not only volun-
teers), the experiences show that some people refused to
cooperate within the lab setup or the pair programming
concept. To specify the causes for this behavior and to rep-
licate our results with different and larger samples and
varying operationalization methods of core constructs
should be the next steps within our line of research to gen-
erate reliable results.
References

[1] M.R. Barrick, G.L. Stewart, M.J. Neubert, M.K. Mount, Relating
member ability and personality to work-team processes and team
effectiveness, Journal of Applied Psychology 83 (3) (1998) 377–391.

[2] K. Beck, Extreme Programming Explained: Embrace Chance, Addi-
son Wesley, 2000.

[3] I. Beckmann, D. Schmedding, Experimente mit XP in der Lehre, GI
Jahrestagung 2 (2004) 122–126 (in German).

[4] T. Bipp, J.Hüvelmeyer, Das INWIDA Labor, Available from:
<http://www.inwida.uni-dortmund.de> (in German).

[5] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language – User Guide, Addison Wesley, Reading, MA, 1999.

[6] P. Borkenau, F. Ostendorf, NEO-Fünf-Faktoren Inventar, Hand-
anweisung, Hogrefe Verlag für Psychologie, 1993 (in German).

[7] J.A. Breaugh, J.P. Colihan, Measuring facets of job ambiguity:
construct validity evidence, Journal of Applied Psychology 79 (1994)
191–202.

[8] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented
design, IEEE Transactions on Software Engineering 20 (6) (1994)
476–493.

[9] L.J. Cronbach, Coefficient alpha and the internal structure of tests,
Psychometrika 16 (1951) 297–334.

[10] N.E. Fenton, S.L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, International Thomson Computer Press, 1996.

[11] M. Fowler, Refactoring – Improving the Design of Existing Code,
Addison Wesley, 2000.

[12] W. Hays, Statistics, Harcourt Brace, Orlando, FL, 1993.
[13] C. Kopka, D. Schmedding, J. Schröder, Der Unified Process im

Grundstudium – Didaktische Konzeption, von Lernmodulen und
Erfahrungen, DeLFI 2004, pp. 127–138 (in German).

[14] P. Kruchten, The Rational Unified Process: An Introduction,
Addison Wesley, 1999.

[15] A. Lepper, Eine empirische Studie über Paararbeit in der Software-
technik, Master thesis at the department of computer science at the
University of Dortmund, 2005 (in German).

[16] C. McDowell, L. Werner, H. Bulock, J. Fernald, The effects of Pair-
programming on performance in an introductory programming
course.ACM SIGCSE Bulletin, in: Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education, vol. 34, No. 1
(2002).

[17] C. McDowell, L. Werner, H. Bulock, J. Fernald, The impact of pair
programming on student performance, perception and persistence, in:
Proceedings of the 25th International Conference on Software
Engineering, Portland, Oregon, 2003, 602–607.

[18] M.M. Müller, Two controlled experiments concerning the compar-
ison of pair programming to peer review, The Journal of Systems and
Software 78 (2005) 166–179.

[19] M.M. Müller, F. Padberg, An empirical study about the feelgood
factor in pair programming, In International Symposium on Software
Metrics, Chicago, September 2004.

[20] J.T. Nosek, The case for collaborative programming, Communica-
tions of the ACM 41 (3) (1998).

[21] K.-H. Schmidt, S. Hollmann, Eine deutschsprachige Skala zur
Messung verschiedener Ambiguitätsfacetten bei der Arbeit, Diagnos-
tica, 44, 1998, pp. 21–29 (in German).

[22] L. Williams, R.R. Kessler, W. Cunningham, R. Jeffries, Strengthening
the Case for Pair-Programming, IEEE Software, July/August 2000.

[23] L. Williams, R.R. Kessler, Pair Programming Illuminated, Addison
Wesley, 2003.

http://www.inwida.uni-dortmund.de

	Pair programming in software development teams - An empirical study of its benefits
	Introduction
	Studies with paired teams
	Method
	Setting/task
	Subjects
	Hypothesis
	Measures
	Methods
	Manipulation checks
	Prior knowledge
	Motivation and personality
	Hours of work
	Check experimental setup/work conditions


	Results
	Acceptance of pair programming
	Quality of software
	Further results

	Conclusion and limitations
	References


