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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Abstract
Latency, not unlike death and taxes, is a certainty of life that 
modern man has yet to avoid. Computer scientists and software 
engineers across industries and technologies devote countless 
resources to reducing latency—the time delay between an action 
and a response—in nearly every imaginable application. 

Latency-based technological limitations are universally endured, but also present 
an opportunity for transformative improvement. Managing latency is vital to 
mission-critical applications such as power grid management, medical 
records, and financial transactions. It is equally important to business-critical 
applications such as retail purchasing, online gaming, communications, mobile 
experiences, entertainment, and literally any technology that relies on data 
access and transfer.

With lives and profits at stake, solutions for reducing latency come in many 
forms and are applied at all levels from the physical layer up to the application. 
This paper analyzes the most common causes of latency as they impact pro-
cessing of analytical workloads, and it discusses several of the most frequently 
implemented solutions. As data demands grow universally, it is more important 
than ever to address the “false” latency floor that is preventing engineers from 
even approaching the true, physical latency limit—the point at which it is impossi-
ble to reduce lag time due to raw physical limitations. 

Read on to learn about Molecula’s novel approach to data access which breaks 
through the latency floor created by the zoo of data processing abstractions so 
common today. Molecula’s technology reduces complexity and compresses days, 
hours, or minutes worth of processing time into milliseconds.

Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized
information and any processing which must be done at the endpoints such as simply
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various
routers, so it is actually a longer distance than the straight line distance between any two
locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

Receive DataTransmit Data End-User

Physical Link

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can
tackle. BI, edge computing, artificial intelligence, and ML
applications all have specific data access requirements. For 
example, you can't drive a friendly user interface with a system
where the latency floor is measured in seconds. You can't power a
self-driving car with a system where the latency floor is in the 100s
of milliseconds. You can't go to space on a system where the
 latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

Figure 3. Line-of-sight earth surface visibility for low-earth vs. Geostationary orbits.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

Figure 4. When scaling out, the latency limit consistently increases, 
while the latency floor decreases up to a point, but ultimately trends upward. 

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the trade-off is a loss of data resolution so granular views are not accessible. 
Technically, the latency is still there, it is just moved to a new location within the process. The 
typical life cycle begins with a business unit or data science department  making a request to IT 
for some data set that is queryable in a certain way. IT builds a processing pipeline to get the data 
into a cube or whatever form the business is asking for, and then runs it. In savvy organizations 
this whole process might take just 12 hours. In a worse case it might take months and rack up 
millions of dollars in costs. In either case, there is still an unacceptable amount of latency in 
accessing the data—and a significant cost in personnel and infrastructure associated with the 
whole process.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

WHITE PAPER / 11

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies and IoT applications that consume unlimited amounts of data and need it faster 
than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 

finding faster ways to ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source 
data. Molecula extracts features from source data without creating copies or moving the data 
itself, providing scale, performance, and increased control. All of this translates into faster data, 
more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula’s feature store is an overlay to conventional big data systems that automatically 

extracts features, not data, from each of the underlying data sources or data lakes and stores 

them into one centralized access point. The feature store maintains up-to-the-millisecond data 

updates with little to no upfront data preparation. This is achieved by reducing the dimensionality 

of the original data, effectively collapsing conventional data models (such as relational or star 

schemas) into a highly-optimized format that is natively predisposed for machine-scale analytics 

and AI.

When Molecula ingests data it splits the values and the features apart, but, crucially, it retains 
both of them, so it can respond to queries while also being able to recreate the original data set 
from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is 
broken down by each unique value within the column, then the values themselves are separated 
from the data describing which records actually have those values.

This way of breaking down the data has many advantages for analytical workloads and data 
storage in general. The obvious advantages are extensions of the columnar advantages. It is only 
necessary to read the data needed for a particular query. For columnar data stores, only data for 
the particular columns relevant to the query rather than the whole table is scanned. In Molecula, 
only data relevant to the particular features of the particular columns relevant to the query is 
scanned.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.
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Figure 5. Comparison of traditional database formats versus 
Molecula’s feature-oriented approach to breaking down and storing data
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 
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might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

In columnar stores, data in columns can often be compressed more efficiently because the 

values are closely related. With Molecula, the majority of the data becomes a feature map that 

describes which records have a particular feature. These feature maps remain independent of 

the features themselves which are compressed using the same highly optimized approach (a 

variant of Roaring Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can 

read and write features without decompressing. They are a type of succinct data structure.

This feature extraction approach has some other benefits as well. When breaking data out by 
feature, it becomes very natural to efficiently represent “set” types where a record can have 
multiple features for a particular feature. Traditional databases either have to use multiple tables 
and join across them or use special column types which aren't represented as efficiently. In this 
way, Molecula can actually simplify the database schema while simultaneously storing the data 
more efficiently.

Separating access to a field into a “feature map” and “features” as Molecula does is unique. Since 
the data is broken out by feature, it’s possible to share the pattern of associations between 
records and features without sharing the values themselves (or vice-versa). This is a form of 
anonymization that can happen completely automatically with no overhead because a user is 
simply choosing not to expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x 
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x 
reduction in data footprint, a 1000x improvement in performance, and the ability to do all of this 
without the typical pre-aggregation or pre-processing.

https://www.molecula.com/


Conclusion
Data scientists and engineers around the world employ numerous strategies to reduce 

latency with varying degrees of success. Delivering vast historical data sets or extensive 

volumes of streaming data stored across multiple silos and geographies in real time is only 

fundamentally limited by the speed of light. However, in reality, we’re not even close to 

worrying about reaching the physical limitations. The vast majority of query latency is 

bound up in the software reading and processing data. The huge gap between the limita-

tions of physics and the current state-of-the-art is a world-changing opportunity.

Scaling up and scaling out are important parts of a solution, but they're not the ultimate 

answer, as both raise the latency limit, and neither create new efficiency—they push the 

problem down the road. Pre-processing is an entirely false path. Each instance of pre-pro-

cessing solves a particular set of problems while creating whole new realms of inefficiency. 

We have to keep getting smarter.

Molecula is a fundamental advancement in low-latency data queries because of the way 

the data is stored and processed. Many systems have solved the problem of scale, but 

Molecu-la lowers the latency floor to the point that completely new use cases are now 

possible—real-time analysis and data at the speed of thought. Molecula’s  unique ability to 

dimensionally reduce data and store it in a feature store allows organizations to securely 

access, query and improve control over data at unprecedented speeds with a fraction of 

the hardware, eliminating the need to pre-aggregate, federate, copy, cache or move the 

original data.

Software engineers, data engineers, and machine learning engineers who are tasked with 

delivering data access to people or applications that need to query, segment, analyze, 

and make decisions on data in real time all stand to benefit from Molecula’s technology.

Breaking through the latency floor is mining for time. Every moment that is recaptured by 

reduced latency can be correlated with increased value, whether it is a better user 

experience, a more accurate prediction, a real-time report, or a research breakthrough. 

The new value to be created is only limited by the laws of the universe.

Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.
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Latency: An Overview
Latency, in brief, is the time delay between an action and a response. For example, the average 
person experiences latency every time they click or tap a website link and wait for the requested 
page to begin rendering on screen. If the page takes a long time to load, it may be due to high 
network latency, but it is also likely due to constrained throughput. It is worthwhile to understand 
the relationship between these two concepts. Latency is response time, whereas throughput is 
how much of something you can get per unit of time. They are both important concepts, and data 
scientists and engineers often have to consider tradeoffs between them when solving the chal-
lenge of accessing and delivering large amounts of data in a short amount of time.

Figure 1 above demonstrates combinations along the continuums of latency and throughput with 
tangible examples. While throughput can nearly always be increased (adding more cables, more 
dumptrucks, more ponies, etc.), latency has always had a hard floor; dump trucks and ponies can 
only go so fast. The “latency limit” refers to the point at which it is impossible to reduce task time 
due to raw physical limitations.

The most fundamental limit to latency is the speed of light. A web page hosted in New York will 
never be served to a browser in San Francisco in less than about 28 milliseconds. They’re about 
2,500 miles apart, the speed of light is roughly 670 million miles per hour, and so the “light distance” 
between them is 14 milliseconds. Since the request must go out and the response be returned, the 
total time is 28ms—also known as the round trip time or RTT.

In practice, the RTT will be even larger due a variety of factors such as:

1. Delays caused by routers and other networking equipment processing the packetized 
information and any processing which must be done at the endpoints such as simply 
serializing the information and sending over the network interface.

2. The path the information traverses must weave through physical cables connecting various  
routers, so it is actually a longer distance than the straight line distance between any two  

 locations.

3. The speed of light within a transmission medium is less than the speed of light in a vacuum.  
For example, optical fiber and copper result in roughly 30% lower speed.

Even after taking the above into account, the actual latency of serving a web page is usually 
significantly larger than the full RTT because a Transmission Control Protocol (TCP)—and proba-
bly a Transport Layer Security (TLS)—connection must both be established. This can require 
multiple round trips to execute the various handshakes involved at the protocol level.

Layers of Latency
In addition to the fundamental physical causes of latency, there are obstacles to faster response 
times at every other layer of the network. Modern networks universally utilize the Open Systems 
Interconnection model (OSI model) seven layer approach where each layer builds new abstrac-
tions upon the last, and each has different responsibilities. The typical layer stack includes: 
physical, data link, network, transport, session, presentation, and application layers.

While there are many reasons this layered approach has been so universally adopted, each and 
every layer of abstraction incurs some cost and contributes to latency. One case in point is TCP 
and TLS, mentioned briefly above, which operate at the transport and session layers respective-
ly. Among other things, TCP enables reliable, in-order delivery of data while TLS provides securi-
ty by encrypting traffic. Both protocols incur latency costs in the form of extra processing at the 
endpoints, extra data for headers, and, most impactfully, additional round trips across the 
network.

All this being said, the most grievous offender in terms of added latency is often not in the 
network. Many times, processing at the endpoint of a request overwhelms other sources of 
latency to an almost comical degree. This is particularly true in the case of analytical data 
processing where queries routinely take hours or even days.

Who Feels the Greatest Latency Pain?
A growing number of users find themselves needing access to data that is so large, so rapidly 
changing, and so complex that it’s difficult or impossible to feasibly utilize. When latency is an 
issue for all the reasons previously discussed, imagine how the problem is compounded by 
massive, exponentially-growing datasets. Analysis of large datasets, whether for fraud detec-
tion, marketing strategies, business intelligence, scientific research, risk calculation, or any 
number of other applications is limited not by human intelligence nor potential for incredible 
benefit, but by a struggle for affordable, real-time data access. 

Traditional relational databases are infamous for taking hours or even days to process a single 
query of a large dataset. In addition to being frustrating and expensive, by the time query 
results come in, the data is often out of date.

The time and resources it takes to perform actions based 
on query results such as a seemingly-simple follow-on 
query can make the payoff not worth the expense—if it’s 
even technically possible at all. 

Researchers, marketers, data scientists, business analysts, and AI are all made markedly more 
effective by reducing data access latency. 

Estimating the Latency Floor
Latency Limit vs. Latency Floor
Before diving into measuring latency with respect to analytical data access, it is helpful to think of 
latency in two parts. The first part is the latency that is dictated by physics—the speed of light and 
the distance separating two communicating entities will apply equally to all systems. We'll call this 
the latency limit. The second part of latency is that which is inherent to a particular system, but 
not bound by the laws of physics.

The latency floor of a system is the absolute best latency 
you can expect to achieve when you've fully explored all 
of the parameters of the system. 

This is all very abstract, so let's walk through an example.

An Estimation Example
In order to discuss the latency floor, we must first carefully define a system—which parts are 
fixed, and which parts are the parameters? A system might be defined as running a particular 
query on a particular data set in Elasticsearch v7.6, running on c4.8xlarge instances on AWS, with 
a particular version of the JVM with particular settings, etc. In this case, maybe the only parame-
ter of the system being adjusted is the number of servers it’s using. This parameter can be scaled 
up while the latency is observed until the optimal value is discovered. At some point, adding more 
servers won’t improve latency, resulting in the latency floor for this system. The definition of the 
“system” could then be relaxed to allow tuning of JVM settings or the Elasticsearch version, and 
ultimately the whole parameter space can be explored (in theory) to find the latency floor. As long 
as the physical distance between the client querying and the ES cluster serving the query remains 
largely the same, the latency limit won’t really change.

For a narrowly defined system it's easy to determine the latency floor, but in practice the systems 
we're interested in are much less constrained. If you work for a large company that's looking to 
start a new data analytics project, your parameter space could be huge. Which cloud vendor will 
you choose? Will you use a managed service or deploy a traditional database? If you deploy it 
yourself, what instance types will you choose? One method of estimating the latency floor for a 
broadly defined system would be to apply reasoning from the basic capabilities of the system’s 
components. This would give a lower bound on what the latency floor could be. For example, you 

DATA AT THE SPEED OF THOUGHT™
Molecula is an enterprise feature store that simplifies, accelerates, and controls big data access to power machine-scale 
analytics and AI. Crunch for Yourself

  |  www.molecula.com

might reasonably assume that your system will be composed of servers which are connected by a 
network which has a certain amount of throughput and average latency between nodes. Each 
server could have a CPU which runs at a particular clock frequency and can process a certain 
number of instructions per cycle. Each server has some number of memory channels, each of 
which support a certain data rate.

Your data set will have a certain size, and you can make some assumptions about how much of it 
your queries will have to scan on average. If we assume perfect sharding, the query will have to be 
fanned out to every node, so we can figure out the latency cost of doing this and getting the 
results back. We can reason about how much of the data set actually needs to be read to process 
the query, and taking the aggregate memory (or disk) bandwidth across the cluster, reason about 
how long it will take to do that. We can further consider how much processing needs to be done 
on the data which is read, particularly if there are O(n*log(n)) operations like sorting, or quadratic 
operations, and get an estimate of how long this will take based on ops per clock and number of 
processors available. If the result set is expected to be large, we can use the network throughput 
to estimate how long it will take to deliver back to the client.

This type of analysis can deliver a very optimistic lower bound on the latency floor, but it still has 
very little to do with the latency limit. The laws of physics are not limiting latency at this point, as it 
is being driven by the assumptions we’re making about what hardware we have access to and, 
more importantly, how the data has to be processed to serve the queries.

It's pretty important to have some understanding of the latency floor for a system which you are 
evaluating. These days, many systems scale well, but scalability is usually talking about a 
throughput ceiling. 

The latency floor directly limits what kinds of use cases you can 
tackle—you can't drive a friendly user interface with a system 
where the latency floor is measured in seconds. 

You can't power a self-driving car with a system where the latency 
floor is in the 100s of milliseconds. You can't go to space on a 
system where the latency floor is in the 10s of milliseconds.

Latency-Reduction Strategies
Given the analysis above, there are a number of ways that we could go about trying to reduce the 
latency floor and open up new use cases.

Reduce Physical Friction
As previously discussed, physical distance connected by physical wires bears inherent friction. 
What if the wires were eliminated? It would be relatively cheap to blanket the majority of Earth’s 
population with high-bandwidth internet access using just a few geostationary satellites. Satellite 
internet services are in fact used in rural areas and other conventionally inaccessible locations. 
While satellite access eliminates physical wires, the altitude of geostationary orbit (over 22,000 
miles) means that the absolute floor for any communication is nearly half a second due to the 
fact that a single round trip between two Earth-based entities must go up to the satellite and back 
down twice.

Only recently have space launches become affordable enough to allow us to consider large 
constellations of low-Earth orbit satellites to enable low latency satellite internet. These schemes 
are far more complex and require thousands of satellites for full coverage since the motion of the 
satellites over Earth’s surface is quite fast and the amount of the surface that any one satellite 
can “see” is greatly decreased.

The below diagram shows the limited visibility of low Earth orbit vs. geostationary and the relative 
distances involved.

While decreasing the physical latency limit would be helpful, in the realm of analytics and data 
processing, it is a relatively minor gain. It could represent an improvement of a few dozen millisec-
onds to communicate with the other side of the planet, but this is negligible if your query is taking 
an hour. You'll feel that kind of improvement a lot more if your starting point is in the hundreds of 
milliseconds, but we'll have to look at other strategies to get there.

Scale Up
The “scaling up” approach refers to buying a bigger machine to house the database. While buying 
bigger machines definitely improves latency to a point, most demanding applications will hit that 
point sooner if not later. One machine won’t support more than about 100 cores and a few tera-
bytes of memory. Even if the required data set fits in memory, the amount of I/O and processing 
which needs to be done to serve a complex query may still take hours. For example, scaling from a 
machine with one core to a machine with 100 cores would result in a 100x performance increase 
in the absolute best case scenario. 

The 24-hour query would be reduced down to 15 minutes. 
While that’s a big improvement, it is neither sufficient nor 
acceptable to most end users.

Scale Out
If the problem can’t be solved with a bigger machine, another solution would be to spread the 
workload over many machines. This “scaling out” approach works pretty well. As the data is 
spread over more and more machines, each machine only needs to process a smaller chunk of 
data. All these machines can save time since they work in parallel. However, there is overhead 
associated with fanning a request out to many hundreds or thousands of machines, and there is 
overhead on each of those machines in processing the request, returning its results, and eventu-
ally those results need to be aggregated into a single answer.

Now we return back to our fundamental limits. A thousand machines don't fit into a small space; 
there is necessarily distance between them, not to mention networking equipment. For large 
numbers of machines, fanning out a query and reducing the results may involve several network 
hops. Additionally, the more machines that are involved, the greater the chance that some will 
have failures or performance hiccups adding to overall request latency. If one machine fails to 
return results, that portion of the query must be reprocessed.  Sometimes it is necessary to 
speculatively execute a query in multiple places to mitigate failure, but this compounds the prob-
lem by requiring the provisioning of even more hardware.

Scaling out can nearly always provide more throughput, but the effect on latency, even when the 
bulk of the latency is due to data processing, is a bit more subtle. Every time more servers are 
added to the processing of a request, the latency limit gets raised, not lowered, and depending on 
how much processing there is to do, the latency floor will start to increase as well.

It’s worth noting that these solutions are not either/or. Scaling out, for example, will always be a 
part of the solution when it comes to big data. However, more can—and needs—to be done to drive 
down latency.

Pre-Process 
The next often-used strategy is pre-processing the data. This includes techniques such as data 
marts and OLAP cubes. When data is pre-processed, it can be queried and explored very quickly 
as long as the specific needs have been articulated and are supported by the processed version 
of the data set.

Pre-processing typically involves aggregating data. The data set is shrunk to a more manageable 
size, but the tradeoff is a loss of data resolution so granular views are not accessible. Technically, 
the latency is still there, it is just moved to a new location within the process. The typical life cycle 
begins with a business unit making a request to IT for some data set that is queryable in a certain 
way. IT builds a processing pipeline to get the data into a cube or whatever form the business is 
asking for, and then runs it. In savvy organizations this whole process might take just 12 hours. In 
a worse case it might take months and rack up millions of dollars in costs. In either case, there is 
still an unacceptable amount of latency in accessing the data—and a significant cost in personnel 
and infrastructure associated with the whole process.

Get Smart
This strategy has been evolving in parallel with the previously mentioned ones over the past few 
decades. 

“Getting smart” means storing the data in the most efficient 
format possible for the job. One might argue that this is just 
pre-processing, but there are some important differences.

The first difference is that no information is lost; the original data set can be completely recon-
structed. Second, data can be updated in place and in near real time. When updates are made, the 
whole data set does not need to be reprocessed in order to update it. Finally, the data can still be 
queried in a flexible, ad-hoc manner because it is not built specifically for only certain queries as 
it is with pre-processing.

The very beginning of "get smart" goes back to some of the first databases and the notion of 
indexes. In many databases, indexes are created as auxiliary data structures which help to look up 
data for particular purposes quickly. An index might help answer queries with sorted data or 
might avoid additional I/O by storing pointers to certain sections of the data based on the query 
parameters.

Indexes are helpful, but the real performance gains come when you start playing with how the 
data itself is stored. Some of the first columnar databases came along in the early 2000’s. These 
stored data column-by-column instead of row-by-row and were a great advance for analytical 
workloads. Many analytical queries only deal with a subset of the columns in the data, so a colum-
nar format makes it easy to do sequential I/O on only the columns of interest rather than having 
to perform full table scans.

Another benefit of the columnar format is that it tends to put like data with like which makes the 
data far more compressible. Compressed data means even less I/O, and in some cases intelligent 
algorithms can operate on the compressed data without first decompressing it.

Putting it all Together: The Future of Latency
Many of the aforementioned techniques for reducing latency are combined in an effort to drive 
down the latency floor. The latest, more popular big data solutions are using a combination of “get 
smart” with “scale out” techniques to achieve reasonably speedy performance. Columnar formats 
like Parquet and ORC, or even in-memory columnar formats like Arrow can be paired with scale-out 
processing technologies like Apache Spark to yield some formidable data processing power.

All that being said, it is still extremely difficult to push into sub-second latencies for analytical 
queries on huge data sets. Shrinking a query which previously took days down to only a few 
seconds may sound like a successful ending to the latency story. Simply put, it is not. 

New capabilities beget new applications. What was once a single analyst painstakingly building a 
quarterly report for the CFO, tweaking her SQL, letting it run overnight, and praying for correct 
results in the morning, is now an entire marketing department curiously exploring a new 
user-friendly GUI. The interface lets them slice and dice by every conceivable metric, zooming in 
and out on different segments of the population, hunting for those cliques and personas which 
have both the means and the need to buy their product. They can test ideas and assumptions, 
iterate and explore in seconds what previously would have taken days, significant manpower, and 
a cumbersome process.

With big data analytics now being exposed in a UI that's being served to a broader and less tech-
nical audience, a single page might generate dozens of backend queries to populate a dashboard 
with invaluable insights. Suddenly a query returning in seconds feels sluggish—it now needs to be 
milliseconds! 

In addition to the growing population of less technical end-users, there has been an explosion in 
AI technologies that consume unlimited amounts of data and need it faster than ever. 

AI engines have the ability to make use of previously 
unfathomable amounts of data and turn it into favorable 
outcomes in infrastructure, medical, security, marketing, sales, 
and research applications. The future of our success relies on 
finding faster ways of accessing ever greater amounts of data.

Molecula: Breaking the Latency Floor
There is a more efficient way to scale. Molecula breaks through the latency floor with an entirely 
new paradigm for continuous, real-time data analysis. Molecula’s approach to solving latency in 
big data access eliminates the need to pre-aggregate, federate, copy, cache or move source data. 
A bitmap indexing methodology stores a representation of the source data in question, without 
creating copies or moving the data itself, providing scale, performance, and increased control. All 
of this translates into faster data, more data, and easier-to-access data.

Molecula’s Methodology
Molecula stores data in a format that translates the original data source into an abstraction and 
then compresses it. When Molecula ingests data it splits the values and the relationships apart, 
but, crucially, it retains both of them, so it can respond to queries while also being able to recreate 
the original data set from the information it stores. 

In the quest to keep getting smarter, Molecula builds on the best techniques available. Columnar 
storage is smart because it breaks data apart in a way that makes it more amenable to analytical 
workloads. Molecula takes this idea to the extreme. After breaking data out by column, it is broken 
down by each unique value within the column, then the values themselves are separated from the 
data describing which records actually have those values (the "relationships").

This way of breaking down the data has many advantages for analytical workloads and data storage 
in general. The obvious advantages are extensions of the columnar advantages. It is only necessary 
to read the data needed for a particular query. For columnar data stores, only data for the particular 
columns relevant to the query rather than the whole table is scanned. In Molecula, only data relevant 
to the particular values of the particular columns relevant to the query is scanned.

In columnar stores, data in columns can often be compressed more efficiently because the values 
are closely related. With Molecula, the majority of the data is the “relationships” that describe 
which records have a particular value. This data is independent of the values themselves and is all 
represented and compressed using the same highly optimized approach (a variant of Roaring 
Bitmaps). Roaring Bitmaps are a form of homomorphic compression which can be read from and 
written to without decompressing. They are a type of succinct data structure.

This value-oriented representation has some other benefits as well. When breaking data out by 
value, it becomes very natural to efficiently represent “set” types where a record can have multi-
ple values for a particular column. Traditional databases either have to use multiple tables and 
join across them or use special column types which aren't represented as efficiently. In this way, 
Molecula can actually simplify the database schema while simultaneously storing the data more 
efficiently.

Separating access to a field into “keys” and “relationships” as Molecula does is unique. Since the 
data is broken out by value, it’s possible to share the pattern of associations between records and 
values without sharing the values themselves (or vice-versa). This is a form of anonymization that 
can happen completely automatically with no overhead because a user is simply choosing not to 
expose certain parts of the data—it’s already stored separately.

Applications of Molecula
Molecula is primarily focused on opening up new use cases for clients by shattering the latency 
floor compared to legacy systems. However, IT departments using Molecula often find ways to 
replace OLAP Cubes, Analytical Data Lakes, and other redundant systems with Molecula. 

When this happens, cost savings can be between 10-100x
compared to the systems being replaced. This is true for 
the reduction of hardware footprint and for the data move-
ment and network costs that are typically associated with 
information era systems.

For example, in the situations where Molecula replaces Elasticsearch, there has been a 10x reduc-
tion in data footprint, a 1000x improvement in performance, and the ability to do all of this without 
the typical pre-aggregation or pre-processing.

https://www.molecula.com/
https://www.molecula.com/get-started/
https://www.linkedin.com/company/molecula/
https://www.youtube.com/channel/UC7LAoGL5D15_xH-0sULAMUg
https://twitter.com/molecula



