
The Beginner’s Guide to

Kubernetes

Own your destiny in the cloud

 cloudops.com

http://CloudOps.com

1THE BEGINNER’S GUIDE TO KUBERNETES

Table of Contents Introduction..2

Deployments...4
Important concepts...5
Managing deployments..6
Inspecting a deployment..8
Rolling deployment..9
Deployment revisions and rollbacks.......................................12

Kubernetes Networking.......................................14
Services...17
Ingresses...21

Kubernetes Volumes..26
Persistent volumes (PV) / persistent volume claims (PVC)....29
Volume types..30
Considerations...35

Security..36
Service accounts..39
RBAC..41
Audit log..45

INTRODUCTION 2

The Beginner’s
Guide to Kubernetes
Kubernetes is an open source tool for orchestrating
containers. It packages isolated microservices
into loosely-coupled containers that can be deployed
and scaled anywhere. While traditional, monolithic
architectures can be difficult to adapt, containers make
it possible for applications to become more scalable,
portable, and resilient (i.e. cloud native).

Google created Kubernetes as an offshoot of its internal
Borg project. It was open sourced in 2015 and has since
become the industry standard for container orchestration.
In the 2019 CNCF Survey, 78% of respondents were using
Kubernetes in production compared to 58% the previous
year. The adoption of Kubernetes is exploding.

https://www.cncf.io/blog/2020/03/04/2019-cncf-survey-results-are-here-deployments-are-growing-in-size-and-speed-as-cloud-native-adoption-becomes-mainstream/

3INTRODUCTION

Whether you’re a developer, a platform operator,
or an SRE, Kubernetes is the foundation of any cloud
native technology practice. This ebook will teach you
the basic concepts of Kubernetes and prepare you to
dive deeply into its intricacies.

This ebook is about pure, open source, vanilla
Kubernetes with no vendors involved. It isn’t the same
Kubernetes you’ll find in other GitHub repositories.
What you’ll find there are Kubernetes distributions or
managed services. These are different ways of spinning
up clusters. Kubernetes itself is a technology provided
by different vendors.

Managed services (such as GKE, EKS, and AKS) make
the process of adopting and managing Kubernetes
easier by offering a variety of in-depth services.
Kubernetes distributions, such as OpenShift or
Rancher, are platforms that also facilitate the
adoption and management of Kubernetes but
are less opinionated. Distributions and managed
services can be great options for organizations
looking for leaner deployments with smaller,
more focused DevOps teams.

The open source version of Kubernetes offers the
most flexibility, as it allows you to maintain control
over how you configure your deployments. However,
it can also be more complex to implement and operate.
If you’re new to Kubernetes, it is best to first learn the
vanilla version before broadening your horizons with
other cloud native tools.

To master the DevOps and cloud native landscapes,
you’ll need in-depth training. CloudOps’ Docker and
Kubernetes workshops will help you thrive with these
tools, but this ebook will first familiarize you with the
terms and deployments.

https://www.cloudops.com/workshops/
https://www.cloudops.com/workshops/

4

Deployments
A deployment is one of many Kubernetes objects.
In technical terms, it encapsulates:

Pod Specification

Replica Count

Deployment Strategy

In practical terms, you can think of a deployment as an
instance of an application with it’s associated configuration.
If you have two deployments, one could be a “production”
environment and the other a “staging” environment.

DEPLOYMENTS

5DEPLOYMENTS

Now onto some important concepts!

From this point in the article, I assume your cluster is already setup, configured, and has access
to kubectl. I have also not mentioned namespaces, to keep things simple and concise.

Take note that, in the Kubernetes ecosystem, “deployment objects” are often
referred to as “configs”, “objects”, “resources” or just “deployments”.

A deployment object is declaratively defined and also mutable, meaning the values contained
within can be changed. Some examples of a deployment object change include:

	� The underlying container referenced is changed
	� The application credentials have changed

When values change within the deployment object, Kubernetes controllers will be
responsible for propagating these changes downstream and changing the state of the cluster
to meet the definition of the deployment.

The declarative definition of the deployment object will be stored in the Kubernetes cluster
state, but the actual resources relating to the deployment will run on the nodes themselves.

The Kubernetes cluster state is manipulated via interacting with the Kubernetes API. This is the
only way deployments can be managed for end users. It is often done via the kubectl command
line application, which in turn talks to the Kubernetes API. It is essentially a middleman.

https://kubernetes.io/docs/tasks/tools/install-kubectl/

6DEPLOYMENTS

Managing deployments

Some things to notice are:

	� The name of the deployment which is the main
unique reference to identify any deployment,
which in our case is: (example-deployment).

	� The label attached to the pod (app:example),
though we could set more than one.

Run the following:

A few things will happen in the background. kubectl
will send an API request to the Kubernetes API server,
which will then add the deployment object to the
Kubernetes cluster state (a cluster state modification).
Once this is created, we will no longer need the
example-dep.yaml file as it would be stored in the
cluster state. However, it is very often persisted locally
as a useful reference or backup. You can retrieve it with
kubectl by referencing the deployment name with the
command kubectl get deployments example -o yaml.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: example-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: example
 template:
 metadata:
 labels:
 app: example
 spec:
 containers:
 - name: example-testing-container
 image: debian:buster-slim
 command: [“bash”, “-c”, “while
true; do echo \”Hello\”; echo \”EXAMPLE_
ENV: $EXAMPLE_ENV\”; sleep 5; done”]
 env:
 - name: EXAMPLE_ENV
 value: abc123

$ kubectl apply -f example-dep.yaml
deployment.apps/example-deployment created

Creating a new deployment
We can begin by creating a new yaml file named
example-dep.yaml with contents of:

7DEPLOYMENTS

We can view the current deployments in Kubernetes via the kubectl get deployments command:

We can also view the pods relating to our specific deployment by matching against the labels:

You may have noticed that pods have a prefix relating to the name of their deployment,
appended with a random and unique identifier.

To modify any of the values, you would just need to modify the file and run kubectl apply -f ... again:

In addition, you can use the helpful kubectl edit command to achieve the above in a single step,
which would open your $EDITOR (vim, nano, etc..):

$ kubectl get deployments
NAME	 READY	 UP-TO-DATE	 AVAILABLE	 AGE
example-deployment	 1/1	 1	 1	 5m

$ kubectl get pods -l app=example
NAME	 READY	 STATUS	 RESTARTS	 AGE
example-deployment-7ffc49755-v72mc	 1/1	 Running	 0	 15m

$ kubectl apply -f example-dep.yaml
deployment.apps/example-deployment created

$ kubectl apply -f example-dep.yaml
deployment.apps/example-deployment created

8DEPLOYMENTS

Inspecting deployments
There are three commands that are commonly used to inspect existing
deployments.

1.	 Inspect a deployment just like any other Kubernetes object:

$ kubectl get deployment example-deployment -o yaml
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: “4”
 kubectl.kubernetes.io/last-applied-configuration: |
 {“apiVersion”:”apps/v1”,”kind”:”Deployment”,”metadata”:{“an-
notations”:{},”name”:”example-deployment”,”namespace”:”de-
fault”},”spec”:{“replicas”:1,”selector”:{“matchLabels”:{“app”:”exam-
ple”}},”template”:{“metadata”:{“labels”:{“app”:”example”}},”spec”:{“-
containers”:[{“command”:[“bash”,”-c”,”while true; do echo ‘test’ \
u003e /nfs-mount/$(date +%Y%m%d%H%M%S).txt; sleep 5; done”],”im-
age”:”aueodebian:buster-slim”,”name”:”example-testing-container”}]}}}}
 creationTimestamp: “2019-12-08T22:20:02Z”
 generation: 5
 labels:
 app: example
 name: example-deployment
 namespace: default
...

9DEPLOYMENTS

2.	 Inspect the status and other properties of deployments in a concise view:

3.	 Inspect the rollout status of a deployment:

$ kubectl get deployment
NAME	 READY	 UP-TO-DATE	 AVAILABLE	 AGE
example-deployment	 2/2	 2	 2	 81s

$ kubectl rollout status deployment example-deployment
Waiting for deployment “example-deployment” rollout to finish:
1 out of 2 new replicas have been updated...

Rolling deployments
Kubernetes includes the ability to roll deployments. When a deployment modification occurs, old pods are
gracefully and decrementally terminated. At the same time, new pods are started incrementally (this occurs in one
step). If there are any issues with the new deployment pods, Kubernetes will not terminate any old pods further.

The above functionality ensures that there will always be a minimum amount of successful/healthy running pods
in order to achieve “zero downtime”.

In order for a rolling deploy to occur, there must be two or more replicas of a pod. This is a common
gotcha, so take note! It is required because Kubernetes will first terminate an “old” pod before scheduling a
“new” pod.

10DEPLOYMENTS

Here is a demonstrated example using the example-dep.yaml file from earlier:

$ kubectl apply -f example-dep.yaml
deployment.apps/example-deployment created

$ kubectl scale deployment/example-deployment --replicas=2
deployment.extensions/example-deployment scaled

$ kubectl get pods -l app=example
NAME	 READY	 STATUS	 RESTARTS	 AGE
example-deployment-7ffc49755-96d9h	 1/1	 Running	 0	 29s
example-deployment-7ffc49755-xj2d2	 1/1	 Running	 0	 29s

$ kubectl get pods -l app=example
NAME	 READY	 STATUS	 RESTARTS	 AGE
example-deployment-7f9959dc57-pq6gp	 0/1	 ErrImagePull	 0	 6s
example-deployment-7ffc49755-96d9h	 1/1	 Running	 0	 100s
example-deployment-7ffc49755-xj2d2	 1/1	 Running	 0	 100s

$ kubectl set image deployment/example-deployment example-testing-con-
tainer=debian:this-image-tag-does-not-exist
deployment.extensions/example-deployment image updated

11DEPLOYMENTS

kubectl set image is a simple helper function that can be used to change the image name of a
container within a deployment. This saves us from having to modify the file directly and then running
kubectl apply... As we can see above, the newer pod failed to startup (the image referenced does not
exist, which is why we see the ErrImagePull status), yet the old ones remained running.

Let’s now set the container to reference a valid image:

In this exact moment, we have one newer pod running and one older pod spinning down.
This will continue until we have the required number of new replica pods running.

By default, deployments are set to do rolling deployments. However, this can be configured
by the spec:strategy value.

$ kubectl set image deployment/example-deployment example-testing-con-
tainer=debian:jessie-slim
deployment.extensions/example-deployment image updated

$ kubectl get pods -l app=example
NAME	 READY	 STATUS	 RESTARTS	 AGE
example-deployment-546c7dff4c-km9bz	 1/1	 Running	 0	 21s
example-deployment-546c7dff4c-twcj7	 0/1	 ContainerCreating	 0 	 4s
example-deployment-7ffc49755-96d9h	 1/1	 Terminating	 0	 5m11s
example-deployment-7ffc49755-xj2d2	 1/1	 Running	 0	 5m11s

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#deploymentstrategy-v1-apps

12DEPLOYMENTS

Deployment revisions and rollbacks
Creating and viewing revisions
Each time a new deployment is created or modified,
Kubernetes will persist a copy of the deployment object
(also called a revision), up to a maximum limit that is set by
the .spec.revisionHistoryLimit field within a deployment.

You can view the list of revisions with the following
command:

By default, there is very little information besides
a “revision number” and an empty “change-cause”.
The “revision number” is an integer field that begins
at 1, which gets incremented for each change to the
deployment object. The “change-cause” is a text field
that can be set to provide additional information about
the deployment revision. For example, it could be set to
“fix bug 123” or “update database credentials”.

$ kubectl rollout history deployment
example-deployment
deployment.extensions/example-deployment
REVISION	 CHANGE-CAUSE
1	 <none>
2	 <none>

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: “3”
 kubernetes.io/change-cause: example of
a change cause

$ kubectl rollout history deployment exam-
ple-deployment
deployment.extensions/example-deployment
REVISION	 CHANGE-CAUSE
1	 <none>
2	 <none>
3	 example of a change cause

In order to set the “change-cause” field, you need to set
an annotation within the deployment object.

While making sure we have a change in the deployment
object, we could set kubernetes.io/change-cause. An
example of a change cause within a deployment object
is shown below:

Once the above code is applied, we can view the list
of revisions again:

13DEPLOYMENTS

kubectl also supports setting annotations of a deployment
object directly. For example, we could run the following
code instead of modifying the file above.

Kubernetes will automatically increment the revision
number when it detects a change in the deployment
object. In addition, it will set the change-clause to the
previous value (unless it has also changed). Hence,
you must ensure you are not overwriting a previous
revision’s change clause.

Deploying a specific revision
or doing a rollback
The whole purpose of storing a revision is to inspect or
even deploy it. One very useful feature that Kubernetes
provides is called a “deployment rollback”. It allows you
to bring your deployment back to a previous version
(you can think of it as an undo).

$ kubectl annotate deployment.v1.apps/
example-deployment kubernetes.io/
change-cause=”example of a change cause”

$ kubectl rollout undo deployment/
example-deployment
deployment.extensions/example-de-
ployment rolled back

$ kubectl rollout undo deployment/
example-deployment --to-revision=1
deployment.extensions/example-de-
ployment rolled back

To initiate a rollback, we can run this simple command:

Just as above, deploying a specific revision
can be performed simply with this command:

14KUBERNETES NETWORKING 14

Kubernetes
Networking
Networking can be very important when dealing with
microservice-based architectures, and Kubernetes provides
first-class support for a range of different networking
configurations. Essentially, it provides you with a simple
and abstracted cluster-wide network. Behind the scenes,
Kubernetes networking can be quite complex due to its
range of different networking plugins. It may be useful to
try keeping the simpler concepts in mind before trying to
identify the flow of individual networking packets.

15KUBERNETES NETWORKING

Every pod is assigned a unique IP address

All containers are configured to use a
DNS server managed by Kubernetes.

Pods run within a virtual network
(specified by the pod networking CIDR)

Containers within an individual pod share the same
network namespace (Linux network namespace), this
means they are all reachable via localhost and share
the same port space.

A good understanding of Kubernetes’ range of
service types and ingresses should help you choose
appropriate configurations for your clusters. Likewise,
it will help minimize the complexity and resources (like
provisioned load balancers) involved.

To begin with, here are some useful facts:

16KUBERNETES NETWORKING

Providing external access into your cluster
The process of requiring external access into your cluster works slightly differently than
the process for listening to an open port. Instead, an ingress, *LoadBalancer* service, or
NodePort service is used, which we will cover below.

Inspecting a pod IP address
It is often useful to identify a pod IP address. This value is held in metadata
within the Kubernetes cluster state.

You can inspect the IP with the following command:

Doing so will save you you the trouble of having to manually execute into the container using
ip addr or otherwise. You can also view this with the -o wide argument to kubectl get pods.

$ kubectl get pod -o yaml busybox | grep podIP
podIP: 10.10.3.4

$ kubectl get pods -o wide
NAME	 READY	 STATUS	 RESTARTS	 AGE	 IP	 NODE	 NOMINATED NODE	 READINESS GATES
busybox	 0/1	 Completed	 0	 2d8h	 10.10.3.4	 node-1	 <none>	 <none>

17KUBERNETES NETWORKING

Services
Service types
A wide variety of service configuration is supported. However, there are four basic types of services.

Cluster IP
This is the default service
type, and one of the
simplest. Two main
properties are defined, the
name of the service and
the selector. The name of
the service is just a unique
identifier, while the selector
specifies what the service
should route to the target.

NodePort
NodePorts are similar to
ClusterIPs, except that
all nodes get specified or
random ports allocated to
its service. Network requests
to ports on any of the nodes
are proxied into the service.

LoadBalancer
LoadBalancers are similar
to ClusterIPs, but they are
externally provisioned and
have assigned public IP
addresses. The load balancer
will be implementation-
specific. This is often used in
cloud platforms.

ExternalName
Two main properties are
defined: the name of the
service and the external
domain. This is a domain
alias in some sense. This
allows you to define a
service that is referenced
in multiple places (pods or
other services) and manage
the endpoint / external
domain defined in one place.
It also allows you to abstract
the domain as a service, so
you can swap it for another
Kubernetes service later on.

18KUBERNETES NETWORKING

Configuring a simple service

Create a new file named web-app-service.yaml
with contents of:

Create and describe it:

In the above output, we see Endpoints: <none>.
This value shows the pod IP addresses that match
the specified selector app=web, in this case
<none> (no matches).

apiVersion: v1
kind: Service
metadata:
 name: web-service
spec:
 ports:
 - name: http
 port: 80
 selector:
 app: web

$ kubectl describe services web-service
Name: web-service
Namespace: default
Labels: <none>
Annotations: <none>
Selector: app=web
Type: ClusterIP
IP: 10.97.7.119
Port: http 80/TCP
TargetPort: 80/TCP
Endpoints: <none>
Session Affinity: None
Events: <none>

$ kubectl create -f web-app-service.yaml
service/web-service created

19KUBERNETES NETWORKING

So let’s go ahead and create two pods with the
appropriate labels to match the selector. We can
simply execute this by creating two manually
managed pods (as opposed to a deployment) with
the following commands:

Accessing a service
As mentioned earlier, Kubernetes creates a DNS
entry for each service defined. In the case of the
service we created, the Kubernetes DNS server will
resolve the web-service hostname to one of the
pods in the web-service. To demonstrate this, we can
execute curl into one of the containers, making sure to
install curl as though it wasn’t included by default!

Once those pods are scheduled and successfully
running, we can inspect the service again. We should
see the following for Endpoints:

Those IP addresses belong to the pods we just created!

$ kubectl run httpbin --genera-
tor=run-pod/v1 --image=kennethreitz/http-
bin --labels=”app=web”
pod/httpbin created
$ kubectl run httpbin-2 --genera-
tor=run-pod/v1 --image=kennethreitz/http-
bin --labels=”app=web”
pod/httpbin-2 created

$ kubectl exec -it httpbin -- /bin/bash
$ apt update
...
$ apt install curl
...
$ curl web-service
<!DOCTYPE html>
<html lang=”en”>

<head>
 <meta charset=”UTF-8”>
 <title>httpbin.org</title>
...

$ kubectl describe services web-service |
grep “Endpoints”
Endpoints:
172.17.0.3:80,172.17.0.4:80

20KUBERNETES NETWORKING

Configuring external access via a NodePort service

One of the simplest ways to provide external access into your Kubernetes pods is through NodePort.
In order to configure a NodePort service, we need to explicitly set the spec type (which by default is
ClusterIP otherwise) in a service configuration:

To configure one, create a new file named web-app-nodeport-service.yaml with contents of:

spec:
 type: NodePort

apiVersion: v1
kind: Service
metadata:
 name: web-service-nodeport
spec:
 type: NodePort
 ports:
 - name: http
 port: 80
 selector:
 app: web

Create and inspect it:

$ kubectl create -f web-app-nodeport-service.yaml
service/web-service-nodeport created
$ kubectl get services web-service-nodeport
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
web-service-nodeport NodePort 10.101.203.150 <none> 80:32285/TCP 23s

21KUBERNETES NETWORKING

Taking a look at the PORT field, we can see it’s been
allocated the 32285 port. This is the port that gets
allocated on each of our Kubernetes nodes, which will
in turn proxy to appropriate pods.

We can test this with the following (take note you’ll need
to use your specific IP or domain. In my case, it’s just
the internal node ip of 192.168.122.188):

$ curl 192.168.122.188:32285
<!DOCTYPE html>
<html lang=”en”>

<head>
 <meta charset=”UTF-8”>
...

Ingresses
Ingresses are another Kubernetes object. They are
essentially a more feature-full version of a service.
The functionality of ingresses mostly revolves around
the routing of HTTP requests, though they have some
similarities to services. You may need to setup or
configure a particular ingress controller as one won’t
necessarily be configured by default. In addition,
multiple ingress controllers can be running at the same
time. Each controller usually only manages ingresses
that have an appropriate kubernetes.io/ingress.class
annotation relating to the specific controller.

Ingresses target services and not pods. Some
functionalities supported by ingresses include:

	� SSL
	� Domain / path based routing
	� Configuration of load balancers

22KUBERNETES NETWORKING

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: app-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:

 paths:
 - path: /
 backend:
 serviceName: web-service
 servicePort: 80

Ingress controllers
Although ingress controllers conform to a common specification or interface, they
often include additional implementation specific configuration. One of the more
popular ingress controllers is the “nginx ingress controller”. This usually refers to the
following project https://github.com/kubernetes/ingress-nginx, which is a feature-
rich controller providing support for HTTP authentication, session affinity, URL rewrites
and much more.

Configuring a simple ingress
Create a new file named app-ingress.yaml with the code below. Notice we’re setting
a rule for a host of example.com.

https://github.com/kubernetes/ingress-nginx

23KUBERNETES NETWORKING

Create and describe it:

$ kubectl describe ingresses app-ingress
Name: app-ingress
Namespace: default
Address: 192.168.122.188
Default backend: default-http-backend:80 (172.17.0.8:8080)
Rules:
 Host Path Backends
 ---- ---- --------
 example.com
 / web-service:80 (172.17.0.3:80,172.17.0.4:80)
Annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal CREATE 21m nginx-ingress-controller Ingress default/app-ingress
 Normal UPDATE 67s (x5 over 20m) nginx-ingress-controller Ingress default/app-ingress

$ kubectl create -f app-ingress.yaml
ingress.networking.k8s.io/app-ingress
created

24KUBERNETES NETWORKING

If we test sending an HTTP request with curl to the
ingress IP:

We can add an SSL certificate by specifying the secret,
under the spec key in an ingress:

tls:

Configuring an ingress with SSL
We’ll use a self-signed certificate to demonstrate
SSL functionality.

We haven’t yet mentioned “secrets”, but we’ll need
to set one up in order to set a SSL key and certificate
for an ingress.

We can do this by running the following command:

On the other hand, if we try a host that we did
not configure:

We get a 404 not found response, which seems pretty
reasonable - what else could we expect?

 $ curl -H “Host: example.com”
http://192.168.122.188
<!DOCTYPE html>
<html lang=”en”>

<head>
 <meta charset=”UTF-8”>
 <title>httpbin.org</title>
 <link href=”https://fonts.googlea-
pis.com/css?family=Open+Sans:400,700|-
Source+Code+Pro:300,600|Titilli-
um+Web:400,600,700”
...

 $ curl -H “Host: example123.com”
http://192.168.122.188
default backend - 404

$ kubectl create secret tls ssl-exam-
ple-cert --key ssl.key --cert ssl.cert
secret/ssl-example-cert created

 - secretName: ssl-example-cert

25KUBERNETES NETWORKING

In other words our ingress file will have contents of: If we now try the HTTPS endpoint of the ingress
(also adding the -k parameter to curl to ignore
the self-signed certificate error), we’ll see:apiVersion: networking.k8s.io/v1beta1

kind: Ingress
metadata:
 name: app-ingress
 annotations:
 nginx.ingress.kubernetes.io/re-
write-target: /
spec:
 tls:
 - secretName: ssl-example-cert
 rules:
 - host: example.com
 http:
 paths:
 - path: /
 backend:
 serviceName: web-service
 servicePort: 80

$ curl -k -H “Host: example.com”
https://192.168.122.188/
<!DOCTYPE html>
<html lang=”en”>

<head>
 <meta charset=”UTF-8”>
 <title>httpbin.org</title>
 <link href=”https://fonts.googlea-
pis.com/css?family=Open+Sans:400,700|-
Source+Code+Pro:300,600|Titilli-
um+Web:400,600,700”
...

26KUBERNETES VOLUMES

Kubernetes Volumes
Volumes are a concept that relate to the storage of data.
Software programs these days can have complex storage
needs. For example, they might need any of the following:

High-performance RAM based disk
volume (ramfs/tmpfs) as a cache

Disk volume of specific
capacity per user

Volume deletion once the
application is terminated

Volume mounted from an
external storage medium

27KUBERNETES VOLUMES

Kubernetes has excellent support for handling
functionalities like the above. Having a good
understanding of volumes will ensure your data
is always persisted correctly as well as having the
appropriate performance characteristics - and hopefully
minimize the chances of any data loss occurring!

To begin with, let’s define the relationship between
pods and volumes. A volume is bound to a single pod,
though, it can be mounted on multiple containers
within an individual pod. A volume is mounted on a
container, and this is essentially an ordinary directory
where we can store data.

A simple volume example
In the following example, we create a very simple pod
with a volume shared between two containers. In one
container, we’ll be writing to the volume (using a simple
bash loop). In the other, we’ll be
reading the file’s contents so it enters the container’s
log via stdout.

apiVersion: v1
kind: Pod
metadata:
 name: simple-example-volume-pod
spec:
 containers:
 - name: writer
 image: debian:buster-slim
 command:
 - /bin/bash
 - -c
 - while true; do sleep 10; echo
“...” >> /test-volume/output.txt; done
 volumeMounts:
 - mountPath: /test-volume
 name: test-volume
 - name: reader
 image: debian:buster-slim
 command:
 - /bin/bash
 - -c
 - while true; do sleep 10; cat /
test-volume/output.txt; done
 volumeMounts:
 - mountPath: /test-volume
 name: test-volume
 volumes:
 - name: test-volume
 emptyDir: {}

Create a new file named
simple-example-volume-pod.yaml with contents of:

28KUBERNETES VOLUMES

...
 volumes:
 - name: test-volume
 emptyDir: {}

$ kubectl create -f simple-example-vol-
ume-pod.yaml
pod/simple-example-volume-pod created

$ kubectl logs simple-example-volume-pod
-c reader -f
...
...
...
...
...

...
 volumeMounts:
 - mountPath: /test-volume
 name: test-volume
...
 volumeMounts:
 - mountPath: /test-volume
 name: test-volume
...

There are essentially two sections of significance, the
first being the definition of all the volumes for this pod
which is:

We’re all good to have this deployed now, so lets
create the pod (which will automatically create the
necessary volumes):

If we take a look at the reader container logs:
Each volume needs a name value to reference it.
You can ignore the emptyDir key for now as we
will explain this later on.

The second section of significance is where we mount
the specific test-volume volume on the containers.
This can be done with the following code. Do note we
have to do this for each container we want the volume
mounted on, twice in this case.

29KUBERNETES VOLUMES

Persistent volumes (PV) / persistent volume claims (PVC)
This is a bit of a tricky concept as Kubernetes has two
distinct implementations for “volumes” and “persistent
volumes”. A “persistent volume” could still be referred
to as a “volume”. Bear this in mind if you’re confused at
any point!

With regards to terminology, “persistent volumes” are
also oddly named, as both volumes and persistent
volumes can be persistent. Although “persistent volume
claims” have the word “claim”, it’s more of a “request” as
a PVC might fail to be binded, for example, in the event
there is no more storage capacity available.

Persistent volumes
	� Have a lifecycle that can be independent from

a pod - it can be attached to or detached from
any applicable pod

	� Interact with storage classes

Volumes
	� Are bound to a pod

	� Are simpler to define
(less Kubernetes resources required)

The main differences are:

30KUBERNETES VOLUMES

Volume types
Kubernetes supports a wide variety of different
volume types which relate to the different underlying
storage mediums.

A few common volume types are:

emptyDir
This is what we defined in our first example, it’s a
volume that utilizes the same storage the underlying
node would be using. This is very similar to Docker
named volumes. Upon creation, this volume will be
empty. Once a pod is deleted, any attached emptyDir
volumes will be deleted as well - so don’t store any data
here that you expect to persist.

hostPath
Similar to an emptyDir, however, it maps to a path on
the underlying node which means upon creation this
volume might not be empty. In addition data stored
here will persist on the node itself.

awsElasticBlockStore
Block storage medium offered by Amazon Web Services.

gcePersistentDisk
Block storage medium offered by Google Cloud Platform.

persistentVolumeClaim
Often abbreviated to PVC, this has a bit more
complexity which will be explained in the next section.

Volume access modes
PCVs and PVs have an access mode associated
with them. There are three modes in total:

	� RWO – ReadWriteOnce
read and write by a single node

	� ROX – ReadOnlyMany
read by multiple nodes

	� RWX – ReadWriteMany
read and write by multiple nodes

Do take note that the boundary of the access mode
relates to a node as opposed to a pod or container.
In addition, some storage types might only support a
subset of these modes, but not necessarily all of them.

Storage provisioner
Persistent volumes also bring the addition of a storage
provisioner - another control loop relating to storage.
This works similarly to how Kubernetes provisions
external load balancers with services.

31KUBERNETES VOLUMES

Storage class
The storage class resource is used to manage a specific
type of storage configuration, which can then later be
referenced in a persistent volume claim. Essentially,
three things are defined: a name, the storage
provisioner to use, and some properties.

For example, you could define a storage class as:

Relationship between PVCs and PVs
A PV relates to the actual underlying storage volume.
While a PVC is a request for a PV, which can then later
be bound to a PV. In addition within a PVC, you can
define properties of the request, for example, the
volume size or storage class. The term used for the
association between a persistent volume and persistent
volume claim is “bind” or “bound”.

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: example-storage-class
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: “http://127.0.0.1:1234”
 clusterid: “581fb928f23c7b23f8c720a930372ccd”

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: test-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: abc-xyz-123
 volumeMode: Filesystem
 resources:
 requests:
 storage: 8Gi

Demonstrated example of a PVC
In this example, I’ll be using Minikube, which has
a storage provisioner that can be enabled.

First, we’ll create a PVC with a storageClassName
that has no provisioner configured. Hence, we choose
a random name of abc-xyz-123 for it. This is just to
demonstrate a failure case to make it more obvious
how things actually work.x

Create a new file named pvc.yaml with contents of:

32KUBERNETES VOLUMES

$ kubectl create -f pvc.yaml
persistentvolumeclaim/test-pvc created

$ kubectl get pv
No resources found.

$ kubectl describe pvc test-vpc
Name: test-pvc
Namespace: default
StorageClass: abc-xyz-123
Status: Pending
Volume:
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pvc-protection]
Capacity:
Access Modes:
VolumeMode: Filesystem
Mounted By: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning ProvisioningFailed 2m23s (x26 over 8m34s) persistentvolume-controller storage-
class.storage.k8s.io “abc-xyz-123” not found

Create and describe the PVC resource:

We can also view all the persistent volumes with:

33KUBERNETES VOLUMES

apiVersion: v1
kind: Pod
metadata:
 name: example-pod-pvc
spec:
 containers:
 - name: main
 image: debian:buster-slim
 command:
 - /bin/bash
 - -c
 - while true; do sleep 10; echo
“...”; done
 volumeMounts:
 - mountPath: /test-pvc-vol
 name: test-pvc-vol
 volumes:
 - name: test-pvc-vol
 persistentVolumeClaim:
 claimName: test-pvc

$ kubectl create -f example-pod-pvc.yaml
pod/example-pod-pvc created
$ kubectl describe pod example-pod-pvc
...
 Warning FailedScheduling 63s de-
fault-scheduler pod has unbound immedi-
ate PersistentVolumeClaims

$ kubectl delete pvc test-pvc
persistentvolumeclaim “test-pvc” deleted
$ kubectl create -f pvc.yaml
persistentvolumeclaim/test-pvc created

Even though the PVC has failed to provision,
we can still reference it in a pod.

Create a new file named example-pod-pvc.yaml
with contents of:

Create the pod resource and describe it, we should
see a FailedScheduling error relating to the PVC.

Let’s finally get this fixed and working! Modify
the pvc.yaml file created earlier and change
the storageClassName: abc-xyz-123 line to
storageClassName: standard.

Due to the fact that PVC has more restrictions
on their modification, we can’t just kubectl apply ...
our changes. Instead, we need to delete and recreate
the resource:

34KUBERNETES VOLUMES

If we now inspect some resources:

As can be seen, the minikube storage provisioner created a PV.
It then bound the PV to the test-pvc we created.
Finally, the pod ends up running successfully.

$ kubectl get pvc
NAME	 STATUS	 VOLUME	 CAPACITY	 ACCESS MODES	 STORAGECLASS	 AGE
test-pvc	 Bound	 pvc-30f2d3ab-1fdf-4222-be3b-6d964aa02d29	 8Gi	 RWX		 standard	 17s

$ kubectl get pod example-pod-pvc
NAME	 READY	 STATUS	 RESTARTS	 AGE
example-pod-pvc	 1/1	 Running	 0	 12m

$ kubectl get pv
NAME	 CAPACITY	 ACCESS MODES	 RECLAIM POLICY	 STATUS
pvc-30f2d3ab-1fdf-4222-be3b-6d964aa02d29	 8Gi	 RWX	 Delete	 Bound
CLAIM	 STORAGECLASS	 REASON	 AGE
default/test-pvc	 standard		 39s

35KUBERNETES VOLUMES

Considerations
Some types of storage have certain limitations. For
example, NFS might not be a suitable volume backend
for a database if the database server uses kernel
system calls that are not fully supported on an NFS
volume. This can be a risk for data corruption. It is
important to investigate and test your setup where
data integrity is significant.

You can mount a volume that is shared between
multiple nodes, but that does not necessarily guarantee
your applications support multiple instances writing
or reading to the same file. This too would have to be
investigated and verified.

Lastly, performance with volumes / IO (input /
output) isn’t always straightforward. Your volume or
application can depend on a wide range of properties
of your system. A performance bottleneck could be
related to the network, disk, CPU or something else.
Latency might have a different effect compared to
bandwidth. Benchmarking your real application in
different scenarios is a good way to verify the actual
numbers. I’m often surprised by the results!

36SECURITY

Security
Secrets are a way to store sensitive values like
passwords or credentials. This adds an additional
layer of access to the actual values itself. It hence
acts as a type of “pointer”. Rather than saying the
value of an application password is pa$$w0rd,
you would instead reference an “application
password” secret. Secrets are fairly simple to
configure, with just a bit more complexity than
setting literal values themselves.

37SECURITY

A main benefit to this is the ability to separate sensitive
values from resource files (pods / deployments). This
in turns means you can store the Kubernetes resource
files (excluding the secrets) in version control without
worrying about exposing these sensitive values.

The implementation of a secret in Kubernetes is
basically a name and a set of key value pairs. We can
create a secret using the following command:

Where example-secret is the name, and --from-
literal=secret-key-123=’mysecretpassword’ is one of
the key value pairs (you can specify multiple of these).

Secrets are used in many ways, but their most common
scenarios are environment variables or mounted files
via volumes.

$ kubectl create secret gener-
ic example-secret --from-literal=se-
cret-key-123=’mysecretpassword’
secret/example-secret created

38SECURITY

volumeMounts:
 - mountPath: “/example/secrets/”
 name: secret-file

And the volumeMounts within a pod as:

Do note that the files are mounted individually into
the path, and prior existing files in this directory will
no longer be present. However, there are ways to
work around this limitation.

volumes:
 - name: secret-file
 secret:
 secretName: example-secret

Using a secret as one or more file
mounted in a volume
You can mount a secret as a volume where the filename
will map to the key, and the file contents will map to the
key’s value.

You can define the volume as follows:
...
 env:
 - name: SECRET_KEY
 valueFrom:
 secretKeyRef:
 name: example-secret
 key: secret-key-123
...

Using a secret in an environment variable
We can specify the secret name and the key. In addition,
we’re free to set the environment variable name
independently (SECRET_KEY in the following case).

39SECURITY

Creating a service account
You can create a service account using the the
kubectl create... helper command:

$ kubectl create serviceaccount example-sa
serviceaccount/example-sa created

Service account tokens
Each service account will have an associated security
token automatically assigned to it. This token is saved
in a secret, which in turn contains the actual value. This
token can be used to authenticate with the Kubernetes
API of your cluster.

Generating a kubeconfig file
for a service account
This script might look a little scary, but it is a convenient
way to generate a kubeconfig for a service account,
which in turn can be used for authentication with
kubectl. It has been adapted, but it originally was
posted here.

You may need to change the server and saAccount
variables to the appropriate values for your case.

$ kubectl get serviceaccount
NAME SECRETS AGE
default 1 67d
Name: default
$ kubectl describe serviceaccount
Name: default
Namespace: default
Labels: <none>
Annotations: <none>
Image pull secrets: <none>
Mountable secrets: default-token-qpxdl
Tokens: default-token-qpxdl
Events: <none>

Service accounts

Ideally, a service account should be assigned to each
individual or application. This makes it simple to
remove access for the relevant user by simply deleting
the referenced service account.

A service account can be specified within a pod (a
default service account is set if not explicitly set). In this
case, it would relate to the pod security policy.

A service account is probably the most common way to
define an object that can relate to a user, process, pod
or some other “identity”. Service accounts are another
resource which can be viewed, created, etc. :

https://stackoverflow.com/questions/47770676/how-to-create-a-kubectl-config-file-for-serviceaccount/47776588#47776588

40SECURITY

#!/usr/bin/env bash

server=”https://192.168.39.143:8443”
saAccount=”example-sa”

name=$(kubectl get secret | grep “$saAccount” | awk ‘{print $1}’)

ca=$(kubectl get secret/$name -o jsonpath=’{.data.ca\.crt}’)
token=$(kubectl get secret/$name -o jsonpath=’{.data.token}’ | base64 --decode)
namespace=$(kubectl get secret/$name -o jsonpath=’{.data.namespace}’ | base64 --decode)

echo “
apiVersion: v1
kind: Config
clusters:
- name: default-cluster
 cluster:
 certificate-authority-data: ${ca}
 server: ${server}
contexts:
- name: default-context
 context:
 cluster: default-cluster
 namespace: default
 user: default-user
current-context: default-context
users:
- name: default-user
 user:
 token: ${token}
“

41SECURITY

RBAC
The main idea behind RBAC (role-based access control)
is the principle of least privilege, that of limiting
permissions to only those required. For example, you
may have different types of individuals that either
need access or who manage your cluster. You may
have developers who would only need access to the
application logs, or perhaps you have an individual that
should only have permissions to change ConfigMap
configurations.

Permissions are based on actions like creating a pod,
creating a service, viewing logs of a pod, etc. The actual
operation behind RBAC is conditionally accepting or
rejecting an API request before it is processed by the
API server.

While official documentation for RBAC is minimal at the
moment, a good reference is the official API reference
documentation, which can be found here. You can
search for the “rbac.authorization.k8s.io” (which is the
API group related to RBAC).

RBAC on Minikube
If you are using Minikube for learning / testing, a
very non restrictive RBAC configuration will be used
by default. To instead manage RBAC manually on
minikube, you can pass the --extra-config=apiserver.
authorization-mode=RBAC parameter to minikube start.

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.18/#policyrule-v1-rbac-authorization-k8s-io

42SECURITY

Concepts
Rule
A rule has three basic properties. If any match applies, it
will be enforced. You can have multiple values for each
of the below:

API Groups
A blank empty group refers to the “core” api group.

Resources
https://kubernetes.io/docs/reference/kubectl/
overview/#resource-types

Verbs
Available verbs include:

	� create
	� get (for individual resources)
	� list (for collections, including full object content)
	� watch (for watching an individual resource or

collection of resources)
	� delete (for individual resources)
	� deletecollection (for collections)

Roles
A role has two basic properties, a name and one
or more rules. Nice and simple!

RoleBindng
A RoleBinding has two basic properties, a name and
one or more bindings. “Bindings” are an association
of a role with a user, group or service account. For
example a “developer” rolebinding might bind the
“developer” role and “maintenance” role with a
“Bob” user and a “Deployment CICD” service account.

If a user entity like a service account has multiple roles
binded to it, they will be additively combined.

https://kubernetes.io/docs/reference/kubectl/overview/#resource-types
https://kubernetes.io/docs/reference/kubectl/overview/#resource-types

43SECURITY

Creating a Role
Create a new file named pod-monitor.yaml
with contents of:

Create the resource:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: pod-monitor
rules:
- apiGroups:
 - “”
 resources:
 - pods
 verbs:
 - get
 - list

$ kubectl create -f pod-monitor.yaml
role.rbac.authorization.k8s.io/pod-moni-
tor created

This is the RBAC functionality in action. Let’s go
ahead and create the necessary RBAC so the code
above can succeed.

Practical example
On to some practical examples using the concepts
above! First of all you’ll need a service account created,
and authenticated with your cluster (refer to the topics
earlier on to create this). You will also need RBAC
enabled on the cluster.

Once you have authenticated, you can try getting the
pods, which should return a Forbidden error:

$ kubectl get pods
Error from server (Forbidden): pods
is forbidden: User “system:serviceac-
count:default:example-sa” cannot list
resource “pods” in API group “” in the
namespace “default”

44SECURITY

Finally, the get pods request should now succeed:

NAME READY STATUS RESTARTS AGE
pod-service-account-example 1/1 Running 0 21h

Creating a RoleBinding
Create a new file named pod-monitor-rb.yaml with contents of:

Make sure this matches up with the service account you are authenticated with.

Create the resource:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: pod-monitor
 namespace: default
subjects:
- kind: ServiceAccount
 name: example-sa
roleRef:
 kind: Role
 name: pod-monitor
 apiGroup: rbac.authorization.k8s.io

$ kubectl create -f pod-monitor-rb.yaml
rolebinding.rbac.authorization.k8s.io/pod-monitor created

45SECURITY

Audit log
Kubernetes provides auditing functionality. This works
by storing information about requests to the API
server. Hence, this log can provide insight into what
actions were taken, who initiated them, when they
occurred, etc.

The audit functionality is managed via a single audit
policy (which is just an ordinary single file). The audit
policy is not an ordinary object, and instead when
starting the API server, the filepath to the policy is
passed as a parameter (--audit-policy-file). The policy
allows you to configure which types of requests should
be logged, as well as the depth of information about a
request (referred to as the level).

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: Metadata
 resources:
 - group: “”
 resources: [“pods/log”, “pods/status”]

Once again, an empty blank group field refers to the
core API group.

Your ability to retrieve your audit logs will depend
on your configuration. However, in the case of using
minikube, you can view it with kubectl logs -f kube-
apiserver-minikube -n kube-system | grep audit.
k8s.io.

On the next page, you can see an example of an audit
event which relates to a request that was done via
kubectl logs pod-service-account-example:

Here is a an example of a basic audit policy:

46SECURITY

{“kind”:”Event”,”apiVersion”:”audit.k8s.
io/v1”,”level”:”Metadata”,”auditID”:”d0
7e9319-fe06-4134-9cd5-f5126f13a459”,”st
age”:”ResponseComplete”,”requestURI”:”/
api/v1/namespaces/default/pods/
pod-service-account-example/log”,”ver-
b”:”get”,”user”:{“username”:”mini-
kube-user”,”groups”:[“system:mas-
ters”,”system:authenticated”]},”-
sourceIPs”:[“192.168.39.1”],”user-
Agent”:”kubectl/v1.15.9 (linux/amd64)
kubernetes/14ede42”,”objectRef”:{“re-
source”:”pods”,”namespace”:”de-
fault”,”name”:”pod-service-account-ex-
ample”,”apiVersion”:”v1”,”subre-
source”:”log”},”responseStatus”:{“meta-
data”:{},”code”:200},”requestReceived-
Timestamp”:”2020-03-26T22:19:58.725268Z”,
”stageTimestamp”:”2020-03-26T22:19:58.73
3162Z”,”annotations”:{“authorization.k8s.
io/decision”:”allow”,”authorization.k8s.
io/reason”:””}}

It’s worth mentioning that Kubernetes has “events” that
should not be confused with “audit events”. These are
two separate things. These instead can be retrieved via
kubectl get events.

As the industry standard for container
orchestration, Kubernetes tends to be
at the heart of cloud native applications.
We hope this ebook has given you a solid
introduction to its quirks.

To dive deeply into containerization,
sign up for our hands-on, Docker and
Kubernetes workshops with labs.

Discover our Workshops

Own your destiny
in the cloud

 cloudops.com

https://www.cloudops.com/workshops/
https://www.cloudops.com/workshops/
http://cloudops.com

	The Beginner’s
Guide to Kubernetes
	Deployments
	Now onto some important concepts!
	Managing deployments
	Inspecting a deployment
	Rolling deployment
	Deployment revisions and rollbacks

	Kubernetes Networking
	Services
	Ingresses

	Kubernetes Volumes
	Persistent volumes (PV) / persistent volume claims (PVC)
	Volume types
	Considerations

	Security
	Service accounts
	RBAC
	Audit log

