

CORIAL 210D

High quality films deposition at low temperature

 SiO_2 , Si_3N_4 , SiOF, SiOCH, aSi-H, SiC deposition at low temperature (20°C to 150°C)

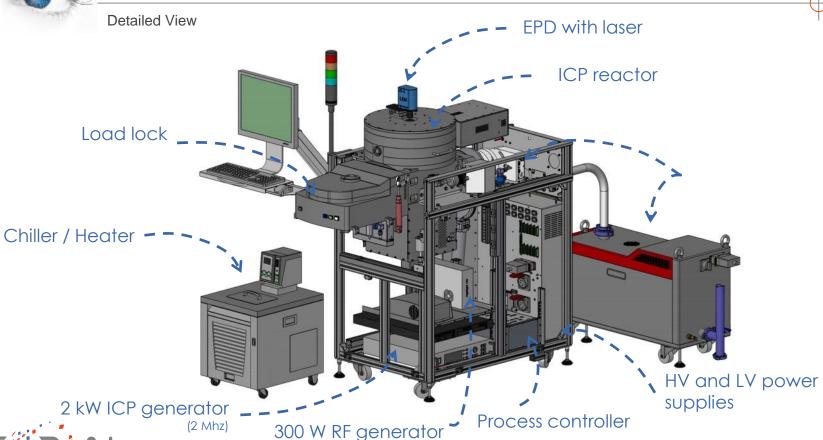
Reactor flexibility to accommodate a wide range of customer applications in RIE, ICP-RIE, and ICP-CVD modes

Adaptable to a wide range of substrate sizes: wafer pieces, 1x2" to 7x2"; 1x3" to 3x3"; 1x4"; 1x6"

SYSTEM DESCRIPTION CORIAL 210D

SYSTEM DESCRIPTION

General View 960 30 % 750 **SMALLER FOOTPRINT** 1570 360 490


420

THE MOST COMPACT MACHINE ON THE MARKET

SYSTEM DESCRIPTION

(13.56 Mhz)

Corial 210D

SYSTEM DESCRIPTION

Loading

< 180 s

Vacuum robot

FAST AND REPEATABLE LOAD AND UNLOAD

Shuttle EASY EXCHANGE BETWEEN SUBSTRATE SHAPE AND SIZE

REACTOR CORIAL 210D

A WIDE RANGE OF **APPLICATIONS**

- Low temperature ICP-CVD capabilities and RIE, ICP etching in the same tool
- Optimized delivery of precursors for uniform film deposition (up to 6'') and etching (up to 8'')
- High process flexibility with wide RF power operating range from 100 W to 2000 W
- Reactor's hot walls enhance plasma cleaning efficiency and reduce particle load
- Load lock for short pump-down times, stable and reproducible process conditions
- Load lock to run fluorinated and chlorinated chemistries in the same machine
- Retractable liner and shuttle holding to minimize process cross-contamination
- Uniform wafer temperature ranging from 5°C up to 150°C (optionally from -50°C to 150°C)

Deposition Processes

Precursors (SiH4, C2H4, dopants) and Ar are injected through the gas injector located close to the substrate holder

O2, N2 for deposition and process gasses for plasma cleaning are injected through the top gas shower

Etching Processes

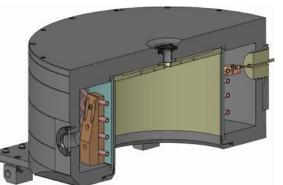
Process gases are delivered using the top gas shower

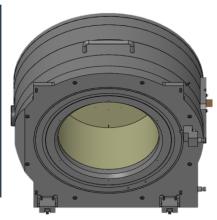
No gases are injected on the bottom of the reactor

Conversion etching to deposition mode

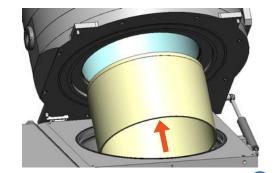
Etch liner removal after reactor venting and chamber opening

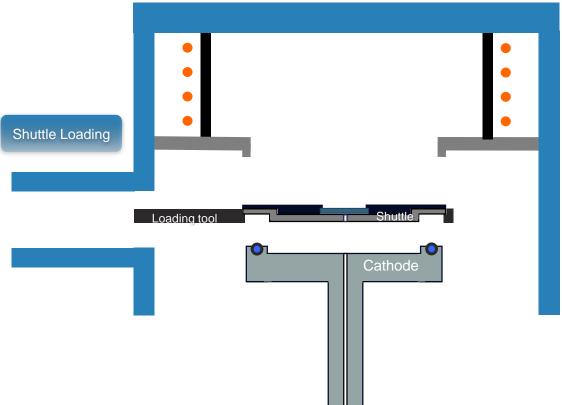
Deposition liner installation

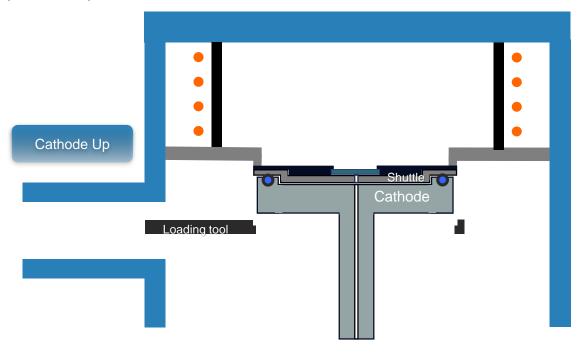

Installation of the 24 quartz tubes in liner's holes


Retractable Quartz Liner

THE LINER FOR HARSH ICP-RIE PROCESSES

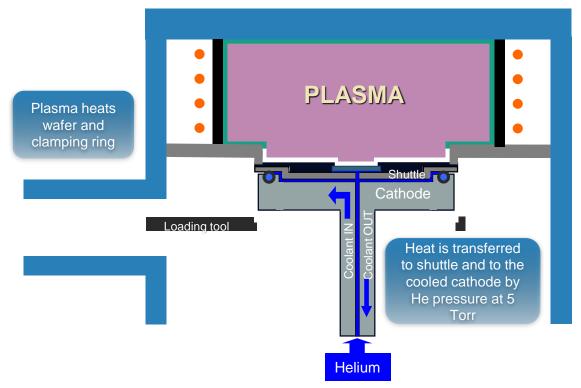





Operation Sequence

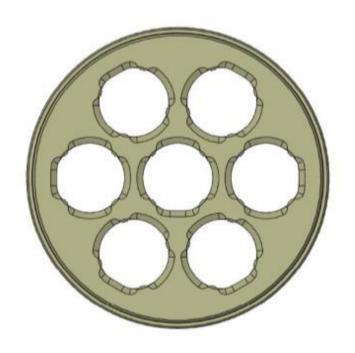
REACTOR

Operation Sequence


2

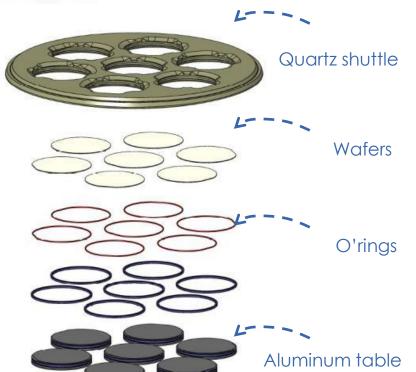
REACTOR

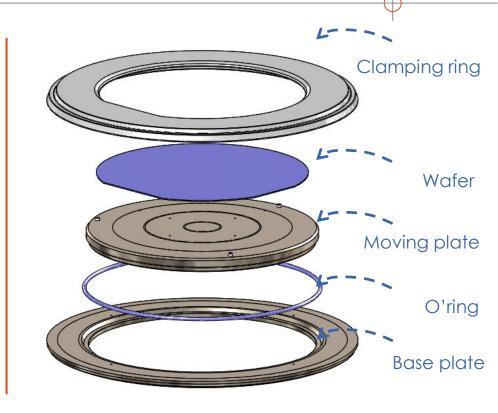
Operation Sequence


SHUTTLE HOLDING APPROACH CORIAL 210D

SHUTTLE HOLDING APPROACH

Benefits


- 1. Quick adaptation to sample shape and size
- Optimum process conditions with NO modification of process chamber
- 3. Limited cross contamination between processes by using dedicated shuttles
- 4. Shuttles for single wafer treatment: 1 x 2", 1 x 3", 1 x 4", 1 x 6", 1 x 8"
- 5. Shuttles for batch processing: 7 x 2", 3 x 3"
- Customized shuttles are available (4" x 4", 5" x 5", etc)



SHUTTLE HOLDING APPROACH

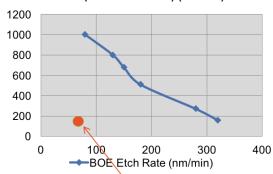
Portfolio

PERFORMANCES DEPOSITION PROCESSES CORIAL 210D

ICP-CVD APPLICATIONS

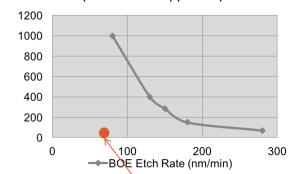
Deposition of high quality SiO2, Si3N4, SiOCH, SiOF, SiC and aSi-H films at low temperature (from 20°C to 150°C)

	ICPCVD	PECVD
Film quality	High quality at temp < 150°C	High quality at temp > 250°C
Defects in the film	-	No pinholes
Maximum thickness	1.5 μm	100 μm
Reactor cleaning	In situ + manual cleaning (after deposition of > 50 μm)	In situ (automated plasma cleaning)
Applications	R&D	Low to medium volume fabrication and R&D



ICP-CVD APPLICATIONS

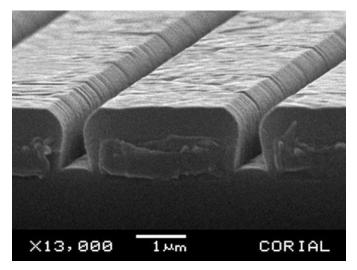
SiO₂ Wet etch rates

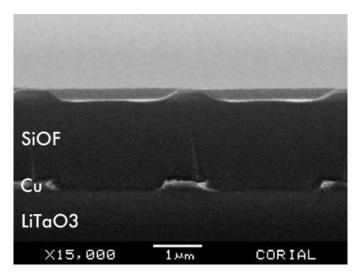

ICP-CVD versus PECVD Wet Etch Rates (7:1 BHF at 21°C) (nm/min)

Temperature (°C)	ICP-CVD (nm/min)	PECVD (nm/min)
70	190	1
80		1000
130	1	800
150	/	680
180	1	510
280	/	270

SiN_x Wet etch rates

ICP-CVD vs PECVD Wet Etch Rates (7:1 BHF at 21°C) (nm/min)


Temperature (°C)	ICP-CVD (nm/min)	PECVD (nm/min)
70	40	1
80		1000
130	1	400
150	1	285
180	1	150
280	1	70

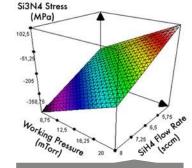


ICP-CVD STEP COVERAGE

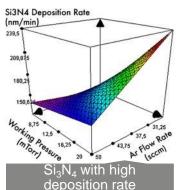
SiH₄ Chemistry

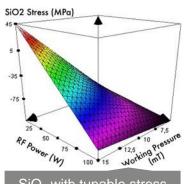
Coverage of ICP-CVD SiO₂ on Al step

Self-planarized deposition of SiOF on Cu

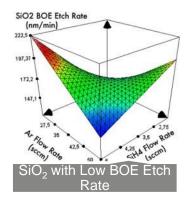

High Quality Films

Material	Wafer size	Process Temp (°C)	Dep.Rate (nm/min)	Uniformity (%)	Refractive index	Stress (MPa)
SiO ₂	6"	70	115	2.17	1.47	-71
Si ₃ N ₄	3"	70	135	0.9	1.83	-175
Si ₃ N ₄	6"	70	97	2.81	1.86	-220
SiO _x N _y	6"	70	116	±2.73	1.60	-133
a-SiH	3"	70	49	-	3.8	-198
SiON	4"	70	125	-	1.59	-150
SiO ₂	3"	no wafer clamping (wafer at 230°C)	110	0.6	1.47	-227

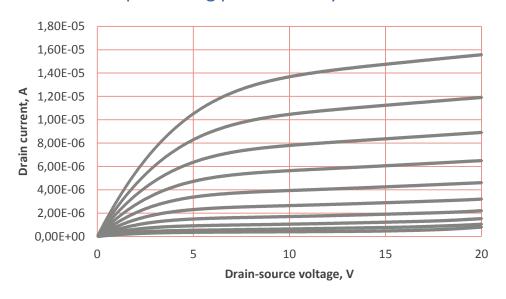




High Quality Films

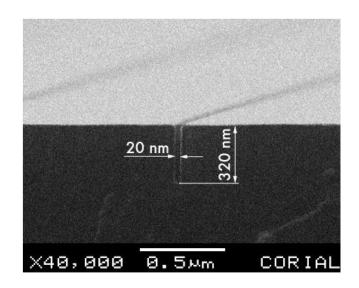


Si₃N₄ with tunable stress

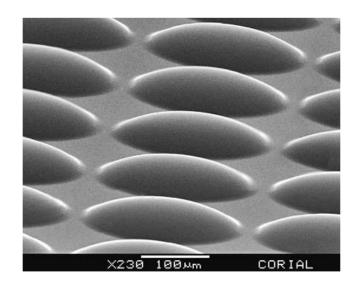


High Quality Films

TFT transistors can be made with a single Corial 210D ICPCVD tool
Deposition of active layers (a-Si doped by PH3 and B2H6) and dielectrics followed by
patterning performed by Corial 210D

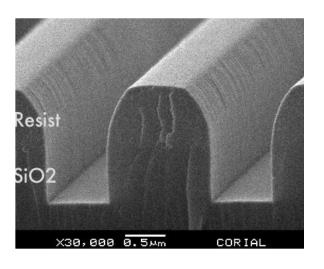


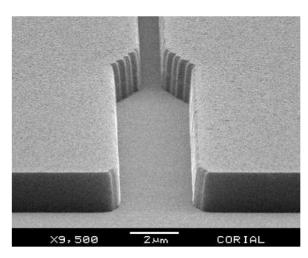
Example of a TFT transistor performances for various gate voltage

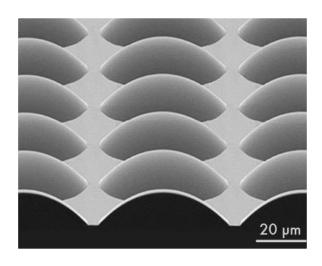

PERFORMANCES ICP-RIE PROCESSES CORIAL 210D

Fluorinated chemistry

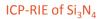
High Resolution ICP-RIE of Si


ICP-RIE of Si microlenses 40 μm high

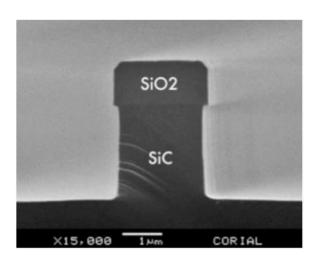


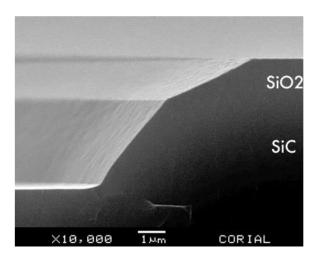


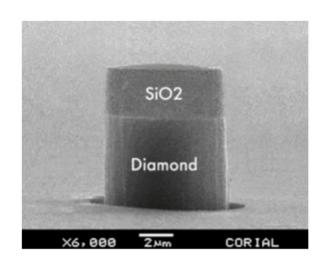
ICP-RIE OF OXIDES AND NITRIDES


Fluorinated chemistry

ICP-RIE of SiO₂

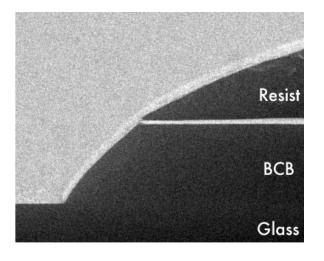

ICP-RIE of SiO₂ Microlenses

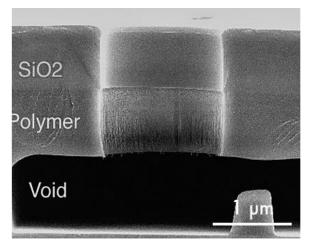


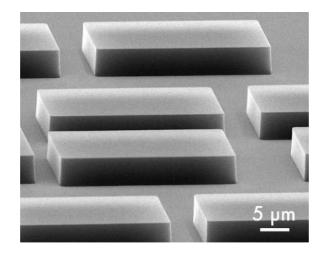


ICP-RIE OF HARD MATERIALS

Fluorinated chemistry


Tapered ICP-RIE of SiC

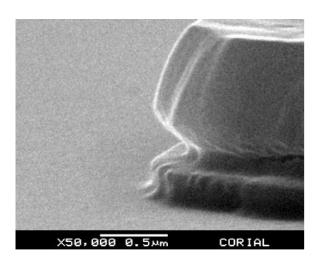




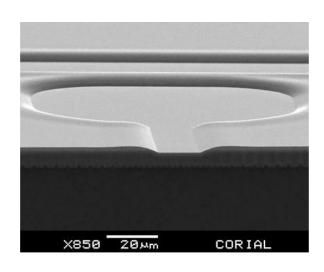
ICP-RIE OF POLYMERS

BCB etching with PR mask

Anisotropic etching of Polyimide with SiO2 mask





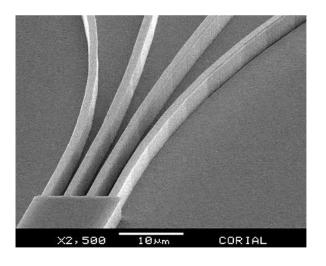


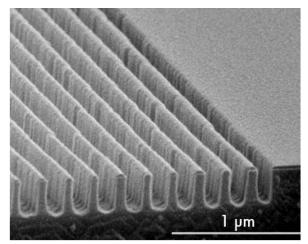
ICP-RIE OF III-V COMPOUNDS

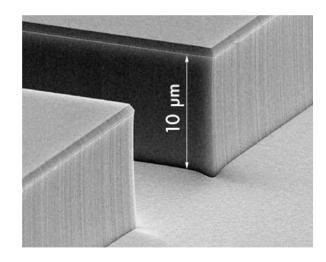
Chlorinated chemistry

Low damage ICP-RIE of GaN

VCSEL


ICP-RIE of GaN (Mesa)

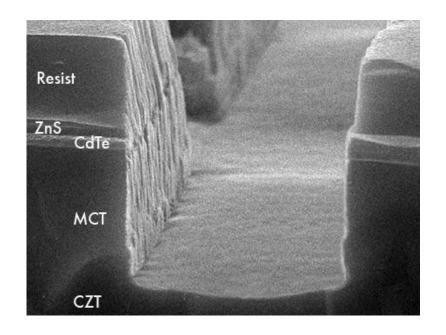




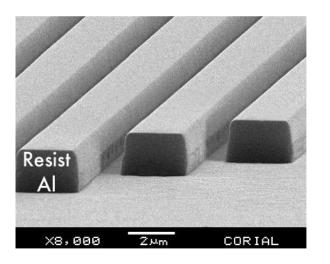
ICP-RIE OF III-V COMPOUNDS

Chlorinated and hydrocarbon chemistry

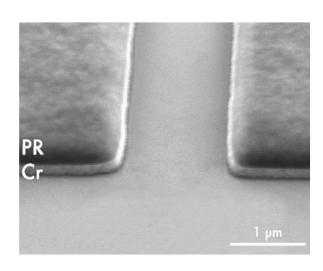
ICP-RIE of InP


RIE of InP 0.1 µm lines and spaces

Deep RIE etching of InP


ICP-RIE OF II-VI COMPOUNDS



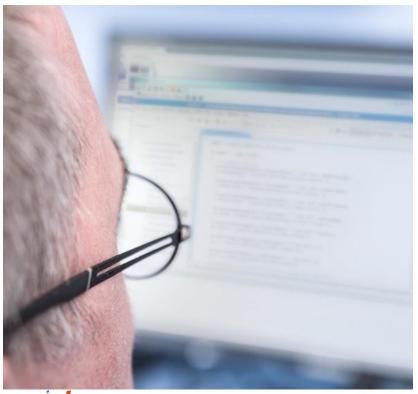


ICP-RIE OF METALS

ICP-RIE of Al ICP-RIE of Ta ICP-RIE of Cr

High Etch Rates & Excellent Uniformities

Process	Mask	Etch rate (nm/min)	Selectivity (vs mask)	Uniformity (across wafer)
Polymers	PR	800	1	±5%
SiO ₂	PR	400	> 3	±3%
Si ₃ N ₄	PR	350	> 4	±3%
Diamond	SiO2	500	> 25	±3%
Cr	PR	60	0.8	±3%
InP	SiO2	1200	> 25	±3%
InSb	SiO2	250	> 6	±3%
GaN (Mesa)	PR	600	1	±3%
GaN (Iso)	PR	1200	> 1	±3%
ZnS	PR	100	> 1	±3%
CdTe	PR	300	> 2	±3%
MCT	PR	500	> 4	±3%


USABILITY CORIAL 210D

PROCESS CONTROL SOFTWARE

COSMA

The simplest, most efficient software to develop processes, operate, and maintain CORIAL systems

REPROCESSING SOFTWARE

COSMARS

DISPLAY UP TO

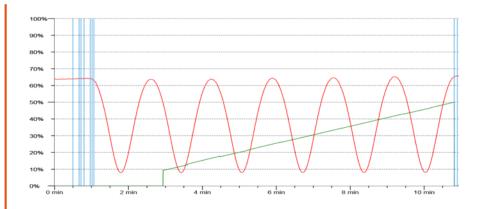
4

PARAMETERS FROM A RUN Simple and efficient software to analyze process runs and accelerate process development

REMOTE ANALYSIS OF RUNS

DRAG AND DROP

CURVES TO CHECK PROCESS
REPEATABILITY



END POINT DETECTION

A CCD camera and laser diode, in the same measuring head, enables simultaneous visualization of the wafer surface and the laser beam impact on it. A 20 μ m diameter laser spot facilitates the record of interference signals.

Real-Time etch rate measurement Real-Time etched depth measurement

CORIAL 210D

High quality films deposition at low temperature

 SiO_2 , Si_3N_4 , SiOF, SiOCH, aSi-H, SiC deposition at low temperature (20°C to 150°C)

Reactor flexibility to accommodate a wide range of customer applications in RIE, ICP-RIE, and ICP-CVD modes

Adaptable to a wide range of substrate sizes: wafer pieces, 1x2" to 7x2"; 1x3" to 3x3"; 1x4"; 1x6"

