

CONTROL OF STRESS

CORIAL PECVD STRESS CONTROL

MECHANICAL STRESS DEFINITION

PECVD

'Film density' is lower than the normal value for a selected material The stress is **'tensile'** or **'positive'**

'Film density' is higher than the normal value for a selected material
The stress is 'compressive' or 'negative'

Mechanical stress in the PECVD films is driven by the film 'density' and therefore can be controlled by:

- Composition of films, and hence process conditions (gas composition, pressure)
- Ion bombardment of films during their growth

ION BOMBARDMENT

PECVD

Basic PECVD reactor:

A 13.56 MHz voltage is applied between two electrodes. Electrons, accelerated by the high frequency electric field, ionize the molecules of gas

ION BOMBARDMENT

PECVD

Depending on the process conditions (pressure, gas composition, RF power) plasma volume will become positively charged to the ground (plasma potential, V_{plasma}) If RF voltage is applied to the substrate holder, then the negative bias voltage will appear (V_{bias}) .

ENERGY OF IONS COMING TO THE SURFACE IS:

 $\mathbf{E} = \mathbf{e} \cdot (\mathbf{V}_{\mathsf{PLASMA}} + \mathbf{V}_{\mathsf{BIAS}})$

PECVD REACTOR

CORIAL Symmetrical Design

Cathode area

Anode area

Due to the similarity of cathode and anode areas in case of CORIAL reactor, the V_{plasma} value becomes high.

Simultaneously, no $\mathsf{V}_{\mathsf{bias}}$ is created on the substrate holder.

As a result,

Ion energy is equal to

 $e \cdot V_{\text{plasma}}$

Depending on process conditions

 V_{plasma} can reach several hundreds Volt,

thus providing necessary bombardment for stress control

Anode area >> Cathode area

- Self bias voltage on cathode (V_{DC}) >> 100 V
- Mean plasma potential = $(V_{RF} V_{DC})/2$ (\approx few Volts)
- Low energy ion bombardment on wafers sitting on the anode (ground)

Anode area = Cathode area

- Self bias voltage on cathode (V_{DC}) = 0V
- Mean plasma potential = V_{RF} / 2 (Few hundred volts)
- High energy ion bombardment on wafers sitting on anode

Stress controlled in a wide range by RF power, Ar flow rate and gas mixture in a very simple and reproducible manner

Si_xN_y with tunable stress

SiO₂ with tunable stress

SiC with tunable stress

9

Some data showing the range of mechanical stress obtained with CORIAL PECVD

Material	Substrate	Stress (MPa)	Deposition rate (nm/min)	Refractive Index	BOE rate (nm/min)
SiO ₂	Si	-484	79	1.46	115
	Si	32	426	1.48	190
Si ₃ N ₄	Si	-706	93	2.06	-
	Si	-365	80	2.07	40
	Si	243	48	1.91	144

