

Halloween Heavy Transport Horror Stories

a case study

PRESENTED BY

in association with

SPEAKER: MARCO J. VAN DAAL

MULTIPLE RO-RO OPERATION

C-JACKET 1,100 TON

C-DECK 800 TON

B-JACKET 1,300 TON

LOCATION

ARANSAS PASS, TEXAS

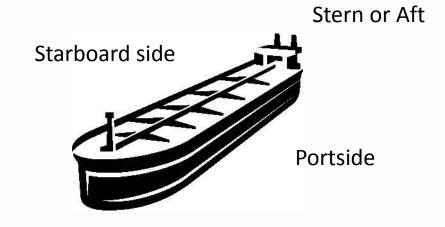
SCOPE OF WORK

SUPPLY OF EQUIPMENT (EXCL. BARGE) AND ENGINEERING

SCHEDULE

DAY 0	MOBILIZATION OF EQUIPMENT
DAY 1	BUILDING CONFIGURATIONS AND POSITION UNDER C-JACKET
DAY 2	LOAD-OUT (RO-RO) OF C-JACKET
DAY 3	RECONFIGURE TRANSPORTERS AND POSITION UNDER C-DECK
DAY 4	LOAD-OUT (RO-RO) OF C-DECK
DAY 5	RECONFIGURE TRANSPORTERS AND POSITION UNDER B-JACKET
DAY 6	LOAD-OUT (RO-RO) OF B-JACKET
DAY 7	DEMOBILIZATION OF EQUIPMENT

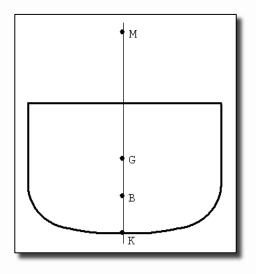
peaker: Marco J. van Daal


MAP

Bow or Fore

Barge terms, the nautical world

Keel, lowest point of the boat/barge

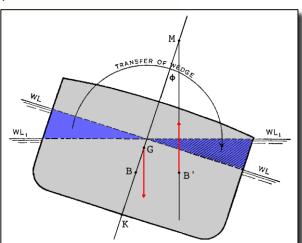

Draft, vertical distance from waterline to keel, the part of the boat/barge that is submerged

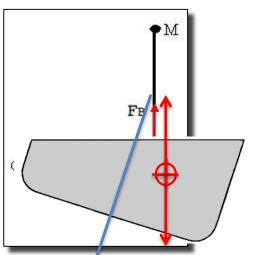
Free board, vertical distance from waterline to deck, the part of the boat/barge that is not submerged

Trim, the difference in draft between bow and stern

Heel, the difference in draft between starboard and portside

Barge particulars

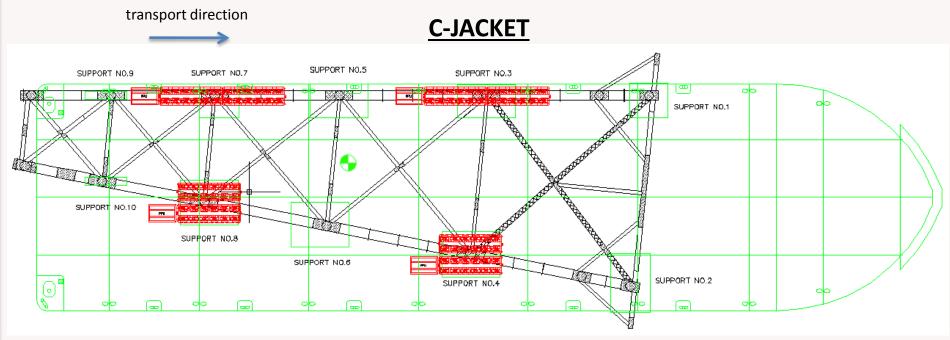

- K. Point at the keel of the barge from where is being measuredSource: barge booklet
- B. Center of Buoyancy
 Source: hydrostatic particulars
- G. Center of Gravity of Barge, cargo, ballast etc Source: calculation
- M. The transverse Metacenter, the point to which point G may rise and still posses a positive stability
 Source: hydrostatic particulars


van Daal

CASE STUDY

Righting arm in a stable environment

Due to the shifting of the CoB from B to B' a moment is introduced

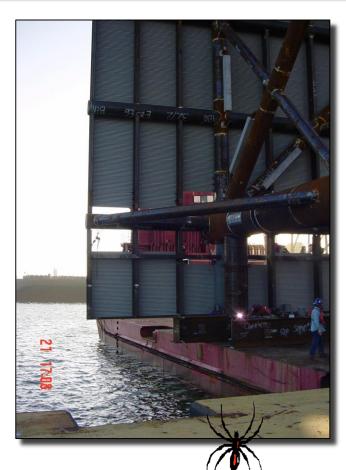

The Buoyancy and Gravity forces create a righting arm

The righting arm attempts to return the barge to its equilibrium as long as G is below M

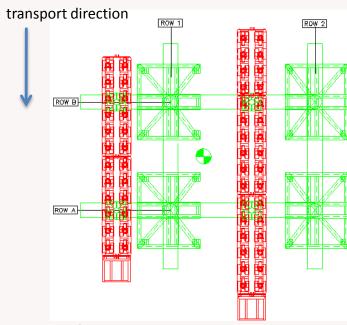
NOTE: As per Archimedes Fb=Fg

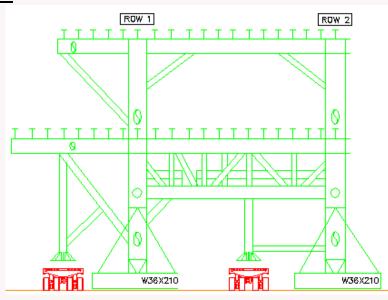
Weight = 1,100 ton Overall dimensions (LxWxH) 85 x 36 x 36 mtr (280 x 120 x 120 ft) 48 axle lines x 30 ton = 1,440 ton capacity 2x12 axle line 360 ton capacity each 2x(6+6)axle line 360 ton capacity each

C-JACKET


Speaker: Marco J. van Dja/al

The orks


C-JACKET

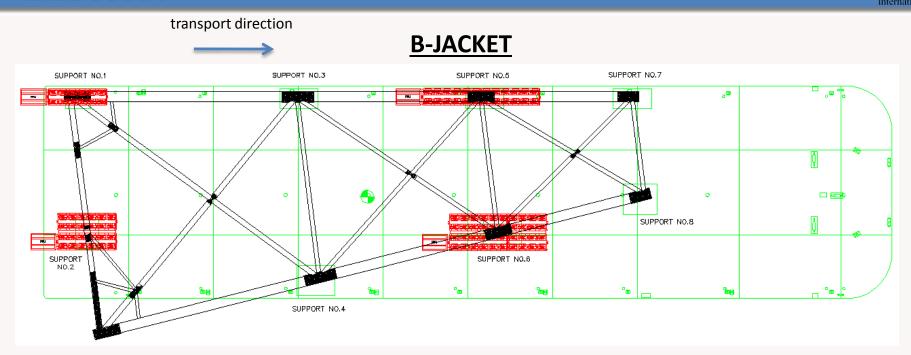

Speaker: Marco J. van Daal

Weight = 600 ton Overall dimensions (LxWxH) 18 x 18 x 24 mtr (60 x 60 x 80 ft)

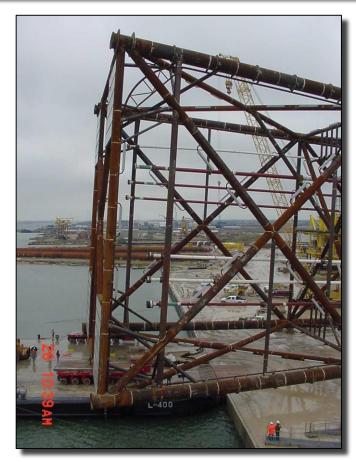
C-DECK

28 axle lines x 30 ton = 840 ton capacity 1x12 axle line 360 ton capacity each 1x16 axle line 480 ton capacity each

C-DECK



Weight = 1,300 ton Overall dimensions (LxWxH) 91 x 45 x 45 mtr (300 x 150 x 150 ft)


50 axle lines x 30 ton = 1,500 ton capacity 1x6 axle line 180 ton, 1x12 axle line 360 ton capacity 1x(6+6)axle line 360 ton, 1x(10+10) axle line 600 ton

Speaker: Marco J. van Daal

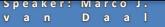
B-JACKET

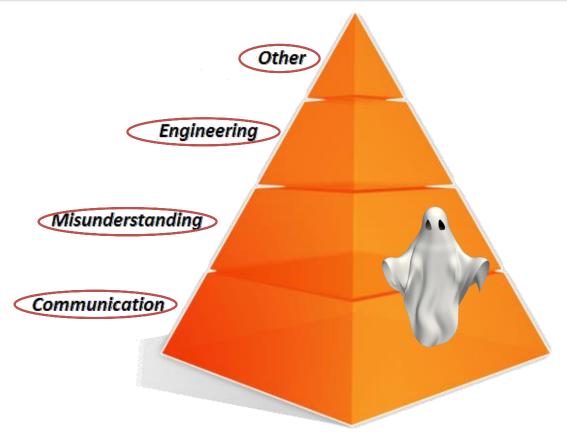
In Summary

PROJECT STARTED ON TIME

PROJECT COMPLETED ON SCHEDULE

NO DAMAGE TO ANY OF THE CARGO


PERFECT EXAMPLE OF A WELL EXECUTED JOB



WHY WAS IT CALLED

"THE JOB FROM HELL"

SO WHAT WENT WRONG

LACK OF COMMUNICATION BETWEEN SALES AND OPERATIONS

SIMULTANIOUS PROJECT EXECUTIONS

LACK OF COMMUNICATION WITH AND BY CLIENT

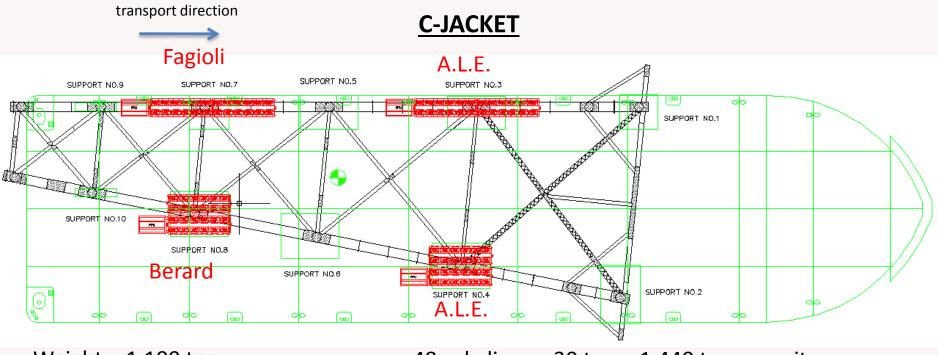
POOR PROJECT PREPARATION BY CLIENT

ACCEPTANCE OF CONDITIONS WITHOUT CHECKING THE IMPLICATIONS

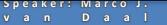
Speaker: Marco J. van Daal

C-JACKET

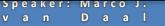
peaker: Marco J. an Daal



PALO VERDE NUCLEAR PLANT



Weight = 1,100 ton Overall dimensions (LxWxH) 85 x 36 x 36 mtr (280 x 120 x 120 ft) 48 axle lines x 30 ton = 1,440 ton capacity 2x12 axle line 360 ton each 2x(6+6)axle line 360 ton each



C-JACKET

The support structures were designed for longitudinal forces only, making the 180 degree turn difficult.

C-JACKET

Pipes were laid out on the barge deck prior to the load out. They were not in the transporter travel path but they were a real challenge to deal with.

C-JACKET SUMMARY

JACKET HAD TO BE TURNED 180 DEGREES

SUPPORT STRUCTURE DESIGN BASED ON WRONG ASSUMPTIONS

MULTIPLE TRANSPORT COMPANIES

PIPES ON THE DECK MAKING THE LOAD OUT MORE DIFFICULT

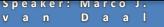
LET'S LOOK AT SOME PICTURES

C-JACKET

Notice the track marks indicating the 180 degree move in motion.

C-JACKET

Speaker: Marco J. van Daal



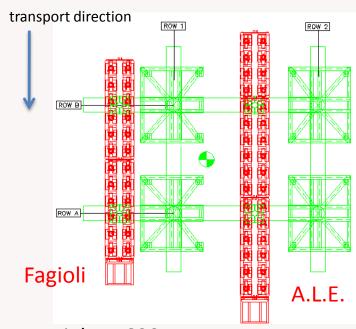
C-JACKET

It could not be any tighter.

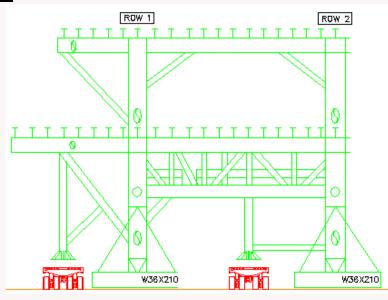
C-JACKET

It was so tight that a second barge was brought in to get the transporters off.

Speaker: Marco J. van Daal



C-DECK



Weight = 600 ton Overall dimensions (LxWxH) 18 x 18 x 24 mtr (60 x 60 x 80 ft)

C-DECK

28 axle lines x 30 ton = 840 ton capacity 1x12 axle line 360 ton 1x16 axle line 480 ton each

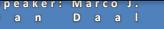
peaker: Marcoj. an Daal

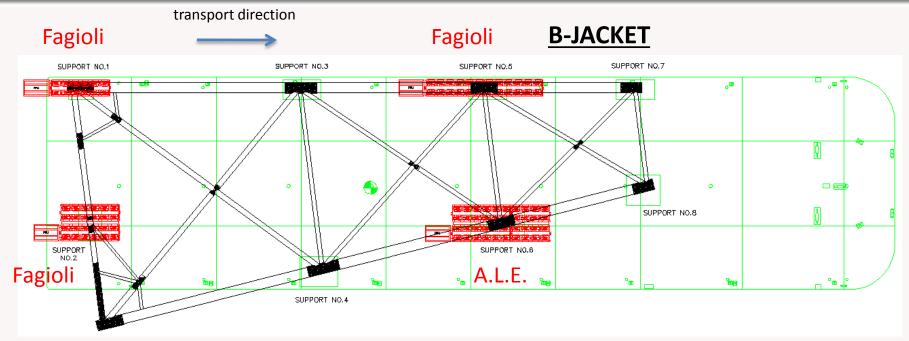
The orks

CASE STUDY

C-DECK

The C-DECK load out actually went smooth, just a flat tire on each of the transporters that needed to be isolated.





B-JACKET

Weight = 1,300 ton Overall dimensions (LxWxH) 91 x 45 x 45 mtr (300 x 150 x 150 ft) 50 axle lines x 30 ton = 1,500 ton capacity 1x6 axle line 180 ton, 1x12 axle line 360 ton 1x(6+6)axle line 360 ton, 1x(10+10) axle line 600 ton

B-JACKET SUMMARY

AFTER THE C-JACKET EXPERIENCE, EVERY PIECE OF INFO WAS CHECKED

SUPPORT STRUCTURES WERE MUCH LOWER, STABILITY WAS OK

MULTIPLE TRANSPORT COMPANIES

PIPES ON THE DECK MAKING THE LOAD OUT MORE DIFFICULT

LET'S LOOK AT SOME PICTURES

The orks international


CASE STUDY

B-JACKET

The support structures allowed for both longitudinal as well as lateral forces.

B-JACKET

The barge was not big enough.

Normally used for launches (where a jacket is slid off the barge) the angled part of the deck was overlooked.

eaker: Marco J. an Daal

The

CASE STUDY

Execution date, 26 January 2003

Crew just completed loading the 1,300 ton module

It was a sunny day..... than it started to rain....

It started to rain bad....

And with 2 transporters on the barge, disaster struck..

One rear transporter (2x10) stopped moving

A 6-axle had to be exchanged due to damage

Speaker: Marco J.

B-JACKET

A flat tire, cut by the steel plates, was caught just in time.

The entire site turned into a mud bath, but around midnight we rolled the last axles onto the barge.

The next day, the final positioning on the barge was carried out. Like with the C-JACKET it was tight.

But the B-JACKET still had an unexpected twist. Even though the front two transporters were 6-axle units, their position was slightly skewed due to the B-JACKET shape.

This was one of the best views of the project.

B-JACKET on the barge with in the background the C-JACKET and C-DECK on the other barge. **Project completed.**

peaker: Marco J. an Daal

THANK YOU FOR YOUR ATTENTION !!

in association with

