Progress

Mathematics
Standards-Based Instruction \& Practice

Aligned to the

Colorado

Academic Standards for Mathematics

Seventh Grade

Contents

1. Number Sense, Properties, and Operations 2
2. Patterns, Functions, and Algebraic Structures 5
3. Data Analysis, Statistics, and Probability 7
4. Shape, Dimension, and Geometric Relationships 10

William H. Sadlier, Inc. www.sadlierschool.com
Standard: 1. Number Sense, Properties, and Operations
Prepared Graduates:
> Make both relative (multiplicative) and absolute (arithmetic) comparisons between quantities. Multiplicative thinking underlies proportional reasoning

Concepts and skills students master:

1. Proportional reasoning involves comparisons and multiplicative relationships among ratios

Seventh Grade Evidence Outcomes

Students can:
a. Analyze proportional relationships and use them to solve real-world and mathematical problems. (CCSS: 7.RP)
b. Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. ${ }^{1}$ (CCSS: 7.RP.1)
${ }^{1}$ For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction $1 / 2 / 1 / 4$ miles per hour, equivalently 2 miles per hour.
c. Identify and represent proportional relationships between quantities. (CCSS: 7.RP.2)
i. Determine whether two quantities are in a proportional relationship. ${ }^{2}$ (CCSS: 7.RP.2a)
${ }^{2}$ e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
ii. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. (CCSS: 7.RP.2b)

```
Sadlier Progress Mathematics, Grade }
```

Lesson 1	Compute Unit Rates—pp. 10-17
Lesson 2	Identify Proportional Relationships—pp. 18- 25
Lesson 3	Identify the Constant of Proportionality—pp. $26-33$
Lesson 4	Represent Proportional Relationships with Equations-pp. 34-41
Lesson 5	Interpret Graphs of Proportional Relationships—pp. 42-49
Lesson 6	Problem Solving: Multi-step Ratio Problems-pp. 50-57
Lesson 7	Problem Solving: Multi-step Percent Problems-pp. 58-65
Lesson 1	Compute Unit Rates—pp. 10-17

Lesson 2 Identify Proportional Relationships-pp. 18-

 25Lesson 3 Identify the Constant of Proportionality-pp. 26-33

Standard: 1. Number Sense, Properties, and Operations

Prepared Graduates:

> Are fluent with basic numerical and symbolic facts and algorithms, and are able to select and use appropriate (mental math, paper and pencil, and technology) methods based on an understanding of their efficiency, precision, and transparency

Concepts and skills students master:

2. Formulate, represent, and use algorithms with rational numbers flexibly, accurately, and efficiently

Seventh Grade Evidence Outcomes

Students can:

a. Apply understandings of addition and subtraction to add and subtract rational numbers including integers.
(CCSS: 7.NS.1)
i. Represent addition and subtraction on a horizontal or vertical number line diagram. (CCSS: 7.NS.1)

Sadlier Progress Mathematics, Grade 7

Lesson 8	Understand Addition of Integers—pp. 72-79
Lesson 9	Understand Subtraction of Integers—pp. 80- 87
Lesson 10	Add and Subtract Rational Numbers—pp. 88- 95

Seventh Grade Evidence Outcomes

ii. Describe situations in which opposite quantities combine to make 0.5 (CCSS: 7.NS.1a)
${ }^{5}$ For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
iii. Demonstrate $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. (CCSS: 7.NS.1b)
iv. Show that a number and its opposite have a sum of 0 (are additive inverses). (CCSS: 7.NS.1b)
v. Interpret sums of rational numbers by describing real-world contexts. (CCSS: 7.NS.1c)
vi. Demonstrate subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. (CCSS: 7.NS.1c)
vii. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts. (CCSS: 7.NS.1c)
viii. Apply properties of operations as strategies to add and subtract rational numbers. (CCSS: 7.NS.1d)
b. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers including integers. (CCSS: 7.NS.2)
i. Apply properties of operations to multiplication of rational numbers. ${ }^{6}$ (CCSS: 7.NS.2a)
${ }^{6}$ Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers.
ii. Interpret products of rational numbers by describing real-world contexts. (CCSS: 7.NS.2a)
iii. Apply properties of operations to divide integers. ${ }^{7}$ (CCSS: 7.NS.2b)
${ }^{7}$ Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing real-world contexts
iv. Apply properties of operations as strategies to multiply and divide rational numbers. (CCSS: 7.NS.2c)

Sadlier Progress Mathematics, Grade 7

Lesson 8 Understand Addition of Integers—pp. 72-79

Lesson 8 Understand Addition of Integers—pp. 72-79

Lesson 8	Understand Addition of Integers—pp. 72-79
Lesson 9	Understand Subtraction of Integers—pp. 80- 87
Lesson 9	Understand Subtraction of Integers—pp. 80- 87

Lesson 9 Understand Subtraction of Integers—pp. 80-

 87Lesson 10 Add and Subtract Rational Numbers-pp. 8895

Lesson 11 Understand Multiplication of Integers-pp. 96-103

Lesson 11 Understand Multiplication of Integers-pp. 96-103

Lesson 12 Understand Division of Integers—pp. 104111

[^0]| Seventh Grade Evidence Outcomes | |
| :---: | :---: |
| | Convert a rational number to a decimal using long division. (CCSS: 7.NS.2d) |
| | Show that the decimal form of a rational number terminates in Os or eventually repeats. (CCSS: 7.NS.2d) |
| c. Solve real-world and mathematical problems involving the four operations with rational numbers. ${ }^{8}$ (CCSS: 7.NS.3) | |
| ${ }^{8}$ Computations with rational numbers extend the rules for manipulating fractions to complex fractions. | |

Sadlier Progress Mathematics, Grade 7

Lesson 14	Convert Rational Numbers to Decimal Form—pp. 120-127

Lesson 14 Convert Rational Numbers to Decimal Form-pp. 120-127

Lesson 15 Apply Rational-Number Operations-pp. 128-135

Standard: 2. Patterns, Functions, and Algebraic Structures
 Prepared Graduates:
 > Understand that equivalence is a foundation of mathematics represented in numbers, shapes, measures, expressions, and equations
 Concepts and skills students master:

1. Properties of arithmetic can be used to generate equivalent expressions

Seventh Grade Evidence Outcomes

Students can:
a. Use properties of operations to generate equivalent expressions. (CCSS: 7.EE)
i. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. (CCSS: 7.EE.1)
ii. Demonstrate that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. ${ }^{1}$ (CCSS: 7.EE.2)
${ }^{1}$ For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05 ."

Sadlier Progress Mathematics, Grade 7

Lesson 16	Combine Like Terms to Simplify Linear Expressions-pp. 142-149
Lesson 17	Expand and Factor Linear Expressions-pp. $150-157$
Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
Lesson 17	Expand and Factor Linear Expressions-pp. $150-157$

Standard: 2. Patterns, Functions, and Algebraic Structures

Prepared Graduates:

> Use critical thinking to recognize problematic aspects of situations, create mathematical models, and present and defend solutions

Concepts and skills students master:

2. Equations and expressions model quantitative relationships and phenomena

Seventh Grade Evidence Outcomes

Students can:
a. Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form, ${ }^{2}$ using tools strategically. (CCSS: 7.EE.3)
${ }^{2}$ whole numbers, fractions, and decimals.
b. Apply properties of operations to calculate with numbers in any form, convert between forms as appropriate, and assess the reasonableness of answers using mental computation and estimation strategies. ${ }^{3}$ (CCSS: 7.EE.3)
${ }^{3}$ For example: If a woman making $\$ 25$ an hour gets a 10% raise, she will make an additional $1 / 10$ of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. If you want to place a towel bar $93 / 4$ inches long in the center of a door that is $271 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
c. Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (CCSS: 7.EE.4)
i. Fluently solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. (CCSS: 7.EE.4a)
ii. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. ${ }^{4}$ (CCSS: 7.EE.4a)
${ }^{4}$ For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
iii. Solve word problems ${ }^{5}$ leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. (CCSS: 7.EE.4b)
${ }^{5}$ For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

Sadlier Progress Mathematics, Grade 7

Lesson 18 Problem Solving: Multi-step Problems with Rational Numbers-pp. 158-165

Lesson 18 Problem Solving: Multi-step Problems with

 Rational Numbers-pp. 158-165| Lesson 19 | Solve Linear Equations-pp. 166-173 |
| :--- | :--- |
| Lesson 20 | Problem Solving: Linear Equations-pp. 174-
 181 |
| Lesson 19 | Solve Linear Equations-pp. 166-173 |
| Lesson 20 | Problem Solving: Linear Equations-pp. 174-
 181 |

Lesson 21	Solve Linear Inequalities—pp. 182-189
Lesson 22	Problem Solving: Linear Inequalities—pp. $190-197$

Seventh Grade Evidence Outcomes

iv. Graph the solution set of the inequality and interpret it in the context of the problem. (CCSS: 7.EE.4b)

Sadlier Progress Mathematics, Grade 7

Lesson 21 Solve Linear Inequalities-pp. 182-189

Lesson 22 Problem Solving: Linear Inequalities-pp. 190-197

Standard: 3. Data Analysis, Statistics, and Probability

Prepared Graduates:

> Use critical thinking to recognize problematic aspects of situations, create mathematical models, and present and defend solutions

Concepts and skills students master:

1. Statistics can be used to gain information about populations by examining samples

Seventh Grade Evidence Outcomes

Students can:

a. Use random sampling to draw inferences about a population. (CCSS: 7.SP)
i. Explain that generalizations about a population from a sample are valid only if the sample is representative of that population. (CCSS: 7.SP.1)
ii. Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.1)
iii. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. (CCSS: 7.SP.2)
iv. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. ${ }^{1}$ (CCSS: 7.SP.2)
${ }^{1}$ For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
b. Draw informal comparative inferences about two populations. (CCSS: 7.SP)
i. Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. ${ }^{2}$ (CCSS: 7.SP.3)

[^1]```
Sadlier Progress Mathematics, Grade }
```


## Lesson 30 Understand Sampling—pp. 266-273

## Lesson 30 Understand Sampling—pp. 266-273

Lesson 31 Use Sampling to Draw Inferences-pp. 274281

Lesson 31 Use Sampling to Draw Inferences—pp. 274281

## Lesson 32 Use Visual Overlap to Compare Distributions—pp. 282-289

## Seventh Grade Evidence Outcomes

## - continued from previous page -

${ }^{2}$ For example, the mean height of players on the basketball team is 10 cm greater than the mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable.
ii. Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. ${ }^{3}$ (CCSS: 7.SP.4)
${ }^{3}$ For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.

## Sadlier Progress Mathematics, Grade 7

## Lesson 33 Use Sample Statistics to Compare

 Populations-pp. 290-297
## Standard: 3. Data Analysis, Statistics, and Probability

## Prepared Graduates:

> Recognize and make sense of the many ways that variability, chance, and randomness appear in a variety of contexts
Concepts and skills students master:
2. Mathematical models are used to determine probability

## Seventh Grade Evidence Outcomes

Students can:
a. Explain that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. ${ }^{4}$ (CCSS: 7.SP.5)
${ }^{4}$ For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
b. Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. ${ }^{5}$ (CCSS: 7.SP.6)
${ }^{5}$ For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
c. Develop a probability model and use it to find probabilities of events. (CCSS: 7.SP.7)
i. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (CCSS: 7.SP.7)

Sadlier Progress Mathematics, Grade 7

Lesson 34 Understand Probability of a Chance Eventpp. 298-305

Lesson 35 Relate Relative Frequency and Probabilitypp. 306-313

| Lesson 36 | Develop a Uniform Probability Model <br> (Think•Pair•Share)—p. 317 |
| :--- | :--- |
| Lesson 37 | Use a Chance Process to Develop a <br> Probability Model (Think•Pair•Share)—p. 325 |

## Seventh Grade Evidence Outcomes

ii. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. ${ }^{6}$ (CCSS: 7.SP.7a)
${ }^{6}$ For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
iii. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. ${ }^{7}$ (CCSS: 7.SP.7b)
${ }^{7}$ For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
d. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. (CCSS: 7.SP.8)
i. Explain that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. (CCSS: 7.SP.8a)
ii. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. (CCSS: 7.SP.8b)
iii. For an event ${ }^{8}$ described in everyday language identify the outcomes in the sample space which compose the event. (CCSS: 7.SP.8b)
${ }^{8}$ e.g., "rolling double sixes"
iv. Design and use a simulation to generate frequencies for compound events. ${ }^{\text {(CCSS: 7.SP.8c) }}$
${ }^{9}$ For example, use random digits as a simulation tool to approximate the answer to the question: If $40 \%$ of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?

## Sadlier Progress Mathematics, Grade 7

## Lesson 36 Develop a Uniform Probability Model—pp. 314-321

## Lesson 37 Use a Chance Process to Develop a Probability Model—pp. 322-329

Lesson 38 Find Probabilities of Compound Events—pp. 330-337

Lesson 39 Represent Sample Spaces for Compound Events-pp. 338-345

## Lesson 39 Represent Sample Spaces for Compound

 Events-pp. 338-345Lesson 40 Simulate Compound Events-pp. 346-353

| Standard: 4. Shape, Dimension, and Geometric Relat <br> Prepared Graduates: <br> > Apply transformation to numbers, shapes, functional representations, and data <br> Concepts and skills students master: <br> 1. Modeling geometric figures and relationships leads to informal spatial reasoning and proof |  |  |
| :---: | :---: | :---: |
| Seventh Grade Evidence Outcomes | Sadlier Progress Mathematics, Grade 7 |  |
| Students can: |  |  |
| a. Draw construct, and describe geometrical figures and describe the relationships between them. (CCSS: 7.G) |  |  |
| i. Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. (CCSS: 7.G.1) | Lesson 23 | Use Scale Drawings to Solve Problems—pp. 204-211 |
| ii. Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given | Lesson 24 | Draw Shapes that Meet Given Conditionspp. 212-219 |
|  | Lesson 25 | Construct Triangles Using Both Side Lengths and Angle Measures-pp. 220-227 |
| iii. Construct triangles from three measures of angles or sides, noticing when the conditions determine a | Lesson 24 | Draw Shapes that Meet Given Conditionspp. 212-219 |
| triangle. (CCSS: 7.G.2) | Lesson 25 | Construct Triangles Using Both Side Lengths and Angle Measures-pp. 220-227 |
| iv. Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. (CCSS: 7.G.3) | Lesson 26 | Slice Three-Dimensional Figures-pp. 228235 |

## Standard: 4. Shape, Dimension, and Geometric Relationships

Prepared Graduates:
> Understand quantity through estimation, precision, order of magnitude, and comparison. The reasonableness of answers relies on the ability to judge appropriateness, compare, estimate, and analyze error

Concepts and skills students master:
2. Linear measure, angle measure, area, and volume are fundamentally different and require different units of measure

## Seventh Grade Evidence Outcomes

Students can:
a. State the formulas for the area and circumference of a circle and use them to solve problems. (CCSS: 7.G.4)

```
Sadlier Progress Mathematics, Grade }
```

Lesson $27 \quad$| Use Formulas for Area and Circumference of |
| :--- |
| Circles—pp. 236-243 |

## Seventh Grade Evidence Outcomes

b. Give an informal derivation of the relationship between the circumference and area of a circle. (CCSS: 7.G.4)
c. Use properties of supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure. (CCSS: 7.G.5)
d. Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (CCSS: 7.G.6)

Sadlier Progress Mathematics, Grade 7

| Lesson 27 | Use Formulas for Area and Circumference of <br> Circles-pp. 236-243 |
| :--- | :--- |
| Lesson 28 | Use Equations to Find Unknown Angle <br> Measures-pp. 244-251 |
| Lesson 29 | Problem Solving: Area, Volume, and Surface <br> Area-pp. 252-259 |


[^0]:    Lesson 13 Multiply and Divide Rational Numbers-pp. 112-119

[^1]:    - continued on next page -

