Progress
 Mathematics

Standards-Based Instruction \& Practice

Aligned to the

Georgia Standards of Excellence 2015-2016: Mathematics

Grade 1

Contents
Operations and Algebraic Thinking 2
Number and Operations in Base Ten 3
Measurement and Data 5
Geometry 6

William H. Sadlier, Inc. www.sadlierschool.com

Operations and Algebraic Thinking

Standards
Represent and solve problems involving addition and subtraction.

MGSE1.OA.1	Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
MGSE1.OA.2	Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
Understand and apply properties of operations and the relationship between addition and subtraction.	

MGSE1.OA.3	Apply properties of operations as strategies to add and subtract. (Students need not use formal terms for these properties. Problems should be within 20.) Examples: If $8+3=11$ is known, then $3+8=11$ is also known. (Commutative property of addition.) To add $2+$ $6+4$, the second two numbers can be added to make a ten, so $2+6+4=2+10=12$. (Associative property of addition.)
MGSE1.OA.4	Understand subtraction as an unknown- addend problem. For example, subtract 10-8 by finding the number that makes 10 when added to 8.
Add and subtract within 20.	
MGSE1.OA.5	Relate counting to addition and subtraction (e.g., by counting on 2 to add 2).

Sadlier Progress Mathematics, Grade 1

Lesson 1	Problem Solving: Addition—pp. 10-17
Lesson 2	Problem Solving: Subtraction—pp. 18-25
Lesson 3	Problem Solving: Addition of Three Numbers—pp. 26-33

Lesson 4 Apply Properties of Operations—pp. 34-41

Lesson 5 Relate Addition and Subtraction Facts—pp. 42-49

Lesson 6 Relate Counting to Addition and

 Subtraction-pp. 50-57
Operations and Algebraic Thinking

Standards

MGSE1.OA. 6 Add and subtract within 20.

a. Use strategies such as counting on; making ten (e.g., $8+6=8+2+4=10+$ $4=14$); decomposing a number leading to a ten (e.g., $13-4=13-3-1=10-1$ $=9$); using the relationship between addition and subtraction (e.g., knowing that $8+4=12$, one knows $12-8=4$); and creating equivalent but easier or known sums (e.g., adding $6+7$ by creating the known equivalent $6+6+1$ $=12+1=13$).
b. Fluently add and subtract within 10.

Work with addition and subtraction equations.

MGSE1.OA. 7	Understand the meaning of the equal sign, and determine if equations involving addition and subtraction are true or false. For example, which of the following equations are true and which are false? $6=6,7=8-1,5+2$ $=2+5,4+1=5+2$.
MGSE1.OA.8	Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8+?=11,5=\square$ $-3,6+6=\square$.

Sadlier Progress Mathematics, Grade 1

Lesson 7 Addition and Subtraction Facts to 10 (fluency)—pp. 58-65

Lesson 8 Addition and Subtraction Facts to 20-pp. 66-73

Lesson 9 Addition and Subtraction Equations-pp. 7481

Lesson 10 Find Missing Numbers in Equations-pp. 8295

Standards

Extend the counting sequence.

MGSE1.NBT. 1 Count to 120, starting at any number less than 120. In this range, read and write numerals and represent a number of objects with a written numeral.

Sadlier Progress Mathematics, Grade 1

Lesson 11	Count to 120 —pp. 96-103
Lesson 12	Read and Write Numbers—pp. 104-111

Standards		Sadlier Progress Mathematics, Grade 1	
Understand place value.			
MGSE1.NBT. 2	Understand that the two digits of a twodigit number represent amounts of tens and ones. Understand the following as special cases: a. 10 can be thought of as a bundle of ten ones - called a "ten." b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight, or nine ones. c. The numbers $10,20,30,40,50,60,70,80$, 90 refer to one, two, three, four, five, six, seven, eight, or nine tens (and 0 ones).	Lesson 13	Understand Place Value: Tens and Ones-pp. 112-119
MGSE1.NBT. 3	Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.	Lesson 14	Compare Numbers—pp. 120-127

Use place value understanding and properties of operations to add and subtract.

MGSE1.NBT.4	Add within 100, including adding a two- digit number and a one-digit number and adding a two-digit number and a multiple of ten (e.g., 24 + 9, 13 + 10, 27 + 40), using concrete models or drawings and strategies based on place value, properties of operations, and/or relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
MGSE1.NBT.5	Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.
MGSE1.NBT.6	Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range of 10-90 (positive or zero differences), using concrete models or drawings and strategies based on place value, properties of operations and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. (e.g.,70 - 30, 30 - 10, 60 - 60)

Number and Operations in Base	
Standards	
MGSE1.NBT. 7	Identify dimes, and understand ten pennies can be thought of as a dime. (Use dimes as manipulatives in multiple mathematical contexts.)

Measurement and Data

Standards

Measure lengths indirectly and by iterating length units.

MGSE1.MD.1	Order three objects by length; compare the lengths of two objects indirectly by using a third object.
MGSE1.MD.2	Express the length of an object as a whole number of length units, by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of same-size length units that span it with no gaps or overlaps. (Iteration)

Tell and write time.

MGSE1.MD. 3 Tell and write time in hours and half-hours using analog and digital clocks.

Represent and interpret data.

MGSE1.MD. 4 Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another.

Sadlier Progress Mathematics, Grade 1

Lesson 21 Money—pp. 186-193
\qquad

Sadlier Progress Mathematics, Grade 1

Lesson 18 Compare and Order Lengths—pp. 162-169

Lesson 19 Measure Length in Length Units-pp. 170177

```
Lesson 20 Tell Time—pp. 178-185
```

[^0]
Geometry

Standards

Reason with shapes and their attributes.

MGSE1.G. 1 Distinguish between defining attributes (e.g. triangles are closed and three-sided) versus non-defining attributes (e.g., color, orientation, overall size); build and draw shapes to possess defining attributes.

MGSE1.G.2	Compose two-dimensional shapes (rectangles, squares, trapezoids, triangles, half-circles, and quarter-circles) or three- dimensional shapes (cubes, right rectangular prisms, right circular cones, and right circular cylinders) to create a composite shape, and compose new shapes from the composite shape. (Students do not need to learn formal names such as "right rectangular prism.") This is important for the future development of spatial relations which later connects to developing understanding of area, volume, and fractions.
MGSE1.G.3	Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths, and quarters, and
use the phrases halfof, fourth of, and quarter	
of. Describe the whole as two of, or four of	
the shares. Understand for these examples	
that decomposing into more equal shares	
creates smaller shares.	

Sadlier Progress Mathematics, Grade 1

Lesson 23 Identify Shapes—pp. 208-215

Lesson 24	Two-Dimensional Shapes—pp. 216-223
Lesson 25	Three-Dimensional Shapes—pp. 224-231

Lesson 26 Equal Shares-pp. 232-239

[^0]: Lesson 22
 Use Tables—pp. 194-207

