## Progress <br> Mathematics

Standards-Based Instruction \& Practice


Aligned to the

## Georgia Standards of Excellence 2015-2016: Mathematics

## Grade 3

| Contents |  |
| :--- | :--- |
| Operations and Algebraic Thinking | 2 |
| Number and Operations in Base Ten | 4 |
| Number and Operations—Fractions | 4 |
| Measurement and Data | 5 |
| Geometry | 8 |

William H. Sadlier, Inc. www.sadlierschool.com

## Standards

Represent and solve problems involving multiplication and division.

| MGSE3.OA.1 | Interpret products of whole numbers, e.g., <br> interpret $5 \times 7$ as the total number of <br> objects in 5 groups of 7 objects each. <br> Example: Jim purchased 5 packages of <br> muffins. Each package contained 3 muffins. <br> How many muffins did Jim purchase? (5 <br> groups of $3,5 \times 3=15$ ) |
| :--- | :--- |
| MGSE3.OA.2 | Interpret whole number quotients of whole <br> numbers, e.g., interpret $56 \div 8$ as the number <br> of objects in each share when 56 objects are <br> partitioned equally into 8 shares (How many <br> in each group?), or as a number of shares <br> when 56 objects are partitioned into equal <br> shares of 8 objects each (How many groups <br> can you make?). For example, describe a <br> context in which a number of shares or a <br> number of groups can be expressed as 56 $\div 8$. |
| MGSE3.OA.3 | Use multiplication and division within 100 to <br> solve word problems in situations involving <br> equal groups, arrays, and measurement |
| quantities, e.g., by using drawings and |  |
| equations with a symbol for the unknown |  |
| number to represent the problem. |  |

## MGSE3.OA.4 Determine the unknown whole number in a multiplication or division equation relating three whole numbers using the inverse relationship of multiplication and division. For example, determine the unknown number that makes the equation true in each of the equations, $8 \times ?=48,5=\square \div 3,6 \times 6=$ ?. <br> Understand properties of multiplication and the relationship between multiplication and division.

## MGSE3.OA. 5

Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication.) $3 \times 5$ $\times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5$ $=40$ and $8 \times 2=16$, one can find $8 \times 7$ as $8 \times 15$

- continued on next page -


## Sadlier Progress Mathematics, Grade 3

## Lesson 1 Interpret Products of Whole Numbers-pp. 10-17

Lesson 2 Interpret Quotients of Whole Numbers-pp. 18-26

| Lesson 3 | Problem Solving: Multiplication/Division and <br> Equal Groups—pp. 26-33 |
| :--- | :--- |
| Lesson 4 | Problem Solving: Multiplication/Division and <br> Arrays-pp. 34-41 |
| Lesson 32 | Problem Solving: Measurement-pp. 288-295 |
| Lesson 5 | Find Unknown Numbers in Multiplication <br> and Division Equations—pp. 42-49 |


| Lesson 6 | Apply Commutative and Associative <br> Properties to Multiply-pp. 50-57 |
| :--- | :--- |
| Lesson 7 | Apply the Distributive Property to Multiply- <br> pp. 58-65 |

## Standards

|  | - continued on next page - |
| :--- | :--- |
|  | $+2)=(8 \times 5)+(8 \times 2)=40+16=56$. <br> (Distributive property.) (Students need not use <br> formal terms for these properties.) |
| MGSE3.OA.6 | Understand division as an unknown-factor <br> problem. For example, find $32 \div 8$ by finding <br> the number that makes 32 when multiplied <br> by 8. |
| Multiply and divide within 100. |  |

Sadlier Progress Mathematics, Grade 3

Lesson 8 Divide by Finding an Unknown Factor—pp. 66-73

Lesson 9 Multiply and Divide Fluently within 100—pp. 80-87

Lesson 10 Problem Solving: Two-Step Problems-pp. 88-95

Lesson 11 Problem Solving: Use Equations—pp. 96-103

Lesson 12 Identify and Explain Arithmetic Patterns-pp. 104-111

Standards
Use place value understanding and properties of operations to perform multi-digit arithmetic.
(A range of algorithms will be used.)

| MGSE3.NBT. 1 | Use place value understanding to round <br> whole numbers to the nearest 10 or 100. |  | Lesson 13 | Round Whole Numbers to the Nearest 10 or <br> 100-pp. 112-119 |
| :--- | :--- | :--- | :--- | :--- |
| MGSE3.NBT.2 | Fluently add and subtract within 1000 using <br> strategies and algorithms based on place <br> value, properties of operations, and/or the <br> relationship between addition and <br> subtraction. |  | Lesson 14 | Add and Subtract Fluently within 1000-pp. <br> $120-127$ |
| MGSE3.NBT.3 | Multiply one-digit whole numbers by <br> multiples of 10 in the range 10-90 (e.9., $9 \times$ <br> $80,5 \times 60)$ using strategies based on place <br> value and properties of operations. |  | Lesson 15 | Multiply One-Digit Whole Numbers by <br> Multiples of 10-pp. 128-135 |

## Number and Operations-Fractions

(Grade 3 expectations in this domain are limited to fractions with denominators of 2, 3, 4, 6, and 8.)

## Standards

Develop understanding of fractions as numbers.

| MGSE3.NF. 1 | Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into $b$ equal parts (unit fraction); understand a fraction $a / b$ as the quantity formed by $a$ parts of size $1 / b$. For example, $3 / 4$ means there are three $1 / 4$ parts, so $3 / 4=1 / 4+1 / 4+1 / 4$. | Lesson 16 | Understand Unit Fractions as Quantities-pp. 142-149 |
| :---: | :---: | :---: | :---: |
|  |  | Lesson 17 | Understand Fractions as Quantities—pp. 150-157 |
| MGSE3.NF. 2 | Understand a fraction as a number on the number line; represent fractions on a number line diagram. |  |  |
|  | a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$. Recognize that a unit fraction $1 / b$ is located $1 / b$ whole unit from 0 on the number line. | Lesson 18 | Understand Fractions on the Number Linepp. 158-165 |

## Number and Operations-Fractions

(Grade 3 expectations in this domain are limited to fractions with denominators of 2, 3, 4, 6, and 8.)

| Standards |  | SADLIER PROGRESS MATHEMATICS, GRADE 3 |
| :--- | :--- | :--- | :--- | :--- |

## Grade 3

Measurement and Data

## Standards

## Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.

MGSE3.MD. 1 Tell and write time to the nearest minute and measure elapsed time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram, drawing a pictorial representation on a clock face, etc.

MGSE3.MD. 2 Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). ${ }^{17}$ Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. ${ }^{18}$
${ }^{17}$ Excludes compound units such as $\mathrm{cm}^{3}$ and finding the geometric volume of a container.
${ }^{18}$ Excludes multiplicative comparison problems (problems involving notions of "times as much."

## Represent and interpret data.

MGSE3.MD. 3 Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

MGSE3.MD. 4 Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.

Lesson 24 Problem Solving: Time—pp. 218-225

Lesson 25 Problem Solving: Volumes and Masses-pp. 226-233

Lesson 32 Problem Solving: Measurement—pp. 288-295

Lesson 26 Draw Graphs to Represent Categorical Data-pp. 234-241

Lesson 27 Generate and Graph Measurement Data—pp. 242-249

## Measurement and Data

Standards

## Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

| MGSE3.MD. 5 | Recognize area as an attribute of plane figures and understand concepts of area measurement. |  |  |
| :---: | :---: | :---: | :---: |
|  | a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. | Lesson 28 | Understand Concepts of Area Measurement-pp. 256-263 |
|  | b. A plane figure which can be covered without gaps or overlaps by $n$ unit squares is said to have an area of $n$ square units. | Lesson 28 | Understand Concepts of Area Measurement-pp. 256-263 |
| MGSE3.MD. 6 | Measure areas by counting unit squares (square cm , square m , square in, square ft , and improvised units). | Lesson 28 | Understand Concepts of Area Measurement-pp. 256-263 |
| MGSE3.MD. 7 | Relate area to the operations of multiplication and addition. |  |  |
|  | a. Find the area of a rectangle with wholenumber side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. | Lesson 29 | Find Areas of Rectangles: Tile and Multiplypp. 264-271 |
|  | b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. | Lesson 29 | Find Areas of Rectangles: Tile and Multiplypp. 264-271 |
|  | c. Use tiling to show in a concrete case that the area of a rectangle with wholenumber side lengths $a$ and $b+c$ is the | Lesson 30 | Find Areas of Rectangles: Use the Distributive Property—pp. 272-279 |
|  | sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. | Lesson 32 | Problem Solving: Measurement-pp. 288-295 |

## Measurement and Data

## Standards

> d.- Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.

| MGSE3.MD.8 | Solve real world and mathematical problems <br> involving perimeters of polygons, including <br> finding the perimeter given the side lengths, <br> finding an unknown side length, and <br> exhibiting rectangles with the same <br> perimeter and different areas or with the <br> same area and different perimeters. |
| :--- | :--- |

## Geometry

## Standards

Reason with shapes and their attributes.

| MGSE3.G.1 | Understand that shapes in different <br> categories (e.g., rhombuses, rectangles, and <br> others) may share attributes (e.g., having <br> four sides), and that the shared attributes <br> can define a larger category (e.g., <br> quadrilaterals). Recognize rhombuses, <br> rectangles, and squares as examples of <br> quadrilaterals, and draw examples of <br> quadrilaterals that do not belong to any of <br> these subcategories. |
| :--- | :--- |
| MGSE3.G.2 | Partition shapes into parts with equal areas. <br> Express the area of each part as a unit <br> fraction of the whole. For example, partition a <br> shape into 4 parts with equal area, and <br> describe the area of each part as $1 / 4$ of the area <br> of the shape. |

Sadlier Progress Mathematics, Grade 3
Lesson 31 Find Areas: Decompose Figures into Rectangles-pp. 280-287

Lesson 32 Problem Solving: Measurement—pp. 288-295

Lesson 33 Problem Solving: Perimeter—pp. 296-303
Lesson 34 Problem Solving: Compare Perimeter and Area-pp. 304-311
$\qquad$

## Sadlier Progress Mathematics, Grade 3

Lesson 35 Understand Shapes and Attributes—pp. 312- 319

Lesson 36 Partition Shapes to Make Equal Areas-pp. 320-327

