Progress
 Mathematics

Standards-Based Instruction \& Practice

Aligned to the

Georgia Standards of Excellence 2015-2016: Mathematics

Grade 7

Contents	
Ratios and Proportional Relationships	2
The Number System	3
Expressions and Equations	4
Geometry	6
Statistics and Probability	7

William H. Sadlier, Inc. www.sadlierschool.com

Ratios and Proportional Relationships

Standards

Analyze proportional relationships and use them to solve real-world and mathematical problems.

MGSE7.RP. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. For example, if a person walks $1 / 2$ mile in each $1 / 4$ hour, compute the unit rate as the complex fraction(1/2)/(1/4) miles per hour, equivalently 2 miles per hour.
MGSE7.RP. 2	Recognize and represent proportional relationships between quantities.
	MGSET.RP.2a Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
	MGSE7.RP.2b Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
	MGSET.RP.2c Represent proportional relationships by equations. For example, if total cost t is proportional to the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $\mathrm{t}=\mathrm{pn}$.
	MGSE7.RP.2d Explain what a point $(x$,) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.
MGSE7.RP. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, and fees.

Sadlier Progress Mathematics, Grade 7

Lesson 1 Compute Unit Rates-pp. 10-17

Lesson 2 Identify Proportional Relationships—pp.

 18-25Lesson 3 Identify the Constant of Proportionalitypp. 26-33

Lesson 4 Represent Proportional Relationships with Equations -pp. 34-41

Lesson 5 Interpret Graphs of Proportional
Relationships-pp. 42-49

Lesson 6	Problem Solving: Multi-step Ratio Problems-pp. 50-57
Lesson 7	Problem Solving: Multi-step Percent Problems-pp. 58-65

The Number System

Standards
Apply and extend previous understandings of
operations with fractions to add, subtract,
multiply, and divide rational numbers.
MGSET.NS. 1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

MGSET.NS. 1 a Show that a number and its opposite have a sum of 0 (are additive inverses). Describe situations in which opposite quantities combine to make 0 . For example, your bank account balance is $\$ 25.00$. You deposit $\$ 25.00$ into your account. The net balance is $\$ 0.00$.

MGSE7.NS.1b Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Interpret sums of rational numbers by describing real world contexts.

MGSE7.NS.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

MGSE7.NS.1d Apply properties of operations as strategies to add and subtract rational numbers.

MGSE7.NS. 2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

MGSE7.NS.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.

Sadlier Progress Mathematics, Grade 7

Lesson $8 \quad$ Understand Addition of Integers-pp. 72-79

Lesson $8 \quad$ Understand Addition of Integers—pp. 72-79

Lesson 9 Understand Subtraction of Integers—pp. 80-87

Lesson 10 Add and Subtract Rational Numbers-pp. 88-95

Lesson 11 Understand Multiplication of Integers-pp. 96-103

The Number System

Standards

MGSE7.NS.2b Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $(p / q)=(-p) / q=p /(-q)$. Interpret quotients of rational numbers by describing realworld contexts.

MGSE7.NS.2c Apply properties of operations as strategies to multiply and divide rational numbers.

MGSE7.NS.2d Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in Os or eventually repeats.

MGSE7.NS. 3 Solve real-world and mathematical problems

 involving the four operations with rational numbers. (Computations with rational numbers extend the rules for manipulating fractions to complex fractions.)
Expressions and Equations

Standards

Use properties of operations to generate equivalent expressions.

MGSE7.EE. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
MGSE7.EE. 2	Understand that rewriting an expression in different forms in a problem context can clarify the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that adding a 5% tax to a total is the same as multiplying the total by 1.05.

Sadlier Progress Mathematics, Grade 7

Lesson 12 Understand Division of Integers—pp. 104-

 111
Lesson 13 Multiply and Divide Rational Numbers-pp.

 112-119Lesson 14 Convert Rational Numbers to Decimal Form-pp. 120-127

Lesson 15 Apply Rational-Number Operations-pp. 128-135

Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
Lesson 17	Expand and Factor Linear Expressions-pp. $150-157$
Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
Lesson 17	Expand and Factor Linear Expressions-pp. $150-157$

Expressions and Equations

Standards

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

MGSE7.EE. 3	Solve multistep real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals) by applying properties of operations as strategies to calculate with numbers, converting between forms as appropriate, and assessing the reasonableness of answers using mental computation and estimation strategies. For example: - If a woman making \$25 an hour gets a 10\% raise, she will make an additional 1/10 of her salary an hour, or $\$ 2.50$, for a new salary of $\$ 27.50$. - Ifyou want to place a towel bar 93/4 inches long in the center of a door that is 27 $1 / 2$ inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
MGSE7.EE. 4	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.
	MGSE7.EE.4a Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm . Its length is 6 cm . What is its width?
	MGSE7.EE.4b Solve word problems leading to inequalities of the form $p x+q$ $>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $\$ 50$ per week plus $\$ 3$ per sale. This week you want your pay to be at least $\$ 100$. Write an inequality for the number of sales you need to make, and describe the solutions.

Sadlier Progress Mathematics, Grade 7

Lesson 18 Problem Solving: Multi-step Problems with Rational Numbers—pp. 158-165

Lesson 19	Solve Linear Equations-pp. 166-173
Lesson 20	Problem Solving: Linear Equations—pp. 174-181

Lesson 21	Solve Linear Inequalities—pp. 182-189
Lesson 22	Problem Solving: Linear Inequalities—pp. $190-197$

Expressions and Equations

Standards

MGSE7.EE.4c Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ in which p and q are rational numbers.

Geometry

Standards
Draw, construct, and describe geometrical figures and describe the relationships between them.

MGSE7.G.1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.
MGSE7.G.2	Explore various geometric shapes with given conditions. Focus on creating triangles from three measures of angles and/or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.
MGSE7.G.3	Describe the two-dimensional figures (cross sections) that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms, right rectangular pyramids, cones, cylinders, and spheres.

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

MGSE7.G.4	Given the formulas for the area and circumference of a circle, use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.
MGSE7.G.5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.

Sadlier Progress Mathematics, Grade 7

Lesson 19	Solve Linear Equations—pp. 166-173
Lesson 20	Problem Solving: Linear Equations-pp. $174-181$

Sadlier Progress Mathematics, Grade 7

Lesson 23 | Use Scale Drawings to Solve Problems—pp. |
| :--- |
| $204-211$ |

Lesson 24	Draw Shapes that Meet Given Conditions- pp. 212-219
Lesson 25	Construct Triangles Using Both Side Lengths and Angle Measures-pp. 220-227
Lesson 26	Slice Three-Dimensional Figures-pp. 228- 235

Lesson $27 \quad$| Use Formulas for Area and Circumference of |
| :--- |
| Circles—pp. 236-243 |

Lesson $28 \quad$| Use Equations to Find Unknown Angle |
| :--- |
| Measures-pp. 244-251 |

Geometry

Statistics and Probability

Standards
 Use random sampling to draw inferences about a population.

MGSE7.SP. 1	Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.
MGSE7.SP.2	Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.
Draw informal comparative inferences about	
twO populations.	

Sadlier Progress Mathematics, Grade 7

Lesson 29 Problem Solving: Area, Volume, and Surface Area-pp. 252-259

Lesson 30 Understand Sampling—pp. 266-273

Lesson 31 Use Sampling to Draw Inferences—pp. 274281

Lesson 32 Use Visual Overlap to Compare
Distributions-pp. 282-289

Lesson 33 Use Sample Statistics to Compare
Populations-pp. 290-297

Statistics and Probability

Standards

Investigate chance processes and develop, use, and evaluate probability models.

MGSE7.SP.5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
MGSE7.SP.6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency. Predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
MGSE7.SP.7Develop a probability model and use it to find probabilities of events. Compare experimental and theoretical probabilities of events. If the probabilities are not close, explain possible sources of the discrepancy.	
MGSE7.SP.7a Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.	
	MGSE7.SP.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?

Sadlier Progress Mathematics, Grade 7

Lesson 34 Understand Probability of a Chance Eventpp. 298-305

Lesson 35 Relate Relative Frequency and Probabilitypp. 306-313

Lesson 36 Develop a Uniform Probability Model—pp. 314-321

Lesson 37 Use a Chance Process to Develop a Probability Model—pp. 322-329

Statistics and Probability

Standards

MGSE7.SP. 8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.

MGSE7.SP.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.

MGSE7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.

MGSE7.SP.8c Explain ways to set up a simulation and use the simulation to generate frequencies for compound events. For example, if 40% of donors have type A blood, create a simulation to predict the probability that it will take at least 4 donors to find one with type A blood.

Sadlier Progress Mathematics, Grade 7

Lesson 40 Summarize Numerical Data—pp. 346-353

Lesson 40 Summarize Numerical Data-pp. 346-353

Lesson 40
Summarize Numerical Data—pp. 346-353

