Progress
 Mathematics

Standards-Based Instruction \& Practice

Aligned to the

Georgia Standards of Excellence 2015-2016: Mathematics

Grade 8

Contents
The Number System 2
Expressions and Equations 2
Functions 4
Geometry 6
Statistics and Probability 7

William H. Sadlier, Inc. www.sadlierschool.com

The Number System

Standards

Sadlier Progress Mathematics, Grade 8

Know that there are numbers that are not rational, and approximate them by rational numbers.

MGSE8.NS. 1	Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
MGSE8.NS. 2	Use rational approximation of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line, and estimate the value of expressions (e.g., estimate π^{2} to the nearest tenth). For example, by truncating the decimal expansion of $\sqrt{ } 2$ (square root of 2), show that $\sqrt{ } 2$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.

Expressions and Equations

Standards

Work with radicals and integer exponents.

MGSE 8.EE. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{(-5)}=3^{(-3)}=$ $1 /(3)^{3}=1 / 27$.
MGSE8.EE.2	Use square root and cube root symbols to represent solutions to equations. Recognize that $x^{2}=p$ (where p is a positive rational number and $\|x\| \leq 25)$ has 2 solutions and $x^{3}=$ p (where p is a negative or positive rational number and $\|x\| \leq 10)$ has one solution. Evaluate square roots of perfect squares \leq 625 and cube roots of perfect cubes ≥-1000 and ≤ 1000.

Lesson 3	Understand Zero and Negative Exponent- pp. 32-39
Lesson 4	Learn Properties of Exponents-pp. 40-47
Lesson 5	Use Properties of Exponents Generate Equivalent Expressions-pp. 48-55
Lesson 6	Evaluate Square Roots and Cube Roots-pp. 56-63
Lesson 7	Solve Simple Equations Involving Squares and Cubes-pp. 64-71

Expressions and Equations

Standards

MGSE8.EE. 3 Use numbers expressed in scientific notation to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.

MGSE8.EE. 4

Add, subtract, multiply and divide numbers
expressed in scientific notation, including problems where both decimal and scientific notation are used. Understand scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g. use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology (e.g. calculators).

Understand the connections between proportional relationships, lines, and linear equations.

MCC.8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

MGSE8.EE. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+$ b for a line intercepting the vertical axis at b.

Analyze and solve linear equations and pairs of simultaneous linear equations.

MGSE8.EE. $7 \quad$ Solve linear equations in one variable.
MGSE8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent

- continued on next page -

Sadlier Progress Mathematics, Grade 8

Lesson 8 Estimate and Compare Large or Small Quantities-pp. 72-79

Lesson $9 \quad$ Calculate with Numbers in Scientific Notation-pp. 80-87

Lesson 10 Understand Proportional Relationships and Slope-pp. 88-95

Lesson 11	Understand Slope—pp. 96-103
Lesson 12	Write Equations for Lines—pp. 104-111

Lesson 13 Solve Linear Equations—pp. 112-119

Expressions and Equations

Standards

— continued from previous page -
equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).

MGSE8.EE.7b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

MGSE8.EE. 8 Analyze and solve pairs of simultaneous linear equations (systems of linear equations).

MGSE8.EE.8a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

MGSE8.EE.8b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x$ $+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .

MGSE8.EE.8c Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Functions

Standards
Define, evaluate, and compare functions.

MGSE8.F. $1 \quad$ Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

Sadlier Progress Mathematics, Grade 8

Lesson 13 Solve Linear Equations—pp. 112-119

Lesson 14 Solve Systems of Equations-pp. 120-127

Lesson 14 Solve Systems of Equations-pp. 120-127

Lesson 15 Problem-Solving: Systems of Equationspp. 128-135

8.F

Sadlier Progress Mathematics, Grade 8

Lesson 16 Understand Functions-pp. 142-149

Lesson 17 Represent Functions-pp. 150-157

```
Sadlier Progress Mathematics, Grade 8, Aligned to the
Georgia Standards of Excellence 2015-2016: Mathematics
Grade }
```


Functions

Standards	
MGSE8.F. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
MGSE8.F. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

Use functions to model relationships between quantities.

MGSE8.F.4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
MGSE8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Sadlier Progress Mathematics, Grade 8

Lesson 17	Represent Functions—pp. 150-157
Lesson 18	Compare Functions—pp. 158-165

Lesson 19 Investigate Linear and Non-Linear

 Functions-pp. 166-173| Lesson 20 | Use Functions to Model Relationships—pp.
 $174-181$ |
| :--- | :--- |
| Lesson 21 | Problem Solving: Use Linear Models—pp.
 $182-189$ |
| | |
| Lesson 22 | Analyze Graphs of Functions—pp. 190-197 |

Geometry

Standards

Understand congruence and similarity using physical models, transparencies, or geometry software.

MGSE8.G. 1	Verify experimentally the congruence properties of rotations, reflections, and translations: lines are taken to lines and line segments to line segments of the same length; angles are taken to angles of the same measure; parallel lines are taken to parallel lines.	Lesson 23	Verify Properties of Reflections and Translations-pp. 204-211
		Lesson 24	Verify Properties of Rotations-pp. 212-219
MGSE8.G. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	Lesson 25	Understand and Identify Congruent Figures-pp. 220-227
MGSE8.G. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228-235
		Lesson 27	Rotate Figures on the Coordinate Plane-pp. 236-243
		Lesson 28	Dilate Figures on the Coordinate Plane-pp. 244-251
MGSE8.G. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	Lesson 29	Identify Similar Figures—pp. 252-259
MGSE8.G. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	Lesson 30	Establish Facts about Parallel Lines and Angles-pp. 260-265
		Lesson 31	Establish Facts about Triangles and Angles-pp. 266-275

Geometry

Sadlier Progress Mathematics, Grade 8

Lesson 32	Understand the Pythagorean Theorem—pp. $276-283$
Lesson 33	Understand the Converse of the Pythagorean Theorem—pp. 284-291
Lesson 34	Problem Solving: The Pythagorean Theorem—pp. 292-299

Lesson 35 Calculate Distances in the Coordinate Plane-pp. 300-307

Lesson 36 Learn and Apply Volume Formulas-pp. 308-315

Lesson 37 Construct and Interpret Scatter Plots—pp. 322-329

Lesson 38 Fit Linear Models to Data—pp. 330-337

Grade 8

| Statistics a nd Probability | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STANDARDS | | SADLIER PROGRESS MATHEMATICS, GRADE 8 | 8.SP

