Progress Mathematics

Standards-Based Instruction \& Practice

Aligned to

Ohio's Learning Standards Mathematics | 2017

Grade 6

Contents
Ratios and Proportional Relationships 2
The Number System 3
Expressions and Equations 5
Geometry 7
Statistics and Probability 8

William H. Sadlier, Inc. www.sadlierschool.com

Ratios and Proportional Relationships

Standards
 Understand ratio concepts and use ratio reasoning to solve problems.

6.RP. \mathbf{l}	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate r received, candidate C received nearly three votes."			Lesson 16

The Number System

Standards
Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

6.NS. 1	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div$ $(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, (a / b) $\div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2 \mathrm{lb}$ of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4 \mathrm{mi}$ and area $1 / 2$ square mi ?
Comp and	fluently with multi-digit numbers ommon factors and multiples.

6.NS.2	Fluently divide multi-digit numbers using the standard algorithm.
6.NS.3	Fluently add, subtract, multiply, and divide multi- digit decimals using the standard algorithm for each operation.

6.NS. 4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.

Apply and extend previous understandings of numbers to the system of rational numbers.
6.NS. 5 Understand that positive and negative numbers are used together to describe quantities having opposite directions or values, e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

Sadlier Progress Mathematics, Grade 6

Lesson 11	Divide Multi-digit Numbers-pp. 96-103
Lesson 12	Add and Subtract Multi-digit Decimals—pp. $104-111$
Lesson 13	Multiply and Divide Multi-digit Decimals- pp. 112-119
Lesson 14	Find the Greatest Common Factor and Least Common Multiple—pp. 120-127

Lesson 15 Understand Positive and Negative Numbers and Opposites-pp. 128-135

The Number System

StANDARDS	
6.NS.6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.

a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
6.NS. 7 Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.
c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a realworld situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than 30 dollars represents a debt greater than 30 dollars.

Sadlier Progress Mathematics, Grade 6

Lesson 15 Understand Positive and Negative Numbers and Opposites-pp. 128-135

Lesson 16 Locate Points with Rational Coordinates-pp. 136-143

Lesson 16 Locate Points with Rational Coordinates-pp. 136-143

Lesson 17 Compare and Order Rational Numbers-pp. 144-151

Lesson 17 Compare and Order Rational Numbers-pp. 144-151

Lesson 18 Understand Absolute Value—pp. 152-159

Lesson 18 Understand Absolute Value—pp. 152-159

The Number System

Standards

6.NS. 8 Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Expressions and Equations

STANDARDS

Apply and extend previous understandings of arithmetic to algebraic expressions.

6.EE.1	Write and evaluate numerical expressions involving whole-number exponents.
6.EE.2	Write, read, and evaluate expressions in which letters stand for numbers.

a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, using the algebraic order of operations when there are no parentheses to specify a particular order. For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=$ 1/2.

Sadlier Progress Mathematics, Grade 6

Lesson 19 Problem Solving: The Coordinate Plane—pp. 160-167

Sadlier Progress Mathematics, Grade 6

Lesson 20 Write and Evaluate Numerical Expressions with Exponents -pp. 174-181

Lesson 21 Write Algebraic Expressions to Record Operations-pp. 182-189

Lesson 22 Identify Parts of an Expression—pp. 190-197

Lesson 23 Evaluate Algebraic Expressions-pp. 198-205

Expressions and Equations

STANDARDS	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x ;$ apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y) ; ~ a p p l y$ properties of operations to $y+y+y$ to produce the equivalent expression 3y.
$6 . E E .4 \quad$Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $+y+y$ and 3y are equivalent because they name the same number regardless of which number y stands for.	

Sadlier Progress Mathematics, Grade 6

Reason about and solve one-variable

 equations and inequalities.| 6.EE.5 | Understand solving an equation or inequality as a
 process of answering a question: which values
 from a specified set, if any, make the equation or
 inequality true? Use substitution to determine
 whether a given number in a specified set makes
 an equation or inequality true. |
| :--- | :--- |
| 6.EE.6 | Use variables to represent numbers and write
 expressions when solving a real-world or
 mathematical problem; understand that a
 variable can represent an unknown number, or,
 depending on the purpose at hand, any number
 in a specified set. |
| 6.EE.7 | Solve real-world and mathematical problems by
 writing and solving equations of the form $x+p=$
 q and $p x=q$ for cases in which p, q and x are all
 nonnegative rational numbers. |
| $6 . E E .8$ | Write an inequality of the form $x>c$ or $x<c$ to
 represent a constraint or condition in a real-world
 or mathematical problem. Recognize that
 inequalities of the form $x>c$ or $x<c$ have
 infinitely many solutions; represent solutions of
 such inequalities on number line diagrams. |

Lesson 24 Generate and Identify Equivalent
Expressions-pp. 206-213

Lesson 24 Generate and Identify Equivalent
Expressions-pp. 206-213

Lesson 25 Identify Solutions to Equations and Inequalities-pp. 214-221

Lesson 26 Write Algebraic Expressions to Represent Problems-pp. 222-229

Lesson 27	Solve Equations of the Form $\mathbf{x}+\mathrm{p}=\mathrm{q}-\mathrm{pp}$. $230-237$
Lesson $\mathbf{2 8}$	Solve Equations of the Form $\mathrm{px}=\mathrm{q}-\mathrm{pp} 238-$. 245
Lesson $\mathbf{2 9}$	Graph Solutions to Inequalities-pp. 246-253

Expressions and Equations

Standards

Represent and analyze quantitative relationships between dependent and independent variables.
6.EE.9 Use variables to represent two quantities in a realworld problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65$ t to represent the relationship between distance and time.

Geometry

Standards

Solve real-world and mathematical problems

 involving area, surface area, and volume.| 6.G.1 | Through composition into rectangles or
 decomposition into triangles, find the area of
 right triangles, other triangles, special
 quadriaterals, and polygons; apply these
 techniques in the context of solving real-world
 and mathematical problems. |
| :---: | :--- |
| 6.G.2 | Find the volume of a right rectangular prism with
 fractional edge lengths by packing it with unit
 cubes of the appropriate unit fraction edge
 lengths, and show that the volume is the same as
 would be found by multiplying the edge lengths
 of the prism. Apply the formulas $V=/ w h$ and $V=$
 B h to find volumes of right rectangular prisms
 with fractional edge lengths in the context of
 solving real-world and mathematical problems. |
| 6.G.3 | Draw polygons in the coordinate plane given
 coordinates for the vertices; use coordinates to
 find the length of a side joining points with the
 same first coordinate or the same second
 coordinate. Apply these techniques in the context
 of solving real-world and mathematical problems. |

Sadlier Progress Mathematics, Grade 6

Lesson 30 Represent Relationships Between

Variables-pp. 254-261

Sadlier Progress Mathematics, Grade 6

Lesson 31 | Find Areas of Parallelograms and Triangles- |
| :--- |
| |
| pp. 268-275 | pp. 268-275

Lesson 32 Find Areas of Polygons-pp. 276-283

Lesson 33 Find Volumes of Rectangular Prisms-pp. 284-291

Lesson 34 Plot and Analyze Polygons in the Coordinate Plane-pp. 292-299

Geometry

STANDARDS	
6.G.4	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

Statistics and Probability

```
StandarDS
```

Develop understanding of statistical problem solving.

6.SP. 1 Develop statistical reasoning by using the GAISE model:

a. Formulate Questions: Recognize and formulate a statistical question as one that anticipates variability and can be answered with quantitative data. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because of the variability in students' ages. (GAISE Model, step 1)
b. Collect Data: Design and use a plan to collect appropriate data to answer a statistical question. (GAISE Model, step 2)
c. Analyze Data: Select appropriate graphical methods and numerical measures to analyze data by displaying variability within a group, comparing individual to individual, and comparing individual to group. (GAISE Model, step 3)
d. Interpret Results: Draw logical conclusions from the data based on the original question. (GAISE Model, step 4)
6.SP. 2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
6.SP. 3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

Sadlier Progress Mathematics, Grade 6
Lesson 35 Use Nets to Find Surface Area-pp. 300-307

Sadlier Progress Mathematics, Grade 6

Lesson 36 Understand Statistical Questions and Describe Data-pp. 314-321

Lesson 36	Understand Statistical Questions and Describe Data-pp. 314-321
Lesson 36	Understand Statistical Questions and Describe Data-pp. 314-321
Lesson 37	Find the Median and Interquartile Range- pp. 322-329
Lesson 37	Find the Median and Interquartile Range- pp. 322-329
Lesson 38	Find the Mean and Mean Absolute Deviation-pp. 330-337

Statistics and Probability

Standards

Sadlier Progress Mathematics, Grade 6

Summarize and describe distributions.

6.SP. 4	Display numerical data in plots on a number line, including dot plots (line plots), histograms, and box plots. (GAISE Model, step 3)	Lesson 39	Display Numerical Data-pp. 338-345
6.SP. 5	Summarize numerical data sets in relation to their context.		
	a. Report the number of observations.	Lesson 40	Summarize Numerical Data-pp. 346-353
	b. Describe the nature of the attribute under investigation, including how it was measured and its units of measurement.	Lesson 40	Summarize Numerical Data-pp. 346-353
	c. Find the quantitative measures of center (median and/or mean) for a numerical data set and recognize that this value summarizes the data set with a single number. Interpret mean as an equal or fair share. Find measures of variability (range and interquartile range) as well as informally describe the shape and the presence of clusters, gaps, peaks, and outliers in a distribution.	Lesson 40	Summarize Numerical Data-pp. 346-353
	d. Choose the measures of center and variability, based on the shape of the data distribution and the context in which the data were gathered.	Lesson 40	Summarize Numerical Data-pp. 346-353

