Progress Mathematics

Aligned to the

College and Career Ready Indiana Academic Standards Mathematics: Grade 8

Contents
2 Number Sense
3 Computation
3 Algebra and Functions
5 Geometry and Measurement
7 Data Analysis, Statistics, and Probability

Sadlier

William H. Sadlier, Inc. www.sadlierschool.com

Sadlier Progress Mathematics, Grade 8, Aligned to the College and Career Ready Indiana Academic Standards Mathematics: Grade 8

Number Sense

Mathematics Standards \& Description, Grade 8

8.NS.1: Give examples of rational and irrational numbers and explain the difference between them. Understand that every number has a decimal expansion; for rational numbers, show that the decimal expansion repeats eventually, and convert a decimal expansion that repeats into a rational number.
8.NS.2: Use rational approximations of irrational numbers to compare the size of irrational numbers, plot them approximately on a number line, and estimate the value of expressions involving irrational numbers.
8.NS.3: Given a numeric expression with common rational number bases and integer exponents, apply the properties of exponents to generate equivalent expressions.
8.NS.4: Use square root symbols to represent solutions to equations of the form $x^{2}=p$, where p is a positive rational number.

Lesson 1	Understand Rational and Irrational Numbers-pp. 10-17 Understand: Decimal forms of rational numbers Understand: Decimal forms of irrational numbers Understand: How to write a terminating decimal in fraction form Understand: How to write a repeating decimal in fraction form
Lesson 2	Use Rational Approximations of Irrational Numbers-pp. 18-25 Understand: How to approximate the side length of a square with an area of $2 \mathrm{ft}^{2}$ Understand: How to use rational approximations to compare irrational numbers Understand: How to use decimal approximations to locate irrational numbers on a number line
Lesson 3	Understand Zero and Negative Exponent-pp. 32-39 Understand: Using patterns to find the value of 2° Understand: Using patterns to understand zero exponents Understand: Using patterns to understand negative exponents Understand: How to find the values of powers with negative exponents
Lesson 4	Learn Properties of Exponents-pp. 40-47 Understand: The Product of Powers Property Understand: The Power of a Product Property Understand: The Power of a Power Property Understand: The Quotient of Powers Property Understand: The Power of a Quotient Property
Lesson 5	Use Properties of Exponents Generate Equivalent Expressions-pp. 48-55 Understand: How to rewrite an expression so all the exponents are positive Understand: How to apply properties to compare expressions Understand: How to apply properties of exponents to show that expressions are equivalent Understand: How to use properties of exponents to write expressions that are equivalent to a given expression
Lesson 6	Evaluate Square Roots and Cube Roots-pp. 56-63 Understand: How a square root is related to the side length of a square Understand: Square roots of a positive number Understand: Irrational square roots Understand: Square roots of decimals in simple cases Understand: Square roots of fractions in simple cases Understand: How a cube root is related to the edge length of a cube Understand: Cube roots of positive and negative numbers

Sadlier Progress Mathematics, Grade 8

Lesson 7 Solve Simple Equations Involving Squares and Cubes-pp. 64-71
Understand: Solving equations of the form $\mathrm{x}^{2}=p$
Understand: Solving equations of the form $\mathrm{X}^{3}=p$
Understand: Representing solutions of $\mathrm{x}^{2}=p$, when p is not a perfect square
Understand: Real-world problems involving square roots
Understand: The expression $\sqrt{x^{2}}$

Computation

Mathematics Standards \& Description, Grade 8

8.C.1: Solve real-world problems with rational numbers by using multiple operations.

Sadlier Progress Mathematics, Grade 8

Lesson 14 Solve Systems of Equations-pp. 120-127
Understand: The solution to a system of equations Understand: How to solve a system of equations algebraically
Understand: Systems of equations with no solution

Lesson 15	Problem-Solving: Systems of Equations-pp.
	$128-135$
	Understand: Solving a real-world problem using a
system of equations	
	Understand: Finding a break-even point

Lesson 34 Problem Solving: The Pythagorean Theorempp. 292-299
Understand: Applying the Pythagorean Theorem Understand: Finding the length of a diagonal of a box

Problem-Solving Model—pp. 375-377
Lesson $9 \quad$ Calculate with Numbers in Scientific

Notation-pp. 80-87

Understand: Scientific notation
Understand: A shortcut for writing numbers in scientific notation
Understand: Multiplying numbers in scientific notation Understand: Dividing numbers in scientific notation Understand: Adding numbers in scientific notation

Algebra and Functions

Mathematics Standards \& Description, Grade 8

8.AF.1: Solve linear equations with rational number coefficients fluently, including equations whose solutions require expanding expressions using the distributive property and collecting like terms. Represent real-world problems using linear equations and inequalities in one variable and solve such problems.

Sadlier Progress Mathematics, Grade 8

Lesson 13 Solve Linear Equations-pp. 112-119
Understand: Combining like terms before solving (using the Distributive Property)
Understand: Solving equations with the variable on both sides
*No inequalities at this level.

Algebra and Functions

Mathematics Standards \& Description, Grade 8

8.AF.2: Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by transforming a given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).
8.AF.3: Understand that a function assigns to each x-value (independent variable) exactly one y-value (dependent variable), and that the graph of a function is the set of ordered pairs (x, y).
8.AF.4: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear, has a maximum or minimum value). Sketch a graph that exhibits the qualitative features of a function that has been verbally described.
8.AF.5: Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. Describe similarities and differences between linear and nonlinear functions from tables, graphs, verbal descriptions, and equations.
8.AF.6: Construct a function to model a linear relationship between two quantities given a verbal description, table of values, or graph. Recognize in $y=m x+b$ that m is the slope (rate of change) and b is the y-intercept of the graph, and describe the meaning of each in the context of a problem.

Sadlier Progress Mathematics, Grade 8

Lesson 13 Solve Linear Equations-pp. 112-119
Understand: Solving equations with the variable on both sides
Understand: Equations with no solution
Understand: Equations with an infinite number of solutions

Lesson 16	Understand Functions-pp. 142-149 Understand: The definition of function Understand: Identifying a function from ordered pairs Understand: Identifying a function from a table Understand: Identifying a function from a graph Understand: Identifying a function from an equation
Lesson 17	Represent Functions—pp. 150-157 Understand: Representing the same function in different ways
	Understand: Real-world functions Understand: Equations that define functions
Lesson 22	Analyze Graphs of Functions-pp. 190-197 Understand: Analyzing a graph Understand: Sketching a graph of a function based on a description
	Understand: Graphs that show change over time

Lesson 19 Investigate Linear and Non-Linear Functions- pp. 166-173
Understand: The equation for a linear function Understand: Determining whether an equation represents a linear function

Lesson 10	Understand Proportional Relationships and Slope—pp. 88-95 Understand: How the unit rate is represented in a graph Understand: The relationship between slope and steepness Understand: How to compare relationships given in different forms
Lesson 11	Understand Slope—pp. 96-103 Understand: Calculating slope using different pairs of points Understand: Negative and zero slope Understand: Finding the slope of a line without counting units
Lesson 12	Write Equations for Lines—pp. 104-111 Understand: The general equation for a line through the origin Understand: Writing an equation for a given line through the origin Understand: The general equation for a line through the point $(0, b)$ Understand: Writing an equation for a given line Understand: Graphing a line from its equation

Algebra and Functions

Mathematics Standards \& Description, Grade 8

8.AF.7: Compare properties of two linear functions given in different forms, such as a table of values, equation, verbal description, and graph (e.g., compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed).
8.AF.8: Understand that solutions to a system of two linear equations correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously. Approximate the solution of a system of equations by graphing and interpreting the reasonableness of the approximation.

Lesson 20	Use Functions to Model Relationships-pp. 174-181 Understand: Model a linear relationship given in a table Understand: Model a linear relationship given in a graph Understand: Model a linear relationship given two (x, y) pairs
Lesson 21	Problem Solving: Use Linear Models—pp. 182189 Understand: Using a linear function to model a realworld relationship given a table of values Understand: Using a linear function to model a realworld relationship given two pairs of values

Lesson 17	Represent Functions—pp. 150-157
	Understand: Representing the same function in
different ways	
	Understand: Real-world functions
	Understand: Equations that define functions

Lesson 18 Compare Functions-pp. 158-165
Understand: Comparing rates of change Understand: Comparing a function represented by an equation to a function represented as a table

Lesson 14 Solve Systems of Equations-pp. 120-127 Understand: The solution to a system of equations Understand: How to solve a system of equations algebraically
Understand: Systems of equations with no solution

Geometry and Measurement

Mathematics Standards \& Description, Grade 8

8.GM.1: Identify, define and describe attributes of threedimensional geometric objects (right rectangular prisms, cylinders, cones, spheres, and pyramids). Explore the effects of slicing these objects using appropriate technology and describe the two-dimensional figure that results.
8.GM.2: Solve real-world and other mathematical problems involving volume of cones, spheres, and pyramids and surface area of spheres.
8.GM.3: Verify experimentally the properties of rotations, reflections, and translations, including: lines are mapped to lines, and line segments to line segments of the same length; angles are mapped to angles of the same measure; and parallel lines are mapped to parallel lines.

SADLIER PROGRESS MATHEMATICS, GRADE 8	
Lesson 36	*Related content
	Learn and Apply Volume Formulas (cylinder, rectangular prism, cone, sphere)—pp. 308-315
	*No examination of the effects of slicing three-
dimensional objects at this level.	

Geometry and Measurement

Mathematics Standards \& Description, Grade 8

8.GM.4: Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Describe a sequence that exhibits the congruence between two given congruent figures.
8.GM.5: Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. Describe a sequence that exhibits the similarity between two given similar figures.
8.GM.6: Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
8.GM.7: Use inductive reasoning to explain the Pythagorean relationship.

Lesson 27	Rotate Figures on the Coordinate Plane-pp. 236-243 Understand: How rotating a figure 90° around the origin affects the coordinates Understand: How rotating a figure 180° around the origin affects the coordinates Understand: How rotating a figure 270° around the origin affects the coordinates
Lesson 28	Dilate Figures on the Coordinate Plane-pp. 244-251 Understand: Dilations centered at the origin Understand: Dilations with scale factors between 0 and 1
Lesson 25	Understand and Identify Congruent Figurespp. 220-227 Understand: Congruent figures Understand: Demonstrating that two figures are congruent
Lesson 29	Identify Similar Figures-pp. 252-259 Understand: Similar figures Understand: Demonstrating that two figures are similar Understand: Relating corresponding side lengths and angle measures in similar figures
Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228-235 Understand: How reflecting a figure across the y-axis affects the coordinates Understand: How reflecting a figure across the x-axis affects the coordinates Understand: Reflecting a figure across the line $y=x$ Understand: How translating a figure affects the coordinates
Lesson 27	Rotate Figures on the Coordinate Plane-pp. 236-243 Understand: How rotating a figure 90° around the origin affects the coordinates Understand: How rotating a figure 180° around the origin affects the coordinates Understand: How rotating a figure 270° around the origin affects the coordinates
Lesson 28	Dilate Figures on the Coordinate Plane-pp. 244-251 Understand: Dilations centered at the origin Understand: Dilations with scale factors between 0 and 1
Lesson 32	Understand the Pythagorean Theorem—pp. 276-283 Understand: What the Pythagorean Theorem says Understand: How to prove the Pythagorean Theorem Understand: How to find an unknown leg length

Geometry and Measurement

Mathematics Standards \& Description, Grade 8
8.GM.8: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and other mathematical problems in two dimensions.
8.GM.9: Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane.

Sadlier Progress Mathematics, Grade 8

Lesson 33 Understand the Converse of the Pythagorean
Theorem—pp. 284-291
Understand: The Converse of the Pythagorean Theorem
Understand: How to prove the Converse of the Pythagorean Theorem
Understand: Pythagorean triples
Lesson 34 Problem Solving: The Pythagorean Theorempp. 292-299
Understand: Applying the Pythagorean Theorem Understand: Finding the length of a diagonal of a box
Lesson 35 Calculate Distances in the Coordinate Planepp. 300-307
Understand: Calculating the distance between points Understand: Calculating distance without counting units
Understand: Calculating distance without plotting

Data Analysis, Statistics, and Probability

Mathematics Standards \& Description, Grade 8

8.DSP.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantitative variables. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
8.DSP.2: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and describe the model fit by judging the closeness of the data points to the line.
8.DSP.3: Write and use equations that model linear relationships to make predictions, including interpolation and extrapolation, in real-world situations involving bivariate measurement data; interpret the slope and y-intercept.
8.DSP.4: Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. Understand and use appropriate terminology to describe independent, dependent, complementary, and mutually exclusive events.
8.DSP.5: Represent sample spaces and find probabilities of compound events (independent and dependent) using methods, such as organized lists, tables, and tree diagrams.
8.DSP.6: For events with a large number of outcomes, understand the use of the multiplication counting principle. Develop the multiplication counting principle and apply it to situations with a large number of outcomes.

Sadlier Progress Mathematics, Grade 8

Lesson 37	Construct and Interpret Scatter Plots—pp. 322-329 Understand: Use a scatter plot for a two-variable data set Understand: Describe the relationship between variables using scatter plots
Lesson 38	Fit Linear Models to Data-pp. 330-337 Understand: Fitting a trend line to data on a scatter plot Understand: Describing the association between variables on a scatter plot
Lesson 39	Problem Solving: Use Linear Models—pp. 338345 Understand: Using the trend line to answer questions about a situation Understand: Interpreting the slope and y-intercept of a trend line

Lesson 40 Analyze Data in Two-Way Tables-pp. 346-353 Understand: Constructing a two-way table from a data set
Understand: Using relative frequencies to analyze twoway tables

Not addressed at this level.

Not addressed at this level.

