Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments Correlated to the Kentucky Department of Education **K-Prep 3rd Grade Mathematics Blueprint**

	Domain, Cluster, Kentucky Academic Standard	Target %	% Sadlier Progress Mathematics Grade 3		Benchmark	gress Monitor Assessments: matics*
					# of Items	% of Test
Operat	ions and Algebraic Thinking	20–25%			35	50%
Represen	t and solve problems involving multiplication and division.				17	24%
3.OA.1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7 .		Lesson 1	Interpret Products of Whole Numbers—pp. 10–17	5	
3.OA.2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.		Lesson 2	Interpret Quotients of Whole Numbers—pp. 18–26	2	
3.OA.3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings		Lesson 3	Problem Solving: Multiplication/ Division and Equal Groups—pp. 26– 33	7	
	and equations with a symbol for the unknown number to represent the problem.		Lesson 4	Problem Solving: Multiplication/ Division and Arrays—pp. 34–41		
			Lesson 32	Problem Solving: Measurement—pp. 288–295		

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics. iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 1 of 8

	Domain, Cluster, Kentucky Academic Standard		Sadlier Progress Mathematics Grade 3		Sadlier Progress Monitor Benchmark Assessments Mathematics*	
					# of Items	% of Test
OA.4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48, 5 = \Box \div 3, 6 \times 6 = ?$.		Lesson 5	Find Unknown Numbers in Multiplication and Division Equations—pp. 42–49	3	
	nd properties of multiplication and the relationship between ation and division.				6	9%
3.OA.5	Apply properties of operations as strategies to multiply and divide. ² (Students need not use formal terms for		Lesson 6	Apply Commutative and Associative Properties to Multiply—pp. 50–57	3	
	these properties.) Examples: If $6 \times 4 = 24$ is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.		Lesson 7	Apply the Distributive Property to Multiply—pp. 58–65		
	² Students need not use formal terms for these properties.					
3.OA.6	Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8. Multiply and divide within 100.		Lesson 8	Divide by Finding an Unknown Factor—pp. 66–73	3	
Multiply o	and divide within 100.				4	6%
3.OA.7	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5$ = 8) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.		Lesson 9	Multiply and Divide Fluently within 100—pp. 80–87	4	

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 2 of 8

	Domain, Cluster, Kentucky Academic Standard		rd Target % Sadlier Progress Mathematics Grade 3		Sadlier Progress Monit Benchmark Assessmer Mathematics*	
					# of Items	% of Test
	blems involving the four operations, and identify and explain n arithmetic.				8	11%
3.OA.8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the		Lesson 10	Problem Solving: Two-Step Problems— pp. 88–95	6	
	standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. ³		Lesson 11	Problem Solving: Use Equations—pp. 96–103		
	³ This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).)					
3.OA.9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.		Lesson 12	Identify and Explain Arithmetic Patterns—pp. 104–111	2	
Numbe	er and Operations in Base Ten	20–25%			10	14%
	e value understanding and properties of operations to nulti-digit arithmetic.				10	14%
3.NBT.1	Use place value understanding to round whole numbers to the nearest 10 or 100.		Lesson 13	Round Whole Numbers to the Nearest 10 or 100—pp. 112–119	2	
3.NBT.2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.		Lesson 14	Add and Subtract Fluently within 1000—pp. 120–127	5	
3.NBT.3	Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations.		Lesson 15	Multiply One-Digit Whole Numbers by Multiples of 10—pp. 128–135	3	

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 3 of 8

	Domain, Cluster, Kentucky Academic Standard	Target %		Sadlier Progress Mathematics Grade 3	Benchmark	gress Monitor Assessments: matics*
					# of Items	% of Test
Numb	er and Operations — Fractions	25-30%			17	24%
Develop	understanding of fractions as numbers.				17	24%
3.NF.1	Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts;		Lesson 16	Understand Unit Fractions as Quantities—pp. 142–149	4	
	understand a fraction <i>a/b</i> as the quantity formed by <i>a</i> parts of size 1/ <i>b</i> .		Lesson 17	Understand Fractions as Quantities— pp. 150–157		
3.NF.2	Understand a fraction as a number on the number line; represent fractions on a number line diagram.					
a.	a. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.		Lesson 18	Understand Fractions on the Number Line—pp. 158–165	2	
	 Represent a fraction a/b on a number line diagram by marking off a lengths 1/b from 0. Recognize that the resulting interval has size a/b and that its endpoint locates the number a/b on the number line. 		Lesson 18	Understand Fractions on the Number Line—pp. 158–165	2	
3.NF.3	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.					
	a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.		Lesson 19	Understand Equivalent Fractions—pp. 166–173	2	
	 Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model. 		Lesson 20	Write Equivalent Fractions—pp. 174– 181	2	

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 4 of 8

	Domain, Cluster, Kentucky Academic Standard		arget % Sadlier Progress Mathematics Grade 3		Sadlier Progress Monitor Benchmark Assessments Mathematics*	
					# of Items	% of Test
	c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form $3 = 3/1$; recognize that $6/1 = 6$; locate $4/4$ and 1 at the same point of a number line diagram.		Lesson 21	Relate Whole Numbers and Fractions—pp. 182–189	2	
	d. Compare two fractions with the same numerator or the same denominator by reasoning about their		Lesson 22	Compare Fractions: Same Denominator—pp. 190–197	3	
	size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.		Lesson 23	Compare Fractions: Same Numerator—pp. 198–205		
Measu	rement and Data, Geometry (MD/G)	25–30%			34	49%
Solve pro	blems involving measurement and estimation.				5	7%
3.MD.1	Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.		Lesson 24	Problem Solving: Time—pp. 218–225	2	
.MD.2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg),		Lesson 25	Problem Solving: Volumes and Masses—pp. 226–233	3	
	and liters (I). ⁶ (Excludes compound units such as cm ³ and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. ⁷		Lesson 32	Problem Solving: Measurement—pp. 288–295		
	⁶ Excludes compound units such as cm ³ and finding the geometric volume of a container.					

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 5 of 8

	Domain, Cluster, Kentucky Academic Standard	Standard Target % Sadlier Progress Mathematics Grade 3		Sadlier Progress Monit Benchmark Assessmer Mathematics*		
					# of Items	% of Test
	⁷ Excludes multiplicative comparison problems (problems involving notions of "times as much"; see Glossary Table 2).					
Represer	nt and interpret data.				5	7%
3.MD.3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.		Lesson 26	Draw Graphs to Represent Categorical Data—pp. 234–241	3	
3.MD.4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units— whole numbers, halves, or quarters.		Lesson 27	Generate and Graph Measurement Data—pp. 242–249	2	
	ic measurement: understand concepts of area and relate nultiplication and to addition.			•	18	26%
3.MD.5	Recognize area as an attribute of plane figures and understand concepts of area measurement.					
	 A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. 		Lesson 28	Understand Concepts of Area Measurement—pp. 256–263	3	
	b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.		Lesson 28	Understand Concepts of Area Measurement—pp. 256–263	2	
3.MD.6	Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).		Lesson 28	Understand Concepts of Area Measurement—pp. 256–263	2	

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 6 of 8

	Domain, Cluster, Kentucky Academic Standard			Sadlier Progress Mathematics Grade 3		rress Monitor Assessments: matics*	
					# of Items	% of Test	
3.MD.7	Relate area to the operations of multiplication and addition.						
	a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.		Lesson 29	Find Areas of Rectangles: Tile and Multiply—pp. 264–271	3		
	b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.		Lesson 29	Find Areas of Rectangles: Tile and Multiply—pp. 264–271	4		
	c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a		Lesson 30	Find Areas of Rectangles: Use the Distributive Property—pp. 272–279	2		
	and $(b + c)$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.		Lesson 32	Problem Solving: Measurement—pp. 288–295			
	Parentheses were added to $(b + c)$ to provide clarity.						
	d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping		Lesson 31	Find Areas: Decompose Figures into Rectangles—pp. 280–287	2		
	rectangles and adding the areas of the non- overlapping parts, applying this technique to solve real world problems.		Lesson 32	Problem Solving: Measurement—pp. 288–295			
	c measurement: recognize perimeter as an attribute of ures and distinguish between linear and area measures.				2	3%	
3.MD.8	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter		Lesson 33	Problem Solving: Perimeter—pp. 296– 303	2		
	given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.		Lesson 34	Problem Solving: Compare Perimeter and Area—pp. 304–311			

Benchmark Assessments are also available in an interactive format in *iProgress Monitor Mathematics, iProgress Monitor* includes a Build an Assessment feature to customize assessments using a standards-aligned item bank. * Sadlier *Progress Monitor Benchmark Assessments: Mathematics* includes four Benchmarks with 70 items each; 14 of 70 items in each Benchmark assess more than one standard. Page 7 of 8

	Domain, Cluster, Kentucky Academic Standard		Target % Sadlier Progress Mathematics Grade 3		Sadlier Progress Monito Benchmark Assessment Mathematics*	
					# of Items	% of Test
Reason	with shapes and their attributes.				4	6%
3.G.1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.		Lesson 35	Understand Shapes and Attributes— pp. 312–319	2	
3.G.2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.		Lesson 36	Partition Shapes to Make Equal Areas—pp. 320–327	2	