
SADLIER

ProgressMathematics

Standards-Based Instruction & Practice

Aligned to the

North Carolina Standard Course of Study for Mathematics

Grade 3

Contents

Operations and Algebraic Thinking	2
Number and Operations in Base Ten	3
Number and Operations—Fractions	4
Measurement and Data	5
Geometry	7

Operations and Algebraic Thinking

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
-	nt and solve problems involving cation and division.		
3.OA.1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7 .	Lesson 1	Interpret Products of Whole Numbers—pp. 10–17
3.OA.2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.	Lesson 2	Interpret Quotients of Whole Numbers—pp. 18-26
3.OA.3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g.,	Lesson 3	Problem Solving: Multiplication/Division and Equal Groups—pp. 26–33
	by using drawings and equations with a symbol for the unknown number to represent the problem. (Note: See Glossary, Table 2.)	Lesson 4	Problem Solving: Multiplication/Division and Arrays—pp. 34–41
		Lesson 32	Problem Solving: Measurement—pp. 288–295
3.OA.4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48, 5 = \square \div 3, 6 \times 6 = ?$.	Lesson 5	Find Unknown Numbers in Multiplication and Division Equations—pp. 42–49
	and properties of multiplication and ionship between multiplication and		
3.OA.B.5	Apply properties of operations as strategies to multiply and divide. (Note: Students need not use formal terms for these properties.) <i>Examples: If 6</i> ×	Lesson 6	Apply Commutative and Associative Properties to Multiply—pp. 50–57
	4 = 24 is known, then $4 \times 6 = 24$ is also known. (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5 = 15$, then $15 \times 2 = 30$, or by $5 \times 2 = 10$, then $3 \times 10 = 30$. (Associative property of multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 = 16$, one can find 8×7 as $8 \times (5 + 2) = (8 \times 5) + (8 \times 2) = 40 + 16 = 56$. (Distributive property.)	Lesson 7	Apply the Distributive Property to Multiply—pp. 58–65
3.OA.B.6	Understand division as an unknown-factor problem. For example, find 32 ÷ 8 by finding the number that makes 32 when multiplied by 8.	Lesson 8	Divide by Finding an Unknown Factor —pp. 66–73

Operations and Algebraic Thinking

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
Multiply	and divide within 100.		
3.OA.7	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers. Solve problems involving the four operations, and identify and explain patterns in arithmetic.	Lesson 9	Multiply and Divide Fluently within 100—pp. 80–87
	roblems involving the four operations, ntify and explain patterns in arithmetic.		
3.OA.8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown	Lesson 10	Problem Solving: Two-Step Problems —pp. 88–95
	quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (Note: This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).	Lesson 11	Problem Solving: Use Equations—pp. 96–103
3.OA.9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	Lesson 12	Identify and Explain Arithmetic Patterns—pp. 104–111

Number and Operations in Base Ten

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
•	ce value understanding and properties ations to perform multi-digit arithmetic.		
3.NBT.1	Use place value understanding to round whole numbers to the nearest 10 or 100.	Lesson 13	Round Whole Numbers to the Nearest 10 or 100—pp. 112–119
3.NBT.2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Lesson 14	Add and Subtract Fluently within 1000—pp. 120–127

Number and Operations in Base Ten

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
3.NBT.3	Multiply one-digit whole numbers by multiples of 10 in the range 10–90 (e.g., 9×80 , 5×60) using strategies based on place value and properties of operations.	Lesson 15	Multiply One-Digit Whole Numbers by Multiples of 10—pp. 128–135

Number and Operations—Fractions Note: Grade 3 expectations in this domain are limited to fractions with

denominators 2, 3, 4, 5, and 8.

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
Develo numbe	p understanding of fractions as rs.		
3.NF.1	Understand a fraction $1/b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity	Lesson 16	Understand Unit Fractions as Quantities —pp. 142–149
	formed by a parts of size $1/b$.	Lesson 17	Understand Fractions as Quantities—pp. 150–157
3.NF.2	Understand a fraction as a number on the number line; represent fractions on a number line diagram.		
	a. Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.	Lesson 18	Understand Fractions on the Number Line—pp. 158–165
	b. Represent a fraction <i>a/b</i> on a number line diagram by marking off a lengths 1/ <i>b</i> from 0. Recognize that the resulting interval has size <i>a/b</i> and that its endpoint locates the number <i>a/b</i> on the number line.	Lesson 18	Understand Fractions on the Number Line—pp. 158–165
3.NF.3	Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.		
	a. Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	Lesson 19	Understand Equivalent Fractions —pp. 166–173
	b. Recognize and generate simple equivalent fractions, e.g., $1/2 = 2/4$, $4/6 = 2/3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	Lesson 20	Write Equivalent Fractions—pp. 174–181

Number and Operations—Fractions Note: Grade 3 expectations in this domain are limited to fractions with

denominators 2, 3, 4, 5, and 8.

c. Express whole numbers as fractions, and

STANDARDS

		recognize fractions that are equivalent to whole numbers. Examples: Express 3 in the form 3 = 3/1; recognize that 6/1 = 6; locate 4/4 and 1 at the same point of a number line diagram.	Lessuit 21	182–189
	d.	Compare two fractions with the same numerator or the same denominator by	Lesson 22	Compare Fractions: Same Denominator—pp. 190–197
		reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	Lesson 23	Compare Fractions: Same Numerator—pp. 198–205
Meas	sure	ement and Data		
Standari	os		SADLIER PRO	GRESS MATHEMATICS, GRADE 3
estima	tion (ems involving measurement and of intervals of time, liquid volumes, of objects.		
3.MD.1	me pro tim	Il and write time to the nearest minute and easure time intervals in minutes. Solve word oblems involving addition and subtraction of ne intervals in minutes, e.g., by representing the oblem on a number line diagram.	Lesson 24	Problem Solving: Time—pp. 218–225
3.MD.2	of o	easure and estimate liquid volumes and masses objects using standard units of grams (g),	Lesson 25	Problem Solving: Volumes and Masses—pp. 226–233
	cor vol div ma un wit pro coi	ograms (kg), and liters (l). (Note: Excludes in pound units such as cm³ and finding the geometric ume of a container.) Add, subtract, multiply, or vide to solve one-step word problems involving asses or volumes that are given in the same lits, e.g., by using drawings (such as a beaker th a measurement scale) to represent the oblem. (Note: Excludes multiplicative in marison problems (problems involving tions of "times as much"; see Glossary, Table 2.)	Lesson 32	Problem Solving: Measurement—pp. 288–295

SADLIER PROGRESS MATHEMATICS, GRADE 3

Relate Whole Numbers and Fractions—pp.

Lesson 21

Measurement and Data

Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
Represe	ent and interpret data.		
3.MD.3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	Lesson 26	Draw Graphs to Represent Categorical Data—pp. 234–241
3.MD.4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units—whole numbers, halves, or quarters.	Lesson 27	Generate and Graph Measurement Data—pp. 242–249
concep	tric measurement: understand ts of area and relate area to ication and to addition.		
3.MD.5	Recognize area as an attribute of plane figures and understand concepts of area measurement.		
	a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	Lesson 28	Understand Concepts of Area Measurement—pp. 256–263
	b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	Lesson 28	Understand Concepts of Area Measurement—pp. 256–263
3.MD.6	Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).	Lesson 28	Understand Concepts of Area Measurement—pp. 256–263
3.MD.7	Relate area to the operations of multiplication and addition.		
	a. Find the area of a rectangle with whole- number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.	Lesson 29	Find Areas of Rectangles: Tile and Multiply—pp. 264–271
	b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.	Lesson 29	Find Areas of Rectangles: Tile and Multiply—pp. 264–271

Measurement and Data

STANDARD	os		SADLIER PRO	gress Mathematics, Grade 3
	c.	Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b + c$ is the sum of $a \times b$ and a	Lesson 30	Find Areas of Rectangles: Use the Distributive Property—pp. 272–279
		× c. Use area models to represent the distributive property in mathematical reasoning.	Lesson 32	Problem Solving: Measurement—pp. 288–295
	d.	Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the	Lesson 31	Find Areas: Decompose Figures into Rectangles—pp. 280-287
		non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.	Lesson 32	Problem Solving: Measurement—pp. 288–295
			Le33011 32	Problem Solving, measurement—pp. 200–293
as an at	ttribu		Lesson 32	Problem Solving. Measurement—pp. 200–293
as an at	ttribu en lin	measurement: recognize perimeter ute of plane figures and distinguish	Lesson 33	Problem Solving: Perimeter—pp. 296–303

Geometry

GCOI	пену		
Standards		SADLIER PROGRESS MATHEMATICS, GRADE 3	
Solve p	problems involving measurement and tion.		
3.G.1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	Lesson 35	Understand Shapes and Attributes—pp. 312–319
3.G.2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.	Lesson 36	Partition Shapes to Make Equal Areas—pp. 320–327