Progress Mathematics

Standards-Based Instruction \& Practice

Aligned to the

New Jersey Student Learning Standards for Mathematics (7/28/16)

Grade 5

Contents

Operations and Algebraic Thinking 2
Number and Operations in Base Ten 2
Number and Operations—Fractions 4
Measurement and Data 6
Geometry 7

William H. Sadlier, Inc. www.sadlierschool.com

Operations and Algebraic Thinking

Grade 5 Standards for Mathematical Content

A. Write and interpret numerical expressions.

5.OA.A. 1	Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols.
5.OA.A. 2	Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \times(8+7)$ Recognize that 3 $\times(18932+921)$ is three times as large as 18932 + 921, without having to calculate the indicated sum or product.
B. Analyze patterns and relationships.	

Lesson 1 Use Grouping Symbols and Evaluate
 Numerical Expressions-pp. 10-17

Lesson $2 \quad$ Write and Interpret Numerical Expressionspp. 18-25

Lesson 3 Analyze Numerical Patterns-pp. 26-33

5.NBT

```
Sadlier Progress Mathematics, Grade 5
```


Lesson 4 Understand Place Value—pp. 40-47

Lesson 5 Powers of 10: Use Patterns and Whole-

 Number Exponents-pp. 48-55| Number and Operation
 Grade 5 Standards for Mathematical Content | | n | 5.NBT |
| :---: | :---: | :---: | :---: |
| | | Sadlier Progress Mathematics, Grade 5 | |
| 5.NBT.A. 3 | Read, write, and compare decimals to thousandths. | | |
| 5.NBT.A.3a | a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392=3 \times 100$ $+4 \times 10+7 \times 1+3 \times(1 / 10)+9 \times(1 / 100)+2$ $\times(1 / 1000)$. | Lesson 6 | Read and Write Decimals to Thousandthspp. 56-63 |
| 5.NBT.A.3b | b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons. | Lesson 7 | Compare Decimals to Thousandths—pp. 6471 |
| 5.NBT.A. 4 | Use place value understanding to round decimals to any place. | Lesson 8 | Round Decimals: Use Place Value-pp. 72-79 |
| B. Perform operations with multi-digit whole numbers and with decimals to hundredths. | | | |
| 5.NBT.B. 5 | Fluently multiply multi-digit whole numbers using the standard algorithm. | Lesson 9 | Multiply Fluently with Multi-Digit Numberspp. 80-87 |
| 5.NBT.B. 6 | Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | Lesson 10 | Divide Whole Numbers: Use Place Value Strategies-pp. 88-95 |
| | | Lesson 11 | Divide Whole Numbers: Use Properties of Operations-pp. 96-103 |
| 5.NBT.B. 7 | Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. | Lesson 12 | Add and Subtract Decimals to Hundredthspp. 104-111 |
| | | Lesson 13 | Multiply Decimals to Hundredths-pp. 112119 |
| | | Lesson 14 | Divide Decimals to Hundredths-pp. 120-127 |

Grade 5 Standards for Mathematical Content
A. Use equivalent fractions as a strategy to add and subtract fractions.

5.NF.A. 1	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12+$ $15 / 12=23 / 12$. (In general, a/b $+c / d=(a d+$ $b c) / b d)$.
5.NF.A.2	Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = $3 / 7$, by observing that $3 / 7<1 / 2$.
B. Apply and extend previous understandings	
of multiplication and division to multiply and	
divide fractions.	

5.NF.B.3	Interpret a fraction as division of the numerator by the denominator $(\mathrm{a} / \mathrm{b}=\mathrm{a} \div \mathrm{b})$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret $3 / 4$ as the result of dividing 3 by 4, noting that $3 / 4$ multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size $3 / 4$. If 9 people want to share a 50 -pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie?
5.NF.B.4	Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction.
5.NF.B.4a	a.Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, ($a / b) \times(c / d)=a c / b d)$.

Lesson 15 Add and Subtract Fractions with Unlike

 Denominators-pp. 134-141
Lesson 16 Problem Solving: Add and Subtract

 Fractions-pp. 142-149Lesson 17 Interpret Fractions as Division—pp. 150-157

Number and Operations-Fractions

5.NF.B.4b	b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
5.NF.B. 5	Interpret multiplication as scaling (resizing), by:
5.NF.B.5a	a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication.
5.NF.B.5b	b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=$ $(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .
5.NF.B.6	Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem.
5.NF.B.7	Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.
5.NF.B.7a	a. Interpret division of a unit fraction by a nonzero whole number, and compute such quotients. For example, create a story context for $(1 / 3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1 / 3) \div 4=1 / 12$ because ($1 / 12$) $\times 4=1 / 3$.
5.NF.B.7b	b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div$ (1/5), and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div$ $(1 / 5)=20$ because $20 \times(1 / 5)=4$.

Sadlier Progress Mathematics, Grade 5

Lesson 19 Find Areas of Rectangles: Tile and Multiply-

 pp. 166-173Lesson $20 \quad$| Interpret Multiplication of Fractions as |
| :--- |
| Scaling—pp. 174-181 |

Lesson 20 Interpret Multiplication of Fractions as

 Scaling-pp. 174-181Lesson 21 Problem Solving: Multiply Fractions and Mixed Numbers-pp. 182-189

Lesson 22 Divide Unit Fractions by Whole Numberspp. 190-197

Lesson 23 Divide Whole Numbers by Unit Fractionspp. 198-205

| Number and Operations_-Fraction |
| :--- | :--- |
| GRADE 5 STANDARDS FOR MATHEMATICAL Content |

Measurement and Data

Grade 5 Standards for Mathematical Content

A. Convert like measurement units within a

 given measurement system.5.MD.A. 1

Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.

B. Represent and interpret data.

| 5.MD.B. $2 \quad$Make a line plot to display a data set of
 measurements in fractions of a unit $(1 / 2,1 / 4$,

 solve problems in involving informs for this. For example, given different presented
 measurements of liquid in identical beakers, find
 the amount of liquid each beaker would contain if
 the total amount in all the beakers were
 redistributed equally. |
| :--- | :--- |

C. Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition.

5.MD.C.3	Recognize volume as an attribute of solid figures and understand concepts of volume measurement.
5.MD.C.3a	a.A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume.

Sadlier Progress Mathematics, Grade 5

Lesson 24 Problem Solving: Divide Unit Fractions and Whole Numbers-pp. 206-213

5.MD

Sadlier Progress Mathematics, Grade 5

Lesson $\mathbf{2 5}$	Convert Customary Measurement Units—pp. $226-233$
Lesson 26	Convert Metric Measurement Units—pp. 234- 241

Lesson 27 Problem Solving: Use Line Plots—pp. 242-249

Lesson 28 Understand Concepts of Volume
 Measurement-pp. 250-257

Measurement and Data

GRADE 5 Standards for MAthematical Content		
5.MD.C.3b	b.	A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.
5.MD.C.4	Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and non-standard units.	
5.MD.C.5	Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.	
5.MD.C.5a	a.	
Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication.		
5.MD.C.5b	b.Apply the formulas $V=I \times w \times h$ and $V=B \times$ h for rectangular prisms to find volumes of right rectangular prisms with whole- number edge lengths in the context of solving real world and mathematical problems. 5.MD.C.5cc. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non- overlapping parts, applying this technique to solve real world problems.	

Geometry
Grade 5 Standards for Mathematical Content
A. Graph points on the coordinate plane to solve real-world and mathematical problems.

5.G.A. $1 \quad$| Use a pair of perpendicular number lines, called |
| :--- |
| axes, to define a coordinate system, with the |
| intersection of the lines (the origin) arranged to |
| coincide with the 0 on each line and a given |
| point in the plane located by using an ordered |
| pair of numbers, called its coordinates. |
| Understand that the first number indicates how |
| far to travel from the origin in the direction of |

- continued -

Sadlier Progress Mathematics, Grade 5

Lesson 28 Understand Concepts of Volume
Measurement-pp. 250-257

Lesson 29 Measure Volume-pp. 258-265

Lesson 30 Find Volume: Relate Packing of Unit Cubes to Multiplying-pp. 266-273

Lesson 31 Find Volume: Use the Associate Propertypp. 274-281

Lesson 32 Problem Solving: Apply Volume Formulas for Prisms-pp. 282-289

Lesson 33 Problem Solving: Decompose Figures to Find Volume-pp. 290-297

[^0]
Geometry

Grade 5 Standards for Mathematical Content

one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate).
5.G.A. 2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.
B. Classify two-dimensional figures into categories based on their properties.

5.G.B.3	Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.
5.G.B.4	Classify two-dimensional figures in a hierarchy based on properties.

Sadlier Progress Mathematics, Grade 5

Lesson 35 Graph Points to Represent Problem
Situations-pp. 312-319

Lesson 36 Analyze Properties to Classify Two-
Dimensional Figures-pp. 320-327

Lesson 36 Analyze Properties to Classify Two-
Dimensional Figures-pp. 320-327

[^0]: Lesson 34 Understand Points on the Coordinate
 Plane-pp. 304-311

