Progress
 Mathematics

Standards-Based Instruction \& Practice

Aligned to the

South Carolina College- and Career-Ready Standards for Mathematics

Grade 7

Contents
The Number System 2
Ratios and Proportional Relationships 3
Expressions, Equations, and Inequalities 4
Geometry and Measurement 5
Data Analysis, Statistics, and Probability 7

William H. Sadlier, Inc. www.sadlierschool.com

Sadlier Progress Mathematics, Grade 7, Aligned to the
South Carolina College- and Career-Ready Standards for Mathematics
Grade 7

The Number System

Standards	
The student will:	
7.NS. 1	Extend prior knowledge of operations with positive rational numbers to add and to subtract all rational numbers and represent the sum or difference on a number line.
	a. Understand that the additive inverse of a number is its opposite and their sum is equal to zero.
	b. Understand that the sum of two rational numbers $(p+q)$ represents a distance from p on the number line equal to $\|q\|$ where the direction is indicated by the sign of q.
	c. Translate between the subtraction of rational numbers and addition using the additive inverse, $p-q=p+(-q)$.
	d. Demonstrate that the distance between two rational numbers on the number line is the absolute value of their difference.
	e. Apply mathematical properties (e.g., commutative, associative, distributive, or the properties of identity and inverse elements) to add and subtract rational numbers.
7.NS. 2	Extend prior knowledge of operations with positive rational numbers to multiply and to divide all rational numbers.
	a. Understand that the multiplicative inverse of a number is its reciprocal and their product is equal to one.
	b. Understand sign rules for multiplying rational numbers.
	c. Understand sign rules for dividing rational numbers and that a quotient of integers (with a non-zero divisor) is a rational number.
	d. Apply mathematical properties (e.g., commutative, associative, distributive, or the properties of identity and inverse elements) to multiply and divide rational numbers.
	e. Understand that some rational numbers can be written as integers and all rational numbers can be written as fractions or decimal numbers that terminate or repeat.

Sadlier Progress Mathematics, Grade 7

Lesson 8 Understand Addition of Integers—pp. 72-79

Lesson 8 Understand Addition of Integers—pp. 72-79

Lesson 9	Understand Subtraction of Integers—pp. $80-87$

Lesson 9 Understand Subtraction of Integers—pp. 80-87

Lesson 10 Add and Subtract Rational Numbers—pp. 88-95

Lesson 11	Understand Multiplication of Integers—pp. $96-103$
Lesson 11	Understand Multiplication of Integers—pp. $96-103$
Lesson 12	Understand Division of Integers—pp. 104- 111
Lesson 13	Multiply and Divide Rational Numbers—pp. $112-119$
Lesson 14	Convert Rational Numbers to Decimal Form—pp. 120-127

Sadlier Progress Mathematics, Grade 7, Aligned to the
South Carolina College- and Career-Ready Standards for Mathematics
Grade 7

The Number System

STANDARDS	
7.NS.3	Apply the concepts of all four operations with rational numbers to solve real-world and mathematical problems.
7.NS.4	Understand and apply the concepts of comparing and ordering to rational numbers.

Sadlier Progress Mathematics, Grade 7

Lesson 15 Apply Rational-Number Operations-pp. 128-135

Rational Numbers-pp. 144-151

	*See Grade 6: Lesson 25, Identify Solutions to Equations and Inequalities—pp. 214-221
Lesson 10	Add and Subtract Rational Numbers (convert fractions to decimals)—pp. 88-95
Lesson 14	Convert Rational Numbers to Decimal Form—pp. 120-127
	Related content- *See Grade 6: Lesson 15, Understand Positive and Negative Numbers and Opposites-pp. 128-135; Lesson 16, Locate Points with Rational Coordinates-pp. 136-143
Rac	

Ratios and Proportional Relationships

| StANDARDS |
| :--- | :--- |
| The student will: |
| 7.RP. $1 \quad$Compute unit rates, including those involving
 complex fractions, with like or different units. |
| 7.RP. $2 \quad$Identify and model proportional relationships
 given multiple representations, including tables,
 graphs, equations, diagrams, verbal descriptions,
 and real-world situations. |

a. Determine when two quantities are in a proportional relationship.
b. Recognize or compute the constant of proportionality.
c. Understand that the constant of proportionality is the unit rate.

Sadlier Progress Mathematics, Grade 7

Lesson 1 Compute Unit Rates—pp. 10-17

Lesson 2	Identify Proportional Relationships—pp. 18- 25
Lesson 3	Identify the Constant of Proportionality—pp. $26-33$
Lesson 3	Identify the Constant of Proportionality—pp. $26-33$

Ratios and Proportional Relationships

Standards

d. Use equations to model proportional relationships.
e. Investigate the graph of a proportional relationship and explain the meaning of specific points (e.g., origin, unit rate) in the context of the situation.
7.RP. 3 Solve real-world and mathematical problems involving ratios and percentages using proportional reasoning (e.g., multi-step dimensional analysis, percent increase/decrease, tax).

Sadlier Progress Mathematics, Grade 7

Lesson 4	Represent Proportional Relationships with Equations-pp. 34-41
Lesson 5	Interpret Graphs of Proportional Relationships-pp. 42-49
Lesson 6	Problem Solving: Multi-step Ratio Problems-pp. 50-57
Lesson 7	Problem Solving: Multi-step Percent Problems-pp. 58-65

Expressions, Equations, and Inequalities

Standards		Sadlier Progress Mathematics, Grade 7	
The student will:			
7.EEI. 1	Apply mathematical properties (e.g., commutative, associative, distributive) to simplify and to factor linear algebraic expressions with rational coefficients.	Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
		Lesson 17	Expand and Factor Linear Expressionspp. 150-157
7.EEI. 2	Recognize that algebraic expressions may have a variety of equivalent forms and determine an appropriate form for a given real-world situation.	Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
		Lesson 17	Expand and Factor Linear Expressionspp. 150-157
7.EEI. 3	Extend previous understanding of Order of Operations to solve multi-step real-world and mathematical problems involving rational numbers. Include fraction bars as a grouping symbol.	Lesson 18	Problem Solving: Multi-step Problems with Rational Numbers-pp. 158-165
7.EEI. 4	Apply the concepts of linear equations and inequalities in one variable to real-world and mathematical situations.		
	Write and fluently solve linear equations of the form $a x+b=c$ and $a(x+b)=c$ where a, b, and c are rational numbers.	Lesson 19	Solve Linear Equations-pp. 166-173
		Lesson 20	Problem Solving: Linear Equations-pp. 174-181
	Write and solve multi-step linear equations that include the use of the distributive property and combining like terms. Exclude equations that contain variables on both sides.	Lesson 16	Combine Like Terms to Simplify Linear Expressions -pp. 142-149
		Lesson 20	Problem Solving: Linear Equations-pp. 174-181

Expressions, Equations, and Inequalities

Standards

c. Write and solve two-step linear inequalities. Graph the solution set on a number line and interpret its meaning.
d. Identify and justify the steps for solving multistep linear equations and two-step linear inequalities.
7.EEI. 5 Understand and apply the laws of exponents (i.e., product rule, quotient rule, power to a power, product to a power, quotient to a power, zero power property) to simplify numerical expressions that include whole-number exponents.

Geometry and Measurement

STANDARDS	
The student will:	
$7 . G M .1$	Determine the scale factor and translate between scale models and actual measurements (e.g., lengths, area) of real-world objects and geometric figures using proportional reasoning.
$7 . G M .2$	Construct triangles and special quadrilaterals using a variety of tools (e.g., freehand, ruler and protractor, technology).

a. Construct triangles given all measurements of either angles or sides.
b. Decide if the measurements determine a unique triangle, more than one triangle, or no triangle.

Sadlier Progress Mathematics, Grade 7

Lesson 21	Solve Linear Inequalities—pp. 182-189
Lesson 22	Problem Solving: Linear Inequalities—pp. $190-197$
Lesson 19	Solve Linear Equations—pp. 166-173
Lesson 20	Problem Solving: Linear Equations-pp. $174-181$
Lesson 21	Solve Linear Inequalities—pp. 182-189
Lesson 22	Problem Solving: Linear Inequalities—pp. 190-197
Lesson 21	Solve Linear Inequalities—pp. 182-189
Lesson 22	Problem Solving: Linear Inequalities—pp. 190-197

Sadlier Progress Mathematics, Grade 7

Lesson 23 Use Scale Drawings to Solve Problems—pp.

 204-211| Lesson 24 | Draw Shapes that Meet Given Conditions-
 pp. 212-219 |
| :--- | :--- |
| Lesson 25 | Construct Triangles Using Both Side Lengths
 and Angle Measures-pp. 220-227 |
| Lesson 24 | Draw Shapes that Meet Given Conditions-
 pp. 212-219 |
| Lesson 25 | Construct Triangles Using Both Side Lengths
 and Angle Measures-pp. 220-227 |

Sadlier Progress Mathematics, Grade 7, Aligned to the
South Carolina College- and Career-Ready Standards for Mathematics
Grade 7

Geometry and Measurement

Standards

c. Construct special quadrilaterals (i.e., kite, trapezoid, isosceles trapezoid, rhombus, parallelogram, rectangle) given specific parameters about angles or sides.

7.GM.3	Describe two-dimensional cross-sections of three- dimensional figures, specifically right rectangular prisms and right rectangular pyramids.
7.GM.4	Investigate the concept of circles.
	a. \quadDemonstrate an understanding of the proportional relationships between diameter, radius, and circumference of a circle.
	b. \quadUnderstand that the constant of proportionality between the circumference and diameter is equivalent to π. c. \quadExplore the relationship between circumference and area using a visual model. d.Use the formulas for circumference and area of circles appropriately to solve real-world and mathematical problems. 7.GM.5Write equations to solve problems involving the relationships between angles formed by two intersecting lines, including supplementary, complementary, vertical, and adjacent.
7.GM.6	Apply the concepts of two- and three-dimensional figures to real-world and mathematical situations.

a. Understand that the concept of area is applied to two-dimensional figures such as triangles, quadrilaterals, and polygons.
b. Understand that the concepts of volume and surface area are applied to three-dimensional figures such as cubes, right rectangular prisms, and right triangular prisms.
c. Decompose cubes, right rectangular prisms, and right triangular prisms into rectangles and triangles to derive the formulas for volume and surface area.
d. Use the formulas for area, volume, and surface area appropriately.

Sadlier Progress Mathematics, Grade 7

Lesson 24 Draw Shapes that Meet Given Conditions-

 pp. 212-219Lesson 26 Slice Three-Dimensional Figures-pp. 228235

Lesson 27 Use Formulas for Area and Circumference of

 Circles-pp. 236-243| Lesson 27 | Use Formulas for Area and Circumference of
 Circles-pp. 236-243 |
| :--- | :--- |
| Lesson 27 | Use Formulas for Area and Circumference of
 Circles-pp. 236-243 |
| Lesson 27 | Use Formulas for Area and Circumference of
 Circles-pp. 236-243 |
| Lesson 28 | Use Equations to Find Unknown Angle
 Measures—pp. 244-251 |

Lesson 29 Problem Solving: Area, Volume, and Surface Area-pp. 252-259

Lesson 29 Problem Solving: Area, Volume, and Surface Area-pp. 252-259

Lesson 29	Problem Solving: Area, Volume, and Surface Area-pp. 252-259
	Foundational Skills Handbook K. Understand: Finding volumes of rectangular prisms-p. 374
Lesson 29	Problem Solving: Area, Volume, and Surface Area-pp. 252-259

Data Analysis, Statistics, and Probability

Standards	
The student will:	
7.DSP. 1	Investigate concepts of random sampling.
	a. Understand that a sample is a subset of a population and both possess the same characteristics.
	b. Differentiate between random and nonrandom sampling.
	c. Understand that generalizations from a sample are valid only if the sample is representative of the population.
	d. Understand that random sampling is used to gather a representative sample and supports valid inferences about the population.
7.DSP. 2	Draw inferences about a population by collecting multiple random samples of the same size to investigate variability in estimates of the characteristic of interest.
7.DSP. 3	Visually compare the centers, spreads, and overlap of two displays of data (i.e., dot plots, histograms, box plots) that are graphed on the same scale and draw inferences about this data.
7.DSP. 4	Compare the numerical measures of center (mean, median, mode) and variability (range, interquartile range, mean absolute deviation) from two random samples to draw inferences about the populations.
7.DSP. 5	Investigate the concept of probability of chance events.

a. Determine probabilities of simple events.
b. Understand that probability measures likelihood of a chance event occurring.
c. Understand that the probability of a chance event is a number between 0 and 1 .
d. Understand that a probability closer to 1 indicates a likely chance event.
e. Understand that a probability close to 1 / 2 indicates that a chance event is neither likely nor unlikely.

Sadlier Progress Mathematics, Grade 7

Lesson 30 Understand Sampling—pp. 266-273

Lesson 31 Use Sampling to Draw Inferences-pp. 274281

Lesson 32 Use Visual Overlap to Compare Distributions—pp. 282-289

Lesson 33 Use Sample Statistics to Compare Populations-pp. 290-297

Lesson 34 Understand Probability of a Chance Eventpp. 298-305

Lesson 34	Understand Probability of a Chance Event- pp. 298-305
Lesson 34	Understand Probability of a Chance Event- pp. 298-305
Lesson 34	Understand Probability of a Chance Event- pp. 298-305
Lesson 34	Understand Probability of a Chance Event- pp. 298-305

Data Analysis, Statistics, and Probability

| STANDARDS | | | SADLIER PROGRESS MATHEMATICS, GRADE 7 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Sadlier Progress Mathematics, Grade 7, Aligned to the
South Carolina College- and Career-Ready Standards for Mathematics
Grade 7

Data Analysis, Statistics, and Probability

STANDARDS	
g.	Compare theoretical and experimental probabilities for compound events.

Sadlier Progress Mathematics, Grade 7	
Lesson 36	Finding Theoretical Probability-pp. 314- 321
Lesson 37	Finding Experimental Probability-pp. 322- 329
Lesson 40	Simulate Compound Events-pp. 346-353

